JPH09259878A - Non-sintered nickel electrode for alkaline storage battery - Google Patents

Non-sintered nickel electrode for alkaline storage battery

Info

Publication number
JPH09259878A
JPH09259878A JP8068399A JP6839996A JPH09259878A JP H09259878 A JPH09259878 A JP H09259878A JP 8068399 A JP8068399 A JP 8068399A JP 6839996 A JP6839996 A JP 6839996A JP H09259878 A JPH09259878 A JP H09259878A
Authority
JP
Japan
Prior art keywords
lithium
weight
active material
cobalt compound
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8068399A
Other languages
Japanese (ja)
Other versions
JP3229800B2 (en
Inventor
Katsuhiko Niiyama
克彦 新山
Mutsumi Yano
睦 矢野
Reizo Maeda
礼造 前田
Mitsuzo Nogami
光造 野上
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP06839996A priority Critical patent/JP3229800B2/en
Publication of JPH09259878A publication Critical patent/JPH09259878A/en
Application granted granted Critical
Publication of JP3229800B2 publication Critical patent/JP3229800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a Ni electrode improved in utilizing efficiency of active material by using a power formed of a composite particle constituted by forming a conductive layer formed of a specified Li-contained Co compound on the surface of nickel hydroxide particle as the active material. SOLUTION: A powder formed of a composite particle constituted by forming a conductive layer formed of a Li-contained Co compound in which the ratio of Li weight calculated in terms of atom is 0.1-10wt.% to the total weight of the Li-contained Co compound on the surface of nickel hydroxide particle or particle mainly composed of nickel hydroxide. This powder is preferably formed by heating a powder formed of the composite particle constituted by forming a Co compound (e.g. cobalt hydroxide) on the surface of nickel hydroxide or a particle mainly composed of nickel hydroxide particle at 50-200 deg.C in the state where an aqueous solution of lithium hydroxide is added thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケルー水素蓄
電池やニッケルーカドミウム蓄電池等のアルカリ蓄電池
に用いられる非焼結式ニッケル極に係り、詳しくは活物
質利用率の高いアルカリ蓄電池用非焼結式ニッケル極を
提供することを目的とした活物質粉末の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered nickel electrode used in alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries. The present invention relates to improvement of active material powder for the purpose of providing a nickel electrode.

【0002】[0002]

【従来の技術】従来、ニッケルー水素蓄電池やニッケル
ーカドミウム蓄電池等のアルカリ蓄電池のニッケル極と
して、ニッケル粉末を穿孔鋼板等に焼結させて得た焼結
基板に活物質(水酸化ニッケル)を含浸させてなる焼結
式ニッケル極がよく知られている。
2. Description of the Related Art Conventionally, as a nickel electrode of an alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, a sintered substrate obtained by sintering nickel powder on a perforated steel plate is impregnated with an active material (nickel hydroxide). Sintered nickel electrodes formed by this method are well known.

【0003】焼結式ニッケル極において活物質の充填密
度を大きくするためには、多孔度の大きい焼結基板を用
いる必要がある。しかし、焼結によるニッケル粒子間の
結合は弱く、焼結基板の多孔度を大きくするとニッケル
粉末が焼結基体から脱落し易くなる。従って、実用上
は、焼結基板の多孔度を80%より大きくすることができ
ず、それゆえ焼結式ニッケル極には、活物質の充填量が
少ないという問題がある。また、一般に、ニッケル粉末
の焼結体の孔径は10μm以下と小さいため、活物質の基
板(焼結体)への充填を、繁雑な含浸工程を数回繰り返
し行う溶液含浸法により行わなければならないという問
題もある。
[0003] In order to increase the packing density of the active material in the sintered nickel electrode, it is necessary to use a sintered substrate having a high porosity. However, the bond between the nickel particles due to sintering is weak, and if the porosity of the sintered substrate is increased, the nickel powder will easily fall off from the sintered substrate. Therefore, practically, the porosity of the sintered substrate cannot be made higher than 80%, and therefore, the sintered nickel electrode has a problem that the filling amount of the active material is small. In addition, since the pore size of a sintered body of nickel powder is generally as small as 10 μm or less, it is necessary to fill the substrate (sintered body) with the active material by a solution impregnation method in which a complicated impregnation step is repeated several times. There is also a problem.

【0004】このようなことから、最近、非焼結式ニッ
ケル極が提案されている。非焼結式ニッケル極は、活物
質(水酸化ニッケル)と結着剤溶液(メチルセルロース
溶液など)との混練物(ペースト)を多孔度の大きい基
板(耐アルカリ性金属などをメッキした発泡メタルな
ど)に直接充填することにより作製される。非焼結式ニ
ッケル極では、多孔度の大きい基板を用いることができ
るので(多孔度が95%以上の基板を用いることができ
る)、活物質の充填密度を大きくすることができるとと
もに、活物質の基板への充填を簡易に行うことが可能と
なる。
Under these circumstances, a non-sintered nickel electrode has recently been proposed. A non-sintered nickel electrode is a substrate with a high porosity (paste metal plated with alkali-resistant metal, etc.) that is a kneaded material (paste) of an active material (nickel hydroxide) and a binder solution (methyl cellulose solution, etc.). It is made by directly filling the. In the non-sintered nickel electrode, since a substrate having a high porosity can be used (a substrate having a porosity of 95% or more can be used), the packing density of the active material can be increased and the active material can be increased. It becomes possible to easily fill the substrate with.

【0005】然し乍ら、非焼結式ニッケル極において活
物質の充填密度を大きくするべく多孔度の大きい基板を
用いると、基板の集電能力が焼結式ニッケル極に比べ
て、導電性が悪くなり、活物質利用率が低下する。
However, in a non-sintered nickel electrode, when a substrate having a high porosity is used to increase the packing density of the active material, the current collecting ability of the substrate becomes worse than that of the sintered nickel electrode. , The active material utilization rate decreases.

【0006】そこで、非焼結式ニッケル極の導電性を高
めるべく、活物質粉末として、水酸化ニッケル粒子の表
面を水酸化コバルトで被覆した複合粒子からなる粉末を
用いたり(特開昭62−234867号公報参照)、水酸化ニッ
ケルを主成分とする粒子の表面をオキシ水酸化コバルト
で被覆した複合体粒子からなる粉末を用いたり(特開平
3−78965号公報参照)することが提案されている。
Therefore, in order to improve the conductivity of the non-sintered nickel electrode, a powder composed of composite particles obtained by coating the surface of nickel hydroxide particles with cobalt hydroxide may be used as the active material powder (Japanese Patent Laid-Open No. 62-62-62). No. 234867), a powder composed of composite particles in which the surface of particles containing nickel hydroxide as a main component is coated with cobalt oxyhydroxide may be used.
3-78965).

【0007】然し乍ら、本発明者等が検討したところ、
これらの改良によっても、活物質利用率の十分高い非焼
結式ニッケル極を得ることは困難で有ることが分かっ
た。
However, as a result of a study by the present inventors,
Even with these improvements, it was found that it is difficult to obtain a non-sintered nickel electrode having a sufficiently high utilization rate of the active material.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる問題
点に鑑みて成されたものであって、その目的とするとこ
ろは、活物質利用率の高いアルカリ蓄電池用非焼結式ニ
ッケル極を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a non-sintered nickel electrode for an alkaline storage battery having a high utilization ratio of an active material. To provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明のアルカリ蓄電池用非焼結式ニッケル極は、
水酸化ニッケル粒子または水酸化ニッケルを主成分とす
る粒子の表面に、リチウム含有コバルト化合物からなる
導電層を形成してなる複合体粒子からなる粉末を、活物
質とするものであって、前記リチウム含有コバルト化合
物において、前記リチウム含有コバルト化合物の全重量
に対して、原子に換算されたリチウム重量の割合即ちリ
チウム含有量が、0.1重量%〜10重量%であることを特
徴とする。
In order to achieve the above object, the non-sintered nickel electrode for alkaline storage batteries of the present invention comprises:
A powder composed of composite particles formed by forming a conductive layer composed of a lithium-containing cobalt compound on the surface of nickel hydroxide particles or particles containing nickel hydroxide as a main component, wherein the lithium is used as the active material. In the contained cobalt compound, the ratio of the lithium weight converted into atoms, that is, the lithium content is 0.1 wt% to 10 wt% with respect to the total weight of the lithium-containing cobalt compound.

【0010】このリチウム含有量がこの範囲を外れる
と、導電率の十分高い導電剤が得られない。尚、リチウ
ム含有量の計算は、次式のとおり計算される。
If the lithium content is out of this range, a conductive agent having a sufficiently high conductivity cannot be obtained. The lithium content is calculated by the following formula.

【0011】リチウム含有量(重量%)=(原子に換算
されたリチウムの重量/リチウム含有コバルト化合物の
全重量)×100 水酸化ニッケルを主成分とする粒子としては、コバル
ト、亜鉛、カドミウム、カルシウム、マンガン、マグネ
シウムなどのニッケル極の膨化を抑制する作用を有する
元素を水酸化ニッケルに固溶させたものが例示される。
Lithium content (% by weight) = (weight of lithium in terms of atom / total weight of lithium-containing cobalt compound) × 100 As particles having nickel hydroxide as a main component, cobalt, zinc, cadmium, calcium Examples thereof include those in which an element having an action of suppressing expansion of the nickel electrode such as manganese and magnesium is dissolved in nickel hydroxide.

【0012】導電層を構成するリチウム含有コバルト化
合物の化学構造は現在のところ定かではないが、本発明
における活物質が極めて高い導電性を有することから、
コバルト化合物(オキシ水酸化コバルトなど)とリチウ
ムとの単なる混合物ではなく、コバルト化合物の結晶中
にリチウムが取り込まれた形の層間化合物ではないかと
推察される。
Although the chemical structure of the lithium-containing cobalt compound constituting the conductive layer is not clear at present, since the active material of the present invention has extremely high conductivity,
It is speculated that this is not a simple mixture of a cobalt compound (cobalt oxyhydroxide, etc.) and lithium, but an intercalation compound in which lithium is incorporated into the crystal of the cobalt compound.

【0013】本発明における活物質粉末は、例えば、水
酸化ニッケル粒子または水酸化ニッケルを主成分とする
粒子の表面にコバルト化合物層を形成してなる複合体粒
子からなる粉末を、これに水酸化リチウム水溶液を加え
た状態で、50℃〜200℃で加熱処理することにより作製
することができる。尚、前記コバルト化合物層として
は、水酸化コバルト、酸化コバルトの形態が使用でき、
例えば硫酸コバルト水溶液に、水酸化ニッケルを投入
し、水酸化ナトリウム水溶液を加えて、コバルト化合物
を水酸化ニッケルの粒子表面に化学的に析出させること
により形成される。水酸化ニッケル粉末と、酸化コバル
ト、水酸化コバルトまたは金属コバルトとを混練するメ
カニカルチャージ法によっても、コバルト化合物層を水
酸化ニッケルの粒子表面に形成することができる。上記
複合体粒子からなる粉末に代えて、水酸化ニッケル粒子
または水酸化ニッケルを主成分とする粒子からなる粉末
と、水酸化コバルト粉末、一酸化コバルト粉末または金
属コバルト粉末などの混合粉末を使用してもよいが、こ
の方法では導電層(被膜)が形成されにくいので、前者
のほうが好ましい。
The active material powder according to the present invention is, for example, a powder composed of nickel hydroxide particles or composite particles formed by forming a cobalt compound layer on the surface of particles containing nickel hydroxide as a main component. It can be produced by heat treatment at 50 ° C. to 200 ° C. in a state where an aqueous lithium solution is added. The cobalt compound layer may be in the form of cobalt hydroxide or cobalt oxide,
For example, nickel hydroxide is added to a cobalt sulfate aqueous solution, a sodium hydroxide aqueous solution is added, and a cobalt compound is chemically deposited on the surface of the nickel hydroxide particles. The cobalt compound layer can also be formed on the surface of nickel hydroxide particles by a mechanical charge method in which nickel hydroxide powder is kneaded with cobalt oxide, cobalt hydroxide or metallic cobalt. Instead of the powder composed of the composite particles, a powder composed of nickel hydroxide particles or particles containing nickel hydroxide as a main component, and a mixed powder such as cobalt hydroxide powder, cobalt monoxide powder or metal cobalt powder is used. However, since the conductive layer (coating) is not easily formed by this method, the former is preferable.

【0014】本発明において、加熱処理温度は、50℃〜
200℃に規制される。加熱処理温度がこの範囲を外れる
と、導電率の高い導電層が形成されにくくなるからであ
る。これは次の理由によると考えられる。
In the present invention, the heat treatment temperature is 50.degree.
It is regulated at 200 ℃. This is because if the heat treatment temperature is out of this range, it becomes difficult to form a conductive layer having high conductivity. This is considered due to the following reasons.

【0015】即ち本発明における導電層は、例えば水酸
化コバルトを出発物質に用いた場合、下記の反応経路に
より形成される。
That is, the conductive layer in the present invention is formed by the following reaction route when, for example, cobalt hydroxide is used as a starting material.

【0016】[0016]

【化1】 Embedded image

【0017】しかるに、加熱処理温度が50℃未満の場合
は、CoHO2からLi含有コバルト化合物への反応が十分進
行しにくくなるため、導電率の低いCoHO2が多く生成す
る。一方、加熱温度が200℃を越えた場合は、導電率の
低い四酸化三コバルト(Co3O4)が多く生成する。これ
らが、加熱処理温度が50℃〜200℃を外れた場合に導電
率の高い導電層が形成されにくくなる理由と考えられ
る。
However, when the heat treatment temperature is lower than 50 ° C., the reaction from CoHO 2 to the Li-containing cobalt compound is difficult to proceed sufficiently, so that a large amount of CoHO 2 having low conductivity is produced. On the other hand, when the heating temperature exceeds 200 ° C., a large amount of tricobalt tetroxide (Co 3 O 4 ) having low conductivity is generated. It is considered that these are the reasons why it becomes difficult to form a conductive layer having high conductivity when the heat treatment temperature deviates from 50 ° C to 200 ° C.

【0018】加熱処理時間は、水酸化リチウム水溶液の
量、濃度、加熱処理温度等によって異なるが、一般的に
は、0.5時間〜10時間である。
The heat treatment time varies depending on the amount and concentration of the lithium hydroxide aqueous solution, the heat treatment temperature, etc., but is generally 0.5 to 10 hours.

【0019】リチウム含有コバルト化合物のリチウム含
有量は、0.1重量%〜10重量%に規制される。リチウム
含有量がこの範囲を外れると、導電率の十分高い導電層
が形成されなくなり、活物質利用率の極めて高い非焼結
式ニッケル極を得ることができなくなる。
The lithium content of the lithium-containing cobalt compound is regulated to 0.1% by weight to 10% by weight. If the lithium content is out of this range, a conductive layer having a sufficiently high conductivity cannot be formed, and it becomes impossible to obtain a non-sintered nickel electrode having an extremely high utilization ratio of the active material.

【0020】本発明における活物質粉末を構成する複合
体粒子としては、前記複合体粒子において、水酸化ニッ
ケル粒子または水酸化ニッケルを主成分とする粒子の重
量に対して、前記リチウム含有コバルト化合物中のコバ
ルトを原子に換算したコバルト原子の重量で1重量%〜
10重量%含有していることを特徴とする。この値を、本
明細書ではリチウム含有コバルト化合物の含有量とす
る。この値は、次のとおり計算されたものである。
The composite particles composing the active material powder according to the present invention include the lithium-containing cobalt compound in the composite particles, based on the weight of the nickel hydroxide particles or the particles containing nickel hydroxide as the main component. 1% by weight based on the weight of cobalt atom converted from cobalt of
It is characterized by containing 10% by weight. In this specification, this value is the content of the lithium-containing cobalt compound. This value was calculated as follows.

【0021】リチウム含有コバルト化合物の含有量(重
量%)=(リチウム含有コバルト化合物中における原子
に換算されたコバルトの重量/水酸化ニッケル粒子また
は水酸化ニッケルを主成分とする粒子の重量)×100 このリチウム含有コバルト化合物の含有量が1重量%未
満の場合は、活物質粉末の導電性が十分に改善されない
ため、十分な電極容量が得られない。一方、同含有量が
10重量%を越えた場合は、活物質たる水酸化ニッケルの
量が減少するために、これまた十分な電極容量が得られ
ない。
Content of lithium-containing cobalt compound (% by weight) = (weight of cobalt converted to atoms in lithium-containing cobalt compound / weight of nickel hydroxide particles or particles having nickel hydroxide as a main component) × 100 When the content of the lithium-containing cobalt compound is less than 1% by weight, the conductivity of the active material powder is not sufficiently improved, and thus a sufficient electrode capacity cannot be obtained. On the other hand, the same content
If the amount exceeds 10% by weight, the amount of nickel hydroxide as the active material decreases, so that sufficient electrode capacity cannot be obtained.

【0022】[0022]

【発明の実施の形態】以下、本発明を実施例に基づいて
詳細に説明するが、本発明は下記実施例に何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施が可能である。 (予備実験1)水酸化コバルトと、1重量%、2重量
%、3重量%、4重量%、5重量%、6重量%、7重量
%、または8重量%の水酸化リチウム水溶液とを、重量
比1:10で混合し、80℃で8時間加熱処理した。加熱処
理後、水洗し、60℃で乾燥して、リチウム含有コバルト
化合物を作製した。このリチウム含有コバルト化合物の
リチウム含有率を原子吸光法により分析したところ、順
に0.05重量%、0.1重量%、0.5重量%、1重量%、5重
量%、10重量%、12重量%、15重量%であった。以下に
示すリチウム含有コバルト化合物のリチウム含有率は、
上記の分析結果に基づき、使用した水酸化リチウム水溶
液の濃度から推定した値である。 (実施例1)硫酸コバルト13.1gを水に溶かした水溶液
1000mlに、水酸化ニッケル粉末100gを投入し、ついで
液のpHが11になるまで1M水酸化ナトリウム水溶液を
撹拌しながら滴下し、その後も撹拌を続け、液のpHが
若干低下した時点で1M水酸化ナトリウム水溶液を適宜
滴下して液のpHを常時11に保持して、1時間反応させ
た。pHの監視は、自動焦点付きガラス電極を用いた。
次いで、沈殿物をろ別し、水洗して、水酸化ニッケルの
表面を水酸化コバルトで被覆してなる複合体粒子からな
る粉末を得た。次いで、この粉末と4重量%水酸化リチ
ウム水溶液とを重量比1:10で混合し、80℃で8時間加
熱処理した後、水洗し、60℃で乾燥して、水酸化ニッケ
ル粒子の表面にリチウム含有コバルト化合物からなる導
電層を形成してなる複合体粒子からなる活物質粉末を得
た。複合体粒子におけるリチウム含有コバルト化合物の
含有率を原子吸光法により分析したところ、5重量%で
あった。また、このリチウム含有コバルト化合物のリチ
ウム含有率は1重量%(予備実験1からの推定値)であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limited to the following Examples, and is appropriately modified and implemented within the scope not changing the gist thereof. Is possible. (Preliminary Experiment 1) Cobalt hydroxide and 1 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt%, 6 wt%, 7 wt%, or 8 wt% lithium hydroxide aqueous solution, The mixture was mixed at a weight ratio of 1:10 and heat-treated at 80 ° C. for 8 hours. After the heat treatment, it was washed with water and dried at 60 ° C. to prepare a lithium-containing cobalt compound. When the lithium content of this lithium-containing cobalt compound was analyzed by atomic absorption spectrometry, it was 0.05% by weight, 0.1% by weight, 0.5% by weight, 1% by weight, 5% by weight, 10% by weight, 12% by weight, 15% by weight in order. Met. The lithium content of the lithium-containing cobalt compound shown below is
It is a value estimated from the concentration of the used lithium hydroxide aqueous solution based on the above analysis results. (Example 1) Aqueous solution in which 13.1 g of cobalt sulfate was dissolved in water
To 1000 ml, add 100 g of nickel hydroxide powder, and then add 1M sodium hydroxide aqueous solution dropwise while stirring until the pH of the solution becomes 11, then continue stirring, and when the pH of the solution drops slightly, add 1M water. An aqueous solution of sodium oxide was appropriately added dropwise to maintain the pH of the solution at 11, and the reaction was carried out for 1 hour. A pH-controlled glass electrode was used to monitor the pH.
Then, the precipitate was filtered off and washed with water to obtain a powder composed of composite particles obtained by coating the surface of nickel hydroxide with cobalt hydroxide. Then, this powder was mixed with a 4% by weight aqueous lithium hydroxide solution at a weight ratio of 1:10, heat-treated at 80 ° C. for 8 hours, washed with water, and dried at 60 ° C. to form nickel hydroxide particles on the surface. An active material powder composed of composite particles formed by forming a conductive layer composed of a lithium-containing cobalt compound was obtained. When the content of the lithium-containing cobalt compound in the composite particles was analyzed by an atomic absorption method, it was 5% by weight. The lithium content of this lithium-containing cobalt compound is 1% by weight (estimated value from preliminary experiment 1).

【0023】上記の活物質粉末(平均粒径10μm)100
重量部と、結着剤としての1重量%メチルセルロース水
溶液20重量部とを混練してペーストを調整した。このペ
ーストを、ニッケルメッキを施した発泡メタル(多孔度
95%、平均孔径200μm)からなる多孔性の基板に充填
し、乾燥し、加圧成形して、本発明に係る非焼結式ニッ
ケル極A1を作製した。 (比較例1)実施例1の活物質粉末の作製工程の途中の
工程において得た、水酸化ニッケル粒子の表面を水酸化
コバルトで被覆してなる複合体粒子からなる粉末を、そ
のまま活物質粉末として用いたこと以外は実施例1と同
様にして、非焼結式ニッケル極(比較電極)B1を作製
した。
100 of the above active material powder (average particle size 10 μm)
By weight, 20 parts by weight of a 1% by weight methylcellulose aqueous solution as a binder was kneaded to prepare a paste. This paste was applied to a nickel-plated foam metal (porosity
A non-sintered nickel electrode A1 according to the present invention was produced by filling a porous substrate having 95% and an average pore diameter of 200 μm), drying and pressing. (Comparative Example 1) A powder composed of composite particles obtained by coating the surface of nickel hydroxide particles with cobalt hydroxide, which was obtained in the middle of the process for producing the active material powder of Example 1, was used as it was as the active material powder. A non-sintered nickel electrode (reference electrode) B1 was produced in the same manner as in Example 1 except that the above was used as.

【0024】ここで採用した方法は、先行技術である特
開昭62−234867号公報で記載された技術に近いものであ
る。 (比較例2)実施例1の活物質粉末の作製工程の途中の
工程において得た、水酸化ニッケル粒子の表面を水酸化
コバルトで被覆してなる複合体粒子からなる粉末を、40
℃に加熱した30重量%過酸化水素水と反応させて、表面
の水酸化コバルトを酸化してβ−CoOOHに変えた。活物
質粉末として、この粉末を用いたこと以外は実施例1と
同様にして、非焼結式ニッケル極(比較電極)B2を作
製した。
The method adopted here is similar to the technique described in Japanese Patent Laid-Open No. 62-234867 which is a prior art. (Comparative Example 2) A powder composed of composite particles obtained by coating the surface of nickel hydroxide particles with cobalt hydroxide, obtained in the middle of the step of producing the active material powder of Example 1,
By reacting with 30 wt% hydrogen peroxide solution heated to ℃, cobalt hydroxide on the surface was oxidized and converted into β-CoOOH. A non-sintered nickel electrode (reference electrode) B2 was produced in the same manner as in Example 1 except that this powder was used as the active material powder.

【0025】ここで採用した方法は、先行技術である特
開平3−78965号公報で記載された技術に近いものであ
る。 [アルカリ蓄電池の作製]上記の非焼結式ニッケル極
(正極)、この正極よりも電気化学的容量が大きい従来
公知のペースト式カドミウム極(負極)、ポリアミド不
織布(セパレータ)、30重量%水酸化カリウム水溶液
(アルカリ電解液)、金属製の電池缶、金属製の電池蓋
などを用いて、AAサイズのアルカリ蓄電池を作製し
た。 〈非焼結式ニッケル極の活物質利用率〉上記のアルカリ
蓄電池について、25℃にて0.1Cで160%充電した後、25
℃にて1Cで1.0Vまで放電する工程を1サイクルとす
る充放電を10サイクル行って、下式で定義される10サイ
クル目の正極の活物質利用率を求めた。
The method adopted here is similar to the technique described in Japanese Patent Laid-Open No. 3-78965, which is a prior art. [Preparation of alkaline storage battery] The non-sintered nickel electrode (positive electrode) described above, a conventionally known paste type cadmium electrode (negative electrode) having a larger electrochemical capacity than this positive electrode, polyamide nonwoven fabric (separator), 30% by weight hydroxylated An AA size alkaline storage battery was produced using a potassium aqueous solution (alkali electrolyte solution), a metal battery can, a metal battery lid, and the like. <Non-sintered nickel electrode active material utilization rate> About 25% of the above alkaline storage battery was charged at 0.1C and 160%
10 cycles of charging and discharging with 1 C as a cycle of discharging to 1.0 V at 1 ° C. were performed to obtain the positive electrode active material utilization rate at the 10th cycle defined by the following formula.

【0026】活物質利用率(%)={10サイクル目の放電
容量(mAh)/(水酸化ニッケルの量(g)×288(mAh/
g))}×100 この結果を、表1に示す。表1中の活物質利用率は、非
焼結式ニッケル極A1の活物質利用率を100とした場合
の指数である。
Utilization rate of active material (%) = {discharge capacity (mAh) at 10th cycle / (amount of nickel hydroxide (g) × 288 (mAh /
g))} × 100 The results are shown in Table 1. The active material utilization rate in Table 1 is an index when the active material utilization rate of the non-sintered nickel electrode A1 is 100.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示すように、非焼結式ニッケル極A
1は、非焼結式ニッケル極B1、B2にくらべて、活物
質利用率が高い。 〈リチウム含有コバルト化合物のリチウム含有率と活物
質利用率の関係〉加熱処理時の水酸化リチウム水溶液と
して、1重量%、2重量%、3重量%、5重量%、6重
量%、7重量%または8重量%水酸化リチウム水溶液を
用いたこと以外は実施例1と同様にして、リチウム含有
コバルト化合物を作製した。これらのリチウム含有化合
物のリチウム含有率は、順に0.05重量%、0.1重量%、
0.5重量%、5重量%、10重量%、12重量%、15重量%
であった。次いでこれらのリチウム含有コバルト化合物
をそれぞれ用いたこと以外は実施例1と同様にして、非
焼結式ニッケル極A〜Gを作製し、次いでアルカリ蓄電
池を作製した。
As shown in Table 1, the non-sintered nickel electrode A
1 has a higher active material utilization rate than the non-sintered nickel electrodes B1 and B2. <Relationship between lithium content of lithium-containing cobalt compound and utilization rate of active material> 1% by weight, 2% by weight, 3% by weight, 5% by weight, 6% by weight, 7% by weight as a lithium hydroxide aqueous solution at the time of heat treatment Alternatively, a lithium-containing cobalt compound was produced in the same manner as in Example 1 except that an 8 wt% lithium hydroxide aqueous solution was used. The lithium content of these lithium-containing compounds is 0.05 wt%, 0.1 wt%,
0.5% by weight, 5% by weight, 10% by weight, 12% by weight, 15% by weight
Met. Next, non-sintered nickel electrodes A to G were produced in the same manner as in Example 1 except that these lithium-containing cobalt compounds were used, respectively, and then alkaline storage batteries were produced.

【0029】作製したアルカリ蓄電池について、先と同
じ条件の充放電を10サイクル行って、10サイクル目の非
焼結式ニッケル極の活物質利用率を求め、リチウム含有
率と活物質利用率との関係を調べた。結果を表2及び図
1に示す。図1は、リチウム含有コバルト化合物(導電
層)のリチウム含有率と、活物質との関係を示すグラフ
である。この図1において、横軸はリチウム含有コバル
ト化合物のリチウム含有率(重量%)、縦軸は活物質の
利用率を表す。尚、図1には、先の実施例1で作製した
非焼結式ニッケル極A1(リチウム含有率1重量%)に
ついての結果も示してある。図1の縦軸の活物質利用率
は、非焼結式ニッケル極A1の活物質利用率を100とし
た場合の指数で相対的に表してある。
The prepared alkaline storage battery was charged and discharged under the same conditions as above for 10 cycles, and the active material utilization rate of the non-sintered nickel electrode at the 10th cycle was determined to obtain the lithium content rate and the active material utilization rate. I investigated the relationship. The results are shown in Table 2 and FIG. FIG. 1 is a graph showing the relationship between the lithium content of the lithium-containing cobalt compound (conductive layer) and the active material. In FIG. 1, the horizontal axis represents the lithium content (% by weight) of the lithium-containing cobalt compound, and the vertical axis represents the utilization rate of the active material. Note that FIG. 1 also shows the results for the non-sintered nickel electrode A1 (lithium content 1% by weight) produced in the previous Example 1. The active material utilization rate on the vertical axis of FIG. 1 is relatively expressed by an index when the active material utilization rate of the non-sintered nickel electrode A1 is 100.

【0030】[0030]

【表2】 [Table 2]

【0031】表2及び図1に示すように、リチウム含有
コバルト化合物のリチウム含有率が0.1〜10重量%の場
合に、活物質利用率の極めて高い非焼結式ニッケル極が
得られることが分かる。 〈複合体粒子のリチウム含有コバルト含有率と活物質利
用率の関係〉硫酸コバルト水溶液の濃度を変えたこと以
外は実施例1と同様にして、リチウム含有コバルト化合
物(導電層)をコバルト原子換算で、0.5重量%、1重
量%、10重量%、12重量%または15重量%含有する複合
体粒子からなる活物質粉末を作製した。いずれの粉末
も、リチウム含有コバルト化合物のリチウム含有率を1
重量%に調整した。次いで、これらの活物質粉末をそれ
ぞれ用いたこと以外は実施例1と同様にして、非焼結式
ニッケル極a〜eを作製し、次いでアルカリ蓄電池を作
製した。
As shown in Table 2 and FIG. 1, it can be seen that when the lithium content of the lithium-containing cobalt compound is 0.1 to 10% by weight, a non-sintered nickel electrode having an extremely high utilization rate of the active material can be obtained. . <Relationship between Lithium-Containing Cobalt Content of Composite Particles and Active Material Utilization> In the same manner as in Example 1 except that the concentration of the cobalt sulfate aqueous solution was changed, the lithium-containing cobalt compound (conductive layer) was converted into cobalt atoms. 0.5% by weight, 1% by weight, 10% by weight, 12% by weight or 15% by weight of active material powder was prepared. Both powders have a lithium content of 1 in the lithium-containing cobalt compound.
Adjusted to wt%. Next, non-sintered nickel electrodes a to e were produced in the same manner as in Example 1 except that these active material powders were used, respectively, and then alkaline storage batteries were produced.

【0032】作製したアルカリ蓄電池について、先の条
件と同じ条件の充放電を10サイクル行って、10サイクル
目の非焼結式ニッケル極の活物質利用率を求め、複合体
粒子のリチウム含有コバルト含有率と活物質利用率との
関係を調べた。結果を表3に示す。表3には、先の実施
例1で作製した非焼結式ニッケル極A1(リチウム含有
コバルト化合物の含有率5重量%)についての結果も示
してある。表3中の活物質利用率は、非焼結式ニッケル
極A1の活物質利用率を100とした場合の指数である。
The alkaline storage battery thus prepared was subjected to 10 cycles of charge and discharge under the same conditions as those described above, and the active material utilization rate of the non-sintered nickel electrode at the 10th cycle was determined. The relationship between the rate and the active material utilization rate was investigated. The results are shown in Table 3. Table 3 also shows the results for the non-sintered nickel electrode A1 (content of lithium-containing cobalt compound: 5% by weight) produced in Example 1 above. The active material utilization rate in Table 3 is an index when the active material utilization rate of the non-sintered nickel electrode A1 is 100.

【0033】[0033]

【表3】 [Table 3]

【0034】表3より、複合体粒子のリチウム含有コバ
ルト化合物含有率が1重量%以上の場合に、活物質利用
率の高い非焼結式ニッケル極が得られることが分かる。
From Table 3, it can be seen that a non-sintered nickel electrode having a high utilization rate of the active material can be obtained when the content of the lithium-containing cobalt compound in the composite particles is 1% by weight or more.

【0035】図2は、複合体粒子におけるリチウム含有
コバルト化合物の含有率と、電池容量の関係を表したも
のである。図2において、横軸にはリチウム含有コバル
ト化合物の含有率(重量%)、縦軸には電池容量がプロ
ットしてある。図2中の電池容量は非焼結式ニッケル極
A1を用いたニッケル−カドミウム蓄電池の電池容量を
100とした場合の指数で相対的に表してある。
FIG. 2 shows the relationship between the content of the lithium-containing cobalt compound in the composite particles and the battery capacity. In FIG. 2, the content rate (% by weight) of the lithium-containing cobalt compound is plotted on the horizontal axis, and the battery capacity is plotted on the vertical axis. The battery capacity in Fig. 2 is the battery capacity of the nickel-cadmium storage battery using the non-sintered nickel electrode A1.
It is expressed as an index relative to 100.

【0036】この図2より、複合体粒子のリチウム含有
コバルト化合物の含有率が、10重量%を越えると、活物
質たる水酸化ニッケルの量が減少するために、電池容量
が急激に低下することが分かる。表3及び図2の結果を
総合すると、活物質利用率が高く、しかも容量の大きい
非焼結式ニッケル極を得るためには、複合体粒子のリチ
ウム含有コバルト化合物の含有率を、1重量%〜10重量
%とすることが好ましいことが分かる。 (実験3)次の実験を、予備実験2として行った。即
ち、水酸化コバルトと、4重量%の水酸化リチウム水溶
液とを、重量比1:10で混合し、45℃、50℃、60℃、10
0℃、150℃、200℃、220℃または250℃で、それぞれ8
時間加熱処理を行った。加熱処理後、水洗し、60℃で乾
燥して、リチウム含有コバルト化合物を作製した。この
リチウム含有コバルト化合物のリチウム含有量を原子吸
光法により分析したところ、順に0.01重量%(45℃)、1
重量%(50℃)、1重量%(60℃)、1重量%(100℃)、1
重量%(150℃)、1重量%(200℃)、0.05重量%(220
℃)、0.02重量%(250℃)であった。
From FIG. 2, when the content of the lithium-containing cobalt compound in the composite particles exceeds 10% by weight, the amount of nickel hydroxide as the active material decreases, and the battery capacity sharply decreases. I understand. When the results of Table 3 and FIG. 2 are combined, in order to obtain a non-sintered nickel electrode having a high utilization rate of the active material and a large capacity, the content rate of the lithium-containing cobalt compound in the composite particles is 1% by weight. It can be seen that it is preferable to set the content to ˜10% by weight. (Experiment 3) The following experiment was conducted as a preliminary experiment 2. That is, cobalt hydroxide and a 4 wt% lithium hydroxide aqueous solution were mixed at a weight ratio of 1:10, and the mixture was mixed at 45 ° C, 50 ° C, 60 ° C, 10 ° C.
8 at 0 ℃, 150 ℃, 200 ℃, 220 ℃ or 250 ℃
Heat treatment was performed for a time. After the heat treatment, it was washed with water and dried at 60 ° C. to prepare a lithium-containing cobalt compound. When the lithium content of this lithium-containing cobalt compound was analyzed by an atomic absorption method, it was 0.01% by weight (45 ° C.), 1
Weight% (50 ° C), 1% by weight (60 ° C), 1% by weight (100 ° C), 1
% By weight (150 ° C), 1% by weight (200 ° C), 0.05% by weight (220
C) and 0.02% by weight (250 ° C).

【0037】以下で使用するリチウム含有コバルト化合
物のリチウム含有率は、上記分析結果での加熱処理温度
から、推定した値である。
The lithium content of the lithium-containing cobalt compound used below is a value estimated from the heat treatment temperature in the above analysis result.

【0038】ところで、リチウム含有コバルト化合物の
作製において、加熱処理温度を、45℃、50℃、60℃、10
0℃、150℃、200℃、220℃または250℃としたこと以外
は実験1と同様、即ち4重量%水酸化リチウム水溶液を
用いてリチウム含有コバルト化合物を作製した。これら
のリチウム含有コバルト化合物のリチウム含有率は、上
記予備実験2による推定値から、順に0.01重量%、1重
量%、1重量%、1重量%、1重量%、1重量%、0.05
重量%、0.02重量%となる。次いで、これらのリチウム
含有コバルト化合物をそれぞれ用いたこと以外は実験1
と同様にして、順にアルカリ蓄電池T1〜T8を作製し
た。
By the way, in the production of the lithium-containing cobalt compound, the heat treatment temperature is 45 ° C., 50 ° C., 60 ° C., 10 ° C.
A lithium-containing cobalt compound was prepared in the same manner as in Experiment 1 except that the temperature was 0 ° C., 150 ° C., 200 ° C., 220 ° C. or 250 ° C., that is, a 4 wt% lithium hydroxide aqueous solution was used. The lithium content of these lithium-containing cobalt compounds was 0.01% by weight, 1% by weight, 1% by weight, 1% by weight, 1% by weight, 1% by weight, 0.05% by weight from the estimated value in the above preliminary experiment 2.
It will be 0.02% by weight. Then, in Experiment 1 except that these lithium-containing cobalt compounds were used respectively.
In the same manner as above, alkaline storage batteries T1 to T8 were sequentially manufactured.

【0039】これらのアルカリ蓄電池T1〜T8につい
て、上記実験1と同じ条件の充放電を10サイクル行っ
て、10サイクル目の正極の活物質利用率を求め、加熱処
理温度と活物質利用率との関係を調べた。この結果を、
図3に示す。図3は、リチウム含有コバルト化合物を合
成する際の加熱処理温度と活物質利用率との関係を示す
ものである。図3において、横軸には加熱処理温度
(℃)が、縦軸には活物質利用率が、それぞれプロット
されている。尚、図3には、先の実験1で作製したアル
カリ蓄電池A1についての結果も示してある。また、図
3の縦軸の活物質利用率は、アルカリ蓄電池A1の活物
質利用率を100とした場合の指数で相対的に表してあ
る。
Each of these alkaline storage batteries T1 to T8 was charged and discharged under the same conditions as in Experiment 1 for 10 cycles to obtain the active material utilization rate of the positive electrode at the 10th cycle, and to determine the heat treatment temperature and the active material utilization rate. I investigated the relationship. This result
As shown in FIG. FIG. 3 shows the relationship between the heat treatment temperature and the active material utilization rate when synthesizing a lithium-containing cobalt compound. In FIG. 3, the heat treatment temperature (° C.) is plotted on the horizontal axis, and the active material utilization rate is plotted on the vertical axis. It should be noted that FIG. 3 also shows the results for the alkaline storage battery A1 manufactured in Experiment 1 above. Further, the active material utilization rate on the vertical axis of FIG. 3 is relatively represented by an index when the active material utilization rate of the alkaline storage battery A1 is 100.

【0040】図3に示すようにアルカリ蓄電池A1、T
2〜T6の活物質利用率が極めて高いことから、50〜20
0℃で加熱処理して作製したリチウム含有コバルト化合
物(本発明導電剤)は、極めて高い導電率を有すること
が分かる。
As shown in FIG. 3, alkaline storage batteries A1 and T
50 to 20 because the active material utilization rate of 2 to T6 is extremely high
It can be seen that the lithium-containing cobalt compound (conducting agent of the present invention) produced by heat treatment at 0 ° C. has extremely high electric conductivity.

【0041】[0041]

【発明の効果】上述した如く、本発明によれば、活物質
利用率が向上され、導電率が高いアルカリ蓄電池用非焼
結式ニッケル極が得られ、電池容量の大きな電池が提供
でき、その工業的価値は極めて大きい。
As described above, according to the present invention, it is possible to provide a non-sintered nickel electrode for an alkaline storage battery, which has a high utilization factor of an active material and a high conductivity, and which can provide a battery having a large battery capacity. The industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】リチウム含有コバルト化合物(導電層)のリチ
ウム含有率と活物質利用率との関係を示したグラフであ
る。
FIG. 1 is a graph showing the relationship between the lithium content of a lithium-containing cobalt compound (conductive layer) and the active material utilization rate.

【図2】複合体粒子のリチウム含有コバルト化合物と電
池容量の関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the lithium-containing cobalt compound of the composite particles and the battery capacity.

【図3】リチウム含有コバルト化合物を合成する際の加
熱処理温度と、活物質利用率の関係を示したグラフであ
る。
FIG. 3 is a graph showing a relationship between a heat treatment temperature when synthesizing a lithium-containing cobalt compound and an active material utilization rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kozo Nogami 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル粒子または水酸化ニッケ
ルを主成分とする粒子の表面に、リチウム含有コバルト
化合物からなる導電層を形成してなる複合体粒子からな
る粉末を、活物質とするアルカリ蓄電池用非焼結式ニッ
ケル極であって、 前記リチウム含有コバルト化合物において、前記リチウ
ム含有コバルト化合物の全重量に対して、原子に換算さ
れたリチウム重量の割合が、0.1重量%〜10重量%であ
ることを特徴とするアルカリ蓄電池用非焼結式ニッケル
極。
1. An alkaline storage battery using, as an active material, powder of composite particles formed by forming a conductive layer of a lithium-containing cobalt compound on the surface of nickel hydroxide particles or particles containing nickel hydroxide as a main component. A non-sintered nickel electrode for use in the lithium-containing cobalt compound, wherein the ratio of lithium weight converted to atoms is 0.1 wt% to 10 wt% with respect to the total weight of the lithium-containing cobalt compound. A non-sintered nickel electrode for alkaline storage batteries.
【請求項2】 前記粉末が、水酸化ニッケル粒子または
水酸化ニッケルを主成分とする粒子の表面に、コバルト
化合物層を形成してなる複合体粒子からなる粉末を、こ
れに水酸化リチウム水溶液を加えた状態で、50℃〜200
℃で加熱処理して作製したものであることを特徴とする
請求項1記載のアルカリ蓄電池用非焼結式ニッケル極。
2. A powder composed of composite particles in which a cobalt compound layer is formed on the surface of nickel hydroxide particles or particles containing nickel hydroxide as a main component, and a lithium hydroxide aqueous solution is added thereto. 50 ℃ ~ 200 with added
The non-sintered nickel electrode for an alkaline storage battery according to claim 1, which is produced by heat treatment at ℃.
【請求項3】 前記複合体粒子において、水酸化ニッケ
ル粒子または水酸化ニッケルを主成分とする粒子の重量
に対して、前記リチウム含有コバルト化合物中のコバル
トを原子に換算したコバルトの重量で1重量%〜10重量
%含有していることを特徴とする請求項1記載のアルカ
リ蓄電池用非焼結式ニッケル極。
3. In the composite particles, the weight of cobalt in the lithium-containing cobalt compound is 1 weight of cobalt with respect to the weight of nickel hydroxide particles or particles containing nickel hydroxide as a main component. % To 10% by weight of the non-sintered nickel electrode for alkaline storage batteries according to claim 1.
JP06839996A 1996-03-25 1996-03-25 Non-sintered nickel electrode for alkaline storage batteries Expired - Fee Related JP3229800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06839996A JP3229800B2 (en) 1996-03-25 1996-03-25 Non-sintered nickel electrode for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06839996A JP3229800B2 (en) 1996-03-25 1996-03-25 Non-sintered nickel electrode for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH09259878A true JPH09259878A (en) 1997-10-03
JP3229800B2 JP3229800B2 (en) 2001-11-19

Family

ID=13372588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06839996A Expired - Fee Related JP3229800B2 (en) 1996-03-25 1996-03-25 Non-sintered nickel electrode for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3229800B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114063A (en) * 1997-03-21 2000-09-05 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method for treating surface of positive electrode active material thereof
WO2010023531A2 (en) 2008-08-29 2010-03-04 Saft Groupe S.A. Lithiated oxide for a positive electrode of an alkali battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114063A (en) * 1997-03-21 2000-09-05 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method for treating surface of positive electrode active material thereof
EP0866510A3 (en) * 1997-03-21 2006-04-12 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method for treating surface of positive electrode active material thereof
WO2010023531A2 (en) 2008-08-29 2010-03-04 Saft Groupe S.A. Lithiated oxide for a positive electrode of an alkali battery
WO2010023531A3 (en) * 2008-08-29 2010-05-20 Saft Groupe S.A. Method for producing a lithiated oxide for a positive electrode of an alkaline battery
US8530091B2 (en) 2008-08-29 2013-09-10 Saft Lithiated oxide for a positive electrode of an alkaline accumulator

Also Published As

Publication number Publication date
JP3229800B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP2003007294A (en) Nickel electrode for alkaline storage battery, and the alkaline storage battery
JP2000003707A (en) Alkaline storage battery
JPH10125318A (en) Positive active material and positive electrode for alkaline storage battery
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP2002304991A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP2002358957A (en) Nickel pole for alkaline storage battery and alkaline storage battery
JP3234492B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3229801B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH02234356A (en) Sealed-type alkali battery
JP3234491B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same
JP3433043B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH1021909A (en) Non-sintered nickel electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH1173956A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10294109A (en) Nonsintered nickel pole for alkaline storage battery
JPH09147904A (en) Paste type nickel electrode for alkaline storage battery
JP3433062B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2001250538A (en) Non-sintered nickel pole for alkaline battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370