JPH09259893A - 高分子電解質型燃料電池用電極、その製造方法及び該電極を有する燃料電池の運転方法 - Google Patents

高分子電解質型燃料電池用電極、その製造方法及び該電極を有する燃料電池の運転方法

Info

Publication number
JPH09259893A
JPH09259893A JP8096186A JP9618696A JPH09259893A JP H09259893 A JPH09259893 A JP H09259893A JP 8096186 A JP8096186 A JP 8096186A JP 9618696 A JP9618696 A JP 9618696A JP H09259893 A JPH09259893 A JP H09259893A
Authority
JP
Japan
Prior art keywords
fuel cell
fluororesin
electrode
gas diffusion
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8096186A
Other languages
English (en)
Inventor
Yasuhito Toshima
庸仁 戸島
Tomoyuki Tada
多田  智之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Original Assignee
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Stonehart Associates Inc filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP8096186A priority Critical patent/JPH09259893A/ja
Publication of JPH09259893A publication Critical patent/JPH09259893A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

(57)【要約】 【目的】 燃料電池のガス拡散層におけるフッ素樹脂量
に関する従来からの固定概念を再検討し、炭素繊維を基
本骨格とするガス拡散層における最適のフッ素樹脂量を
有する燃料電池を提供する。 【構成】 フッ素樹脂による撥水化を行なっていない
か、30重量%未満のフッ素樹脂により撥水化を行なった
カーボンペーパーから成るガス拡散層(3A、3C)と
反応層(2A、2C)から成るアノード(4A)及び/
又はカソード(4C)を有する燃料電池。従来不適切と
認識されていた30重量%未満のフッ素樹脂で撥水化した
ガス拡散層でもフラッディングが生ずることは殆どな
く、かつ気孔率が向上する分、供給及び排出ガスの流通
が円滑になり、高電流密度での運転が可能になる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ガス透過性に優れこれ
により高電流密度下での運転を可能にした高分子電解質
型燃料電池用電極、その製造方法及び該電極を有する燃
料電池の運転方法に関する。
【0002】
【従来技術及び問題点】燃料電池は、水素や各種化石燃
料を用いる高効率、無公害発電装置であることから、エ
ネルギー問題、全地球的公害問題に対処できる、“ポス
ト原子力”の発電装置として、社会的に大きな期待が寄
せられている。火力代替発電用、ビルディングや工場単
位のオンサイト発電用、あるいは宇宙用など、用途に応
じた各種燃料電池が開発されている。近年、炭酸ガスを
中心とする温室効果や、NOx、SOx等による酸性雨
が地球の将来を脅かす深刻な公害として認識されてき
た。これら公害ガスの主要な排出源の一つが自動車等の
内燃機関であることから、燃料電池を車載用内燃機関に
代えて作動するモータ電源として利用する気運が急速に
高まりつつある。この場合、多くの付帯設備と同様、電
池は可能な限り小型であることが望ましく、そのために
は電池本体の出力密度、出力電流密度が高いことが必須
である。この条件を満たす有力な燃料電池の候補とし
て、イオン交換膜を用いた高分子固体電解質型燃料電池
(以下PEMFCという)が注目されている。
【0003】ここでPEMFCの本体の基本構造と作
用、問題点について説明する。図1に示す如く、イオン
交換膜1の両側に4A、4Cで示されるアノード及びカ
ソードがホットプレスにより接合されることにより電池
の基本が構成される。このアノード及びカソードは2A
又は2Cで示される反応層と3A又は3Cで示されるカ
ーボンペーパーなどのガス拡散層から成る。電極反応は
2A及び2C部の触媒表面で起こる。アノード反応ガス
(H2 )は反応ガス供給孔5Aから3Aを通して供給さ
れ、カソード反応ガス(O2 )は反応ガス供給孔5Cか
ら3Cを通して供給される。2A中では、アノード反
応:H2 →2H+ +2e- が、2C中ではカソード反
応: 1/2O2 +2H+ +2e- →H2 Oの反応が起こ
り、電池全体ではこれらの反応のトータルとしてH2
1/2O2 →H2 O+Q(反応熱)が起こる。この過程で
起電力が得られ、この電気エネルギーにより外部負荷8
を電子が流れる際に電気的仕事がなされる。
【0004】燃料電池用電極として必要とされる条件の
1つは高電流密度で電流を取り出せることである。リン
酸型など従来型燃料電池が150 〜250mA/cm2 において運
転されたが、この程度の電流密度では充分なエネルギー
が取り出せず、前記リン酸型等の燃料電池の改良として
前述のPEMFCが開発されたものであり、PEMFC
ではその数倍から10倍の電流密度で運転できることが求
められる。ところが従来の燃料電池用電極中の反応層中
のカーボン担体が該反応層中で占める密度(見掛け密
度)は1.2g/cm3を超えていた。これは使用するカーボン
担体の嵩密度が大きく、又ホットプレス圧力も高いため
であるが、このように電極内のカーボン担体の嵩密度が
高いと電極内の空隙が減少して反応ガスの拡散が阻害さ
れ高電流密度が得られなくなるという欠点がある。この
欠点を解消して十分な拡散を確保するために従来は電極
の厚さを薄くしていたが、この方法では白金等の触媒粒
子の担持量が減少するためガス拡散は良好になっても電
極反応を賄うための触媒の絶対量が不足してしまうとい
う新たな欠点が生じている。又触媒の利用率を向上させ
るために触媒粒子を被覆するイオン伝導性高分子の量を
増加させる必要があるが、添加量を増加すると電極中の
空隙が減少するという欠点もある。電極厚さを薄くする
ことなく又イオン伝導性高分子量を増加させても十分な
ガス拡散を確保しこれにより十分な電流密度で電流を取
り出すことが第1の重要課題となる。
【0005】更に又起電反応で、アノードにおいて生じ
た2H+ はPEM中をカソードに移動して上記カソード
反応に与かるが、この際1個のH+ が平均2〜2.5 個の
2O分子を水和分子として同伴する。このため、H2
分子1個がアノード反応に与かると、4〜5個の水分子
がアノードからカソードに移動する。PEMは膜中に水
分が必要量存在することにより、初めて十分なH+ 導電
性が現れる性質がある。従ってH+ に同伴移動すること
により膜中に不足した水分は絶えず外部(少なくともア
ノード側)から供給して補うことが必要となる。膜中を
カソードに移動する分と、カソード反応で生ずる分の全
水分量は多量となり、もしこれが2C、3Cの細孔中に
凝縮すれば、反応ガス(O2 )の2C中の触媒表面まで
の供給を著しく阻害し、電池性能の低下を来す。従って
凝縮を起こさせることなく水分を電池外に除去すること
がPEMFC特有の第2番目の重要問題となる。リン酸
型などの従来の200 ℃又はそれ以上の温度で運転される
電池では水は水蒸気として自発的に蒸発するため、PE
MFCのような困難さはない。この点がPEMFC固有
の設計概念を必要とする所以である。
【0006】ところで、従来のリン酸型等の燃料電池に
おける反応層やガス拡散層は、フッ素樹脂を被覆して撥
水化したカーボンブラック等の炭素粒子を基本的な構成
要素として使用している。前記フッ素樹脂の役割は、粒
子状であり単独では機械的強度を有する構造体を構成で
きないカーボンブラックを凝集させること、及びカーボ
ンブラック間にガス流通用経路を形成するカーボンブラ
ックの機能が該カーボンブラックに水が含浸したりガス
通路を水が閉塞する(フラッディング)ことにより損な
われることを阻止する点にあると考えられ、前記フッ素
樹脂のカーボンブラックに対する割合は30重量%以上、
好ましくは30〜35重量%とすべきであるとされている。
燃料電池の基本構造がリン酸型からPEMFCへ移行
し、又カーボンブラックが一部炭素繊維に移行しても、
前記フッ素樹脂のカーボンに対する重量%の範囲等の検
討は行なわれず、従来の重量範囲が好ましい範囲である
と指摘されている(例えば特開平6−295728号公報)。
【0007】特に炭素繊維から成るカーボンペーパーを
担体として使用する燃料電池では、炭素繊維自体が相互
に交差しあるいは絡み合っているため、フッ素樹脂を使
用しなくてもこの構造(基本骨格)を保持できる。又リ
ン酸型燃料電池を使用していた時代とは運転条件やカー
ボンの性能も異なり、リン酸型燃料電池で好ましいとさ
れたフッ素樹脂の範囲である30〜35重量%を再度検討す
べきであるにもかかわらず、従前の値をそのまま使用し
ているのが現状である。
【0007】
【発明が解決しようとする課題】本発明は、上述した燃
料電池における従来のフッ素樹脂の含有量を検討し直
し、真に適正なフッ素樹脂の含有量を有する高分子電解
質型燃料電池用電極を提供することを目的とする。
【0008】
【課題を解決するための手段】上記課題を解決する為の
本発明の技術的手段は、フッ素樹脂による撥水化を行な
っていない炭素繊維を含んで成るカーボンペーパーを含
むガス拡散層と、触媒金属を担持した担体を含んで成る
反応層とを含んで成ることを特徴とする高分子電解質型
燃料電池用電極及び30重量%未満のフッ素樹脂により撥
水化を行なった炭素繊維を含んで成るカーボンペーパー
を含むガス拡散層と、触媒金属を担持した担体を含んで
成る反応層とを含んで成ることを特徴とする高分子電解
質型燃料電池用電極である。又フッ素樹脂を含有するガ
ス拡散層を有する高分子電解質型燃料電池用電極を製造
する際には、フッ素樹脂を含フッ素溶媒に溶解したフッ
素樹脂溶液を炭素繊維に含浸しかつ前記含フッ素溶媒を
除去して前記ガス拡散層を製造することができる。更に
前記電極をアノード及び/又はカソードとして組み込ん
だ燃料電池を、該燃料電池の運転温度以上の温度で加湿
した反応ガスをアノードへ供給しながら運転する燃料電
池の運転方法である。
【0009】以下本発明を詳細に説明する。本発明者ら
は、前述の通り従来の燃料電池におけるフッ素樹脂含有
量の燃料電池の性能に与える影響を吟味し、「燃料電池
のガス拡散層におけるフッ素樹脂含有量の最適値が30〜
35重量%である」という固定概念を再検討し、本発明に
到達したものである。前述の通り従来の燃料電池のガス
拡散層における最適なフッ素樹脂量の根拠はフッ素樹脂
量が少ないと炭素が水で濡れてフラッディングを起こし
ガス通路が塞がれることにあった。しかしながらこの根
拠はカーボンブラック粒子をフッ素樹脂で結合して炭素
骨格を有する構造を形成する従来のリン酸型燃料電池の
場合の理論であり、この理論がそのままカーボンペーパ
ーを基本骨格とするガス拡散層を有する燃料電池でも踏
襲されているに過ぎず、このカーボンペーパーを基本骨
格とするガス拡散層を有する燃料電池では理論的な根拠
とはなりえない。
【0010】本発明者らによる実験によると、カーボン
ペーパーを基本的な構成要素とするPEMFCのガス拡
散層においては、フッ素樹脂量を30重量%未満としても
加湿条件等の運転条件にも依存するが、必ずしも撥水化
不足によるフラッディッグ等が起こる訳ではなく、逆に
ガス拡散層中のフッ素樹脂量をゼロ又は従来のガス拡散
層のフッ素樹脂量より小さくすることにより反応層へ供
給されあるいは反応層から排出されるガスの流通が円滑
に行なわれ、高電流密度で高エネルギーを取り出せるこ
とを見出した。フッ素樹脂含有量の影響は特に高電流密
度下での燃料電池運転において顕著に現れ、本発明にお
けるフッ素樹脂量が少ないガス拡散層を有する燃料電池
は1A/cm2 以上の高電流密度下で従来のフッ素樹脂量の
ガス拡散層を有する燃料電池より高電位での運転が可能
で、本発明の高分子電解質型燃料電池用電極は高エネル
ギー発生用燃料電池用として特に有用である。
【0011】又ガス拡散層を構成するカーボンペーパー
とフッ素樹脂の価格を比較すると、後者の価格が遙かに
高く、フッ素樹脂量を少なくして同等の機能が得られれ
ばその経済的な効果は多大であるとともに、フッ素樹脂
量をゼロとすることができれば製造時にフッ素樹脂の添
加とそれに伴う操作が不要になり作業性が大きく向上す
る。燃料電池に供給されるガスは加湿することが望まし
く、通常の燃料電池の運転ではほぼ例外なく、アノード
及びカソードに供給されるガスは加湿した後に供給され
る。この加湿は燃料電池の運転温度とほぼ同等、又は好
ましくは10℃以上高い熱湯を含むポット中を通して水分
を充分に含ませた水素ガス及び酸素ガスをそれぞれアノ
ード及びカソードに供給する。
【0012】特に高加湿条件下ではガス拡散層中のフッ
素樹脂量が多いと燃料電池の電位が低くなる傾向にあ
り、逆に本発明によるフッ素樹脂量が少ないかあるいは
ゼロのガス拡散層を有する燃料電池では、高加湿条件で
は電位が高くなり、高エネルギーが取り出せるようにな
る。これは供給ガス中に水分が多く、ガス拡散層中のフ
ッ素樹脂量が多いとガス通路を塞ぎガス及び水分の円滑
な流通を阻害するのに対し、フッ素樹脂量が少ないとガ
ス通路が広く円滑なガス等の供給及び排出が可能になる
からであると推測できる。従って本発明に係わる高分子
電解質型燃料電池用電極は高加湿条件で、例えば燃料電
池の運転温度と同等以上の温度の熱湯を含むポット中を
通過させた後に水素ガス及び酸素ガスを燃料電池に供給
して該燃料電池の運転を行なうことが望ましく、燃料電
池の運転温度より10℃以上高温の熱湯で加湿することが
更に望ましい。しかし本発明はこれらに限定されるもの
ではなく、より低い温度で加湿しても良い。
【0013】本発明のガス拡散層を基本骨格を構成する
カーボンペーパーは特に限定されずポリアクリロニトリ
ル製等の任意のカーボンペーパーを使用できる。その厚
さも特に限定されず、0.05〜1mmの広い範囲のものを使
用でき、用途等に応じて適宜選択すれば良い。又使用す
るフッ素樹脂としては、従来通りフッ素樹脂の懸濁液で
あるナフィオン液(アルドリッチ社製)を使用してカー
ボンペーパーをナフィオン液に浸漬し乾燥して前記カー
ボンペーパーを撥水化しても良いが、例えば「フロラー
ド」の商品名で住友スリーエム株式会社から市販されて
いるフッ素樹脂溶液を使用することが望ましい。このフ
ッ素樹脂溶液はフッ素樹脂の微粒子を低沸点の含フッ素
溶媒に溶解させたもので、懸濁液を使用するよりも均一
なフッ素樹脂層を形成できる。燃料電池の反応層は特に
限定されず従来のものをそのまま使用でき、例えば白金
を30重量%程度担持したフッ素樹脂粒子あるいはこれら
とカーボンブラック粒子とを混練したものをホットプレ
ス等で前記ガス拡散層と一体化して燃料電池を構成でき
る。
【0014】本発明の高分子電解質型燃料電池用電極は
従来技術と同じ図1により例示できるが、本発明ではガ
ス拡散層を炭素繊維から成るカーボンペーパーにより構
成し、図1のPEM1の両側のアノード4A及び/又は
カソード4Cとして本発明の高分子電解質型燃料電池用
電極を使用できる。カソード4Cを例に取ると、ガス拡
散層3Cのフッ素樹脂量は0〜30重量%とされ、残部は
炭素繊維から成る好ましくは気孔率が60〜90%程度のカ
ーボンペーパーである。このガス拡散層3Cには反応層
2Cが接合され、該反応層2Cは従来通り、例えば触媒
が担持されたカーボンブラック粒子とフッ素樹脂を混練
し成形して作製される。アノード4Aも同様の構造とす
ることができ、このような構成から成る燃料電池のアノ
ード4Aには、アノード反応ガス(H2 )が反応ガス供
給孔5Aから供給されガス拡散層3Aに達した反応ガス
は該ガス拡散層3Aのフッ素樹脂量が少なく気孔率が高
いため容易に該ガス拡散層3Aを透過し反応層2Aに達
し、イオン交換膜1を通してカソード側の反応ガス(O
2 )と反応する。この反応により生ずる水は前記反応ガ
ス(H2 )の供給とは逆に反応層2Aからガス拡散層3
Aを透過して系外に排出されるが、この場合にもガス拡
散層3Aの気孔率が高いため円滑にガス排出が行なわ
れ、反応を円滑に進行させられるため、高電流密度での
運転が可能になり、高エネルギーを得ることができる。
【0015】
【実施例】次に本発明に係わる高分子電解質型燃料電池
用電極の実施例を記載するが、本実施例は本発明を限定
するものではない。
【実施例1】東レ株式会社製のカーボンペーパー(TG
P−H−120 、気孔率約75%、厚さ約0.36mm) に、FE
P(三井・デュポンフロロケミカル社製、四フッ化エチ
レン・六フッ化プロピレン共重合樹脂)を含浸しかつ乾
燥して、前記カーボンペーパーを10重量%のFEPで撥
水化した(FEP層を形成した)。白金粒子30重量%と
ナフィオン分散溶液(デュポン社製)を混合したペース
トを前記カーボンペーパーに塗布し、乾燥して反応層を
作製し、その後ホットプレスして燃料電池用電極を作製
した。
【0016】
【実施例2】FEPの代わりに、フロラード(住友スリ
ーエム株式会社製、フッ素樹脂を低沸点の含フッ素溶媒
に溶解させた溶液)を使用し、このフロラードをカーボ
ンペーパーに含浸したこと以外は、実施例1と同一条件
で燃料電池用電極を作製した。
【0017】
【実施例3】実施例1のカーボンペーパーを撥水化せず
に、該カーボンペーパーに白金粒子30重量%とナフィオ
ン分散溶液(アルドリッチ社製)を混合したペーストを
塗布し、乾燥して反応層を作製し、その後ホットプレス
して燃料電池用電極を作製した。
【0018】
【比較例1】FEPの量を35重量%としたこと以外は実
施例1と同一条件で燃料電池用電極を作製した。実施例
1〜3及び比較例1の電極各2枚で厚さ50μmのナフィ
オン112 (デュポン社製イオン交換樹脂)膜を挟んで試
験用燃料電池を得た。アノード及びカソードへの供給ガ
スはそれぞれ1気圧の水素及び酸素とし、それぞれの供
給量はそれぞれ1リットル/分、燃料電池の運転温度80
℃、アノード加湿ポット90℃、ライン温度100 ℃の条件
で、電流密度2.0 A/cm2 における電位を測定したとこ
ろ、表1の通りであった。
【0019】
【表1】
【0020】
【実施例4】実施例3の電極と比較例1の電極を使用し
て前述の通り燃料電池を作製し、アノード加湿の温度
(60℃、80℃、100 ℃)と電流密度(0.5 A/cm2 、1.0
A/cm2、1.5 A/cm2 、2.0 A/cm2 )を変化させてそれぞ
れの場合に燃料電池で得られる電位を測定した。その結
果を図2に示す。図2から、高加湿条件(アノード加湿
ポット温度が100 ℃の場合)下ではフッ素樹脂量が0%
である方が35重量%である場合よりも高電位で燃料電池
からエネルギーを取り出せることが多く(電流密度が1.
0 A/cm2 、1.5 A/cm2 及び2.0 A/cm2 の場合)、悪くて
も同等(電流密度が0.5 A/cm2 の場合)であることが判
る。又加湿温度が80℃であるとフッ素樹脂が35重量%で
ある比較例1の電極の方が僅かに電位が高くなっている
が、フッ素樹脂の価格や製造の手間を考慮すると実施例
の電極の優秀性を認識できる。
【0021】
【実施例5】実施例2と比較例1の電極を別個に使用し
て、電流密度以外の条件を比較例1に記載した条件と
し、電流密度を0.1 から3A/cm2 まで変化させて、電流
密度と電位を測定したところ、図3に示す関係が得られ
た。比較例1の電極では電流密度が3A/cm2 を越えると
運転不能になったのに対し、実施例2の電極では電流密
度が3A/cm2 を越えても運転可能であった。
【0022】
【発明の効果】本発明は、フッ素樹脂による撥水化を行
なっていない炭素繊維を含んで成るカーボンペーパーを
含むガス拡散層と、触媒金属を担持した担体を含んで成
る反応層とを含んで成ることを特徴とする高分子電解質
型燃料電池用電極であり(請求項1)、燃料電池のアノ
ードとしてカソードとしても使用できる。本発明の前記
電極は、従来の燃料電池用の電極と異なり、ガス拡散層
にフッ素樹脂を有しない。従って気孔率が高くかつ炭素
繊維自体が基本骨格を構成するため供給ガス及び排出ガ
スの流通が円滑で、従って燃料電池反応が円滑に進行
し、高電流密度下での反応が可能になり、高エネルギー
を容易に生成できる。又従来の固定概念と異なり、フッ
素樹脂を含有しなくてもフラッディングの発生は観察さ
れず、安定な運転が可能となる。
【0023】ガス拡散層中のフッ素樹脂量は30重量%未
満の任意量を含有させることができ(請求項2)、この
範囲のフッ素樹脂量を含有していても、気孔率が高く従
来の燃料電池以上の性能でエネルギーを取り出すことが
できる。この30重量%未満のフッ素樹脂を含有するガス
拡散層を製造するには、フッ素樹脂を含フッ素溶媒に溶
解したフッ素樹脂溶液を炭素繊維に含浸しかつ前記含フ
ッ素溶媒を除去して前記炭素繊維表面にフッ素樹脂薄層
を形成すれば良く(請求項3)、従来のフッ素樹脂層の
形成に使用されるフッ素樹脂懸濁液を使用するより均一
なフッ素樹脂層を形成できる。又このように製造した燃
料電池は、該燃料電池の運転温度以上の温度で加湿した
反応ガスをアノードへ供給しながら運転すると(請求項
4)、燃料電池の反応層に充分な水分が供給されて更に
高電位のエネルギーを取り出すことが可能になる。
【図面の簡単な説明】
【図1】従来の及び本発明における高分子電解質型燃料
電池用電極の例示する概略断面図。
【図2】実施例4における、アノード加湿の温度と電流
密度を変化させた場合の電位を示すグラフ。
【図3】実施例5における電流密度と電位の関係を示す
グラフ。
【符号の説明】
1・・・イオン交換膜(PEM) 2A、2C・・・反
応層 3A、3C・・・ガス拡散層 4A・・・カソー
ド 4C・・・アノード
───────────────────────────────────────────────────── フロントページの続き (71)出願人 391016716 ストンハルト・アソシエーツ・インコーポ レーテッド STONEHART ASSOCIATE S INCORPORATED アメリカ合衆国 06443 コネチカット州、 マジソン、コテッジ・ロード17、ピー・オ ー・ボックス1220 (72)発明者 戸島 庸仁 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内 (72)発明者 多田 智之 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 フッ素樹脂による撥水化を行なっていな
    い炭素繊維を含んで成るカーボンペーパーを含むガス拡
    散層と、触媒金属を担持した担体を含んで成る反応層と
    を含んで成ることを特徴とする高分子電解質型燃料電池
    用電極。
  2. 【請求項2】 30重量%未満のフッ素樹脂により撥水化
    を行なった炭素繊維を含んで成るカーボンペーパーを含
    むガス拡散層と、触媒金属を担持した担体を含んで成る
    反応層とを含んで成ることを特徴とする高分子電解質型
    燃料電池用電極。
  3. 【請求項3】 フッ素樹脂を含フッ素溶媒に溶解したフ
    ッ素樹脂溶液を炭素繊維に含浸しかつ前記含フッ素溶媒
    を除去して前記炭素繊維表面にフッ素樹脂薄層を形成し
    てガス拡散層を形成し、該ガス拡散層に触媒金属を担持
    した担体を含んで成る反応層を積層することを特徴とす
    る高分子電解質型燃料電池用電極の製造方法。
  4. 【請求項4】 撥水化を行なっていないか30重量%未満
    のフッ素樹脂により撥水化を行なった炭素繊維を含んで
    成るカーボンペーパーを含むガス拡散層と、触媒金属を
    担持した担体を含んで成る反応層とを含んで成る高分子
    電解質型燃料電池用電極をアノード及び/又はカソード
    として組み込んだ燃料電池を、該燃料電池の運転温度以
    上の温度で加湿した反応ガスをアノードへ供給しながら
    運転することを特徴とする高分子電解質型燃料電池用電
    極を有する燃料電池の運転方法。
JP8096186A 1996-03-26 1996-03-26 高分子電解質型燃料電池用電極、その製造方法及び該電極を有する燃料電池の運転方法 Pending JPH09259893A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8096186A JPH09259893A (ja) 1996-03-26 1996-03-26 高分子電解質型燃料電池用電極、その製造方法及び該電極を有する燃料電池の運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8096186A JPH09259893A (ja) 1996-03-26 1996-03-26 高分子電解質型燃料電池用電極、その製造方法及び該電極を有する燃料電池の運転方法

Publications (1)

Publication Number Publication Date
JPH09259893A true JPH09259893A (ja) 1997-10-03

Family

ID=14158291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8096186A Pending JPH09259893A (ja) 1996-03-26 1996-03-26 高分子電解質型燃料電池用電極、その製造方法及び該電極を有する燃料電池の運転方法

Country Status (1)

Country Link
JP (1) JPH09259893A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003488A1 (en) * 2000-07-03 2002-01-10 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2002056851A (ja) * 2000-08-08 2002-02-22 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池用ガス拡散電極の製造方法
JP2009231218A (ja) * 2008-03-25 2009-10-08 Jsr Corp 定置または携帯型燃料電池用膜電極接合体、定置または携帯型燃料電池、および、定置または携帯型燃料電池のガス拡散層用樹脂ペースト

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002003488A1 (en) * 2000-07-03 2002-01-10 Matsushita Electric Industrial Co., Ltd. Fuel cell
JP2002056851A (ja) * 2000-08-08 2002-02-22 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池用ガス拡散電極の製造方法
JP2009231218A (ja) * 2008-03-25 2009-10-08 Jsr Corp 定置または携帯型燃料電池用膜電極接合体、定置または携帯型燃料電池、および、定置または携帯型燃料電池のガス拡散層用樹脂ペースト

Similar Documents

Publication Publication Date Title
Abdelkareem et al. Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells
JP3107229B2 (ja) 固体高分子電解質燃料電池及び電解セルの隔膜加湿構造
JP3778506B2 (ja) 固体高分子型燃料電池用の電極
JP3755840B2 (ja) 高分子固体電解質型燃料電池用電極
CN100508266C (zh) 膜电极单元
US8257825B2 (en) Polymer electrode membrane for fuel, and membrane-electrode assembly and fuel cell system comprising the same
JP4956870B2 (ja) 燃料電池および燃料電池の製造方法
JP5034172B2 (ja) 燃料電池用ガス拡散層、および、これを用いた燃料電池
JPH0817440A (ja) 高分子電解質型電気化学セル用電極
US20090214918A1 (en) Anode of direct methanol fuel cell and direct methanol fuel cell employing the same
JP3577402B2 (ja) 固体高分子型燃料電池
JP3354550B2 (ja) 固体高分子型燃料電池および固体高分子型燃料電池スタック
US20110020724A1 (en) Electrode for fuel cell having two kinds of hydrophilicity and method for preparing the same and membrane electrode assembly and fuel cell comprising the same
JPH10334922A (ja) 固体高分子型燃料電池及び該固体高分子型燃料電池の製造方法
JP4945887B2 (ja) セルモジュール及び固体高分子電解質型燃料電池
JP2009043688A (ja) 燃料電池
Scott Membrane electrode assemblies for polymer electrolyte membrane fuel cells
JP7359077B2 (ja) 燃料電池用の積層体
JP2814716B2 (ja) 固体高分子電解質型燃料電池のセル構造および水とガスの供給方法
JPH09259893A (ja) 高分子電解質型燃料電池用電極、その製造方法及び該電極を有する燃料電池の運転方法
KR100481591B1 (ko) 연료전지용 고분자 나노복합막, 그의 제조방법 및 이를이용한 연료전지
JP3495668B2 (ja) 燃料電池の製造方法
JP3619826B2 (ja) 燃料電池用電極及び燃料電池
JP7272319B2 (ja) 燃料電池用の積層体
JP7272318B2 (ja) 燃料電池用の積層体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050307