JPH09257323A - Refrigerant circulation system - Google Patents

Refrigerant circulation system

Info

Publication number
JPH09257323A
JPH09257323A JP8064532A JP6453296A JPH09257323A JP H09257323 A JPH09257323 A JP H09257323A JP 8064532 A JP8064532 A JP 8064532A JP 6453296 A JP6453296 A JP 6453296A JP H09257323 A JPH09257323 A JP H09257323A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
compressor
gas
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8064532A
Other languages
Japanese (ja)
Other versions
JP3873317B2 (en
Inventor
Satoshi Suzuki
聡 鈴木
Kunihiro Morishita
国博 森下
Tomomasa Takeshita
倫正 竹下
Kimiko Norizuki
貴巳子 法月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06453296A priority Critical patent/JP3873317B2/en
Publication of JPH09257323A publication Critical patent/JPH09257323A/en
Application granted granted Critical
Publication of JP3873317B2 publication Critical patent/JP3873317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a lack of oil in a freezer of a compressor from being kept for a long period of time and enable its performance to be kept high even in the case that an indoor device is installed relatively above an outdoor device. SOLUTION: This refrigerant circulation system is comprised of a compressor 6 in which oil 7 of a freezer having a lower specific weight than that of liquid refrigerant and showing a low soluble characteristic to liquid refrigerant under a condition of condensing pressure and condensing temperature is applied, either gaseous refrigerant or gaseous refrigerant containing partially liquid refrigerant is sucked and discharged as high pressurized gaseous refrigerant; a condensor 3 for condensing high pressure gaseous refrigerant discharged from the compressor 6; a throat mechanism 13 for reducing pressure of condensed liquid refrigerant or liquid refrigerant partially containing gaseous refrigerant; and an evaporator 4 for evaporating liquid refrigerant or gas-liquid two-phase refrigerant flowed from the throat mechanism 13. A liquid-side connecting pipe 12 where a down flow is formed is connected between the condensor 3 and the evaporator 4 so as to constitute a refrigerant circulation system and the throat mechanism 13 is arranged at an upstream side of the liquid side connecting pipe 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍機油として
液冷媒より比重量が小さく、凝縮圧力および凝縮温度条
件下における液冷媒への溶解性が低いものを用いた冷媒
循環システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant circulation system using a refrigerating machine oil having a smaller specific weight than a liquid refrigerant and a low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions.

【0002】[0002]

【従来の技術】従来の冷凍機油として液冷媒より比重量
が小さく、凝縮圧力および凝縮温度条件下における液冷
媒への溶解性が低いものを用い、気体冷媒もしくは一部
に液冷媒を含む気体冷媒を吸引し、高圧化気体冷媒とし
て吐出する圧縮機と、液冷媒もしくは一部に気体冷媒を
含む液冷媒を減圧する絞り機構と、前記圧縮機より吐出
される高圧気体冷媒を含む液冷媒を減圧する絞り機構
と、前記圧縮機より吐出される高圧気体冷媒を凝縮する
凝縮器と、絞り機構から出た液冷媒もしくは気液二相冷
媒を蒸発させる蒸発器とを備えた冷媒循環システムに関
する発明は、例えば特開平5−157379号公報又は
特開平7−208819号公報に開示されている。
2. Description of the Related Art A conventional refrigerating machine oil having a specific weight smaller than that of a liquid refrigerant and a low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions is used as a gas refrigerant or a gas refrigerant partially containing the liquid refrigerant. A compressor that sucks in and discharges as a high-pressure gas refrigerant, a throttle mechanism that decompresses the liquid refrigerant or a liquid refrigerant that partially contains the gas refrigerant, and decompresses the liquid refrigerant that includes the high-pressure gas refrigerant that is discharged from the compressor. An invention relating to a refrigerant circulation system including a throttle mechanism for controlling a high-pressure gas refrigerant discharged from the compressor, and an evaporator for evaporating a liquid refrigerant or a gas-liquid two-phase refrigerant discharged from the throttle mechanism, For example, it is disclosed in JP-A-5-157379 or JP-A-7-208819.

【0003】以下、従来の技術を図6に基いて説明す
る。図6は例えば店舗用などの中規模の建築物の空調に
用いられるセパレート型ヒートポンプ式エアコンに適用
される冷媒循環システムの一例である。図6において、
1は室内の空気と熱交換するための室内熱交換器3を備
えた室内機、2は室外の空気と熱交換するための室外熱
交換器4、冷媒を圧縮するための圧縮機6、冷媒の循環
方向を切り替えるための四方弁8および冷媒の循環量を
調整するための室外側絞り機構5を備えた室外機であ
る。
A conventional technique will be described below with reference to FIG. FIG. 6 shows an example of a refrigerant circulation system applied to a separate heat pump type air conditioner used for air conditioning of a medium-scale building for a store, for example. In FIG.
1 is an indoor unit provided with an indoor heat exchanger 3 for exchanging heat with indoor air, 2 is an outdoor heat exchanger 4 for exchanging heat with outdoor air, a compressor 6 for compressing a refrigerant, a refrigerant The outdoor unit is provided with a four-way valve 8 for switching the circulation direction and an outdoor throttle mechanism 5 for adjusting the circulation amount of the refrigerant.

【0004】また室内機1と室外機2とは各々へ冷媒を
循環させるために、ガス側接続配管11および液側接続
配管12により連結された冷媒循環システムを構成して
いる。ここで圧縮機6底部には、圧縮機6の摺動部の潤
滑や、圧縮機6内部の圧縮室や四方弁8のシール性を確
保するために冷凍機油7が貯留されている。また冷媒と
してはオゾン層破壊係数がゼロであるハイドロフルオロ
カーボンを用い、冷凍機油7としては化学安定性、潤滑
性に優れているが、一方で液冷媒と溶解性の低いアルキ
ルベンゼンを用いている。
Further, the indoor unit 1 and the outdoor unit 2 constitute a refrigerant circulation system which is connected by a gas side connecting pipe 11 and a liquid side connecting pipe 12 in order to circulate the refrigerant to each. Here, the refrigerating machine oil 7 is stored at the bottom of the compressor 6 in order to ensure the lubrication of the sliding part of the compressor 6 and the sealing property of the compression chamber and the four-way valve 8 inside the compressor 6. Further, hydrofluorocarbon having an ozone depletion coefficient of zero is used as the refrigerant, and the refrigerating machine oil 7 uses alkylbenzene, which has excellent chemical stability and lubricity, but has low solubility with the liquid refrigerant.

【0005】次に上記従来例において、一般に広く行わ
れるシステム配置である、室内機1が室外機2に対し相
対的に上方に設置された場合の暖房運転モード立ち上げ
時における冷媒および冷凍機油の挙動について説明す
る。システムが停止した状態で長期間放置された場合、
微弱ながらも溶解性をもつ冷凍機油7が貯留されている
圧縮機6内に冷媒が液化した状態でたまり込む。そし
て、液冷媒に対して比重量の小さい冷凍機油7は、溜ま
り込んだ液冷媒の上部に浮遊する。
Next, in the above-mentioned conventional example, when the indoor unit 1 is installed relatively above the outdoor unit 2, which is a system arrangement that is generally widely used, the refrigerant and the refrigerating machine oil at the time of starting the heating operation mode are The behavior will be described. If the system is stopped and left for a long time,
Refrigerant accumulates in the compressor 6 in which the refrigerating machine oil 7 that is weak but has solubility is stored. Then, the refrigerating machine oil 7 having a smaller specific weight with respect to the liquid refrigerant floats above the accumulated liquid refrigerant.

【0006】ここで圧縮機6の内容量を超えた液冷媒が
溜まり込んだ場合には、浮遊した冷凍機油7は圧縮機6
から冷媒回路中に流出することとなる。このような状態
でシステムが起動された場合、回路中に流出した冷凍機
油7は圧縮されたガス冷媒とともにガス側接続配管11
を経由して室内側熱交換器3に吐出される。室内側熱交
換器3内部では冷媒が凝縮し、室内側熱交換器3出口で
は冷媒は完全に液化し管内流速は著しく低下するため、
液冷媒への溶解量を超えた冷凍機油7は、液側接続配管
12内に滞留する。
[0006] Here, when the liquid refrigerant exceeding the internal capacity of the compressor 6 is accumulated, the floating refrigerating machine oil 7 remains in the compressor 6.
Will flow out into the refrigerant circuit. When the system is started in such a state, the refrigerating machine oil 7 flowing out into the circuit together with the compressed gas refrigerant is connected to the gas side connecting pipe 11
Is discharged to the indoor heat exchanger 3 via. The refrigerant is condensed inside the indoor heat exchanger 3, and the refrigerant is completely liquefied at the outlet of the indoor heat exchanger 3 so that the flow velocity in the pipe is significantly reduced.
Refrigerating machine oil 7 that exceeds the amount dissolved in the liquid refrigerant stays in the liquid side connection pipe 12.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術では、冷
媒循環システムの立ち上げ時など、冷媒と冷凍機油の溶
解量を超える冷凍機油が、圧縮機から冷媒回路中に流出
した場合、冷媒が液状態で流れる凝縮器出口付近から絞
り機構の間では、溶解量を超えた分の冷凍機油は、液冷
媒中の油滴粒子となって流動する。ここで凝縮器と絞り
機構との間に下降流れが形成される流路がある場合、冷
凍機油の比重量が液冷媒の比重量よりも小さいため、図
7の液冷媒、冷凍機油流動状態模式図に示すように、油
滴には流動方向に対抗する浮力が発生する。
In the above-mentioned prior art, when refrigerating machine oil exceeding the amount of dissolved refrigerant and refrigerating machine oil flows out from the compressor into the refrigerant circuit when the refrigerant circulation system is started up, the refrigerant is liquified. Between the outlet of the condenser flowing in this state and the throttle mechanism, the refrigerating machine oil in excess of the dissolved amount flows as oil droplet particles in the liquid refrigerant. Here, when there is a flow path where a downward flow is formed between the condenser and the throttle mechanism, the specific weight of the refrigerating machine oil is smaller than the specific weight of the liquid refrigerant. As shown in the figure, the oil droplets generate buoyancy against the flow direction.

【0008】液冷媒の流動速度が速い状態では、油滴は
浮力に打ち勝って液冷媒とともに流動することになる
が、液冷媒の流動速度が遅い状態では、油滴は浮力によ
り下降流れが形成される流路の上流部に滞留する。この
ような状態でも、液冷媒に溶解してる分の冷凍機油は、
冷媒とともに冷媒回路を循環し圧縮機へ戻ることとなる
が、流出した冷凍機油がすべて圧縮機に戻るためには時
間がかかる。したがって、圧縮機へ冷凍機油が完全に戻
るまでの間は、圧縮機は冷凍機油の少ない状態で運転さ
れることとなり、圧縮機内の軸受けなどの摺動部の信頼
性低下やオイルシール部のシール性低下による性能の低
下が起こる可能性があった。
When the flow rate of the liquid refrigerant is high, the oil droplets overcome the buoyancy and flow with the liquid refrigerant, but when the flow rate of the liquid refrigerant is low, the oil droplets form a downward flow due to the buoyancy. Stay in the upstream part of the flow path. Even in this state, the amount of refrigerating machine oil dissolved in the liquid refrigerant is
Although it circulates through the refrigerant circuit with the refrigerant and returns to the compressor, it takes time for all the refrigerating machine oil that has flowed out to return to the compressor. Therefore, until the refrigerating machine oil is completely returned to the compressor, the compressor will be operated in a state where the refrigerating machine oil is low, reducing the reliability of sliding parts such as bearings in the compressor and sealing the oil seal part. There is a possibility that the performance may be deteriorated due to the deterioration of the sex.

【0009】この発明は上記のような課題を解決するた
めになされたもので、室内機が室外機に対し相対的に上
方に設置されたような場合でも、圧縮機の冷凍機油不足
が長期化することなく、性能を高く維持できる冷媒循環
システムを得ることを目的とする。
The present invention has been made to solve the above problems. Even when the indoor unit is installed above the outdoor unit, the shortage of refrigerating machine oil in the compressor is prolonged. It is an object of the present invention to obtain a refrigerant circulation system capable of maintaining high performance without doing so.

【0010】[0010]

【課題を解決するための手段】この発明に係る冷媒循環
システムは、液冷媒より比重量が小さく凝縮圧力及び凝
縮温度条件下における液冷媒への溶解性が低い冷凍機油
を用い、気体冷媒若しくは一部に液冷媒を含む気体冷媒
を吸引して高圧化気体冷媒として吐出する圧縮機と、前
記圧縮機より吐出される高圧気体冷媒を凝縮する凝縮器
と、前記凝縮器にて凝縮された液冷媒若しくは一部に気
体冷媒を含む液冷媒を減圧する絞り機構と、前記絞り機
構からの液冷媒若しくは気液二相冷媒を蒸発させ前記圧
縮機へと至る蒸発器とを備え、前記凝縮器と前記蒸発器
との間に下降流れが形成される流路を連結して冷媒循環
システムを構成し、前記絞り機構を下降流れが形成され
る流路の上流部又は上流部と下流部との両方に設けたも
のである。
A refrigerant circulation system according to the present invention uses a refrigerating machine oil having a smaller specific weight than a liquid refrigerant and a low solubility in the liquid refrigerant under the conditions of a condensation pressure and a condensation temperature. A compressor that sucks a gas refrigerant containing a liquid refrigerant into a portion and discharges it as a high-pressure gas refrigerant, a condenser that condenses the high-pressure gas refrigerant discharged from the compressor, and a liquid refrigerant condensed by the condenser. Alternatively, a throttle mechanism for decompressing a liquid refrigerant containing a gas refrigerant in a part, and an evaporator that evaporates the liquid refrigerant or the gas-liquid two-phase refrigerant from the throttle mechanism to the compressor, the condenser and the A refrigerant circulation system is configured by connecting a flow path in which a downward flow is formed between the evaporator and the throttle mechanism to the upstream part or both the upstream part and the downstream part of the flow path in which the downward flow is formed. It is provided.

【0011】また、液冷媒より比重量が小さく凝縮圧力
及び凝縮温度条件下における液冷媒への溶解性が低い冷
凍機油を用い、分離された室内機と室外機とをガス側接
続配管と液側接続配管にて連結してセパレート型ヒート
ポンプエアコンを成す冷媒循環システムを構成し、前記
液側接続配管の上流部又は上流部と下流部との両方に絞
り機構を設けたものである。
Further, refrigerating machine oil having a smaller specific weight than the liquid refrigerant and low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions is used, and the separated indoor unit and outdoor unit are connected to the gas side connecting pipe and the liquid side. A refrigerant circulation system that forms a separate type heat pump air conditioner by connecting with a connecting pipe is provided, and a throttle mechanism is provided on the upstream side or both the upstream side and the downstream side of the liquid side connecting pipe.

【0012】また、液冷媒より比重量が小さく凝縮圧力
及び凝縮温度条件下における液冷媒への溶解性が低い冷
凍機油を用い、気体冷媒若しくは一部に液冷媒を含む気
体冷媒を吸引して高圧化気体冷媒として吐出する圧縮機
と、前記圧縮機より吐出される高圧気体冷媒を凝縮する
凝縮器と、前記凝縮器にて凝縮された液冷媒若しくは一
部に気体冷媒を含む液冷媒を減圧する絞り機構と、前記
凝縮器と前記絞り機構との間の冷媒が気液二相状態にな
るよう前記絞り機構の開度を制御する制御部と、前記絞
り機構からの液冷媒若しくは気液二相冷媒を蒸発させ前
記圧縮機へと至る蒸発器とを備え、前記凝縮器と前記蒸
発器との間に下降流れが形成される流路を連結して構成
したものである。
Further, refrigerating machine oil having a smaller specific weight than the liquid refrigerant and a low solubility in the liquid refrigerant under the conditions of condensing pressure and condensing temperature is used, and the gas refrigerant or a gas refrigerant containing a part of the liquid refrigerant is sucked to a high pressure. A compressor that discharges as a gaseous refrigerant, a condenser that condenses the high-pressure gas refrigerant that is discharged from the compressor, and a liquid refrigerant that is condensed in the condenser or a liquid refrigerant that partially contains a gas refrigerant is decompressed. A throttle mechanism, a control unit that controls the opening of the throttle mechanism so that the refrigerant between the condenser and the throttle mechanism is in a gas-liquid two-phase state, and a liquid refrigerant or gas-liquid two-phase from the throttle mechanism. An evaporator that evaporates a refrigerant to reach the compressor is provided, and a flow path in which a downward flow is formed is connected between the condenser and the evaporator.

【0013】また、前記凝縮機の中央と前記凝縮器の出
口付近との温度を検出する温度センサーを備え、前記制
御部が前記温度センサーの検出結果に基づき前記凝縮器
の出口付近の温度が前記凝縮器の中央の温度より低くな
った場合、絞り機構の開度を大きくするよう制御するも
のである。
Further, a temperature sensor for detecting the temperature between the center of the condenser and the vicinity of the outlet of the condenser is provided, and the controller controls the temperature near the outlet of the condenser based on the detection result of the temperature sensor. When the temperature becomes lower than the central temperature of the condenser, the opening of the throttle mechanism is controlled to be increased.

【0014】また、前記制御部が、前記凝縮器と前記絞
り機構との間の冷媒が気液二相状態になるような前記絞
り機構の開度の制御を冷媒循環システム起動後所定時間
だけ行うものである。
Further, the control unit controls the opening degree of the throttle mechanism such that the refrigerant between the condenser and the throttle mechanism is in a gas-liquid two-phase state for a predetermined time after the refrigerant circulation system is activated. It is a thing.

【0015】また、液冷媒より比重量が小さく凝縮圧力
及び凝縮温度条件下における液冷媒への溶解性が低い冷
凍機油を用い、分離された室内機と室外機とをガス側接
続配管と液側接続配管にて連結してセパレート型ヒート
ポンプエアコンを成す冷媒循環システムを構成し、前記
液側接続配管の冷媒の流速がシステム起動時に通常より
早くなるよう前記液側接続配管に設けられた絞り機構の
開度を制御する制御部を備えたものである。
Further, refrigerating machine oil having a smaller specific weight than the liquid refrigerant and low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions is used, and the separated indoor unit and outdoor unit are connected to the gas side connecting pipe and the liquid side. A refrigerant circulation system that forms a separate type heat pump air conditioner by connecting with a connection pipe is formed, and a throttle mechanism provided in the liquid side connection pipe so that the flow velocity of the refrigerant in the liquid side connection pipe becomes faster than usual at system startup. A control unit for controlling the opening is provided.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

発明の実施の形態1.以下、本発明の実施の形態を図1
に基づいて説明する。図1は例えばビルなどの大型建築
物の空調用に用いられるセパレート形エアコンに適用さ
れる冷媒循環システムの1例であり、図1において、1
は室内の空気と熱交換するための室内熱交換器3と冷媒
の循環量を調整するための室内側絞り機構13を備えた
室内機であり、2は室外の空気と熱交換するための室外
熱交換器4と冷媒を圧縮するための圧縮機6、冷媒の循
環方向を切り替えるための四方弁8および冷媒の循環量
を調整するための室外側絞り機構5を備えた室外機であ
る。
First Embodiment of the Invention Hereinafter, an embodiment of the present invention will be described with reference to FIG.
It will be described based on. FIG. 1 is an example of a refrigerant circulation system applied to a separate type air conditioner used for air conditioning of a large building such as a building.
Is an indoor unit having an indoor heat exchanger 3 for exchanging heat with the indoor air and an indoor expansion mechanism 13 for adjusting the circulation amount of the refrigerant, and 2 is an outdoor unit for exchanging heat with the outdoor air. The outdoor unit includes a heat exchanger 4, a compressor 6 for compressing the refrigerant, a four-way valve 8 for switching the circulation direction of the refrigerant, and an outdoor throttle mechanism 5 for adjusting the circulation amount of the refrigerant.

【0017】また前記室内機1と前記室外機2は各々へ
冷媒を循環させるために、ガス側接続配管11と液側接
続配管12により連結され冷媒循環システムを構成して
いる。ここで前記圧縮機6底部には、圧縮機6の摺動部
の潤滑や、圧縮機6圧縮機6内部の圧縮室や四方弁8の
シール性を確保するために冷凍機油7が貯留されてい
る。また冷媒としてはオゾン層破壊係数がゼロであるハ
イドロフルオロカーボンを用い、冷凍機油7としては化
学的安定性、潤滑性に優れているが、一方で液冷媒と溶
解性の低いアルキルベンゼンを用いている。
Further, the indoor unit 1 and the outdoor unit 2 are connected by a gas side connecting pipe 11 and a liquid side connecting pipe 12 in order to circulate a refrigerant to each of them, and constitute a refrigerant circulating system. Here, the refrigerating machine oil 7 is stored at the bottom of the compressor 6 in order to ensure the lubrication of the sliding part of the compressor 6 and the sealing properties of the compression chamber and the four-way valve 8 inside the compressor 6. There is. Further, hydrofluorocarbon having an ozone depletion coefficient of zero is used as the refrigerant, and the refrigerating machine oil 7 is an alkylbenzene which has excellent chemical stability and lubricity, but has low solubility with the liquid refrigerant.

【0018】次に、本実施の形態において、室内機1が
室外機2に対して相対的に上方に設置された場合の、暖
房運転モード立ち上げ時における冷媒および冷凍機油の
挙動について説明する。システムが停止した状態で長期
間放置された場合、微弱ながらも溶解性をもつ冷凍機油
7が貯留されている圧縮機6内に冷媒が液化した状態で
たまり込む。ここで液冷媒に対して比重量の小さい冷凍
機油7は、溜まり込んだ液冷媒の上部に浮遊する。圧縮
機6の内容量を超えた液冷媒が溜まり込んだ場合には、
浮遊した冷凍機油7は圧縮機6から冷媒回路中に流出す
る。
Next, in the present embodiment, the behaviors of the refrigerant and the refrigerating machine oil when the heating operation mode is started when the indoor unit 1 is installed relatively above the outdoor unit 2 will be described. When the system is stopped and left for a long period of time, the refrigerant accumulates in a liquefied state in the compressor 6 in which the refrigerating machine oil 7 that is weak but has solubility is stored. Here, the refrigerating machine oil 7 having a smaller specific weight than the liquid refrigerant floats above the accumulated liquid refrigerant. When liquid refrigerant that exceeds the internal capacity of the compressor 6 accumulates,
The floating refrigerating machine oil 7 flows out from the compressor 6 into the refrigerant circuit.

【0019】このような状態でシステムが起動された場
合、回路中に流出した冷凍機油7は圧縮されたガス冷媒
とともにガス側接続配管11を経由して室内側熱交換器
3に吐出される。室内側熱交換器3内部では冷媒が凝縮
し、室内側熱交換器3出口では冷媒は完全に液化し管内
流速は著しく低下するが、図2に示すように、室内側絞
り機構13により下降流となる手前で液冷媒の一部がガ
ス化することにより、下降流となる液側接続配管12で
は管内流速が増加し、液側接続配管12内に冷凍機油7
が滞留することがない。
When the system is started in such a state, the refrigerating machine oil 7 flowing into the circuit is discharged to the indoor heat exchanger 3 together with the compressed gas refrigerant through the gas side connecting pipe 11. Refrigerant is condensed inside the indoor heat exchanger 3, and the refrigerant is completely liquefied at the outlet of the indoor heat exchanger 3 and the flow velocity in the pipe is significantly reduced. However, as shown in FIG. Since a part of the liquid refrigerant is gasified before the temperature becomes, the in-pipe flow velocity increases in the liquid-side connection pipe 12 that becomes a downward flow, and the refrigerating machine oil 7 flows in the liquid-side connection pipe 12.
Does not stay.

【0020】従って、室内機が室外機に対し相対的に上
方に設置された場合でも、冷媒循環システム起動時に圧
縮機の冷凍機油不足が長期化することなく、圧縮機内の
軸受けなどの摺動部の信頼性低下やオイルシール部のシ
ール性低下による性能の低下を有効に防止でき、性能を
高く維持できる。
Therefore, even when the indoor unit is installed relatively above the outdoor unit, a shortage of refrigerating machine oil in the compressor does not last for a long time when the refrigerant circulation system is started, and sliding parts such as bearings in the compressor do not exist. It is possible to effectively prevent the deterioration of the performance due to the deterioration of reliability of the oil seal and the deterioration of the sealing property of the oil seal portion, and it is possible to maintain the high performance.

【0021】尚、上記実施の形態では、室内機が室外機
に対して相対的に上方に設置された場合の、暖房運転モ
ード立ち上げ時について説明したが、一般にヒートポン
プ式エアコンの場合、冷房運転時には暖房運転と逆の冷
媒循環となるので、室外機が室内機に対して相対的に上
方に設置された場合の、冷房運転モード立ち上げ時にお
いて、図1の室外側絞り機構にて室内側絞り機構と同様
の機能を担わせれば同様の効果が得られる。特に本実施
の形態のように液側接続配管の両側に絞り機構が存在す
る構成とすれば、ユーザの要望に応じたシステムの配置
に本発明を対応させることができるようになる。
In the above embodiment, the heating operation mode is started up when the indoor unit is installed relatively above the outdoor unit, but in the case of a heat pump type air conditioner, the cooling operation is generally performed. Since the refrigerant circulation is sometimes the reverse of the heating operation, when the outdoor unit is installed relatively above the indoor unit, when the cooling operation mode is started, the indoor expansion mechanism of FIG. The same effect can be obtained by providing the same function as the diaphragm mechanism. In particular, if the throttling mechanism is provided on both sides of the liquid side connecting pipe as in the present embodiment, the present invention can be adapted to the system arrangement according to the user's request.

【0022】発明の実施の形態2.以下、本発明の他の
実施の形態を図3に基づいて説明する。図3は家庭用の
セパレート形エアコンに適用されるシステムの1例であ
り、図3において1は、室内の空気と熱交換するための
室内熱交換器3を備えた室内機であり、前記室内熱交換
器3には、室内熱交換器中央部温度センサー9と室内熱
交換器出口部温度センサー10が取り付けられている。
Embodiment 2 of the Invention Another embodiment of the present invention will be described below with reference to FIG. FIG. 3 shows an example of a system applied to a separate air conditioner for home use. In FIG. 3, reference numeral 1 denotes an indoor unit equipped with an indoor heat exchanger 3 for exchanging heat with indoor air. An indoor heat exchanger central temperature sensor 9 and an indoor heat exchanger outlet temperature sensor 10 are attached to the heat exchanger 3.

【0023】2は室外の空気と熱交換するための室外熱
交換器4と冷媒を圧縮するための圧縮機6、冷媒の循環
方向を切り替えるための四方弁8、冷媒の循環量を調整
するための室外側絞り機構5となる電子制御膨張弁、お
よび室内熱交換器中央部温度センサー9と室内熱交換器
出口部温度センサー10の検出結果を入力し、これらの
検出結果に基いて室外側絞り機構5の開度を制御する制
御部14を備えた室外機である。
Reference numeral 2 denotes an outdoor heat exchanger 4 for exchanging heat with the outdoor air, a compressor 6 for compressing the refrigerant, a four-way valve 8 for switching the circulation direction of the refrigerant, and a circulation amount of the refrigerant. The detection results of the electronically controlled expansion valve that becomes the outdoor side expansion mechanism 5, the indoor heat exchanger central part temperature sensor 9 and the indoor heat exchanger outlet part temperature sensor 10 are input, and the outdoor side expansion valve is based on these detection results. The outdoor unit includes a control unit 14 that controls the opening degree of the mechanism 5.

【0024】また前記室内機1と前記室外機2は各々へ
冷媒を循環させるために、ガス側接続配管11と液側接
続配管12により連結され冷媒循環システムを構成して
いる。ここで前記圧縮機6底部には、圧縮機6の摺動部
の潤滑や、圧縮機6圧縮機6内部の圧縮室や四方弁8の
シール性を確保するために冷凍機油7が貯留されてい
る。また冷媒としてはオゾン層破壊係数がゼロであるハ
イドロフルオロカーボンを用い、冷凍機油7としては化
学的安定性、潤滑性に優れているが、一方で液冷媒と溶
解性の低いアルキルベンゼンを用いている。
Further, the indoor unit 1 and the outdoor unit 2 are connected by a gas side connecting pipe 11 and a liquid side connecting pipe 12 in order to circulate a refrigerant to each of them, and constitute a refrigerant circulating system. Here, the refrigerating machine oil 7 is stored at the bottom of the compressor 6 in order to ensure the lubrication of the sliding part of the compressor 6 and the sealing properties of the compression chamber and the four-way valve 8 inside the compressor 6. There is. Further, hydrofluorocarbon having an ozone depletion coefficient of zero is used as the refrigerant, and the refrigerating machine oil 7 is an alkylbenzene which has excellent chemical stability and lubricity, but has low solubility with the liquid refrigerant.

【0025】次に、本実施例において、室内機1が室外
機2に対して相対的に上方に設置された場合の、暖房運
転モード立ち上げ時における冷媒および冷凍機油の挙動
および本発明による絞り機構5の開度制御手法について
説明する。システムが停止した状態で長期間放置された
場合、微弱ながらも溶解性をもつ冷凍機油7が貯留され
ている圧縮機6内に冷媒が液化した状態でたまり込む。
ここで液冷媒に対して比重量の小さい冷凍機油7は、溜
まり込んだ液冷媒の上部に浮遊する。
Next, in this embodiment, when the indoor unit 1 is installed relatively above the outdoor unit 2, the behavior of the refrigerant and the refrigerating machine oil at the start of the heating operation mode and the throttle according to the present invention. A method of controlling the opening degree of the mechanism 5 will be described. When the system is stopped and left for a long period of time, the refrigerant accumulates in a liquefied state in the compressor 6 in which the refrigerating machine oil 7 that is weak but has solubility is stored.
Here, the refrigerating machine oil 7 having a smaller specific weight than the liquid refrigerant floats above the accumulated liquid refrigerant.

【0026】ここで圧縮機6の内容量を超えた液冷媒が
溜まり込んだ場合には、浮遊した冷凍機油7は圧縮機6
から冷媒回路中に流出する。このような状態でシステム
が起動された場合、回路中に流出した冷凍機油7は圧縮
されたガス冷媒とともにガス側接続配管11を経由して
室内側熱交換器3に吐出される。室内側熱交換器3内部
では冷媒が凝縮し、室内側熱交換器3出口では冷媒は完
全に液化し管内流速は著しく低下する。
Here, when the liquid refrigerant that exceeds the internal capacity of the compressor 6 is accumulated, the floating refrigerating machine oil 7 is removed from the compressor 6.
Out of the refrigerant circuit. When the system is activated in such a state, the refrigerating machine oil 7 flowing out into the circuit is discharged to the indoor heat exchanger 3 together with the compressed gas refrigerant via the gas side connecting pipe 11. The refrigerant is condensed inside the indoor heat exchanger 3, and the refrigerant is completely liquefied at the outlet of the indoor heat exchanger 3 and the flow velocity in the pipe is significantly reduced.

【0027】本発明の室外絞り機構5の制御法では、こ
のようにシステムの立ち上げ直後の圧縮機6からの冷凍
機油7流出が多い場合に、制御部14が所定時間、室内
側熱交換器中間温度センサー9で検出される温度と、室
内側熱交換器出口温度センサー10で検出される温度と
の差が一定値以下となるよう絞り機構の開度を開くよう
制御する。そして、一通り冷凍機油が圧縮機に戻った頃
にこのような制御を終了し、制御部14は通常運転時の
流動状態で液側冷媒配管12を移動するよう室外絞り機
構5の開度を制御する。
In the control method of the outdoor throttling mechanism 5 of the present invention, when there is a large outflow of the refrigerating machine oil 7 from the compressor 6 immediately after the system is started in this way, the control unit 14 keeps the indoor heat exchanger for a predetermined time. The opening of the throttling mechanism is controlled so that the difference between the temperature detected by the intermediate temperature sensor 9 and the temperature detected by the indoor heat exchanger outlet temperature sensor 10 becomes a certain value or less. When the refrigerating machine oil returns to the compressor, the control unit 14 ends the opening of the outdoor throttle mechanism 5 so as to move the liquid-side refrigerant pipe 12 in a flow state during normal operation. Control.

【0028】尚、このような制御をする所定時間は、例
えば冷媒循環システムが停止していた時間を計測し、そ
の停止時間に応じて停止時間が一定の下限時間を越える
場合には上述のような流動制御による冷媒移動時間を設
定し、停止時間が長ければこの冷媒移動時間を長くする
か、または、停止時間が一定の下限時間を越える場合に
は上述の冷媒移動時間を一定時間設定するようにすれば
よい。前者の構成によれば、流動制御による冷媒移動時
間を必用時間だけ行うので無駄がなく、後者の場合には
制御が簡単なため、安価なものとすることができる。
The predetermined time for performing such control is, for example, the time during which the refrigerant circulation system is stopped, and if the stop time exceeds a certain lower limit time according to the stop time, the above-described time is set. The refrigerant transfer time is set by a simple flow control, and if the stop time is long, this refrigerant transfer time is lengthened, or if the stop time exceeds a certain lower limit time, the above-mentioned refrigerant transfer time is set to a certain time. You can do this. According to the former configuration, since the refrigerant movement time by the flow control is performed only for the necessary time, there is no waste, and in the latter case, the control is simple and therefore the cost can be reduced.

【0029】図4により上記の電子制御膨張弁の開度制
御時の冷媒の状態を説明する。ここで室内熱交換器中央
部温度センサー9で検知された温度をT2、室内熱交換
器出口部温度センサー10で検知された温度をT1とす
ると、システムの立ち上げ直後は室内の空気温度が低い
ため、室内熱交換器3での熱交換量は増加し、室内熱交
換器3出口部付近の冷媒は過冷却の液状態になり、T1
<T2となる。
The state of the refrigerant when the opening degree of the electronically controlled expansion valve is controlled will be described with reference to FIG. Assuming that the temperature detected by the indoor heat exchanger central temperature sensor 9 is T2 and the temperature detected by the indoor heat exchanger outlet temperature sensor 10 is T1, the indoor air temperature is low immediately after the system is started. Therefore, the amount of heat exchange in the indoor heat exchanger 3 increases, and the refrigerant near the outlet of the indoor heat exchanger 3 becomes a supercooled liquid state, and T1
<T2.

【0030】このままの状態では液側接続配管12内の
冷媒は液状態となり、流速は著しく低下してしまうた
め、制御部14はT1≒T2すなわち気液2相状態とな
る温度T■1まで電子膨張弁5の開度を大きくするよう
制御することにより、液側接続配管12内の流速を上昇
させ、冷凍機油の滞留現象を防止できる。このような方
法を用いれば、実施の形態1のように液側接続配管12
の上流側に絞り機構を設けるような冷媒循環システムの
構成を複雑とすることなく実施の形態1と同様な効果が
得られる。
In this state, the refrigerant in the liquid side connecting pipe 12 is in a liquid state, and the flow velocity is remarkably reduced. Therefore, the control unit 14 controls the temperature T1 to T2 (T1≈T2). By controlling the opening degree of the expansion valve 5 to be large, the flow velocity in the liquid side connection pipe 12 can be increased and the refrigerating machine oil retention phenomenon can be prevented. If such a method is used, as in the first embodiment, the liquid side connection pipe 12
The same effect as that of the first embodiment can be obtained without complicating the configuration of the refrigerant circulation system in which the throttling mechanism is provided on the upstream side.

【0031】図5は本発明と従来例での、長期放置後の
システム立ち上げ時における圧縮機内部の冷凍機油量の
時間推移を示した図である。従来例においても、冷凍機
油7が微弱な溶解性を持つため、一旦冷媒回路中へ持ち
出された冷凍機油7も、循環している冷媒に溶解した分
だけ、時間とともに圧縮機6内に戻ることとなるが、定
常的に貯留されるべき冷凍機油量まで回復するためには
長い時間を要する。一方、本発明の構成および制御によ
れば、液側接続配管12内に冷凍機油7が滞留すること
がなく、短時間に冷凍機油量が回復する。
FIG. 5 is a diagram showing a time transition of the amount of refrigerating machine oil inside the compressor at the time of system startup after being left for a long time in the present invention and the conventional example. In the conventional example as well, since the refrigerating machine oil 7 has a weak solubility, the refrigerating machine oil 7 once taken out into the refrigerant circuit may return to the compressor 6 with time as much as it is dissolved in the circulating refrigerant. However, it takes a long time to recover the amount of refrigerating machine oil that should be constantly stored. On the other hand, according to the configuration and control of the present invention, the refrigerating machine oil 7 does not stay in the liquid side connecting pipe 12, and the refrigerating machine oil amount is recovered in a short time.

【0032】[0032]

【発明の効果】以上のようにこの発明によれば、液冷媒
より比重量が小さく凝縮圧力及び凝縮温度条件下におけ
る液冷媒への溶解性が低い冷凍機油を用い、気体冷媒若
しくは一部に液冷媒を含む気体冷媒を吸引して高圧化気
体冷媒として吐出する圧縮機と、前記圧縮機より吐出さ
れる高圧気体冷媒を凝縮する凝縮器と、前記凝縮器にて
凝縮された液冷媒若しくは一部に気体冷媒を含む液冷媒
を減圧する絞り機構と、前記絞り機構からの液冷媒若し
くは気液二相冷媒を蒸発させ前記圧縮機へと至る蒸発器
とを備え、前記凝縮器と前記蒸発器との間に下降流れが
形成される流路を連結して冷媒循環システムを構成し、
前記絞り機構を下流流れが形成される流路の上流部又は
上流部と下流部との両方に設けたので、冷媒循環システ
ムの立ち上げ時など、冷媒と冷凍機油の溶解量を越える
冷凍機油が、圧縮機から冷媒回路中に流出した場合で
も、圧縮機への返油が短時間に行われ、圧縮機内の軸受
けなどの摺動部の信頼性が高く、オイルシール部のシー
ル性低下による性能の低下のないシステムが得られると
いう効果を奏する。
As described above, according to the present invention, a refrigerating machine oil having a smaller specific weight than a liquid refrigerant and a low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions is used, and the liquid refrigerant is partially or partially liquid. A compressor that sucks a gas refrigerant containing a refrigerant and discharges it as a high-pressure gas refrigerant, a condenser that condenses the high-pressure gas refrigerant discharged from the compressor, and a liquid refrigerant or a part thereof condensed by the condenser. A throttle mechanism for depressurizing a liquid refrigerant containing a gas refrigerant, and an evaporator that evaporates a liquid refrigerant or a gas-liquid two-phase refrigerant from the throttle mechanism to the compressor, the condenser and the evaporator. A refrigerant circulation system is configured by connecting flow paths in which a descending flow is formed between
Since the throttling mechanism is provided in both the upstream portion or the upstream portion and the downstream portion of the flow path in which the downstream flow is formed, refrigerating machine oil that exceeds the amount of refrigerant and refrigerating machine oil dissolved, such as when the refrigerant circulation system is started up. Even if oil leaks from the compressor into the refrigerant circuit, oil is returned to the compressor in a short time, the reliability of the sliding parts such as the bearings in the compressor is high, and the performance due to the deterioration of the oil seal sealing performance. This has the effect of obtaining a system without a decrease in power consumption.

【0033】また、液冷媒より比重量が小さく凝縮圧力
及び凝縮温度条件下における液冷媒への溶解性が低い冷
凍機油を用い、分離された室内機と室外機とをガス側接
続配管と液側接続配管にて連結してセパレート型ヒート
ポンプエアコンを成す冷媒循環システムを構成し、前記
液側接続配管の上流部又は上流部と下流部との両方に絞
り機構を設けたので、冷媒が冷媒循環システム内を速い
流速で移動するから、冷媒循環システムの立ち上げ時な
ど、冷媒と冷凍機油の溶解量を越える冷凍機油が、圧縮
機から冷媒回路中に流出した場合でも、圧縮機への返油
が短時間に行われ、圧縮機内の軸受けなどの摺動部の信
頼性が高く、オイルシール部のシール性低下による性能
の低下のないシステムが得られるという効果を奏する。
Further, refrigerating machine oil having a smaller specific weight than the liquid refrigerant and a low solubility in the liquid refrigerant under the conditions of condensation pressure and condensation temperature is used, and the separated indoor unit and outdoor unit are connected to the gas side connecting pipe and the liquid side. A refrigerant circulation system that forms a separate type heat pump air conditioner by connecting with a connecting pipe is provided, and a throttle mechanism is provided at both the upstream part or both the upstream part and the downstream part of the liquid side connecting pipe, so that the refrigerant is a refrigerant circulating system. Since it moves at a high flow rate inside the compressor, even when refrigerating machine oil that exceeds the dissolved amount of the refrigerating machine and refrigerating machine oil flows out from the compressor into the refrigerant circuit, such as when starting up the refrigerant circulation system, the oil is returned to the compressor. It is possible to obtain a system that is performed in a short time, has high reliability of sliding parts such as bearings in the compressor, and has no performance deterioration due to deterioration of sealing performance of the oil seal part.

【0034】また、液冷媒より比重量が小さく凝縮圧力
及び凝縮温度条件下における液冷媒への溶解性が低い冷
凍機油を用い、気体冷媒若しくは一部に液冷媒を含む気
体冷媒を吸引して高圧化気体冷媒として吐出する圧縮機
と、前記圧縮機より吐出される高圧気体冷媒を凝縮する
凝縮器と、前記凝縮器にて凝縮された液冷媒若しくは一
部に気体冷媒を含む液冷媒を減圧する絞り機構と、前記
凝縮器と前記絞り機構との間の冷媒が気液二相状態にな
るよう前記絞り機構の開度を制御する制御部と、前記絞
り機構からの液冷媒若しくは気液二相冷媒を蒸発させ前
記圧縮機へと至る蒸発器とを備え、前記凝縮器と前記蒸
発器との間に下降流れが形成される流路を連結して構成
したので、冷媒循環システムの構造を複雑で大型にする
ことなく冷媒循環システムの立ち上げ時など、冷媒と冷
凍機油の溶解量を越える冷凍機油が、圧縮機から冷媒回
路中に流出した場合でも、圧縮機への返油が短時間に行
われ、圧縮機内の軸受けなどの摺動部の信頼性が高く、
オイルシール部のシール性低下による性能の低下のない
システムが得られるという効果を奏する。
Further, a refrigerating machine oil having a smaller specific weight than the liquid refrigerant and a low solubility in the liquid refrigerant under the conditions of the condensation pressure and the condensation temperature is used, and the gas refrigerant or a gas refrigerant containing a part of the liquid refrigerant is sucked to a high pressure. A compressor that discharges as a gaseous refrigerant, a condenser that condenses the high-pressure gas refrigerant that is discharged from the compressor, and a liquid refrigerant that is condensed in the condenser or a liquid refrigerant that partially contains a gas refrigerant is decompressed. A throttle mechanism, a control unit that controls the opening of the throttle mechanism so that the refrigerant between the condenser and the throttle mechanism is in a gas-liquid two-phase state, and a liquid refrigerant or gas-liquid two-phase from the throttle mechanism. An evaporator that evaporates a refrigerant to the compressor is provided, and a flow path in which a downward flow is formed is connected between the condenser and the evaporator, so that the structure of the refrigerant circulation system is complicated. Refrigerant circulation without increasing the size Even if the refrigerating machine oil that exceeds the melting amount of the refrigerating machine and refrigerating machine oil flows out from the compressor into the refrigerant circuit when the system is started up, oil is returned to the compressor in a short time, and bearings inside the compressor are used. The reliability of the sliding part of
It is possible to obtain the system in which the performance is not deteriorated due to the deterioration of the sealing property of the oil seal portion.

【0035】また、前記凝縮機の中央と前記凝縮器の出
口付近との温度を検出する温度センサーを備え、前記制
御部は前記温度センサーの検出結果に基づき前記凝縮器
の出口付近の温度が前記凝縮器の中央の温度より低くな
った場合、絞り機構の開度を大きくするよう制御するの
で、絞り機構の開度を不必要なまでに大きくしてシステ
ムの性能を無駄に低下させるようなことなく冷媒循環シ
ステムの立ち上げ時など、冷媒と冷凍機油の溶解量を越
える冷凍機油が、圧縮機から冷媒回路中に流出した場合
でも、圧縮機への返油が短時間に行われ、圧縮機内の軸
受けなどの摺動部の信頼性が高く、オイルシール部のシ
ール性低下による性能の低下のないシステムを得ること
が可能になるという効果を奏する。
Further, a temperature sensor for detecting the temperature between the center of the condenser and the vicinity of the outlet of the condenser is provided, and the controller controls the temperature near the outlet of the condenser based on the detection result of the temperature sensor. When the temperature becomes lower than the temperature in the center of the condenser, the aperture of the throttle mechanism is controlled to be increased.Therefore, the aperture of the throttle mechanism is unnecessarily increased to reduce the system performance unnecessarily. Even when refrigerating machine oil that exceeds the melting amount of refrigerating machine and refrigerating machine oil flows out from the compressor into the refrigerant circuit when the refrigerant circulation system is started up, the oil is returned to the compressor in a short time, It is possible to obtain a system in which the reliability of the sliding portion such as the bearing is high and the performance is not deteriorated due to the deterioration of the sealability of the oil seal portion.

【0036】また、前記制御部は、前記凝縮器と前記絞
り機構との間の冷媒が気液二相状態になるような前記絞
り機構の開度の制御を冷媒循環システム起動後所定時間
だけ行うので、起動時に循環していった冷凍機油の返油
が短時間になされた後は、通場の冷凍循環システムとし
て動作するから、システムの性能を充分に引き出すこと
ができるようになるという効果が得られる。
The control unit controls the opening degree of the throttle mechanism for a predetermined time after the refrigerant circulation system is activated so that the refrigerant between the condenser and the throttle mechanism is in a gas-liquid two-phase state. Therefore, after returning the refrigerating machine oil that circulates at startup for a short time, it operates as a refrigeration circulation system in the hall, so it is possible to bring out the system performance sufficiently. can get.

【0037】また、液冷媒より比重量が小さく凝縮圧力
及び凝縮温度条件下における液冷媒への溶解性が低い冷
凍機油を用い、分離された室内機と室外機とをガス側接
続配管と液側接続配管にて連結してセパレート型ヒート
ポンプエアコンを成す冷媒循環システムを構成し、前記
液側接続配管の冷媒の流速がシステム起動時に通常より
早くなるよう前記液側接続配管に設けられた絞り機構の
開度を制御する制御部を備えたので、冷媒が冷媒循環シ
ステム内を速い流速で移動するから、冷媒循環システム
の構造を複雑で大型にすることなく冷媒循環システムの
立ち上げ時など、冷媒と冷凍機油の溶解量を越える冷凍
機油が、圧縮機から冷媒回路中に流出した場合でも、圧
縮機への返油が短時間に行われ、圧縮機内の軸受けなど
の摺動部の信頼性が高く、オイルシール部のシール性低
下による性能の低下のないシステムが得られるという効
果を奏する。
Further, refrigerating machine oil having a smaller specific weight than the liquid refrigerant and low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions is used, and the separated indoor unit and outdoor unit are connected to the gas side connecting pipe and the liquid side. A refrigerant circulation system that forms a separate type heat pump air conditioner by connecting with a connection pipe is formed, and a throttle mechanism provided in the liquid side connection pipe so that the flow velocity of the refrigerant in the liquid side connection pipe becomes faster than usual at system startup. Since the control unit for controlling the opening degree is provided, the refrigerant moves at a high speed in the refrigerant circulation system, so that the refrigerant circulation system can be started up at a high speed without complicating the structure of the refrigerant circulation system. Even if refrigerating machine oil that exceeds the melting amount of refrigerating machine oil flows into the refrigerant circuit from the compressor, oil is returned to the compressor in a short time, and the reliability of sliding parts such as bearings in the compressor is improved. High, there is an effect that no drop in performance due to the seal deterioration of the oil seal portion system is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態1における冷媒循環シス
テムの構成図である。
FIG. 1 is a configuration diagram of a refrigerant circulation system according to a first embodiment of the present invention.

【図2】この発明の実施の形態1における冷媒循環シス
テムの循環冷媒の状態図である。
FIG. 2 is a state diagram of a circulating refrigerant of the refrigerant circulation system according to the first embodiment of the present invention.

【図3】この発明の実施の形態2における冷媒循環シス
テムの構成図である。
FIG. 3 is a configuration diagram of a refrigerant circulation system according to a second embodiment of the present invention.

【図4】この発明の実施の形態2における冷媒循環シス
テムの循環冷媒の状態図である。
FIG. 4 is a state diagram of circulating refrigerant in the refrigerant circulating system according to Embodiment 2 of the present invention.

【図5】従来例および本発明の実施の形態による圧縮機
内部の冷凍機油量の時間推移特性図である。
FIG. 5 is a time transition characteristic diagram of the amount of refrigerating machine oil inside the compressor according to the conventional example and the embodiment of the present invention.

【図6】従来の冷媒循環システムの構成図である。FIG. 6 is a configuration diagram of a conventional refrigerant circulation system.

【図7】従来の冷媒循環システムにおける液側接続配管
(下降流)内の液冷媒、冷凍機油の流動状態模式図であ
る。
FIG. 7 is a schematic diagram of the flow states of the liquid refrigerant and the refrigerating machine oil in the liquid side connection pipe (downflow) in the conventional refrigerant circulation system.

【符号の説明】[Explanation of symbols]

1 室内機、 2 室外機、 3 室内熱交換器、 4
室外熱交換器、 5室外側絞り機構(電子式膨張
弁)、 6 圧縮機、 7 冷凍機油、 8 四方弁、
9 室内熱交換器中央部温度センサー、 10 室内
熱交換器出口部温度センサー、 11 ガス側接続配
管、 12 液側接続配管、 13 室内側絞り機構、
14 制御部
1 indoor unit, 2 outdoor unit, 3 indoor heat exchanger, 4
Outdoor heat exchanger, 5 outdoor expansion mechanism (electronic expansion valve), 6 compressor, 7 refrigerator oil, 8 four-way valve,
9 indoor heat exchanger central part temperature sensor, 10 indoor heat exchanger outlet temperature sensor, 11 gas side connection pipe, 12 liquid side connection pipe, 13 indoor side throttling mechanism,
14 Control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 法月 貴巳子 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takami Hozuki 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液冷媒より比重量が小さく凝縮圧力及び
凝縮温度条件下における液冷媒への溶解性が低い冷凍機
油を用い、気体冷媒若しくは一部に液冷媒を含む気体冷
媒を吸引して高圧化気体冷媒として吐出する圧縮機と、
前記圧縮機より吐出される高圧気体冷媒を凝縮する凝縮
器と、前記凝縮器にて凝縮された液冷媒若しくは一部に
気体冷媒を含む液冷媒を減圧する絞り機構と、前記絞り
機構からの液冷媒若しくは気液二相冷媒を蒸発させ前記
圧縮機へと至る蒸発器とを備え、前記凝縮器と前記蒸発
器との間に下降流れが形成される流路を連結して冷媒循
環システムを構成し、前記絞り機構を下降流れが形成さ
れる流路の上流部又は上流部と下流部との両方に設けた
ことを特徴とする冷媒循環システム。
1. A refrigerating machine oil having a smaller specific weight than a liquid refrigerant and a low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions is used, and a gas refrigerant or a gas refrigerant partially containing the liquid refrigerant is sucked to a high pressure. A compressor for discharging as a gaseous refrigerant,
A condenser for condensing the high-pressure gas refrigerant discharged from the compressor, a throttle mechanism for depressurizing the liquid refrigerant condensed in the condenser or a liquid refrigerant containing a gas refrigerant in a part, and a liquid from the throttle mechanism. An evaporator for evaporating a refrigerant or a gas-liquid two-phase refrigerant to reach the compressor is provided, and a refrigerant circulation system is configured by connecting a flow path in which a downward flow is formed between the condenser and the evaporator. However, the refrigerant circulation system is characterized in that the throttling mechanism is provided in the upstream portion or both the upstream portion and the downstream portion of the flow path in which the downward flow is formed.
【請求項2】 液冷媒より比重量が小さく凝縮圧力及び
凝縮温度条件下における液冷媒への溶解性が低い冷凍機
油を用い、分離された室内機と室外機とをガス側接続配
管と液側接続配管にて連結してセパレート型ヒートポン
プエアコンを成す冷媒循環システムを構成し、前記液側
接続配管の上流部又は上流部と下流部との両方に絞り機
構を設けたことを特徴とする冷媒循環システム。
2. A refrigerating machine oil having a smaller specific weight than a liquid refrigerant and a low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions is used, and the separated indoor unit and outdoor unit are connected to a gas side connecting pipe and a liquid side. Refrigerant circulation characterized in that a refrigerant circulation system that constitutes a separate heat pump air conditioner is connected by connecting pipes, and a throttling mechanism is provided in the upstream part or both the upstream part and the downstream part of the liquid side connecting pipe. system.
【請求項3】 液冷媒より比重量が小さく凝縮圧力及び
凝縮温度条件下における液冷媒への溶解性が低い冷凍機
油を用い、気体冷媒若しくは一部に液冷媒を含む気体冷
媒を吸引して高圧化気体冷媒として吐出する圧縮機と、
前記圧縮機より吐出される高圧気体冷媒を凝縮する凝縮
器と、前記凝縮器にて凝縮された液冷媒若しくは一部に
気体冷媒を含む液冷媒を減圧する絞り機構と、前記凝縮
器と前記絞り機構との間の冷媒が気液二相状態になるよ
う前記絞り機構の開度を制御する制御部と、前記絞り機
構からの液冷媒若しくは気液二相冷媒を蒸発させ前記圧
縮機へと至る蒸発器とを備え、前記凝縮器と前記蒸発器
との間に下降流れが形成される流路を連結して構成され
ることを特徴とする冷媒循環システム。
3. A refrigerating machine oil, which has a smaller specific weight than a liquid refrigerant and has a low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions, is used to suck a gas refrigerant or a gas refrigerant containing a part of the liquid refrigerant to obtain a high pressure. A compressor for discharging as a gaseous refrigerant,
A condenser for condensing the high-pressure gas refrigerant discharged from the compressor, a throttle mechanism for depressurizing the liquid refrigerant condensed in the condenser or a liquid refrigerant containing a gas refrigerant in a part, the condenser and the throttle. A control unit that controls the opening degree of the throttle mechanism so that the refrigerant between the mechanism and the mechanism is in a gas-liquid two-phase state, and the liquid refrigerant or the gas-liquid two-phase refrigerant from the throttle mechanism is evaporated and reaches the compressor. A refrigerant circulation system comprising an evaporator, and a flow path in which a downward flow is formed is connected between the condenser and the evaporator.
【請求項4】 前記凝縮機の中央付近と前記凝縮器の出
口付近との温度を検出する温度センサーを備え、前記制
御部は前記温度センサーの検出結果に基づき前記凝縮器
の出口付近の温度が前記凝縮器の中央付近の温度より低
くなった場合、絞り機構の開度を大きくするよう制御す
ることを特徴とする請求項3記載の冷媒循環システム。
4. A temperature sensor for detecting the temperature near the center of the condenser and the temperature near the outlet of the condenser is provided, and the controller controls the temperature near the outlet of the condenser based on the detection result of the temperature sensor. The refrigerant circulation system according to claim 3, wherein when the temperature becomes lower than the temperature in the vicinity of the center of the condenser, the opening of the throttle mechanism is controlled to be increased.
【請求項5】 前記制御部は、前記凝縮器と前記絞り機
構との間の冷媒が気液二相状態になるような前記絞り機
構の開度の制御を冷媒循環システム起動後所定時間だけ
行うことを特徴とする請求項3又は4記載の冷媒循環シ
ステム。
5. The control unit controls the opening of the throttle mechanism such that the refrigerant between the condenser and the throttle mechanism is in a gas-liquid two-phase state for a predetermined time after the refrigerant circulation system is activated. The refrigerant circulation system according to claim 3 or 4, characterized in that.
【請求項6】 液冷媒より比重量が小さく凝縮圧力及び
凝縮温度条件下における液冷媒への溶解性が低い冷凍機
油を用い、分離された室内機と室外機とをガス側接続配
管と液側接続配管にて連結してセパレート型ヒートポン
プエアコンを成す冷媒循環システムを構成し、前記液側
接続配管の冷媒の流速がシステム起動時に通常より早く
なるよう前記液側接続配管に設けられた絞り機構の開度
を制御する制御部を備えたとことを特徴とする冷媒循環
システム。
6. A refrigerating machine oil having a smaller specific weight than a liquid refrigerant and a low solubility in the liquid refrigerant under condensing pressure and condensing temperature conditions is used, and the separated indoor unit and outdoor unit are connected to a gas side connecting pipe and a liquid side. A refrigerant circulation system that forms a separate type heat pump air conditioner by connecting with a connection pipe is formed, and a throttle mechanism provided in the liquid side connection pipe so that the flow velocity of the refrigerant in the liquid side connection pipe becomes faster than usual at system startup. A refrigerant circulation system comprising a control unit for controlling an opening degree.
JP06453296A 1996-03-21 1996-03-21 Refrigerant circulation system Expired - Fee Related JP3873317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06453296A JP3873317B2 (en) 1996-03-21 1996-03-21 Refrigerant circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06453296A JP3873317B2 (en) 1996-03-21 1996-03-21 Refrigerant circulation system

Publications (2)

Publication Number Publication Date
JPH09257323A true JPH09257323A (en) 1997-10-03
JP3873317B2 JP3873317B2 (en) 2007-01-24

Family

ID=13260938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06453296A Expired - Fee Related JP3873317B2 (en) 1996-03-21 1996-03-21 Refrigerant circulation system

Country Status (1)

Country Link
JP (1) JP3873317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023088043A1 (en) * 2021-11-22 2023-05-25 青岛海尔空调电子有限公司 Compressor liquid supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023088043A1 (en) * 2021-11-22 2023-05-25 青岛海尔空调电子有限公司 Compressor liquid supply system

Also Published As

Publication number Publication date
JP3873317B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
KR100437946B1 (en) Refrigerator
US6986259B2 (en) Refrigerator
US8991201B2 (en) Ejector cycle system
JP4734161B2 (en) Refrigeration cycle apparatus and air conditioner
JP3743861B2 (en) Refrigeration air conditioner
US20060254308A1 (en) Ejector cycle device
KR100353232B1 (en) Refrigerant circulation device, Refrigerant circuit assembly method
JP2013257121A (en) Refrigerating device
JP2000193327A (en) Air conditioner equipment and control method thereof
JP3852591B2 (en) Refrigeration cycle
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP2008076017A (en) Refrigerating device
JP2004309029A (en) Refrigerating cycle device
JP4665601B2 (en) Cycle using ejector
JP4082435B2 (en) Refrigeration equipment
JP2007107860A (en) Air conditioner
JP2008121926A (en) Refrigeration air conditioner
JPH10227533A (en) Air-conditioner
JP2018204805A (en) Refrigeration unit, refrigeration system and control method for refrigerant circuit
JP4274250B2 (en) Refrigeration equipment
JPH09257323A (en) Refrigerant circulation system
JP2008014598A (en) Bleeder for compression type refrigerating machine
JP2003194427A (en) Cooling device
JP2008032391A (en) Refrigerating unit
JP4258030B2 (en) Refrigerant circulation device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

LAPS Cancellation because of no payment of annual fees