JPH09262594A - Method and apparatus for controlling injected amount of ozone in high-degree water purifying treatment - Google Patents

Method and apparatus for controlling injected amount of ozone in high-degree water purifying treatment

Info

Publication number
JPH09262594A
JPH09262594A JP7358396A JP7358396A JPH09262594A JP H09262594 A JPH09262594 A JP H09262594A JP 7358396 A JP7358396 A JP 7358396A JP 7358396 A JP7358396 A JP 7358396A JP H09262594 A JPH09262594 A JP H09262594A
Authority
JP
Japan
Prior art keywords
ozone
substance
dissolved
water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7358396A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugimoto
洋 杉本
Toshiyuki Nagahama
利行 長浜
Hiroaki Tsutsumi
浩明 堤
Nobuyoshi Yamakoshi
信義 山越
Hiroyasu Yasutomi
弘泰 安富
Shoji Watanabe
昭二 渡辺
Koji Kageyama
晃治 陰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7358396A priority Critical patent/JPH09262594A/en
Publication of JPH09262594A publication Critical patent/JPH09262594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the optimum injected amt. of ozone on-line by separating an org. substance oxidatively decomposed by ozone into a substance to be removed and other substance and modeling the effect of the other substance on the reaction of the substance to be removed with ozone by an item capable of being made on-line. SOLUTION: When the injected amt. of zone in high-degree water purifying treatment of raw water for tap water is controlled, the flow rate of water to be treated flowing in an ozone contact basin is measured by a flowmeter 3 and the concn. of a coexisting substance therein is measured by a UV meter 4 and the water temp. and pH thereof are respectively measured by a water temp. meter 5 and a pH meter 6 and these measurement results and an assumed value of the injected amt. of ozone gas are inputted to a computer 9 and the concn. of a dissolved offensive smell substance after ozone treatment is calculated. This calculated value is set to an index to determine the injection amt. of ozone gas. At this time, a modified ozone reaction model formula of which the relative reaction speed constant is represented by 1+r.Cs2 (wherein Cs2 is the concn. of a dissolved substance to be oxidized and r is a proportion constant) is used and the concn. of an offensive smell substance is inputted to the model formula to obtain a proper ozone amt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、オゾンガスを注入
して水道原水に含まれる有機物質を分解除去する高度浄
水処理におけるオゾン注入量制御方法と制御装置に関す
る。本発明は、浄水場において高度浄水処理を行う際の
オゾン注入量制御方法として好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone injection amount control method and control device in advanced water purification treatment in which ozone gas is injected to decompose and remove organic substances contained in raw water for tap water. INDUSTRIAL APPLICABILITY The present invention is suitable as a method for controlling an ozone injection amount when performing advanced water purification treatment in a water purification plant.

【0002】[0002]

【従来の技術】現用の浄水処理システムは、急速ろ過を
中心とするプロセスになっている。即ち、河川から取水
した水道原水を沈殿池で浄化し、混和池に送って薬品を
添加して微細なけん濁物質を凝集させ、別の沈殿池に入
れて凝集物を沈殿させ、その後、ろ過池を経て塩素注入
池で塩素を添加して殺菌処理し、水道水として需要家に
供給するプロセスになっている。
2. Description of the Related Art Currently used water purification systems are processes centered on rapid filtration. That is, tap water taken from a river is purified in a sedimentation basin, sent to a mixing basin to add chemicals to agglomerate fine suspended substances, put in another sedimentation basin to precipitate aggregates, and then filtered. After the pond, chlorine is added in a chlorine pond to sterilize it and supply it to customers as tap water.

【0003】このプロセスでは、不溶解性の物質は除去
できるが、溶解物質である臭気物質や毒性物質等の有機
物質は除去できない。
In this process, insoluble substances can be removed, but dissolved organic substances such as odorous substances and toxic substances cannot be removed.

【0004】そこで、オゾンの酸化力を利用して臭気物
質や毒性物質を分解し、更に活性炭層に送って吸着除去
するいわゆる高度浄水処理が注目されている。オゾンに
よる浄水処理では、オゾン発生装置のコロナ放電により
発生したオゾンガスをオゾン接触池内の散気管から微細
気泡として吹き込んで水中に溶解させ、溶解したオゾン
の酸化力により臭気物質や毒性物質等の有機物質を分解
除去する。
Therefore, so-called advanced water purification treatment has been drawing attention in which odorous substances and toxic substances are decomposed by utilizing the oxidizing power of ozone, and further sent to the activated carbon layer for adsorption removal. In clean water treatment with ozone, ozone gas generated by corona discharge of an ozone generator is blown as fine bubbles from a diffuser in an ozone contact pond and dissolved in water, and the oxidative power of the dissolved ozone causes odorous substances, toxic substances and other organic substances To remove.

【0005】オゾンガスは電気的に発生させることがで
きるので、その注入量の調節と制御は容易である。しか
し、次のような問題がある。
Since ozone gas can be generated electrically, it is easy to adjust and control the injection amount. However, there are the following problems.

【0006】オゾンを発生させるには、多大な電力コス
トがかかる。そのために、オゾン接触池へ流入する水の
水質に応じてオゾンガス濃度やオゾン注入率を制御する
必要がある。しかしながら、除去対象である臭気物質や
毒性物質の濃度をオンラインで測定する方法と装置がな
いために、オゾン注入量の自動制御は行うことができな
い。現状では、オゾン注入率を一定にするか、臭気物質
や毒性物質の濃度が高くなる時期にのみ手動によりオゾ
ン注入率を高くするという経験的な方法、或いはオゾン
接触池から流出する処理水中の溶存オゾン濃度が一定と
なるようにオゾン注入量を制御する方法などが主流にな
っている。
Generating ozone requires a great deal of power cost. Therefore, it is necessary to control the ozone gas concentration and the ozone injection rate according to the quality of water flowing into the ozone contact pond. However, automatic control of the ozone injection amount cannot be performed because there is no method and apparatus for measuring the concentration of the odorous substance or toxic substance to be removed online. Currently, the empirical method is to keep the ozone injection rate constant, or manually increase the ozone injection rate only when the concentration of odorous substances and toxic substances becomes high, or to dissolve it in the treated water flowing out from the ozone contact pond. The mainstream method is to control the ozone injection amount so that the ozone concentration becomes constant.

【0007】このようなことから、オゾン注入量を制御
する方法が盛んに研究されているが、いまだ確固たる方
法が見つかっていないのが現状である。オゾン注入量の
制御方法に関しては、特開平6−269786 号公報,特開平
6−63570号公報,特開平3−56196号公報,特開平6−792
90号公報等に記載されている。このうち、特開平6−269
786号公報には、所定のアルゴリズムを用いてかび臭物
質に対する適正オゾン量を求めること、相対反応速度定
数をもとにかび臭物質の分解に必要な適正オゾン量を算
出することが記載されている。
Under the circumstances, a method for controlling the ozone injection amount has been actively researched, but the current situation is that no reliable method has been found yet. Regarding the method of controlling the amount of injected ozone, JP-A-6-269786 and JP-A-6-269786
JP-A-6-63570, JP-A-3-56196, JP-A-6-792
No. 90, etc. Of these, JP-A-6-269
Japanese Patent No. 786 describes that an appropriate amount of ozone for musty odor substances is obtained using a predetermined algorithm, and an amount of appropriate ozone required for decomposition of musty odor substances is calculated based on a relative reaction rate constant.

【0008】[0008]

【発明が解決しようとする課題】本発明は、流入水中に
溶存する溶存物質の種類や濃度により変化する相対反応
速度定数をオンライン計測可能な項目によりモデル化す
ることにより、オゾン注入量をオンラインで決定できる
ようにしたオゾン注入量の制御方法と制御装置を提供す
ることにある。
SUMMARY OF THE INVENTION According to the present invention, the amount of ozone injected can be calculated online by modeling the relative reaction rate constant, which varies depending on the type and concentration of the dissolved substance dissolved in the inflow water, with an online measurable item. An object is to provide a control method and a control device for the ozone injection amount that can be determined.

【0009】[0009]

【課題を解決するための手段】本発明は、オゾンによっ
て酸化分解される有機物質を、除去対象物質とそれ以外
の物質とに分け、更に除去対象以外の物質がオゾンと除
去対象物質との反応に与える影響をオンライン可能な項
目でモデル化することにより、最適オゾン注入量をオン
ラインで制御できるようにしたものである。
According to the present invention, an organic substance which is oxidatively decomposed by ozone is divided into a substance to be removed and a substance other than that, and a substance other than the substance to be removed reacts with ozone and the substance to be removed. By modeling the effect on the above with items that can be online, the optimum ozone injection amount can be controlled online.

【0010】本発明は、オゾンと臭気物質との反応速度
を表す相対反応速度定数を用いてモデル化したオゾン反
応モデル式に被処理水の水質計測値とオゾンガス注入量
の仮定値とを入力してオゾン処理後の溶存臭気物質濃度
を計算し、この計算量を指標としてオゾンガス注入量を
決定する方法であって、前記相対反応速度定数を(1+
r・Cs2、ここでCs2は酸化される溶存物質濃度、
rは比例定数)で表した改良オゾン反応モデル式を備
え、この改良オゾン反応モデル式によってオゾンガス注
入量を決定することを特徴とする。
The present invention inputs the measured water quality of treated water and the assumed amount of ozone gas injection into an ozone reaction model equation modeled using a relative reaction rate constant representing the reaction rate of ozone and an odorous substance. In this method, the concentration of dissolved odor substance after ozone treatment is calculated, and the amount of ozone gas injection is determined using the calculated amount as an index.
r · Cs2, where Cs2 is the concentration of dissolved substances that are oxidized,
r is a proportionality constant), and an improved ozone reaction model formula is provided, and the ozone gas injection amount is determined by this improved ozone reaction model formula.

【0011】前記Cs2の値としては、オゾン注入前の
紫外線吸収光度を用いることができる。
As the value of Cs2, the ultraviolet absorption luminosity before ozone injection can be used.

【0012】また、オゾン反応モデル式は、図1に示す
ように、溶存オゾン濃度の変化量,気相オゾン濃度の変
化量,オゾン処理後の溶存臭気物質濃度の変化量及びオ
ゾン処理後の共存物質濃度の変化量を計算する4元連立
方程式のオゾン反応モデル式とすることが望ましい。
The ozone reaction model formula is, as shown in FIG. 1, the amount of change in dissolved ozone concentration, the amount of change in vapor phase ozone concentration, the amount of change in dissolved odorous substance concentration after ozone treatment, and the coexistence after ozone treatment. It is desirable to use the ozone reaction model formula of the simultaneous equations of four elements for calculating the change amount of the substance concentration.

【0013】本発明のオゾン注入量制御装置は、オゾン
と臭気物質との反応速度を表す相対反応速度定数を用い
てモデル化したオゾン反応モデル式を内蔵したオゾン発
生量制御用コンピュータを備え、前記モデル式に被処理
水の水質計測値とオゾンガス注入量の仮定値とを入力し
てオゾン処理後の溶存臭気物質濃度を計算し、この計算
値を指標としてオゾンガス注入量を決定するようにした
ものにおいて、前記オゾン反応モデル式の相対反応速度
定数を(1+r・Cs2、ここでCs2は酸化される溶
存物質濃度、rは比例定数)で表した改良オゾン反応モ
デル式を内蔵したオゾン発生量制御用コンピュータを備
えたことを特徴とする。
The ozone injection amount control device of the present invention comprises an ozone generation amount control computer having an ozone reaction model equation modeled by using a relative reaction rate constant representing the reaction rate of ozone and an odorous substance. By inputting the measured water quality of the treated water and the assumed value of the ozone gas injection amount into the model formula, the dissolved odorous substance concentration after ozone treatment is calculated, and the ozone gas injection amount is determined using this calculated value as an index. In order to control the amount of ozone generation, the improved ozone reaction model formula, in which the relative reaction rate constant of the ozone reaction model formula is represented by (1 + r · Cs2, where Cs2 is the concentration of the dissolved substance to be oxidized, and r is a proportional constant) It is characterized by having a computer.

【0014】本発明の方法によりオゾン注入量を求める
場合には、オゾン反応モデル式に臭気物質濃度を入力す
ることになるが、臭気物質濃度は日単位では殆ど変化し
ないので、手分析による測定値を用いることができる。
When the ozone injection amount is determined by the method of the present invention, the odorant concentration is input to the ozone reaction model formula, but the odorant concentration hardly changes on a daily basis. Can be used.

【0015】本発明の改良オゾン反応モデル式では、臭
気物質の除去だけでなく、オゾン酸化によって除去した
い物質によって比例定数rを変えることにより、オゾン
発生量の制御が可能である。
In the improved ozone reaction model formula of the present invention, not only the odorous substance is removed but also the proportional constant r is changed depending on the substance to be removed by ozone oxidation, so that the ozone generation amount can be controlled.

【0016】[0016]

【発明の実施の形態】以下、オゾンにより除去する対象
臭気物質を2−MIB(ジメチルイソボルネオール)に
限定した場合について、本発明の実施例を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in the case where the target odorous substance to be removed by ozone is limited to 2-MIB (dimethylisoborneol).

【0017】オゾン接触池に注入したオゾンガスは、気
相から液相へと溶解する。その際の溶存オゾン濃度は、
式(1)に示すモデルを適用して算出する。
The ozone gas injected into the ozone contact pond dissolves from the gas phase to the liquid phase. The dissolved ozone concentration at that time is
It is calculated by applying the model shown in Expression (1).

【0018】[0018]

【数1】 [Equation 1]

【0019】ここで、C1:溶存オゾン濃度、C1*:
飽和溶存オゾン濃度(mg/L),KL:総括物質移動
係数(1/m・min),a:単位接触槽あたりの気液接触
面積(m2 )である。
Here, C1: dissolved ozone concentration, C1 *:
Saturated dissolved ozone concentration (mg / L), KL: overall mass transfer coefficient (1 / m · min), a: gas-liquid contact area (m 2 ) per unit contact tank.

【0020】なお、以後に示される式中の記号は、それ
ぞれ下記を表す。
The symbols in the formulas shown below represent the following.

【0021】T:水温(℃),V:接触槽体積
(m3 ),dB:気泡径(m),VB:気泡上昇速度
(m/min),Qg:流入ガス量(Nm3/min),H:接
触槽有効水深(m),S:分配係数,Kde:溶存オゾ
ンの自己分解反応係数(1/mm),Cs:臭気物質(2
−MIB)濃度(mg/L),Cs2:酸化される溶存物
質濃度(mg/L),pH:ペーハー,Kox:2−MI
Bの酸化分解係数(1/min/mg/L),Kr:2−MI
B単位量酸化要求オゾン量(g・O3/g・2−MI
B),Kr2:酸化される溶存物質の単位量酸化要求オ
ゾン量(g・O3/g・溶存物質),Kox′:共存物質
が存在する場合の酸化分解係数(1/min/mg/L),K
ox2:共存物質の酸化反応係数(1/min/mg/
L),R:相対反応速度定数,r:比例定数(1/mg/
L),OH:水素化イオンのうど(mol/L)。
T: water temperature (° C.), V: contact tank volume (m 3 ), dB: bubble diameter (m), VB: bubble rising speed
(m / min), Qg: Inflow gas amount (Nm 3 / min), H: Effective depth of contact tank (m), S: Partition coefficient, Kde: Self-decomposition reaction coefficient (1 / mm) of dissolved ozone, Cs: Odorant (2
-MIB) concentration (mg / L), Cs2: dissolved substance concentration (mg / L) that is oxidized, pH: pH, Kox: 2-MI
Oxidative decomposition coefficient of B (1 / min / mg / L), Kr: 2-MI
B unit amount Oxidation required ozone amount (g · O 3 / g · 2-MI
B), Kr2: Unit amount of dissolved substance to be oxidized Oxidation required amount of ozone (g · O 3 / g · dissolved substance), Kox ′: Oxidative decomposition coefficient in the presence of coexisting substance (1 / min / mg / L) ), K
ox2: Oxidation reaction coefficient of coexisting substance (1 / min / mg /
L), R: Relative reaction rate constant, r: Proportional constant (1 / mg /
L), OH: Udon of hydride ion (mol / L).

【0022】式(1)中の総括物質移動容量係数KLa
は、総括物質移動係数KLと単位接触槽あたりの気液接
触面積aとの積で表される。そこで、既知の式(2),
式(3),式(4)から導き出した式(5)を使用す
る。
Overall mass transfer coefficient KLa in equation (1)
Is expressed by the product of the overall mass transfer coefficient KL and the gas-liquid contact area a per unit contact tank. Therefore, known equation (2),
The formula (5) derived from the formulas (3) and (4) is used.

【0023】[0023]

【数2】 KL=(0.038・T+1.22)・10-4 …(2)[Expression 2] KL = (0.038 · T + 1.22) · 10 −4 (2)

【0024】[0024]

【数3】 (Equation 3)

【0025】[0025]

【数4】 (Equation 4)

【0026】[0026]

【数5】 (Equation 5)

【0027】式(1)中のC1*は飽和溶存オゾン濃度
であり、ヘンリーの法則に従って、式(6)のように分
配係数Sと溶存オゾン濃度Clとの積で求める。分配係
数Sは式(7)より水温Tにて算出する。
C1 * in the equation (1) is the saturated dissolved ozone concentration, and is calculated by the product of the distribution coefficient S and the dissolved ozone concentration Cl as in the equation (6) according to Henry's law. The distribution coefficient S is calculated by the water temperature T from the equation (7).

【0028】[0028]

【数6】 Cl*=S・Cl …(6)[Equation 6] Cl * = S · Cl (6)

【0029】[0029]

【数7】 (Equation 7)

【0030】気相から液相に溶解した溶存オゾンの自己
分解については式(8)に示すモデルを適用する。溶存
オゾンの自己分解反応係数Kdeについては式(9)お
よび式(10)より算出する。
For the self-decomposition of dissolved ozone dissolved from the gas phase to the liquid phase, the model shown in equation (8) is applied. The self-decomposition reaction coefficient Kde of dissolved ozone is calculated from equations (9) and (10).

【0031】[0031]

【数8】 (Equation 8)

【0032】[0032]

【数9】 [Equation 9]

【0033】[0033]

【数10】 (Equation 10)

【0034】溶存オゾンと2−MIBのみが存在する場
合の酸化分解反応については、2−MIBについては式
(11)を、溶存オゾンについては式(12)を適用し
た。
Regarding the oxidative decomposition reaction in the case where only dissolved ozone and 2-MIB are present, formula (11) was applied to 2-MIB and formula (12) was applied to dissolved ozone.

【0035】[0035]

【数11】 [Equation 11]

【0036】[0036]

【数12】 (Equation 12)

【0037】2−MIB酸化分解係数Koxは、式(1
3)より算出する。また、2−MIB単位量酸化要求オ
ゾン量Krとは、2−MIB単位量を酸化分解する際に
消費されるオゾン量と定義し、オゾン分子1モルが2−
MIB分子1モルを酸化すると考え、式(14)を適用
する。
The 2-MIB oxidative decomposition coefficient Kox is expressed by the equation (1)
Calculated from 3). Further, the 2-MIB unit amount oxidation demand ozone amount Kr is defined as the amount of ozone consumed when the 2-MIB unit amount is oxidatively decomposed, and 1 mol of ozone molecule is 2-
Equation (14) applies, considering that one mole of the MIB molecule is oxidized.

【0038】[0038]

【数13】 (Equation 13)

【0039】[0039]

【数14】 [Equation 14]

【0040】本発明では、2−MIB以外の有機物質に
ついては以下のように考慮する。実際の水道原水には2
−MIB以外にも多種の有機物,無機物,金属イオンな
どが含まれている。これら除去対象である2−MIB以
外の物質を共存物質と一括する。この共存物質は構成す
る物質の種類や濃度に応じて、2−MIBの酸化分解を
促進、あるいは阻害する。そこで、この2−MIBの酸
化分解の促進、阻害の度合いを式(11)の酸化分解係
数Koxの変化により表わす。共存物質が存在する場合
の酸化分解係数Kox′を相対反応速度定数を用いて、
相対反応速度定数とKoxの積で表わす。本発明では、
便宜上、相対反応速度定数を式(15)のRと表わす。
In the present invention, organic substances other than 2-MIB are considered as follows. 2 for actual tap water
-In addition to MIB, various organic substances, inorganic substances, metal ions, etc. are contained. Substances other than 2-MIB to be removed are included together with coexisting substances. This coexisting substance promotes or inhibits the oxidative decomposition of 2-MIB depending on the type and concentration of the constituent substances. Therefore, the degree of promotion and inhibition of the oxidative decomposition of 2-MIB is represented by the change in the oxidative decomposition coefficient Kox of the equation (11). Using the relative reaction rate constant, the oxidative decomposition coefficient Kox ′ in the presence of coexisting substances
It is represented by the product of the relative reaction rate constant and Kox. In the present invention,
For convenience, the relative reaction rate constant is represented as R in the equation (15).

【0041】[0041]

【数15】 (Equation 15)

【0042】実際の水道原水中の共存物質の濃度範囲に
おいては相対反応速度定数Rとオゾンにより酸化される
溶存物質Cs2は線形近似が可能であるので、比例定数
rを用いて式(16)に示すモデルを適用する。
In the actual concentration range of the coexisting substance in the raw tap water, the relative reaction rate constant R and the dissolved substance Cs2 oxidized by ozone can be linearly approximated. Apply the model shown.

【0043】[0043]

【数16】 R=1+r・Cs2 …(16) ここで比例定数rについては、共存物質の構成によって
異なる値であるため、実測値にて同定する。よって、共
存物質が存在する場合の見かけの酸化分解係数Kox′
は式(17)で表わされる。
## EQU16 ## R = 1 + r.multidot.Cs2 (16) Here, the proportional constant r is a value that differs depending on the composition of the coexisting substance, and is therefore identified by the measured value. Therefore, the apparent oxidative decomposition coefficient Kox ′ in the presence of coexisting substances
Is expressed by equation (17).

【0044】[0044]

【数17】 Kox′=R・Kox …(17) 見かけの酸化分解係数Kox′を式(11),式(1
2)のKoxに代入し、溶存オゾンと2−MIBの酸化
分解については式(18),式(19)に示す。
[Equation 17] Kox ′ = R · Kox (17) The apparent oxidative decomposition coefficient Kox ′ is calculated by the equations (11) and (1).
Substituting into Kox in 2), the oxidative decomposition of dissolved ozone and 2-MIB is shown in equations (18) and (19).

【0045】[0045]

【数18】 (Equation 18)

【0046】[0046]

【数19】 [Equation 19]

【0047】式(17)を式(18),式(19)に代
入することにより共存物質が存在する場合の溶存オゾン
と2−MIBの酸化分解については、式(20),式
(21)に示すモデルを適用する。
Regarding the oxidative decomposition of dissolved ozone and 2-MIB in the presence of coexisting substances by substituting equation (17) into equations (18) and (19), equations (20) and (21) Apply the model shown in.

【0048】[0048]

【数20】 (Equation 20)

【0049】[0049]

【数21】 (Equation 21)

【0050】共存物質と溶存オゾンの酸化分解反応につ
いては、2−MIBの酸化分解反応と同様に、式(2
2),式(23)に示すモデルを適用する。
Regarding the oxidative decomposition reaction of the coexisting substance and the dissolved ozone, the formula (2
2), the model shown in Expression (23) is applied.

【0051】[0051]

【数22】 (Equation 22)

【0052】[0052]

【数23】 (Equation 23)

【0053】オゾンにより酸化される溶存物質の酸化分
解反応係数Kox2は実測値にて同定する。また、溶存
物質単位量酸化要求オゾン量Kr2は、次の様に決定す
る。オゾンは主として、二重結合と反応し、二重結合1
個に対してオゾン1個が消費される。二重結合を構成す
る炭素原子は2原子(12×2=24g)、オゾン1分
子を構成する酸素原子は3個(16×3=48g)なの
で、その質量比より、式(24)に示す値とする。
The oxidative decomposition reaction coefficient Kox2 of the dissolved substance oxidized by ozone is identified by an actual measurement value. Further, the dissolved substance unit amount oxidation demand ozone amount Kr2 is determined as follows. Ozone mainly reacts with double bonds and double bonds 1
One ozone is consumed for each piece. There are 2 carbon atoms (12 × 2 = 24 g) forming the double bond and 3 oxygen atoms (16 × 3 = 48 g) forming one ozone molecule. The value.

【0054】[0054]

【数24】 (Equation 24)

【0055】共存物質濃度としては、ここではKMnO
4 (過マンガン酸カリウム)消費量を用いることにす
る。KMnO4 消費量は、水中の有機物質と、酸化され
やすい金属イオンとの総量を表わすので、共存物質の定
義と矛盾しない。
The coexisting substance concentration is KMnO here.
4 (potassium permanganate) consumption will be used. Since the KMnO 4 consumption represents the total amount of organic substances in water and metal ions that are easily oxidized, it does not contradict the definition of coexisting substances.

【0056】以上のようにして、実際の水道原水の水質
にも対応できるようにオゾン反応モデル式を改良した。
改良オゾン反応モデル式を図1に示す。共存物質濃度に
ついてはKMnO4 消費量はオンライン計測が不可能で
ある。しかし、実際の測定結果よりオゾン接触池に流入
するKMnO4 消費量と、オンライン計測可能な紫外線
吸光度の値とは図2に示すように強い相関がある。よっ
て、共存物質濃度としてオゾン被処理水の紫外線吸光度
の値を用いる。前記改良オゾン反応モデル式に、過去の
オゾン注入前の紫外線吸光度,水温,pH,オゾン注入
前の溶存臭気物質濃度,流入水量,オゾンガス注入量,
溶存オゾン濃度,オゾン注入後の溶存臭気物質の実測値
を入力し、図3に示すフローに従い演算を行い、前記r
を同定する。そして、求めたrの値を流入水質によりモ
デル化する。一般に、化学反応の反応速度は、水温,p
Hによって影響を受けることより、rの値も水温やpH
によって変化すると考えられる。今回、我々のデータで
は、図4に示すようにrと水温が相関があることが分か
った。よって、rは式(25)に示すモデルを適用す
る。
As described above, the ozone reaction model formula was improved so that it can be applied to the actual water quality of raw water.
The improved ozone reaction model equation is shown in FIG. Online measurement of KMnO 4 consumption is not possible for coexisting substance concentration. However, from the actual measurement results, there is a strong correlation between the consumption of KMnO 4 flowing into the ozone contact pond and the value of ultraviolet absorbance that can be measured online, as shown in FIG. Therefore, the value of the ultraviolet absorbance of ozone-treated water is used as the coexisting substance concentration. In the improved ozone reaction model formula, the ultraviolet absorbance before the ozone injection in the past, the water temperature, the pH, the concentration of dissolved odorous substances before the ozone injection, the inflow water amount, the ozone gas injection amount,
The dissolved ozone concentration and the measured value of the dissolved odor substance after ozone injection are input, and calculation is performed according to the flow shown in FIG.
Is identified. Then, the obtained value of r is modeled by the inflow water quality. Generally, the reaction rate of a chemical reaction depends on the water temperature, p
Since it is affected by H, the value of r also depends on water temperature and pH.
It is thought to change depending on. This time, in our data, it was found that r and the water temperature are correlated as shown in FIG. Therefore, the model shown in Expression (25) is applied to r.

【0057】[0057]

【数25】 (Equation 25)

【0058】以下に本発明の方法を具体的な事例によっ
て示す。
The method of the present invention will be described below by way of specific examples.

【0059】図5は本発明の方法が適用される装置につ
いて示してある。オゾン接触池1に流入する被処理水の
流量を流量計3,共存物質濃度をUV計4,水温を水温
計5,pHをpH計6で測定する。
FIG. 5 shows an apparatus to which the method of the present invention is applied. The flow rate of the water to be treated flowing into the ozone contact pond 1 is measured by a flow meter 3, the coexisting substance concentration is measured by a UV meter 4, the water temperature is measured by a water thermometer 5, and the pH is measured by a pH meter 6.

【0060】これらの測定結果はすべてオンラインでコ
ンピュータ9に入力される。水温計5からの測定値から
前記rの値を同定し、また、日単位の変化量の少ない2
−MIBは手入力にてコンピュータ9に入力する。オゾ
ン接触池より流出する被処理水中の溶存2−MIB濃度
の設定値をコンピュータ9に設定する。コンピュータ9
にて、オゾン注入率を変化させ、前記改良オゾン反応モ
デルを演算し、被処理水中の溶存2−MIB濃度が、設
定値となるまで、オゾン注入率を変化させる。そして得
られた演算結果より、オゾン流量計7とオゾンメータ8
の値からオゾン化空気量を制御することにより、オゾン
発生装置2をオンラインにて制御可能となる。演算結果
は記憶装置10にて記憶する。
All these measurement results are input to the computer 9 online. The value of r was identified from the measured value from the water thermometer 5, and the amount of change per day was small.
-The MIB is manually input to the computer 9. The set value of the dissolved 2-MIB concentration in the water to be treated flowing out from the ozone contact pond is set in the computer 9. Computer 9
At, the ozone injection rate is changed, the improved ozone reaction model is calculated, and the ozone injection rate is changed until the dissolved 2-MIB concentration in the water to be treated reaches a set value. Based on the obtained calculation results, the ozone flow meter 7 and the ozone meter 8
By controlling the amount of ozonized air from the value of, the ozone generator 2 can be controlled online. The calculation result is stored in the storage device 10.

【0061】以上、オゾンを用いた浄水処理法における
オゾン注入量の決定方法とその制御方法について述べ
た。本実施例では、臭気物質の2−MIBの除去につい
て述べたが、本発明は、前記rを各々の物質に応じてモ
デル化することにより、すべての物質について適用可能
である。
The method of determining the ozone injection amount and the method of controlling the same in the water purification method using ozone have been described above. In this example, the removal of 2-MIB of the odorous substance was described, but the present invention can be applied to all substances by modeling the above r according to each substance.

【0062】[0062]

【発明の効果】本発明では、臭気物質以外の水道原水中
に含まれる物質を総括して共存物質とし、この共存物質
によるオゾンの臭気物質酸化分解への効果、および、オ
ゾンの共存物質酸化分解への効果を考慮することで、オ
ンライン計測可能な値でモデル化することが可能とな
り、オゾン接触池への流入水質に応じたオゾン注入量の
オンライン制御プロセスの実用化が可能となった。
INDUSTRIAL APPLICABILITY In the present invention, substances contained in tap water other than odorous substances are collectively treated as coexisting substances, and the effect of this coexisting substance on the oxidative decomposition of ozone and the oxidative decomposition of coexisting substances of ozone. By taking into consideration the effect on the above, it became possible to make a model with a value that can be measured online, and it became possible to put into practical use an online control process of the ozone injection amount according to the inflow water quality to the ozone contact pond.

【図面の簡単な説明】[Brief description of drawings]

【図1】改良オゾン反応モデル式を示す図。FIG. 1 is a diagram showing an improved ozone reaction model formula.

【図2】オゾン接触池の流入水のKMnO4 消費量と紫
外線吸光度との相関関係を示す線図。
FIG. 2 is a diagram showing a correlation between KMnO 4 consumption of inflow water of an ozone contact pond and UV absorbance.

【図3】比例定数rを実測値にて導きだすフロー図。FIG. 3 is a flow chart for deriving a proportional constant r from an actual measurement value.

【図4】比例定数rとオゾン接触池の流入水の水温との
相関関係を示す線図。
FIG. 4 is a diagram showing a correlation between a proportional constant r and a water temperature of inflow water of an ozone contact pond.

【図5】本発明の方法が適用される浄水装置の水の流れ
と電気信号系統を示す模式図。
FIG. 5 is a schematic diagram showing a flow of water and an electric signal system of a water purification apparatus to which the method of the present invention is applied.

【符号の説明】[Explanation of symbols]

1…オゾン接触池、2…オゾン発生装置、3…流量計、
4…UV計、5…水温計、6…pH計、7…オゾン流量
計、8…オゾンメータ、9…コンピュータ、10…記憶
装置。
1 ... Ozone contact pond, 2 ... Ozone generator, 3 ... Flow meter,
4 ... UV meter, 5 ... Water temperature meter, 6 ... pH meter, 7 ... Ozone flow meter, 8 ... Ozone meter, 9 ... Computer, 10 ... Storage device.

フロントページの続き (72)発明者 山越 信義 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 安富 弘泰 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 渡辺 昭二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 陰山 晃治 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Front page continuation (72) Inventor Nobuyoshi Yamakoshi 5-2-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Omika Plant, Ltd. (72) Hiroyasu Yasutomi 5-2-1 Omika-cho, Hitachi City, Ibaraki Prefecture Incorporated company Hitachi Ltd. Omika Plant (72) Inventor Shoji Watanabe 7-1, 1-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Koji Kageyama 7-chome, Omika-cho, Ibaraki Prefecture No. 1 in Hitachi, Ltd. Hitachi Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被処理水中の溶存臭気物質を、オゾンを注
入することによって分解除去する高度浄水処理における
オゾン注入量の制御方法であり、オゾンと臭気物質との
反応速度を表す相対反応速度定数を含むオゾン反応モデ
ル式を用い、このモデル式に被処理水の水質計測値とオ
ゾンガス注入量の仮定値とを入力してオゾン処理後の溶
存臭気物質濃度を演算し、得られた計算値を指標として
オゾンガス注入量を決定する方法において、前記相対反
応速度定数を(1+r・Cs2、ここでCs2は酸化さ
れる溶存物質濃度、rは比例定数)で表した改良オゾン
反応モデル式を用い、この改良オゾン反応モデル式によ
ってオゾンガス注入量を決定することを特徴とするオゾ
ン注入量制御方法。
1. A method for controlling the amount of injected ozone in advanced water purification treatment in which dissolved odorous substances in water to be treated are decomposed and removed by injecting ozone, and a relative reaction rate constant representing the reaction rate between ozone and odorous substances. Using the ozone reaction model equation including, input the water quality measurement value of the water to be treated and the assumed value of ozone gas injection into this model equation to calculate the dissolved odor substance concentration after ozone treatment, and obtain the calculated value. In the method of determining the ozone gas injection amount as an index, an improved ozone reaction model equation expressing the relative reaction rate constant by (1 + r · Cs2, where Cs2 is the concentration of dissolved substance to be oxidized, and r is a proportional constant) is used. A method for controlling an ozone injection amount, characterized in that an ozone gas injection amount is determined by an improved ozone reaction model formula.
【請求項2】請求項1に記載の方法において、前記Cs
2の値としてオゾン注入前の紫外線吸収光度を用いるこ
とを特徴とするオゾン注入量制御方法。
2. The method according to claim 1, wherein the Cs
A method for controlling the amount of injected ozone, characterized by using the ultraviolet absorption luminosity before injection of ozone as the value of 2.
【請求項3】請求項1又は2に記載の方法において、前
記改良オゾン反応モデル式を溶存オゾン濃度の変化量,
気相オゾン濃度の変化量,オゾン処理後の溶存臭気物質
濃度の変化量及びオゾン処理後の共存物質濃度の変化量
を計算する4元連立方程式のオゾン反応モデル式で表し
たことを特徴とするオゾン注入量制御方法。
3. The method according to claim 1 or 2, wherein the modified ozone reaction model equation is a change amount of dissolved ozone concentration,
It is characterized in that it is represented by an ozone reaction model formula of a four-way simultaneous equation that calculates the amount of change in vapor phase ozone concentration, the amount of change in dissolved odorous substance concentration after ozone treatment, and the amount of change in coexisting substance concentration after ozone treatment. Ozone injection amount control method.
【請求項4】オゾンを注入することによって被処理水中
の溶存臭気物質を分解除去する高度浄水処理におけるオ
ゾン注入量の制御装置であって、オゾンと臭気物質との
反応速度を表す相対反応速度定数を含むオゾン反応モデ
ル式を内蔵したオゾン発生量制御用コンピュータを備
え、前記モデル式に被処理水の水質計測値とオゾンガス
注入量の仮定値とを入力してオゾン処理後の溶存臭気物
質濃度を計算し、この計算値を指標としてオゾンガス注
入量を決定するようにしたものにおいて、前記オゾン反
応モデル式の相対反応速度定数を(1+r・Cs2、こ
こでCs2は酸化される溶存物質濃度、rは比例定数)
で表した改良オゾン反応モデル式を内蔵する制御用コン
ピュータを備えたことを特徴とするオゾン注入量制御装
置。
4. A device for controlling the amount of injected ozone in advanced water treatment, which decomposes and removes dissolved odorous substances in water to be treated by injecting ozone, and is a relative reaction rate constant representing the reaction rate of ozone and odorous substances. A computer for ozone generation control including an ozone reaction model equation including is provided, and the dissolved odorous substance concentration after ozone treatment is input by inputting the water quality measurement value of the treated water and the assumed value of the ozone gas injection amount to the model equation. In the case where the ozone gas injection amount is calculated by using this calculated value as an index, the relative reaction rate constant of the ozone reaction model equation is (1 + r · Cs2, where Cs2 is the concentration of the dissolved substance to be oxidized, and r is Proportional constant)
An ozone injection amount control device comprising a control computer having an improved ozone reaction model formula represented by.
JP7358396A 1996-03-28 1996-03-28 Method and apparatus for controlling injected amount of ozone in high-degree water purifying treatment Pending JPH09262594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7358396A JPH09262594A (en) 1996-03-28 1996-03-28 Method and apparatus for controlling injected amount of ozone in high-degree water purifying treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7358396A JPH09262594A (en) 1996-03-28 1996-03-28 Method and apparatus for controlling injected amount of ozone in high-degree water purifying treatment

Publications (1)

Publication Number Publication Date
JPH09262594A true JPH09262594A (en) 1997-10-07

Family

ID=13522481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7358396A Pending JPH09262594A (en) 1996-03-28 1996-03-28 Method and apparatus for controlling injected amount of ozone in high-degree water purifying treatment

Country Status (1)

Country Link
JP (1) JPH09262594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126110A (en) * 2006-11-17 2008-06-05 Hitachi Ltd Process controller of water treatment facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126110A (en) * 2006-11-17 2008-06-05 Hitachi Ltd Process controller of water treatment facility

Similar Documents

Publication Publication Date Title
Escobar et al. Bacterial growth in distribution systems: effect of assimilable organic carbon and biodegradable dissolved organic carbon
Marce et al. Ozonation treatment of urban primary and biotreated wastewaters: Impacts and modeling
ATE213487T1 (en) METHOD AND DEVICE FOR WATER TREATMENT BY INJECTION OF OZONE AND CARBON DIOXIDE
Rubin Chemistry of water supply, treatment, and distribution
Lan et al. Ozonation kinetics of cork-processing water in a bubble column reactor
Duranceau et al. Innovative hydrogen sulfide treatment methods: moving beyond packed tower aeration
Matheswaran et al. Influence parameters in the ozonation of phenol wastewater treatment using bubble column reactor under continuous circulation
JPH09262594A (en) Method and apparatus for controlling injected amount of ozone in high-degree water purifying treatment
Manojlović et al. Comparison of two methods for removal of arsenic from potable water
JP4660211B2 (en) Water treatment control system and water treatment control method
JP2000288559A (en) Waste water treatment method and apparatus using hydroxylic radical
JP3598022B2 (en) Water treatment method using ozone and hydrogen peroxide
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
JP3537995B2 (en) Wastewater treatment method
Cséfalvay et al. Modelling of wastewater ozonation-determination of reaction kinetic constants and effect of temperature
JPH02203992A (en) Device for washing and purifying article
JPH0199689A (en) Method for removing organic matter in water
JPH0323357Y2 (en)
JPH08318286A (en) Ozone treating method and apparatus in high-degree water purifying treatment
JP3547573B2 (en) Water treatment method
JP2005324121A (en) Water treatment method and water treatment apparatus
JP4359693B2 (en) Wastewater treatment equipment containing persistent organic substances
JPH11347576A (en) Method and apparatus for treating water
JPH09299968A (en) Advanced water purifying plant
JP3223726B2 (en) Method and apparatus for measuring ultraviolet absorbance for process