JPH09258153A - Magneto-optical waveguide - Google Patents

Magneto-optical waveguide

Info

Publication number
JPH09258153A
JPH09258153A JP7166296A JP7166296A JPH09258153A JP H09258153 A JPH09258153 A JP H09258153A JP 7166296 A JP7166296 A JP 7166296A JP 7166296 A JP7166296 A JP 7166296A JP H09258153 A JPH09258153 A JP H09258153A
Authority
JP
Japan
Prior art keywords
substrate
magneto
thickness
optical waveguide
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7166296A
Other languages
Japanese (ja)
Inventor
Akiyuki Tate
彰之 館
Yujiro Kato
雄二郎 加藤
Naoto Sugimoto
直登 杉本
Masayuki Tanno
雅行 丹野
Satoru Fukuda
悟 福田
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7166296A priority Critical patent/JPH09258153A/en
Publication of JPH09258153A publication Critical patent/JPH09258153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magneto-optical waveguide having a desired isolator characteristic and to make its distribution uniform by using a substrate having a prescribed thickness in accordance with the factor analysis of the degradation in the yield in a photolithography stage. SOLUTION: The min. line width in a contact exposure method suitable for simultaneously exposure of a large area with high resolution is practically 2μm in a photolithography stage at the time of manufacturing the magneto- optical waveguide and, therefore, the essential requirement for obtaining pattern formation down to 2μm width in the photolithography stage is to confine the deformation rate of the substrate to <=2μm. In such a case, the deformation rate of the magneto-optical waveguide is expressed by the warpage rate of the substrate added to the deformation rate by a stress. If the stress is zero, the warpage of the substrate eventually remains as it is even after the formation of the epitaxial film. Then, if the substrate is formed to >=0.8mm thickness, the total deformation rate of the substrate is confined to <=2μm. The thickness of the substrate is required to be 0.8 to 3mm from the points described above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信や光信号処
理に用いられる光アイソレーター等の磁気光学導波路に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical waveguide such as an optical isolator used for optical communication and optical signal processing.

【0002】[0002]

【従来の技術】従来の磁気光学効果を用いたバルク型光
アイソレーターは、ガドリニウム・ガリウム・ガーネッ
ト(Gd3Ga5O12 、GGG 以下同じ)やその一部元素置換体
のガーネット結晶基板上に液相成長法により形成したガ
ーネット型磁性体薄膜を主に磁気光学材料として用い、
所定の膜厚まで成長した後、その基板を研磨等により除
去してファラデー回転子として用いられていた。近年は
平面内光集積可能とした導波路型ファラデー回転子が提
案されている。これは、ファラデー回転子を光波の閉じ
込め構造を有する導波路とすることで、レンズ無しに他
の導波路との接続を可能としたものであり、また、磁化
方向を容易磁化方向の面内平行方向としたことで印加磁
場強度の低減を可能とし、外部磁気回路形状の選択性を
増したまま体積を減らしたことにより、外部磁気回路の
平面光回路への組み込みを可能にしたものである。
2. Description of the Related Art A conventional bulk type optical isolator using the magneto-optical effect is a solution of gadolinium gallium garnet (Gd 3 Ga 5 O 12 , GGG, etc.) and its partial element substitution on a garnet crystal substrate. The garnet type magnetic thin film formed by the phase growth method is mainly used as a magneto-optical material,
After growing to a predetermined film thickness, the substrate was removed by polishing or the like and used as a Faraday rotator. In recent years, a waveguide type Faraday rotator capable of in-plane optical integration has been proposed. This is because the Faraday rotator is a waveguide having a light wave confinement structure, which enables connection with other waveguides without a lens. The direction of the magnetic field enables the applied magnetic field intensity to be reduced, and the volume of the external magnetic circuit can be reduced while the selectivity of the external magnetic circuit is increased, so that the external magnetic circuit can be incorporated into the planar optical circuit.

【0003】この導波路型ファラデー回転子の作製工程
は、基板上に下部クラッド層とコア層の形成、その後の
コアリッジ形成、上部クラッド層形成、切り出し、ミラ
ー端面形成、反射防止加工等から成っているが、この作
製工程中のコアリッジ形成工程においては、数μm オー
ダーの幅と高さを有するコアリッジを形成させるため、
通常はフォトリソグラフィとエッチング加工を組み合わ
せて行われる。フォトリソグラフィ工程は、試料全面の
一括露光法と、一部づつを露光するステップ露光法など
がある。ステップ露光法は微小領域の同一パターンの繰
り返し形成に適しVLSI作製に使用されるが、VLSIに比較
して大面積の露光を必要とされる光回路パターン形成に
は不向きであり、光回路パターン形成には一括露光法が
主に使用される。一括露光法においても密着および投影
露光法の二つの方法がある。密着露光法は、マスクに描
画されたパターンに対して1対1の寸法でパターンが転
写され、その最低限描画可能線幅は実用上2μm といわ
れている。投影露光法ではレンズ系を用いて1対2、1
対5等の縮小投影露光が一般的であり、最低描画可能線
幅も縮小倍率につれて細くなる。ステップ露光法では、
1対10等のさらに縮小倍率の大きな縮小投影露光が採用
される。パターン化される導波路のコア寸法は数μm オ
ーダーであり、上記の各種露光方法においては転写され
るパターンの寸法に応じて必要とされる基板の平滑性と
平坦性が決まる。最もゆるい条件としては密着露光法で
あり、投影露光法では縮小倍率が増すにつれて、レンズ
系の焦点深度に応じて必要とされる基板の平滑性と平坦
性の条件はきつくなる。
The manufacturing process of this waveguide type Faraday rotator consists of forming a lower clad layer and a core layer on a substrate, then forming a core ridge, forming an upper clad layer, cutting out, forming a mirror end face, antireflection processing and the like. However, in the core ridge formation process in this manufacturing process, in order to form a core ridge having a width and height of the order of several μm,
Usually, it is performed by combining photolithography and etching. The photolithography process includes a batch exposure method for exposing the entire surface of the sample and a step exposure method for exposing a part of the sample. The step exposure method is suitable for repeated formation of the same pattern in a minute area and is used for VLSI production, but is not suitable for optical circuit pattern formation that requires exposure of a large area compared to VLSI. The batch exposure method is mainly used for this. The collective exposure method also includes two methods, a contact method and a projection exposure method. In the contact exposure method, the pattern is transferred with a size of 1: 1 with respect to the pattern drawn on the mask, and the minimum drawable line width is said to be practically 2 μm. In the projection exposure method, a lens system is used for 1: 2, 1
Reducing projection exposure such as 5 is common, and the minimum drawable line width also becomes thinner as the reducing magnification increases. In the step exposure method,
Reduction projection exposure with a larger reduction ratio such as 1:10 is adopted. The core size of the waveguide to be patterned is on the order of several μm, and in the above various exposure methods, the required smoothness and flatness of the substrate are determined according to the size of the pattern to be transferred. The most lenient condition is the contact exposure method, and in the projection exposure method, the conditions for the smoothness and flatness of the substrate required according to the depth of focus of the lens system become tighter as the reduction magnification increases.

【0004】一般に基板にはそれ自体に多少の反りが存
在することがしばしばある。また、基板上にガーネット
型磁性体薄膜を形成したときに基板とガーネット型磁性
体薄膜の熱膨張率の差や、また結晶であれば基板とガー
ネット型磁性体薄膜の格子定数差により圧縮あるいは引
っ張り応力を生じ、基板全体の変形を引き起こす。こう
した基板全体の変形によりレジストマスク層のパターン
化の際、導波路基板とレジストマスク層の間にエアーギ
ャップが生じ、このエアーギャップの間隙幅に応じて転
写されるパターンの線幅が完全に密着した状態に較べて
広がってしまう。そのため通常使用される円形基板で
は、基板自体が基板中央を中心に凸に変形していたり、
また応力によって基板中央を中心とした変形となる。そ
してこの転写パターンの線幅の分布に応じて、磁性体導
波路の特性も基板内分布を生じることになり、所望の特
性を有する磁気光学導波路の歩留りを低下させる原因と
なっていたが、従来はこの様なフォトリソグラフィ工程
における歩留り低下の要因解析が不十分で、このためこ
の要因に対する対策も十分ではなかった。
In general, the substrate often has some warp. Also, when a garnet-type magnetic thin film is formed on a substrate, it is compressed or pulled due to the difference in the coefficient of thermal expansion between the substrate and the garnet-type magnetic thin film, and if it is crystalline, due to the difference in the lattice constant between the substrate and the garnet-type magnetic thin film. It causes stress and causes deformation of the entire substrate. When the resist mask layer is patterned by such deformation of the entire substrate, an air gap is created between the waveguide substrate and the resist mask layer, and the line width of the transferred pattern is completely adhered according to the gap width of the air gap. It spreads compared to when it was done. Therefore, in a commonly used circular substrate, the substrate itself is deformed convexly around the center of the substrate,
In addition, the stress causes deformation around the center of the substrate. Then, depending on the distribution of the line width of this transfer pattern, the characteristics of the magnetic waveguide also cause a distribution in the substrate, which has been a cause of reducing the yield of the magneto-optical waveguide having the desired characteristics. Conventionally, the factor analysis of the yield reduction in such a photolithography process has been insufficient, and therefore the countermeasure against this factor has not been sufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、フォ
トリソグラフィ工程における歩留り低下の要因解析に基
づき、所定の厚さを有する基板を用いることで、フォト
リソグラフィ工程における転写パターンの線幅の分布を
所定の範囲内に収め、所望のアイソレータ特性を有し、
その分布が均一である磁気光学導波路を提供するもので
ある。
An object of the present invention is to use a substrate having a predetermined thickness based on the factor analysis of the yield reduction in the photolithography process, and thereby to obtain the line width distribution of the transfer pattern in the photolithography process. Within the specified range, and has the desired isolator characteristics,
The present invention provides a magneto-optical waveguide whose distribution is uniform.

【0006】[0006]

【課題を解決するための手段】本発明は、基板上に磁性
体結晶薄膜を成長させ、その一部を形状加工して光導波
路とし、外部磁場下で伝搬光に磁気光学効果を誘起させ
る磁気光学導波路において、該基板の厚さを0.8 〜3mm
とすることを特徴とする磁気光学導波路を要旨とするも
のである。
According to the present invention, a magnetic crystal thin film is grown on a substrate, and a part of the thin film is processed into an optical waveguide to induce a magneto-optical effect in propagating light under an external magnetic field. In the optical waveguide, the thickness of the substrate is 0.8-3 mm
The gist of the present invention is a magneto-optical waveguide characterized by the following.

【0007】[0007]

【発明の実施の形態】磁気光学導波路作製の際のフォト
リソグラフィ工程においては、解像度が高く大面積の一
括露光に適した密着露光法での最小線幅は実用上2μm
であるので、フォトリソグラフィ工程で2μm 幅までの
パターン形成を得るためには、基板の変形量は2μm 以
下とすることが必要条件である。
BEST MODE FOR CARRYING OUT THE INVENTION In the photolithography process for manufacturing a magneto-optical waveguide, the minimum line width in the contact exposure method, which has high resolution and is suitable for large-area batch exposure, is practically 2 μm.
Therefore, in order to obtain the pattern formation up to the width of 2 μm in the photolithography process, it is a necessary condition that the deformation amount of the substrate is 2 μm or less.

【0008】磁気光学導波路に用いるGGG 基板は、引き
上げ法により得られたGGG 単結晶をワイヤーソー等によ
りウェハー状に切り出した後、ウェハー両面をラップ加
工し、さらに鏡面研磨加工を施して得られる。こうして
得られた直径50mmのGGG 基板の反り量を種々の厚み(0.
4、0.5、0.6、0.8、1.0、1.4、2.0、3.0、3.3mm) を有する基板
について調べた結果を図1の▲印に示す。図1の▲印の
数値はそれぞれの厚みの基板について100 枚の平均の反
り量を平均した値である。図1に示す様に従来、導波路
型ファラデー回転子製造に用いていた厚みが0.4mm のGG
G 基板では、基板自体の反り量が2μm より大きいとい
う問題があった。このため、基板の反りを打ち消すよう
に液相エピタキシャル薄膜とGGG 基板の格子定数の差を
微妙に制御してファラデー回転子を製造する必要があっ
た。また、図1の様に基板が薄いほど凸形状の反りが大
きく、基板の厚みは厚ければ厚い程反りが少ないが、液
相エピタキシャル膜を作製する際に3mmより厚い厚さの
GGG 基板を使用すると、基板自体が重いため薄膜形成中
に基板を支持するホルダーからはずれてしまい歩留り良
く薄膜を作製することが困難であることが本発明より明
らかになった。
The GGG substrate used for the magneto-optical waveguide is obtained by cutting a GGG single crystal obtained by the pulling method into a wafer shape with a wire saw or the like, lapping both surfaces of the wafer, and then performing mirror polishing processing. . The warp amount of the GGG substrate with a diameter of 50 mm thus obtained was adjusted to various thicknesses (0.
4, 0.5, 0.6, 0.8, 1.0, 1.4, 2.0, 3.0, and 3.3 mm) are shown, and the results are shown by the triangle marks in FIG. The numerical value marked with ▲ in Fig. 1 is the average value of the average warp amount of 100 substrates for each thickness. As shown in Fig. 1, a GG with a thickness of 0.4 mm, which was conventionally used to manufacture a waveguide type Faraday rotator, was used.
The G substrate has a problem that the warp amount of the substrate itself is larger than 2 μm. Therefore, it was necessary to manufacture the Faraday rotator by delicately controlling the difference in lattice constant between the liquid phase epitaxial thin film and the GGG substrate so as to cancel the warp of the substrate. Also, as shown in FIG. 1, the thinner the substrate, the greater the warp of the convex shape, and the thicker the substrate, the less the warp. However, when manufacturing the liquid phase epitaxial film, the thickness of the substrate is more than 3 mm.
It has been revealed from the present invention that when a GGG substrate is used, it is difficult to produce a thin film with a high yield because the substrate itself is heavy and it comes off from a holder that supports the substrate during thin film formation.

【0009】次に基板と磁性体結晶薄膜間の格子定数差
により生じる応力による基板の変形について検討を行っ
た。基板の厚さをt、基板材料のポアソン比をν、基板と
薄膜間に生じる応力をσ、薄膜の膜厚をd、基板半径r、基
板材料のヤング率をE とすると基板の歪み量δr は
(1)式で表される。 δr =3(1−ν)σdr2/(Et2) …(1) 図1の■印に(1)式より導いた基板の歪み量δr と基
板厚みt の関係を示す。図では、GGG 基板のポアソン比
νとヤング率E の値を、ν=0.281 とE =2.74x1012dyn
e/cm2 とし、基板と薄膜に生じる応力σを格子定数差0.
001 Åに対応した108dyne/cm2 とし、基板半径を25mmと
した。図から、基板の厚みt が増すにつれて、基板の変
形量δr が急速に低減されることが分かる。
Next, the deformation of the substrate due to the stress caused by the difference in lattice constant between the substrate and the magnetic crystal thin film was examined. When the thickness of the substrate is t, the Poisson's ratio of the substrate material is ν, the stress generated between the substrate and the thin film is σ, the film thickness of the thin film is d, the substrate radius r, and the Young's modulus of the substrate material is E, the substrate strain amount δr Is expressed by equation (1). δr = 3 (1−ν) σdr 2 / (Et 2 ) ... (1) The relationship between the substrate strain amount δr derived from the equation (1) and the substrate thickness t is shown by the black squares in FIG. In the figure, the Poisson's ratio ν and Young's modulus E of the GGG substrate are shown as ν = 0.281 and E = 2.74x10 12 dyn.
e / cm 2, and the stress σ generated on the substrate and the thin film is 0.
The substrate radius was 25 mm with 10 8 dyne / cm 2 corresponding to 001 Å. From the figure, it can be seen that the deformation amount Δr of the substrate is rapidly reduced as the thickness t 1 of the substrate is increased.

【0010】従って磁気光学導波路の変形量は上記の基
板反り量と応力による変形量を足したもので表される。
応力が0であれば、図1に示す基板の反りが、エピタキ
シャル膜形成後もそのまま残存することになる。ガーネ
ット型磁性体薄膜形成時の基板と薄膜の格子定数差は、
液相エピタキシャルの際の薄膜成長温度を精密に制御す
ることにより制御可能ではあるが、格子定数差0Åを目
標とした成長温度に設定しても、エピタキシャル膜製造
用電気炉の温度制御精度の限界により0.001 Åの目標値
からもはずれてしまうのが現状である。基板反り量に格
子定数差0.001 Åに対応した応力(108dyne/cm2 )を加
えた場合の薄膜形成後の基板の変形量合計を図1の●印
で示した。この結果、基板の厚みを0.8mm 以上とする
と、基板の合計変形量を2μm 以下とすることができる
ことがわかる。以上の点より基板の厚みは0.8 〜3mmと
することが必要である。また、基板として75mm直径のも
のを用いた場合には、基板平均反り量と格子定数差0.00
1 Åに対応した応力(108dyne/cm2 )を加えた場合の合
計の反り量が2μm 以下となるためには基板の厚みが1.
2mm 以上とするのが好ましく、また基板の厚みが3mmを
超えると基板が育成中に落下してしまうことより、基板
の厚みは1.2 〜3mmとすることが好ましい。
Therefore, the amount of deformation of the magneto-optical waveguide is expressed by adding the amount of substrate warp and the amount of deformation due to stress.
If the stress is 0, the warp of the substrate shown in FIG. 1 remains as it is even after the epitaxial film is formed. The difference in lattice constant between the substrate and the thin film when forming the garnet type magnetic thin film is
It can be controlled by precisely controlling the growth temperature of the thin film during liquid phase epitaxy, but even if the growth temperature is set to a target with a lattice constant difference of 0Å, the temperature control accuracy of the electric furnace for epitaxial film production is limited. Due to this, the current situation is that the target value deviates from 0.001Å. The total deformation amount of the substrate after thin film formation when the stress (10 8 dyne / cm 2 ) corresponding to the lattice constant difference of 0.001 Å was applied to the substrate warpage amount is shown by the ● mark in FIG. As a result, it can be seen that when the thickness of the substrate is 0.8 mm or more, the total amount of deformation of the substrate can be 2 μm or less. From the above points, the thickness of the substrate needs to be 0.8 to 3 mm. When a substrate with a diameter of 75 mm is used, the average warp amount of the substrate and the lattice constant difference of 0.00
When the stress corresponding to 1 Å (10 8 dyne / cm 2 ) is applied, the total warpage amount is 2 μm or less.
The thickness of the substrate is preferably 2 mm or more, and when the thickness of the substrate exceeds 3 mm, the substrate falls during the growth. Therefore, the thickness of the substrate is preferably 1.2 to 3 mm.

【0011】磁気光学導波路は上記の基板を用い公知の
方法により作製される。一例を挙げると、上記の基板上
に液相エピタキシャル成長法により下部クラッド層とコ
ア層を順次形成し、この後、コア層上にSiO2膜を形成す
る。次いでフォトレジストをスピンコートし、フォトレ
ジストを加熱硬化した後、基板上全面にチタン薄膜をDC
マグネトロンスパッタ法により形成する。次にチタン薄
膜を加工するためのフォトレジストのマスクを密着露光
器を用いフォトリソグラフィ法により形成し、続いてチ
タン薄膜をアルゴンイオンビームエッチングにより加工
し、更にガス種を酸素に切り替えてチタン薄膜下部のレ
ジストを加工して、チタン薄膜とフォトレジストよりな
る幅約2、3、4μm 、高さ約5μm の2層積層型マス
クの3種類のパターンを作製する。その後、ガス種を再
びアルゴンに切り替えて、イオンビームによりガーネッ
ト膜の加工を行い、約4μm の深さまでエッチングし、
酸素プラズマアッシング、熱りん酸及び緩衡フッ酸によ
り残在するレジストとSiO2膜を完全に除去する。更にそ
の上に液相エピタキシャル法により上部クラッド層を形
成し導波路基板が作製される。この導波路基板より、ダ
イシングソーを用いて導波路と垂直方向に短冊状の切り
出しを行い、導波路端面を研磨し、偏光面の回転角が45
°となる導波路長約3mmの導波路アレーを作製する。次
いで導波路アレー端面に反射防止コートを施し磁気光学
導波路が作製される。
The magneto-optical waveguide is manufactured by the known method using the above substrate. As an example, a lower clad layer and a core layer are sequentially formed on the substrate by the liquid phase epitaxial growth method, and then a SiO 2 film is formed on the core layer. Next, spin coat the photoresist, heat cure the photoresist, and apply a titanium thin film on the entire surface of the substrate with DC.
It is formed by magnetron sputtering. Next, a photoresist mask for processing the titanium thin film is formed by a photolithography method using a contact exposure device, and then the titanium thin film is processed by argon ion beam etching. Is processed to form three types of patterns of a two-layer laminated mask composed of a titanium thin film and a photoresist and having a width of about 2, 3, 4 μm and a height of about 5 μm. After that, the gas species is switched to argon again, the garnet film is processed by the ion beam, and the etching is performed to a depth of about 4 μm.
The remaining resist and SiO 2 film are completely removed by oxygen plasma ashing, hot phosphoric acid and mild hydrofluoric acid. Further, an upper clad layer is formed thereon by a liquid phase epitaxial method to produce a waveguide substrate. From this waveguide substrate, strips were cut in the direction perpendicular to the waveguide using a dicing saw, the end faces of the waveguide were polished, and the rotation angle of the polarization plane was 45 °.
A waveguide array with a waveguide length of about 3 mm is produced. Then, an antireflection coating is applied to the end faces of the waveguide array to produce a magneto-optical waveguide.

【0012】[0012]

【実施例】以下に本発明の実施例と比較例を上げて詳細
を説明するがこれらは本発明を限定するものではない。 実施例 基板直径50mm、厚さ1mmのGGG 基板上に液相エピタキシ
ャル成長法により下部クラッド層を厚さ6μm とコア層
を厚さ4μm に順次形成した。この時、下部クラッド層
形成時のメルト組成は重量比でLa2O3 :Y2O3:Fe2O3
Ga2O3 :PbO :B2O3=0.202 :0.690 :7.034 :0.255
:100 :2.450 とし、成長温度は899 ℃とした。また
コア層形成時のメルト組成は重量比でLa2O3 :Y2O3:Fe
2O3 :Ga2O3 :PbO :B2O3=0.196 :0.701 :7.097 :
0.170 :100 :2.451 とし、成長温度は896 ℃とした。
この時の基板の反り量は2μm 以下であった。この後、
コア層上にスパッタ法により膜厚0.2 μm のSiO2膜を形
成し、次いで約4.5 μm 厚のフォトレジストをスピンコ
ートした。次に、フォトレジストを約200 ℃で硬化した
後、基板上全面にチタン薄膜をDCマグネトロンスパッタ
法により基板を冷却しつつ約1μm の厚さに形成した。
その後チタン薄膜を加工するためのフォトレジストのマ
スクを密着露光器を用いフォトリソグラフィ法により形
成し、続いてチタン薄膜をアルゴンイオンビームエッチ
ングにより加工した。更に、ガス種を酸素に切り替え
て、チタン薄膜下部のレジストを加工して、チタン薄膜
とフォトレジストよりなる幅2、3、4μm 、高さ約5
μm の2層積層型マスクの3種類のパターンを作製し
た。その後、ガス種を再びアルゴンに切り替えて、イオ
ンビームによりガーネット膜の加工を行い、4μm の深
さまでエッチングした。酸素プラズマアッシング、熱り
ん酸及び緩衡フッ酸により残存したレジストとSiO2膜を
完全に除去した後、更にLPE 法により上部クラッド層を
厚さ6μm で形成した。上部クラッド層のメルト組成と
成長温度は下部クラッド層のメルト組成と温度は同一と
した。作製した導波路基板より、ダイシングソーを用い
て導波路と垂直方向に短冊状の切り出しを行い、導波路
端面を研磨し、偏光面の回転角が45°となる導波路長3
mmの導波路アレーを作製した。この導波路アレー端面に
反射防止コートを施し、各導波路のアイソレータ特性を
測定し、アイソレータ特性の分布を評価した。図2に20
例について測定したアイソレータ特性の挿入損失値、及
び消光比の分布を示すが、図2より挿入損失値、及び消
光比の分布が均一化されているのが分かる。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples, but these do not limit the present invention. Example A lower clad layer having a thickness of 6 μm and a core layer having a thickness of 4 μm were sequentially formed on a GGG substrate having a substrate diameter of 50 mm and a thickness of 1 mm by a liquid phase epitaxial growth method. At this time, the melt composition at the time of forming the lower cladding layer is La 2 O 3 : Y 2 O 3 : Fe 2 O 3 : by weight.
Ga 2 O 3: PbO: B 2 O 3 = 0.202: 0.690: 7.034: 0.255
: 100: 2.450, and the growth temperature was 899 ° C. The melt composition of the core layer is La 2 O 3 : Y 2 O 3 : Fe in weight ratio.
2 O 3 : Ga 2 O 3 : PbO: B 2 O 3 = 0.196: 0.701: 7.097:
0.170: 100: 2.451 and the growth temperature was 896 ° C.
The warp amount of the substrate at this time was 2 μm or less. After this,
A 0.2 μm-thick SiO 2 film was formed on the core layer by a sputtering method, and then a photoresist having a thickness of about 4.5 μm was spin-coated. Next, after hardening the photoresist at about 200 ° C., a titanium thin film was formed on the entire surface of the substrate by DC magnetron sputtering to a thickness of about 1 μm while cooling the substrate.
After that, a photoresist mask for processing the titanium thin film was formed by a photolithography method using a contact exposure device, and subsequently the titanium thin film was processed by argon ion beam etching. Further, the gas species is switched to oxygen, and the resist under the titanium thin film is processed, and the width of the titanium thin film and the photoresist is 2, 3, 4 μm, and the height is about 5
Three types of patterns of a two-layer laminated mask of μm were prepared. Then, the gas species was switched to argon again, the garnet film was processed by an ion beam, and etching was performed to a depth of 4 μm. After the remaining resist and SiO 2 film were completely removed by oxygen plasma ashing, hot phosphoric acid and mild hydrofluoric acid, an upper clad layer was further formed to a thickness of 6 μm by the LPE method. The melt composition and growth temperature of the upper clad layer were the same as those of the lower clad layer. A strip length is cut from the fabricated waveguide substrate in the direction perpendicular to the waveguide using a dicing saw, and the waveguide end face is polished to produce a waveguide length 3 with a rotation angle of the polarization plane of 45 °.
A millimeter-waveguide array was fabricated. An antireflection coating was applied to the end face of this waveguide array, the isolator characteristics of each waveguide were measured, and the distribution of the isolator characteristics was evaluated. 20 in FIG.
The distributions of the insertion loss value and the extinction ratio of the isolator characteristics measured for the example are shown. It can be seen from FIG. 2 that the distributions of the insertion loss value and the extinction ratio are uniform.

【0013】比較例1 基板の厚さを0.4mm とし、他の作製条件は実施例と同一
にして作製した導波路のアレーのアイソレータ特性の挿
入損失値、及び消光比の分布についても同様に測定し
た。図3にその結果を示すが、分布が不均一であること
が分かる。なお、この時のコア層形成後の基板の変形量
は5μm であった。
Comparative Example 1 The insertion loss value of the isolator characteristic and the distribution of the extinction ratio of the waveguide array fabricated under the same conditions as those of the example except that the substrate thickness was 0.4 mm and other fabrication conditions were the same. did. The results are shown in FIG. 3, and it can be seen that the distribution is non-uniform. The amount of deformation of the substrate after forming the core layer at this time was 5 μm.

【0014】比較例2 基板の厚さを3.3mm とし、他の作製条件は実施例と同一
にして導波路型アイソレーターの作製を試みたが、液相
エピタキシャル膜作製工程において、エビタキシャル膜
の成膜中に基板が基板支持用ホルダーからはずれてしま
い、エビタキシャル膜を製造することは出来なかった。
Comparative Example 2 An attempt was made to manufacture a waveguide type isolator by setting the thickness of the substrate to 3.3 mm and the other manufacturing conditions being the same as those of the example. However, in the liquid phase epitaxial film manufacturing process, the formation of the epitaxial film was performed. It was not possible to manufacture an epitaxial film because the substrate was removed from the substrate supporting holder in the film.

【0015】[0015]

【発明の効果】本発明により、磁気光学特性の基板内分
布を均一化し、所望の特性を有する磁気光学導波路の歩
留り向上を容易に達成することが出来た。
According to the present invention, the distribution of magneto-optical characteristics in the substrate can be made uniform, and the yield of the magneto-optical waveguide having desired characteristics can be easily improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】基板直径50mmの場合について、基板の厚さと基
板の反り量の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a thickness of a substrate and a warp amount of the substrate when a substrate diameter is 50 mm.

【図2】実施例において測定したアイソレータ特性の分
布を示す図である。
FIG. 2 is a diagram showing a distribution of isolator characteristics measured in an example.

【図3】比較例1において測定したアイソレータ特性の
分布を示す図である。
3 is a diagram showing a distribution of isolator characteristics measured in Comparative Example 1. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 直登 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 丹野 雅行 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 福田 悟 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 流王 俊彦 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Naoto Sugimoto 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Masayuki Tanno 2-13-1 Isobe, Gunma Prefecture Issue Shin-Etsu Chemical Co., Ltd., Precision Materials Research Laboratory (72) Inventor Satoru Fukuda 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Industry Co., Ltd. Precision Materials Research Laboratory (72) Inventor Toshihiko Nagao 2-13-1 Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に磁性体結晶薄膜を成長させ、その
一部を形状加工して光導波路とし、外部磁場下で伝搬光
に磁気光学効果を誘起させる磁気光学導波路において、
該基板の厚さを0.8 〜3mmとすることを特徴とする磁気
光学導波路。
1. A magneto-optical waveguide in which a magnetic crystal thin film is grown on a substrate, a part of which is processed into an optical waveguide to induce a magneto-optical effect in propagating light under an external magnetic field.
A magneto-optical waveguide characterized in that the thickness of the substrate is 0.8 to 3 mm.
JP7166296A 1996-03-27 1996-03-27 Magneto-optical waveguide Pending JPH09258153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7166296A JPH09258153A (en) 1996-03-27 1996-03-27 Magneto-optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7166296A JPH09258153A (en) 1996-03-27 1996-03-27 Magneto-optical waveguide

Publications (1)

Publication Number Publication Date
JPH09258153A true JPH09258153A (en) 1997-10-03

Family

ID=13467050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7166296A Pending JPH09258153A (en) 1996-03-27 1996-03-27 Magneto-optical waveguide

Country Status (1)

Country Link
JP (1) JPH09258153A (en)

Similar Documents

Publication Publication Date Title
JPS60114811A (en) Optical waveguide and its production
US5193136A (en) Process for making multifunction integrated optics chips having high electro-optic coefficients
KR20070033432A (en) Glass optical waveguide
JPH11255600A (en) Production of bismuth-substituted rare earth iron garnet single crystal thick film
JPH09258153A (en) Magneto-optical waveguide
JP3876666B2 (en) Optical device and manufacturing method thereof
JP3138549B2 (en) Method of fabricating ridge type on optical crystal substrate or thin film on the substrate
JP2000347135A (en) Magneto-optical waveguide
JPH0345526B2 (en)
JPH11142662A (en) Manufacture of magneto-optical waveguide
CN114325934B (en) Lithium niobate optical waveguide mask for fiber-optic gyroscope and preparation method and application thereof
JPH11142663A (en) Magneto-optical waveguide and its production
JPS59159105A (en) Optical waveguide
JP3031066B2 (en) Method for manufacturing oxide film and method for manufacturing optical waveguide
JP3207876B2 (en) Manufacturing method of optical waveguide device
JP2004341045A (en) Optical waveguide element and its manufacturing method
JPH11142660A (en) Magneto-optical waveguide
JPS59218406A (en) Optical guide and its production
JPS6083005A (en) Optical waveguide and its manufacture
JP2903474B2 (en) How to make a channel type optical waveguide
JP3858776B2 (en) Polarizer and prism using it
JPS6172206A (en) Substrate type waveguide and its production
JP2982836B2 (en) Manufacturing method of waveguide type isolator
JPS5957990A (en) Method for growing liquid phase epitaxial thick film of garnet
JPH0920598A (en) Cutting of garnet single crystal film