JPH09255798A - Copper-foil-clad prepreg for printed wiring board and production thereof - Google Patents

Copper-foil-clad prepreg for printed wiring board and production thereof

Info

Publication number
JPH09255798A
JPH09255798A JP8063990A JP6399096A JPH09255798A JP H09255798 A JPH09255798 A JP H09255798A JP 8063990 A JP8063990 A JP 8063990A JP 6399096 A JP6399096 A JP 6399096A JP H09255798 A JPH09255798 A JP H09255798A
Authority
JP
Japan
Prior art keywords
prepreg
copper foil
resin
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8063990A
Other languages
Japanese (ja)
Inventor
Tokuo Okano
徳雄 岡野
Kazuhito Kobayashi
和仁 小林
Akishi Nakaso
昭士 中祖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP8063990A priority Critical patent/JPH09255798A/en
Priority to TW85110855A priority patent/TW389780B/en
Priority to MYPI96003726A priority patent/MY120902A/en
Priority to KR1019960039568A priority patent/KR100272884B1/en
Priority to DE1996611020 priority patent/DE69611020T2/en
Priority to CN96111552A priority patent/CN1150377A/en
Priority to US08/712,509 priority patent/US5965245A/en
Priority to EP19960306669 priority patent/EP0763562B1/en
Publication of JPH09255798A publication Critical patent/JPH09255798A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper-foil-clad prepreg excellent in rigidity, dimensional stability and reliability of connection without using any glass cloth by using a non-film-forming thermosetting resin used in prepregs containing glass cloth bases and to provide a process for producing the same. SOLUTION: This invention provides a copper-foil-clad prepreg which comprises a copper foil at least either of the surfaces of which is roughened and a prepreg layer formed thereon and in which the prepreg layer is made from a non-film-forming thermosetting resin having electrical insulation short fibers, and the resin is in a tack-free state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器等に用い
られているプリント配線板用の銅箔付きプリプレグとそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg with a copper foil for a printed wiring board used in electronic equipment and the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電子機器等に用いられている多層プリン
ト配線板は、内層にも電気回路を有する配線板である。
この多層プリント配線板は、予め回路を形成した内層回
路板と外層回路用銅箔とを、プリプレグを間に挟んで熱
圧成形することにより得た内層回路入り多層銅張積層板
の外層に回路形成して得られる。このプリプレグには、
従来、ガラスクロスに熱硬化性樹脂ワニス、例えばエポ
キシ樹脂ワニスを含浸し加熱乾燥により、溶剤を除去す
ると共に、該樹脂を半硬化させたガラスクロス基材エポ
キシ樹脂プリプレグが用いられている。近年、電子機器
の小型軽量化の要求に伴い、多層プリント配線板の薄型
化、微細配線形成のための表面平滑化の要求が年々高ま
ってきている。現在、薄型の多層プリント配線板では、
層間絶縁層厚さが30〜100μmである。しかし、こ
のような薄型のガラスクロス基材エポキシ樹脂プリプレ
グを使用して薄型多層プリント配線板を作製した場合、
銅イオンのマイグレーションによる回路間短絡事故が発
生し易くなる。銅イオンは、ガラスクロスの繊維に沿っ
て移動する傾向が分かっている。したがって、ガラスク
ロスを基材として使用する場合、銅イオンのマイグレー
ションによる回路間短絡事故の発生は、ある程度避けら
れないものである また、このような薄型のガラスクロス基材エポキシ樹脂
プリプレグを使用して薄型多層プリント配線板を作製し
た場合、クロス目が浮き出しやすく、さらに内層回路板
の凹凸がプリプレグ内部で吸収できず、外層表面に凹凸
が現れやすいため、表面の平滑性が損なわれ、微細配線
形成の障害になっている。そこで、従来のガラスクロス
基材エポキシ樹脂プリプレグを使用する方法に代わり、
ガラスクロスを含まない接着フィルム等をプリプレグと
して使用する方法が実施されている。これらのガラスク
ロスを使用しないプリプレグの使用方法としては、従来
のように内層回路板と外層回路用銅箔との間に、ガラス
クロスを使用しないプリプレグを挟んで熱圧成形する方
法(特開平6−200216号公報)の他に、予め外層
回路用銅箔の片面にガラスクロスを使用しないプリプレ
グ層を形成した銅箔付きプリプレグと内層回路板を、プ
リプレグ層が内層回路と接するように積層し熱圧成形す
る方法(特開平6−242465号公報)が行われてい
る。これらのガラスクロスを使用しないプリプレグ及び
銅箔付きプリプレグには、フィルム形成能を有する樹脂
が使用されている。フィルム形成能とは、プリプレグの
搬送、切断及び積層等の工程において、樹脂の割れや欠
落等のトラブルを生じにくく、多層板の層間接続用絶縁
材料として用いた際の熱圧成形時に層間絶縁層が内層回
路存在部等で異常に薄くなったり、層間絶縁抵抗の低下
やショートというトラブルを生じにくい性能を意味す
る。例えば、USP4、543、295号公報には、熱
可塑性のポリイミド接着フィルムが開示され、特開平4
−120135号公報には、平均分子量が70,000
以上の高分子量エポキシ樹脂を用いることが開示され、
特開平6−200216号公報には、フィルム形成能に
富むポリイミド樹脂にシリコーンユニットを導入したプ
リプレグが開示され、特開平4−29393号公報、特
開平4−36366号公報、特開平4−41581号公
報には、樹脂に、アクリロニトリルブタジエンゴム/フ
ェノール樹脂、フェノール樹脂/ブチラール樹脂、アク
リロニトリルブタジエンゴム/エポキシ樹脂を用いるこ
とが開示されている。
2. Description of the Related Art A multilayer printed wiring board used in electronic equipment is a wiring board having an electric circuit in its inner layer.
This multilayer printed wiring board is a circuit formed on the outer layer of an inner layer circuit-containing multilayer copper clad laminate obtained by thermocompressing an inner layer circuit board on which a circuit is formed in advance and an outer layer circuit copper foil with a prepreg interposed therebetween. Obtained by forming. In this prepreg,
BACKGROUND ART Conventionally, a glass cloth-based epoxy resin prepreg in which a solvent is removed and a resin is semi-cured by impregnating a glass cloth with a thermosetting resin varnish, for example, an epoxy resin varnish and heating and drying it is used. In recent years, along with the demand for smaller and lighter electronic devices, the demand for thinner multilayer printed wiring boards and surface smoothing for forming fine wiring has been increasing year by year. Currently, in thin multilayer printed wiring boards,
The thickness of the interlayer insulating layer is 30 to 100 μm. However, when a thin multilayer printed wiring board is manufactured using such a thin glass cloth base material epoxy resin prepreg,
A short circuit between circuits due to migration of copper ions is likely to occur. Copper ions have been found to tend to migrate along the fibers of glass cloth. Therefore, when glass cloth is used as the base material, the occurrence of short circuit between circuits due to migration of copper ions is unavoidable to some extent.In addition, such a thin glass cloth base material epoxy resin prepreg is used. When a thin multi-layer printed wiring board is manufactured, the cross stitches are easily raised, and the unevenness of the inner layer circuit board cannot be absorbed inside the prepreg, and the unevenness is likely to appear on the outer layer surface, so the surface smoothness is impaired and fine wiring is formed. Has become an obstacle. Therefore, instead of using the conventional glass cloth-based epoxy resin prepreg,
A method of using an adhesive film or the like that does not contain glass cloth as a prepreg is practiced. As a method of using these prepregs that do not use glass cloth, as in the prior art, a method of sandwiching a prepreg that does not use glass cloth between an inner layer circuit board and a copper foil for outer layer circuits and performing thermocompression molding (Japanese Patent Application Laid-Open No. H06-69242). -200216), a prepreg with a copper foil in which a prepreg layer not using glass cloth is previously formed on one surface of the copper foil for an outer layer circuit, and an inner circuit board are laminated so that the prepreg layer is in contact with the inner layer circuit and heat is applied. A pressure molding method (Japanese Patent Laid-Open No. 6-242465) is used. A resin having film forming ability is used for the prepreg and the prepreg with a copper foil that do not use the glass cloth. The film-forming ability is less likely to cause problems such as resin cracking or chipping in the steps of conveying, cutting, and laminating the prepreg, and the interlayer insulating layer during thermocompression molding when used as an insulating material for interlayer connection of a multilayer board. Means that the troubles such as abnormal thinning in the inner layer circuit existing portion, decrease in interlayer insulation resistance, and short circuit are unlikely to occur. For example, U.S. Pat. No. 4,543,295 discloses a thermoplastic polyimide adhesive film.
-120135 discloses an average molecular weight of 70,000.
The use of the above high molecular weight epoxy resin is disclosed,
Japanese Unexamined Patent Publication No. 6-200216 discloses a prepreg in which a silicone unit is introduced into a polyimide resin having a high film-forming ability, and is disclosed in Japanese Patent Laying-Open Nos. 4-29393, 4-36366, and 4-41581. The official gazette discloses the use of acrylonitrile butadiene rubber / phenol resin, phenol resin / butyral resin, and acrylonitrile butadiene rubber / epoxy resin as the resin.

【0003】[0003]

【発明が解決しようとする課題】前述した従来の技術に
おいては、次のような課題がある。すなわち、USP
4、543、295号公報に開示された、熱可塑性のポ
リイミド接着フィルムは、プリント配線板製造工程で一
般的な加熱温度170℃に比較して、加熱温度が250
℃と高く、汎用されていない特別な成形装置を用いなけ
ればならない。特開平4−120135号公報や特開平
6−200216号公報に開示された樹脂は、希釈でき
る溶媒が限られ、しかも高沸点の溶媒でなければなら
ず、フィルム状にするためには、塗工後の乾燥による溶
媒除去の効率が低く、溶媒が残留した場合には、プリン
ト配線板の特性を損なうことがある。また、これらのプ
リプレグから作製された絶縁層は、Tgが130℃前後
であり、高耐熱性が要求される用途には不十分である。
また、特開平4−29393号公報、特開平4−363
66号公報、特開平4−41581号公報に開示された
樹脂を用いた絶縁材料は耐熱性、耐薬品性に乏しく、プ
リント配線板にしたときに、耐熱性や電気絶縁性に乏し
い。以上のように、従来のガラスクロスを使用しないプ
リプレグは、使用できる樹脂が上述したフィルム形成能
がある樹脂に限られており、その樹脂の特性は、従来の
ガラスクロス基材エポキシ樹脂プリプレグに使用されて
いる樹脂の特性に比べ一般に、耐熱性、成形性、接着性
等に劣るものである。さらに、これらのプリプレグを使
用して作製した多層プリント配線板は、ガラスクロス等
の強化繊維を有していないので、従来のガラスクロス基
材エポキシ樹脂プリプレグを使用して作製したプリント
配線板と比較すると、剛性が低く、製造工程における寸
法安定性が低く、また熱膨張係数が、プリント配線板と
したときに導体回路や搭載する電子部品に比べて極めて
大きく、加熱冷却の熱膨張収縮によるはんだ接続部の破
断が起こりやすい。
The above-mentioned conventional techniques have the following problems. That is, USP
The thermoplastic polyimide adhesive film disclosed in Japanese Patent No. 4,543,295 has a heating temperature of 250 as compared with a heating temperature of 170 ° C. which is generally used in a printed wiring board manufacturing process.
As high as ℃, special molding equipment that is not widely used must be used. The resins disclosed in JP-A-4-120135 and JP-A-6-200216 have limited dilutable solvents, and must be solvents with a high boiling point. The efficiency of solvent removal by subsequent drying is low, and when the solvent remains, the characteristics of the printed wiring board may be impaired. In addition, the insulating layer made of these prepregs has a Tg of around 130 ° C., which is insufficient for applications requiring high heat resistance.
In addition, JP-A-4-29393 and JP-A-4-363.
The insulating materials using a resin disclosed in Japanese Patent No. 66 and Japanese Patent Application Laid-Open No. 4-41581 have poor heat resistance and chemical resistance, and when used as a printed wiring board, they have poor heat resistance and electrical insulation. As described above, the conventional prepreg that does not use glass cloth is limited in the resin that can be used to the above-mentioned resin having the film forming ability, and the characteristics of the resin are the same as those used in the conventional glass cloth-based epoxy resin prepreg. In general, they are inferior in heat resistance, moldability, adhesiveness, etc. to the properties of the resins used. Furthermore, since the multilayer printed wiring boards made using these prepregs do not have reinforcing fibers such as glass cloth, comparison with printed wiring boards made using conventional glass cloth base epoxy resin prepregs Then, the rigidity is low, the dimensional stability in the manufacturing process is low, and the coefficient of thermal expansion is extremely large when compared to a conductor circuit or electronic components to be mounted when it is used as a printed wiring board. Part breakage easily occurs.

【0004】このように従来のガラスクロスを用いない
プリント配線板用のプリプレグ及び銅箔付きプリプレグ
では、フィルム形成能がある特殊な樹脂しか使用できな
いこと、剛性や寸法安定性及び実装部品との接続信頼性
が低いことに解決すべき課題があり、より高まるプリン
ト配線板への要求を満たすことができない状況にある。
本発明は、ガラスクロスを使用しない銅箔付きプリプレ
グでありながら、樹脂としては前記したようなフィルム
形成能のある特殊な樹脂を使用するのではなく、従来の
ガラスクロス基材プリプレグに使用されている一般的な
樹脂を使用するものであり、なおかつ、従来のガラスク
ロスを使用しない銅箔付きプリプレグで発生している剛
性、寸法安定性及び接続信頼性が低いという課題を解決
するプリント配線板用の銅箔付きプリプレグとその製造
方法を提供することを目的とする。
As described above, in the conventional prepreg for a printed wiring board and a prepreg with a copper foil which do not use glass cloth, only a special resin capable of forming a film can be used, and rigidity, dimensional stability, and connection with mounted components can be achieved. There is a problem to be solved due to low reliability, and it is in a situation where it is not possible to meet the increasing demand for printed wiring boards.
The present invention is a prepreg with a copper foil that does not use a glass cloth, the resin is not a special resin having a film-forming ability as described above, but is used in a conventional glass cloth base material prepreg. A general-purpose resin used for printed wiring boards that solves the problems of low rigidity, dimensional stability, and low connection reliability that occur with conventional prepregs with copper foil that do not use glass cloth. An object of the present invention is to provide a prepreg with a copper foil and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明のプリント配線板
用の銅箔付きプリプレグは、少なくとも片面が粗化され
た銅箔とその粗化面上に形成されたプリプレグ層からな
り、該プリプレグ層が、単独ではフィルム形成能がない
熱硬化性樹脂中に電気絶縁性の短繊維が分散されたもの
であり、かつ該樹脂が半硬化状態であることを特徴とす
る。このようなプリント配線板用の銅箔付きプリプレグ
は、単独ではフィルム形成能がない熱硬化性樹脂に電気
絶縁性の短繊維を配合し、撹拌により該短繊維を該熱硬
化性樹脂中に均一に分散させた後、少なくとも片面が粗
化された銅箔の粗化面上に塗布し、加熱により前記熱硬
化性樹脂を半硬化状態にすることによって製造すること
ができる。このとき、電気絶縁性の短繊維は、ガラス、
アルミナ繊維であると好ましく、その配合は、熱硬化性
樹脂の固形分に対し5〜50体積%であると好ましいも
のである。すなわち、本発明者らは、鋭意検討の結果、
上述の従来の技術にように、フィルム形成能のある特殊
な樹脂を用いずに、汎用の熱硬化性樹脂に電気絶縁性の
短繊維を分散させることによって、銅箔付きプリプレグ
のプリプレグ層にフィルム形成能を持たせることができ
るという知見を得て本発明をなしたものである。
A prepreg with a copper foil for a printed wiring board according to the present invention comprises a copper foil having at least one surface roughened and a prepreg layer formed on the roughened surface. However, it is characterized in that electrically insulating short fibers are dispersed in a thermosetting resin which alone has no film-forming ability, and the resin is in a semi-cured state. In such a prepreg with a copper foil for a printed wiring board, a thermosetting resin having no film forming ability by itself is mixed with electrically insulating short fibers, and the short fibers are uniformly mixed in the thermosetting resin by stirring. It can be manufactured by coating the roughened surface of a copper foil having at least one surface roughened, and then heating the thermosetting resin to a semi-cured state. At this time, the electrically insulating short fibers are glass,
Alumina fiber is preferable, and its content is preferably 5 to 50% by volume based on the solid content of the thermosetting resin. That is, the present inventors, as a result of earnest study,
As in the above-mentioned conventional technique, by dispersing electrically insulating short fibers in a general-purpose thermosetting resin without using a special resin capable of forming a film, a film is formed on the prepreg layer of the prepreg with a copper foil. The present invention has been made on the basis of the finding that it has a forming ability.

【0006】[0006]

【発明の実施の形態】本発明に用いる電気絶縁性の短繊
維は、Eガラス、Sガラス、Qガラス、Dガラス等のガ
ラス短繊維、アラミド繊維、超高分子量ポリエチレン繊
維、ポリアリレート繊維、ポリ−p−オキシベンゾイル
ウィスカー、ポリ−2−オキシ−6−ナフトールウィス
カー、ポリオキシメチレンウィスカー等の高弾性有機短
繊維及びアルミナ繊維、マグネシア繊維、シリカ繊維、
ジルコニア繊維等の無機短繊維を使用することができ
る。その中でも、Eガラス短繊維、Sガラス短繊維等の
ガラス、アラミド短繊維、アルミナ短繊維が好適であ
る。特に、ガラス、アルミナ繊維が、汎用性や添加効果
に優れており好適である。電気絶縁性の短繊維の平均直
径は、小さいと樹脂ワニスへの混合が難しくなると共に
塗工作業性が低下し、大きいと表面の平滑性に悪影響が
でると共に電気絶縁性の短繊維の微視的な均一分散性が
損なわれるため0.1μm以上15μm以下が好まし
い。さらに0.5μm以上3μm以下であると塗工性が
良好(平滑に塗りやすい)となるのでより好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Electrically insulating short fibers used in the present invention include short glass fibers such as E glass, S glass, Q glass and D glass, aramid fibers, ultra high molecular weight polyethylene fibers, polyarylate fibers, and polyarylate fibers. -P-oxybenzoyl whiskers, poly-2-oxy-6-naphthol whiskers, high elasticity organic short fibers such as polyoxymethylene whiskers, alumina fibers, magnesia fibers, silica fibers,
Inorganic short fibers such as zirconia fibers can be used. Among these, glass such as E glass short fiber and S glass short fiber, aramid short fiber, and alumina short fiber are preferable. In particular, glass and alumina fibers are preferable because they are excellent in versatility and addition effect. If the average diameter of the electrically insulating short fibers is small, it will be difficult to mix it with the resin varnish and the coating workability will decrease, and if it is large, the surface smoothness will be adversely affected and microscopic observation of the electrically insulating short fibers will occur. It is preferably 0.1 μm or more and 15 μm or less because the uniform uniform dispersibility is impaired. Further, if it is 0.5 μm or more and 3 μm or less, the coatability is good (smooth coating is easy), which is more preferable.

【0007】また、電気絶縁性の短繊維の平均長さは、
繊維としての補強効果により配線板にしたときに十分な
剛性が得られることから平均直径の5倍以上であること
が好ましく、さらに、約10倍以上であることがより好
ましい。そして、電気絶縁性の短繊維が長すぎる場合
は、ワニス中への均一分散が難しくなると共に塗工性が
低下するため、分散性、塗工性を良好に保つため電気絶
縁性の短繊維の長さは、平均直径の100倍以下である
ことが好ましい。本発明では、このような短繊維を使用
するため、ガラスの長繊維を使用した従来のガラスクロ
ス基材エポキシ樹脂で問題となっている銅イオンのマイ
グレーションによる回路間短絡事故の発生を、従来のガ
ラスクロスを用いない銅箔付きプリプレグと同様に防止
できる。また、多層プリント配線板の剛性及び耐熱性を
さらに高めるのに、シランカップリング剤で表面処理し
た電気絶縁性の短繊維を使用することも有効である。カ
ップリング剤で表面処理した電気絶縁性の短繊維は、樹
脂との濡れ性、結合性が優れ剛性及び耐熱性を向上させ
ることができる。カップリング剤としては、シリコン
系、チタン系、アルミニウム系、ジルコニウム系、ジル
コアルミニウム系、クロム系、ボロン系、リン系、アミ
ノ酸系等の公知のものを使用できる。
The average length of electrically insulating short fibers is
It is preferably 5 times or more, and more preferably about 10 times or more of the average diameter, because sufficient rigidity can be obtained when a wiring board is obtained due to the reinforcing effect as fibers. And, if the electrically insulating short fibers are too long, it becomes difficult to uniformly disperse them in the varnish and the coatability decreases, so that the dispersibility and the coatability of the electrically insulating short fibers are kept good. The length is preferably 100 times or less the average diameter. In the present invention, since such a short fiber is used, the occurrence of an inter-circuit short circuit accident due to migration of copper ions, which is a problem in the conventional glass cloth base epoxy resin using long glass fibers, It can be prevented like a prepreg with a copper foil that does not use glass cloth. It is also effective to use electrically insulating short fibers surface-treated with a silane coupling agent in order to further increase the rigidity and heat resistance of the multilayer printed wiring board. The electrically insulating short fibers surface-treated with a coupling agent have excellent wettability and bondability with a resin and can improve rigidity and heat resistance. As the coupling agent, known ones such as silicon type, titanium type, aluminum type, zirconium type, zirco aluminum type, chromium type, boron type, phosphorus type and amino acid type can be used.

【0008】本発明で使用する樹脂は、単独では、フィ
ルム形成能を持たない樹脂である。フィルム形成能と
は、樹脂ワニスをキャリアフィルムに塗工するときに所
定の厚さに制御することが容易で、加熱乾燥して半硬化
状態にした後の搬送、切断及び積層等の工程において、
樹脂の割れや欠落等のトラブルを生じにくく、多層板の
層間接続用絶縁材料として用いた際の熱圧成形時に層間
絶縁層が内層回路存在部等で異常に薄くなったり、層間
絶縁抵抗の低下やショートというトラブルを生じにくい
性能を意味する。また、フィルム形成能を有しない樹脂
は、分子量が30,000を越えない低分子量であるこ
とが多い。具体的には、従来のガラスクロス基材プリプ
レグに使用されている熱硬化性樹脂を使用することが好
ましい。なお、ここでいう樹脂とは、樹脂、硬化剤、硬
化促進剤、必要に応じてカップリング剤及び希釈剤を含
むものを意味する。樹脂の種類としては、例えばエポキ
シ樹脂、ビスマレイミドトリアジン樹脂、ポリイミド樹
脂、フェノール樹脂、メラミン樹脂、珪素樹脂、不飽和
ポリエステル樹脂、シアン酸エステル樹脂、イソシアネ
ート樹脂、ポリイミド樹脂またはこれらの種々の変性樹
脂類が好適である。この中で、プリント配線板特性上、
特にビスマレイミドトリアジン樹脂、ポリイミド樹脂、
エポキシ樹脂が好適である。例えば、エポキシ樹脂とし
ては、ビスフェノールA型エポキシ樹脂、ビスフェノー
ルF型エポキシ樹脂、ビスフェノールS型エポキシ樹
脂、フェノールノボラック型エポキシ樹脂、クレゾール
ノボラック型エポキシ樹脂、ビスフェノールAノボラッ
ク型エポキシ樹脂、サリチルアルデヒドノボラック型エ
ポキシ樹脂、ビスフェノールFノボラック型エポキシ樹
脂、脂環式エポキシ樹脂、グリシジルエステル型エポキ
シ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイ
ン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、
脂肪族環状エポキシ樹脂及びそれらのハロゲン化物、水
素添加物、及び前記樹脂の混合物が好適である。なかで
も、ビスフェノールノボラック型エポキシ樹脂またはサ
リチルアルデヒドノボラック型エポキシ樹脂は、耐熱性
に優れ好ましい。
The resin used in the present invention is a resin which does not have a film forming ability by itself. The film-forming ability is easy to control to a predetermined thickness when applying the resin varnish to the carrier film, and after transporting after drying by heating to a semi-cured state, in the steps such as cutting and laminating,
Trouble such as resin cracking or chipping is unlikely to occur, and the interlayer insulating layer becomes abnormally thin in the inner layer circuit existing part during thermocompression molding when used as an insulating material for interlayer connection of multilayer boards, and the interlayer insulating resistance decreases. It means the performance that does not easily cause trouble such as short circuit. Further, the resin having no film-forming ability often has a low molecular weight which does not exceed 30,000. Specifically, it is preferable to use the thermosetting resin used in the conventional glass cloth-based prepreg. The resin referred to herein means a resin, a curing agent, a curing accelerator, and, if necessary, a coupling agent and a diluent. As the type of resin, for example, epoxy resin, bismaleimide triazine resin, polyimide resin, phenol resin, melamine resin, silicon resin, unsaturated polyester resin, cyanate ester resin, isocyanate resin, polyimide resin or various modified resins thereof. Is preferred. Among them, in terms of printed wiring board characteristics,
In particular, bismaleimide triazine resin, polyimide resin,
Epoxy resins are preferred. For example, as the epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, salicylaldehyde novolac type epoxy resin , Bisphenol F novolac type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin,
Aliphatic cyclic epoxy resins and their halides, hydrogenates, and mixtures of said resins are preferred. Among them, bisphenol novolac type epoxy resin or salicylaldehyde novolac type epoxy resin is preferable because it has excellent heat resistance.

【0009】このような樹脂の硬化剤としては、従来使
用しているものが使用でき、樹脂がエポキシ樹脂の場
合、例えばジシアンジアミド、ビスフェノールA、ビス
フェノールF、ポリビニルフェノール、フェノールノボ
ラック樹脂、ビスフェノールAノボラック樹脂及びこれ
らのフェノール樹脂のハロゲン化物、水素化物等を使用
できる。なかでも、ビスフェノールAノボラック樹脂は
耐熱性に優れ好ましい。この硬化剤の前記樹脂に対する
割合は、従来使用している割合でよく、樹脂100重量
部に対して、2〜100重量部の範囲が好ましく、さら
には、ジシアンジアミドでは、2〜5重量部、それ以外
の硬化剤では、30〜80重量部の範囲が好ましい。
As a curing agent for such a resin, a conventionally used one can be used. When the resin is an epoxy resin, for example, dicyandiamide, bisphenol A, bisphenol F, polyvinylphenol, phenol novolac resin, bisphenol A novolac resin can be used. Also, halides and hydrides of these phenolic resins can be used. Among them, bisphenol A novolac resin is preferable because it has excellent heat resistance. The ratio of the curing agent to the resin may be a conventionally used ratio, and is preferably in the range of 2 to 100 parts by weight with respect to 100 parts by weight of the resin. Further, in the case of dicyandiamide, 2 to 5 parts by weight, For other curing agents, the range is preferably 30 to 80 parts by weight.

【0010】硬化促進剤としては、樹脂がエポキシ樹脂
の場合、イミダゾール化合物、有機リン化合物、第3級
アミン、第4級アンモニウム塩等を使用する。この硬化
促進剤の前記樹脂に対する割合は、従来使用している割
合でよく、樹脂100重量部に対して、0.01〜20
重量部の範囲が好ましく、0.1〜1.0重量部の範囲
がより好ましい。
As the curing accelerator, when the resin is an epoxy resin, an imidazole compound, an organic phosphorus compound, a tertiary amine, a quaternary ammonium salt or the like is used. The ratio of the curing accelerator to the resin may be a conventionally used ratio, and is 0.01 to 20 relative to 100 parts by weight of the resin.
The range of parts by weight is preferable, and the range of 0.1 to 1.0 parts by weight is more preferable.

【0011】本発明の熱硬化性樹脂に使用する希釈剤と
しては、従来使用されている溶剤を使用できる。溶剤の
種類として、アセトン、メチルエチルケトン、トルエ
ン、キシレン、メチルイソブチルケトン、酢酸エチル、
エチレングリコールモノメチルエーテル、メタノール、
エタノール、N,N−ジメチルホルムアミド、N,N−
ジメチルアセトアミド等を使用できる。フェニルグリシ
ジルエーテル、グリシジルメタアクリレート、ブチルグ
リシジルエーテル、スチレンオキシド、メチルグリシジ
ルエーレル、エチルグリシジルエーテル等の反応性稀釈
剤を用いることができる。この希釈剤の前記樹脂に対す
る割合は、従来使用している割合でよく、樹脂100重
量部に対して、1〜200重量部の範囲が好ましく、3
0〜100重量部の範囲がさらに好ましい。
As the diluent used in the thermosetting resin of the present invention, conventionally used solvents can be used. As the type of solvent, acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate,
Ethylene glycol monomethyl ether, methanol,
Ethanol, N, N-dimethylformamide, N, N-
Dimethylacetamide and the like can be used. Reactive diluents such as phenyl glycidyl ether, glycidyl methacrylate, butyl glycidyl ether, styrene oxide, methyl glycidyl ether and ethyl glycidyl ether can be used. The ratio of the diluent to the resin may be a conventionally used ratio and is preferably in the range of 1 to 200 parts by weight with respect to 100 parts by weight of the resin.
The range of 0 to 100 parts by weight is more preferable.

【0012】さらに本発明においては、樹脂中に上記し
た各成分の他に、必要に応じて従来より公知のカップリ
ング剤、充填材等を適宜配合してもよい。
Further, in the present invention, in addition to the above-mentioned components, a conventionally known coupling agent, filler, etc. may be appropriately blended in the resin.

【0013】本発明のプリント配線板用の銅箔付きプリ
プレグのプリプレグ層中の短繊維の分率は、少なすぎる
と銅箔付きプリプレグは、切断時に樹脂が細かく砕けて
飛散しやすくなる等の取扱性が悪くなると共に、これを
用いて作製した多層プリント配線板は十分な剛性が得ら
れず、また多すぎると熱圧成形時の内層回路の穴埋め性
や回路間への樹脂充填性が損なわれ、熱圧成形後の絶縁
層中にボイドやかすれが発生しやすくなり、配線板特性
を損なう恐れがあるので熱硬化性樹脂の固形分に対し5
〜50体積%にすることが好ましい。さらに、内層回路
の穴埋め性や回路間への樹脂充填性に優れ、なおかつ、
製造した配線板が従来のガラスクロス使用のプリプレグ
を用いて製造した配線板と比較し、同等または同等以上
の剛性と寸法安定性とワイヤボンディング性を維持する
ために、プリプレグ層中の短繊維の分率は、20〜40
vol%とすることがより好ましい。
If the fraction of the short fibers in the prepreg layer of the copper foil prepreg for a printed wiring board of the present invention is too small, the prepreg with a copper foil tends to be shattered by the resin when it is cut. In addition, the multi-layer printed wiring board made of this resin does not have sufficient rigidity, and if it is too large, the hole filling properties of the inner layer circuit and the resin filling property between circuits during thermocompression molding are impaired. However, since voids and scratches are likely to occur in the insulating layer after thermocompression molding and the wiring board characteristics may be impaired, the solid content of the thermosetting resin is 5%.
It is preferably about 50% by volume. Furthermore, it is excellent in filling holes in the inner layer circuit and resin filling between circuits, and
Compared with a wiring board manufactured using a prepreg using a conventional glass cloth, the manufactured wiring board maintains the same or higher rigidity, dimensional stability, and wire bonding property, and thus the short fiber in the prepreg layer is used. Fraction is 20-40
It is more preferable to be vol%.

【0014】本発明において、プリプレグ層である電気
絶縁性の短繊維を含む熱硬化性樹脂層をその粗化された
片面に形成する対象である銅箔としては、少なくとも片
面に粗化面を有する従来プリント配線板用に使用されて
いる電解銅箔、圧延銅箔、キャリアフィルム付き極薄銅
箔を使用する。平滑な銅箔面に電気絶縁性の短繊維を含
む熱硬化性樹脂層を形成したのでは、プリプレグ状態及
び多層プリント配線板となったときの銅箔と電気絶縁性
の短繊維を含む熱硬化性樹脂層との密着性を十分に確保
することができない。したがって本発明では、銅箔の粗
化面に電気絶縁性の短繊維を含む熱硬化性樹脂層を形成
する。それによって、銅箔付きプリプレグ及びこれを用
いた多層プリント配線板としたときの銅箔と電気絶縁性
の短繊維を含む熱硬化性樹脂層との密着性を十分に確保
することができる。銅箔の厚さは、微細な回路を形成で
きる理由から、薄いものが良く、30μm以下が好まし
い。より好ましくは、10μm以下の極薄銅箔が好まし
いが、この場合には、単独では取り扱いが困難なためキ
ャリアフィルム付き銅箔であることが好ましい。
In the present invention, the copper foil to be formed with the thermosetting resin layer containing the electrically insulating short fibers, which is the prepreg layer, on one surface of the roughened copper foil has at least one roughened surface. Electrolytic copper foil, rolled copper foil, and ultra-thin copper foil with carrier film, which have been conventionally used for printed wiring boards, are used. By forming a thermosetting resin layer containing electrically insulating short fibers on a smooth copper foil surface, thermosetting resin containing copper foil and electrically insulating short fibers when in a prepreg state or in a multilayer printed wiring board It is not possible to secure sufficient adhesiveness with the functional resin layer. Therefore, in the present invention, a thermosetting resin layer containing electrically insulating short fibers is formed on the roughened surface of the copper foil. As a result, when the prepreg with a copper foil and the multilayer printed wiring board using the prepreg are used, sufficient adhesion between the copper foil and the thermosetting resin layer containing electrically insulating short fibers can be ensured. The thickness of the copper foil is preferably thin, preferably 30 μm or less, because a fine circuit can be formed. More preferably, an ultra-thin copper foil having a thickness of 10 μm or less is preferable. In this case, however, it is difficult to handle alone, and thus a copper foil with a carrier film is preferable.

【0015】本発明の銅箔付きプリプレグのプリプレグ
層中の電気絶縁性の短繊維は、2次元配向に近い状態
(電気絶縁性の短繊維の軸方向がプリプレグ層の形成す
る面と平行に近い状態)にさせることが好ましい。
The electrically insulating short fibers in the prepreg layer of the prepreg with a copper foil of the present invention are in a state close to a two-dimensional orientation (the axial direction of the electrically insulating short fibers is almost parallel to the surface formed by the prepreg layer). (State) is preferable.

【0016】銅箔に電気絶縁性の短繊維を配合した樹脂
ワニスを塗工する際に、ブレードコータ、ロッドコー
タ、ナイフコータ、スクイズコータ、リバースロールコ
ータ、トランスファロールコータ等の銅箔と平行な面方
向に剪断力を負荷できるかあるいは、銅箔の面に垂直な
方向に圧縮力を負荷できる塗工方式を採用することがで
きる。以下、本発明を実施例に基づいて詳細に説明する
が、本発明はこれに限定されるものではない。
When coating a resin varnish containing electrically insulating short fibers on a copper foil, a surface parallel to the copper foil such as a blade coater, a rod coater, a knife coater, a squeeze coater, a reverse roll coater or a transfer roll coater. A coating method that can apply a shearing force in a direction or a compressing force in a direction perpendicular to the surface of the copper foil can be adopted. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0017】[0017]

【実施例】【Example】

(実施例1) ・ビスフェノールAノボラック型エポキシ樹脂 100重量部 ・ビスフェノールAノボラック樹脂 60重量部 ・2−エチル−4−メチルイミダゾール 0.5重量部 ・メチルエチルケトン 100重量部 からなるフィルム形成能を持たないエポキシ樹脂に平均
直径6μm、平均繊維長100μmのEガラスの短繊維
を樹脂固形分100重量部に対し30体積%となるよう
に配合し、短繊維がワニス中に均一に分散するまで撹拌
した。これを、厚さ18μmの電解銅箔の粗化面にナイ
フコータにて塗工し、温度150℃で10分間加熱乾燥
して、溶剤を除去すると共に、樹脂を半硬化状態にし、
短繊維体積分率が30%で厚さが60μmの短繊維と半
硬化状態にあるエポキシ樹脂からなるプリプレグ層を有
するプリント配線板用の銅箔付きプリプレグを作製し
た。作製した銅箔付きプリプレグは、殆どそりのない状
態であり、またカッターナイフ及びシャーにより、樹脂
の飛散等がなくきれいに切断でき、良好な取扱性であっ
た。
(Example 1) 100 parts by weight of bisphenol A novolac type epoxy resin 60 parts by weight of bisphenol A novolac resin 0.5 parts by weight of 2-ethyl-4-methylimidazole 100 parts by weight of methyl ethyl ketone No film forming ability E-glass short fibers having an average diameter of 6 μm and an average fiber length of 100 μm were mixed with the epoxy resin so as to be 30% by volume with respect to 100 parts by weight of the resin solid content, and stirred until the short fibers were uniformly dispersed in the varnish. This is coated on a roughened surface of an electrolytic copper foil having a thickness of 18 μm with a knife coater, and is dried by heating at a temperature of 150 ° C. for 10 minutes to remove the solvent and make the resin semi-cured.
A prepreg with a copper foil for a printed wiring board having a prepreg layer made of a short fiber having a short fiber volume fraction of 30% and a thickness of 60 μm and a semi-cured epoxy resin was produced. The prepared prepreg with a copper foil was in a state with almost no warp, and could be cut cleanly with a cutter knife and a shear without scattering of resin and had good handleability.

【0018】(実施例2) ・ビスフェノールAノボラック型エポキシ樹脂 100重量部 ・ビスフェノールAノボラック樹脂 55重量部 ・2−エチル−4−メチルイミダゾール 0.5重量部 ・メチルエチルケトン 100重量部 からなるフィルム形成能を持たないエポキシ樹脂に平均
直径12μm、平均繊維長150μmのアラミド短繊維
を樹脂固形分100重量部に対し30体積%となるよう
に配合し、短繊維がワニス中に均一に分散するまで撹拌
した。これを、厚さ18μmの電解銅箔の粗化面にナイ
フコータにて塗工し、温度150℃で10分間加熱乾燥
して、溶剤を除去すると共に、樹脂を半硬化状態にし、
短繊維の体積分率が30%で厚さが60μmの短繊維と
半硬化状態にあるエポキシ樹脂からなるプリプレグ層を
有するプリント配線板用の銅箔付きプリプレグを作製し
た。作製した銅箔付きプリプレグは、殆どそりのない状
態であり、またカッターナイフ及びシャーにより、樹脂
の飛散等がなくきれいに切断でき、良好な取扱性であっ
た。
(Example 2) 100 parts by weight of bisphenol A novolac type epoxy resin 55 parts by weight of bisphenol A novolac resin 0.5 parts by weight of 2-ethyl-4-methylimidazole 100 parts by weight of methyl ethyl ketone An aramid short fiber having an average diameter of 12 μm and an average fiber length of 150 μm was blended in an epoxy resin not having 30% by volume with respect to 100 parts by weight of a resin solid content and stirred until the short fibers were uniformly dispersed in the varnish. . This is coated on a roughened surface of an electrolytic copper foil having a thickness of 18 μm with a knife coater, and is dried by heating at a temperature of 150 ° C. for 10 minutes to remove the solvent and make the resin semi-cured.
A prepreg with a copper foil for a printed wiring board having a prepreg layer made of short fibers having a volume fraction of short fibers of 30% and a thickness of 60 μm and an epoxy resin in a semi-cured state was produced. The prepared prepreg with a copper foil was in a state with almost no warp, and could be cut cleanly with a cutter knife and a shear without scattering of resin and had good handleability.

【0019】(実施例3) ・ビスフェノールAノボラック型エポキシ樹脂 100重量部 ・ビスフェノールAノボラック樹脂 60重量部 ・2−エチル−4−メチルイミダゾール 0.5重量部 ・メチルエチルケトン 100重量部 からなるフィルム形成能を持たないエポキシ樹脂に平均
直径3μm、平均繊維長50μmのアルミナの短繊維を
樹脂固形分100重量部に対し30体積%となるように
配合し、短繊維がワニス中に均一に分散するまで撹拌し
た。これを、厚さ18μmの電解銅箔の粗化面にナイフ
コータにて塗工し、温度150℃で10分間加熱乾燥し
て、溶剤を除去すると共に、樹脂を半硬化状態にし、短
繊維体積分率が30%で厚さが60μmの短繊維と半硬
化状態にあるエポキシ樹脂からなるプリプレグ層を有す
るプリント配線板用の銅箔付きプリプレグを作製した。
作製した銅箔付きプリプレグは、殆どそりのない状態で
あり、またカッターナイフ及びシャーにより、樹脂の飛
散等なくきれいに切断でき、良好な取扱性であった。
(Example 3) 100 parts by weight of bisphenol A novolac type epoxy resin 60 parts by weight of bisphenol A novolac resin 0.5 parts by weight of 2-ethyl-4-methylimidazole 100 parts by weight of methyl ethyl ketone A short fiber of alumina having an average diameter of 3 μm and an average fiber length of 50 μm is mixed with a non-containing epoxy resin so as to be 30% by volume with respect to 100 parts by weight of the resin solid content, and stirred until the short fibers are uniformly dispersed in the varnish. did. This is coated on a roughened surface of an electrolytic copper foil having a thickness of 18 μm with a knife coater, and dried by heating at a temperature of 150 ° C. for 10 minutes to remove the solvent and to make the resin semi-cured state. A prepreg with a copper foil for a printed wiring board having a prepreg layer composed of a short fiber having a rate of 30% and a thickness of 60 μm and an epoxy resin in a semi-cured state was prepared.
The prepared prepreg with a copper foil had almost no warp, and could be cut cleanly with a cutter knife and a shear without scattering of resin and had good handleability.

【0020】(実施例4) ・サリチルアルデヒドノボラック型エポキシ樹脂 100重量部 ・ビスフェノールAノボラック樹脂 70重量部 ・N−メチルイミダゾール 1重量部 ・メチルエチルケトン 100重量部 からなる熱硬化性樹脂に平均直径1μm、平均繊維長3
0μmのEガラス短繊維を樹脂固形分100重量部に対
し短繊維を30体積%となるように配合し、短繊維がワ
ニス中に均一に分散するまで撹拌した。これを、厚さ1
8μmの電解銅箔の粗化面にナイフコータにて塗工し、
温度150℃で10分間加熱乾燥して、溶剤を除去する
と共に、樹脂を半硬化状態にし、短繊維の体積分率が3
0%で厚さが60μmの短繊維と半硬化状態にあるエポ
キシ樹脂からなるプリプレグ層を有するプリント配線板
用の銅箔付きプリプレグを作製した。作製した銅箔付き
プリプレグは、殆どそりのない状態であり、またカッタ
ーナイフにより、樹脂の飛散等がなくきれいに切断で
き、良好な取扱性であった。
(Example 4) 100 parts by weight of salicylaldehyde novolak type epoxy resin 70 parts by weight of bisphenol A novolac resin 1 part by weight of N-methylimidazole 100 parts by weight of methyl ethyl ketone An average diameter of 1 μm in a thermosetting resin, Average fiber length 3
E glass short fibers of 0 μm were mixed so that the short fibers would be 30% by volume with respect to 100 parts by weight of the resin solid content, and the mixture was stirred until the short fibers were uniformly dispersed in the varnish. This, thickness 1
Coat the roughened surface of 8μm electrolytic copper foil with a knife coater,
It is heated and dried at a temperature of 150 ° C. for 10 minutes to remove the solvent and make the resin in a semi-cured state.
A prepreg with a copper foil for a printed wiring board having a prepreg layer made of a short fiber having a thickness of 0% and a thickness of 60 μm and an epoxy resin in a semi-cured state was prepared. The prepared prepreg with a copper foil had almost no warpage, and could be cut cleanly with a cutter knife without scattering of resin and had good handleability.

【0021】(実施例5)絶縁層の厚さが0.1mm、
導体用銅箔厚さ18μmの両面銅張積層板の両面の銅箔
の不要な箇所をエッチング除去して作製した内層回路板
の両面に、実施例1のプリント配線板用の銅箔付きプリ
プレグをプリプレグ面が内層回路に向き合うようにして
重ね、温度170℃、圧力2MPaで、60分間熱圧成
形し、内層回路入り多層銅張積層板を作製した。この内
層回路入り多層銅張積層板の両面の外層の銅箔をエッチ
ングし、外観を観察したところボイドやかすれ等の欠陥
はなく、この銅箔付きプリプレグは、良好な回路充填
性、穴埋め性を有していることを確認した。また、この
内層回路入り多層銅張積層板の表面粗さを触針式表面粗
さ計にて測定した。測定箇所はその直下に内層回路のあ
る部分とない部分とを含む長さ25mmの一直線上の外
層表面とした。内層回路のある部分とない部分の段差の
10点平均粗さ(Rz)は、3μm以下であり、回路加
工に支障のない良好な表面平滑性であった。この外層銅
箔を除去した多層プリント配線板の一部を切り取り、そ
の熱膨張率と曲げ弾性率を測定した。熱膨張率はTMA
(熱機械分析装置)にて、曲げ弾性率は、DMA(ダイ
ナミック熱機械分析装置)の曲げモードにて測定した。
面方向(たてよこ方向)の平均熱膨張係数は、16pp
m/℃(常温下)であり、面方向(たてよこ方向)の平
均曲げ弾性率は、常温下で20GPa、高温下(200
℃)で12GPaであった。また、ビッカース硬度計に
よる表面硬度は、35であった。
(Embodiment 5) The thickness of the insulating layer is 0.1 mm,
Copper foil for a conductor A prepreg with a copper foil for a printed wiring board of Example 1 was formed on both surfaces of an inner layer circuit board prepared by etching away unnecessary portions of the copper foil on both surfaces of a double-sided copper clad laminate having a thickness of 18 μm. The prepreg surface was laminated so as to face the inner layer circuit, and thermocompression molding was performed at a temperature of 170 ° C. and a pressure of 2 MPa for 60 minutes to produce a multilayer copper clad laminate with an inner layer circuit. The outer layer of the copper clad laminate containing the inner layer circuit was etched and the outer layer was etched, and the appearance was observed.There were no defects such as voids or scratches, and this prepreg with copper foil provided good circuit filling and hole filling properties. I confirmed that I had it. Further, the surface roughness of the multilayer copper clad laminate containing the inner layer circuit was measured with a stylus surface roughness meter. The measurement location was the outer layer surface on a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. The 10-point average roughness (Rz) of the step between the portion with the inner layer circuit and the portion without the inner layer circuit was 3 μm or less, which was good surface smoothness that did not hinder circuit processing. A part of the multilayer printed wiring board from which the outer layer copper foil was removed was cut out, and its thermal expansion coefficient and bending elastic modulus were measured. Thermal expansion coefficient is TMA
The flexural modulus was measured by a (thermomechanical analyzer) in a bending mode of DMA (dynamic thermomechanical analyzer).
The average thermal expansion coefficient in the surface direction (vertical direction) is 16 pp
m / ° C. (at room temperature), the average flexural modulus in the plane direction (vertical direction) is 20 GPa at room temperature and at high temperature (200
It was 12 GPa at (° C.). The surface hardness measured by a Vickers hardness meter was 35.

【0022】(実施例6)実施例1の銅箔付きプリプレ
グに代わり、実施例2の銅箔付きプリプレグを使用した
以外は、実施例5と全く同じ方法で内層回路入り多層銅
張積層板を作製し、同じ方法で評価を行った。外層銅箔
を除去後の多層プリント配線板の熱膨張係数は、10p
pm/℃(常温下)であり、面方向(たてよこ方向)の
平均曲げ弾性率は常温下で25GPa、高温下(200
℃)で15GPaであった。また、ビッカース硬度計に
よる表面硬度は、30であった。その他の特性は、実施
例5と同等であった。
(Example 6) A multilayer copper clad laminate containing an inner layer circuit was prepared in the same manner as in Example 5, except that the prepreg with a copper foil of Example 1 was used in place of the prepreg with a copper foil of Example 1. It was produced and evaluated by the same method. The coefficient of thermal expansion of the multilayer printed wiring board after removing the outer copper foil is 10 p
pm / ° C. (at room temperature), the average flexural modulus in the plane direction (vertical direction) is 25 GPa at room temperature and at high temperature (200
It was 15 GPa at (° C.). The surface hardness measured by a Vickers hardness meter was 30. Other characteristics were the same as in Example 5.

【0023】(実施例7)実施例1の銅箔付きプリプレ
グに代わり、実施例3の銅箔付きプリプレグを使用した
以外は、実施例5と全く同じ方法で内層回路入り多層銅
張積層板を作製し、同じ方法で評価を行った。外層銅箔
を除去後の多層プリント配線板の熱膨張係数は、12p
pm/℃(常温下)であり、面方向(たてよこ方向)の
平均曲げ弾性率は常温下で23GPa、高温下(200
℃)で16GPaであった。また、ビッカース硬度計に
よる表面硬度は、37であった。その他の特性は、実施
例5と同等であった。
(Embodiment 7) A multilayer copper clad laminate containing an inner layer circuit was prepared in the same manner as in Embodiment 5 except that the prepreg with a copper foil of Example 1 was used in place of the prepreg with a copper foil of Example 1. It was produced and evaluated by the same method. The coefficient of thermal expansion of the multilayer printed wiring board after removing the outer layer copper foil is 12 p.
pm / ° C. (at room temperature), the average bending elastic modulus in the plane direction (vertical direction) is 23 GPa at room temperature, and at high temperature (200
It was 16 GPa at (° C.). The surface hardness measured by a Vickers hardness meter was 37. Other characteristics were the same as in Example 5.

【0024】(実施例8)実施例1の銅箔付きプリプレ
グに代わり、実施例4の銅箔付きプリプレグを使用した
以外は、実施例5と全く同じ方法で10層のプリント配
線板を作製した。この多層プリント配線板の面方向(た
てよこ方向)の平均曲げ弾性率は常温下で20GPa、
高温下(200℃)で16GPaであった。また、ビッ
カース硬度計による表面硬度は、35であった。その他
の特性は、実施例5と同等であった。次に、これらの実
施例の効果を確認するための比較例を示す。
(Example 8) A 10-layer printed wiring board was produced in exactly the same manner as in Example 5 except that the prepreg with a copper foil of Example 1 was used in place of the prepreg with a copper foil of Example 1. . The average flexural modulus in the plane direction (vertical direction) of this multilayer printed wiring board is 20 GPa at room temperature,
It was 16 GPa at high temperature (200 ° C.). The surface hardness measured by a Vickers hardness meter was 35. Other characteristics were the same as in Example 5. Next, comparative examples for confirming the effects of these examples will be described.

【0025】(実施例9)実施例1で使用したフィルム
形成能のないエポキシ樹脂に平均直径6μm、平均繊維
長100μmのEガラスの短繊維を樹脂固形分100重
量部に対し8体積%となるように配合し、短繊維がワニ
ス中に均一に分散するまで撹拌した。これを、厚さ18
μmの電解銅箔の粗化面にナイフコータにて塗工し、温
度150℃で10分間加熱乾燥して、溶剤を除去すると
共に、樹脂を半硬化状態にし、短繊維体積分率が8%で
厚さが60μmの短繊維と半硬化状態にあるエポキシ樹
脂からなるプリプレグ層を有するプリント配線板用の銅
箔付きプリプレグを作製した。作製した銅箔付きプリプ
レグは、銅箔面がやや凸となるカール気味が発生した
が、取扱性は良好であった。またカッターナイフによる
切断時に、切断箇所近傍の樹脂が多少割れ、飛散したり
したが、多層プリント配線板用の材料としての使用に十
分耐えるものであった。
(Embodiment 9) The epoxy resin having no film forming ability used in the embodiment 1 contains 8% by volume of E glass short fibers having an average diameter of 6 μm and an average fiber length of 100 μm with respect to 100 parts by weight of the resin solid content. The mixture was mixed as above and stirred until the short fibers were uniformly dispersed in the varnish. This is the thickness 18
It is coated with a knife coater on the roughened surface of the electrolytic copper foil of μm, and is dried by heating at a temperature of 150 ° C. for 10 minutes to remove the solvent and make the resin semi-cured, and the short fiber volume fraction is 8%. A prepreg with a copper foil for a printed wiring board having a prepreg layer composed of a short fiber having a thickness of 60 μm and an epoxy resin in a semi-cured state was produced. The prepared prepreg with a copper foil had a slight curl on the copper foil surface, but was easy to handle. Further, when cutting with a cutter knife, the resin in the vicinity of the cut portion was somewhat cracked and scattered, but it was sufficiently durable to be used as a material for a multilayer printed wiring board.

【0026】(実施例10)実施例1で使用したフィル
ム形成能のないエポキシ樹脂に平均直径6μm、平均繊
維長100μmのEガラスの短繊維を樹脂固形分100
重量部に対し45体積%となるように配合し、短繊維が
ワニス中に均一に分散するように撹拌した。これを、厚
さ18μmの電解銅箔の粗化面にナイフコータにて塗工
し、温度150℃で10分間加熱乾燥して、溶剤を除去
すると共に、樹脂を半硬化状態にし、短繊維体積分率が
45%で厚さが60μmの短繊維と半硬化状態にあるエ
ポキシ樹脂からなるプリプレグ層を有するプリント配線
板用の銅箔付きプリプレグを作製した。作製した銅箔付
きプリプレグは、殆どそりのない状態であり、またカッ
ターナイフ及びシャーにより、樹脂の飛散等がなくきれ
いに切断でき、良好な取扱性であった。この銅箔付きプ
リプレグを使用した以外は、実施例5と全く同じ方法で
内層回路入り多層銅張積層板を作製した。外層銅箔を除
去した多層プリント配線板の断面を観察したところ内層
回路付近にボイドが見られずに良好であった。
(Embodiment 10) E-glass short fibers having an average diameter of 6 μm and an average fiber length of 100 μm were added to the epoxy resin having no film-forming ability used in Example 1 to obtain a resin solid content of 100.
It was mixed so as to be 45% by volume with respect to parts by weight, and stirred so that the short fibers were uniformly dispersed in the varnish. This is coated on a roughened surface of an electrolytic copper foil having a thickness of 18 μm with a knife coater, and dried by heating at a temperature of 150 ° C. for 10 minutes to remove the solvent and to make the resin semi-cured state. A prepreg with a copper foil for a printed wiring board having a prepreg layer composed of a short fiber having a rate of 45% and a thickness of 60 μm and an epoxy resin in a semi-cured state was prepared. The prepared prepreg with a copper foil was in a state with almost no warp, and could be cut cleanly with a cutter knife and a shear without scattering of resin and had good handleability. A multilayer copper clad laminate containing an inner layer circuit was produced in exactly the same manner as in Example 5 except that this prepreg with a copper foil was used. When the cross section of the multilayer printed wiring board from which the outer layer copper foil was removed was observed, no void was found near the inner layer circuit, which was good.

【0027】(比較例1)ガラスの短繊維を用いること
なく実施例1で使用したフィルム形成能のないエポキシ
樹脂を厚さ18μmの電解銅箔の粗化面にナイフコータ
にて塗工し、温度150℃で10分間乾燥して、溶剤を
除去すると共に、樹脂を半硬化状態にし、厚さが60μ
mのプリプレグ層を有する銅箔付きプリプレグを作製し
た。作製した銅箔付きプリプレグは、銅箔面が凸となる
カールが発生し、またカッターナイフによる切断時に、
切断箇所近傍の樹脂が割れ、激しく飛散し、多層プリン
ト配線板用の材料として使用するに耐えないものであっ
た。
(Comparative Example 1) The epoxy resin having no film forming ability used in Example 1 was coated on a roughened surface of an electrolytic copper foil having a thickness of 18 μm with a knife coater without using glass short fibers, and the temperature was changed. Dry at 150 ° C for 10 minutes to remove the solvent and leave the resin in a semi-cured state.
A prepreg with a copper foil having a m prepreg layer was produced. The produced prepreg with a copper foil has a curl with a convex copper foil surface, and when cutting with a cutter knife,
The resin in the vicinity of the cut portion was cracked and scattered violently, so that it could not be used as a material for a multilayer printed wiring board.

【0028】(比較例2) ・テトラブロモビスフェノールAとビスフェノールAジグシジルエーテルからジ メチルアセトアミド中で合成した、重量平均分子量が500,000の、臭素化 した高分子量エポキシ重合体 ‥‥‥‥‥100重量部 ・フェノールノボラックでブロックしたトリレンジイソシアネート‥20重量部 ・ビスフェノールA型エポキシ樹脂 ‥‥‥‥‥‥30重量部 ・ビスフェノールA型エポキシ樹脂と当量になる量のフェノールノボラック ・尿素シランカップリング剤 ‥‥‥‥‥0.5重量部 を、高分子量エポキシ重合体の合成に使用した溶剤ジメ
チルアセトアミドと、この溶剤ジメチルアセトアミドと
等量のシクロヘキサノンに溶解した樹脂固形分40重量
%のフィルム形成能を有する熱硬化性樹脂を、厚さ18
μmの電解銅箔の粗化面にナイフコータにて塗工し、温
度150℃で10分間加熱乾燥して、溶剤を除去すると
共に、樹脂を半硬化状態にし、厚さが60μmの短繊維
と半硬化状態にあるエポキシ樹脂からなるプリプレグ層
を有する銅箔付きプリプレグを作製した。作製した銅箔
付きプリプレグは、殆どそりがない状態であり、またカ
ッターナイフ及びシャーにより、樹脂の飛散等がなくき
れいに切断でき、良好な取扱性であった。
(Comparative Example 2) Brominated high molecular weight epoxy polymer having a weight average molecular weight of 500,000 synthesized from tetrabromobisphenol A and bisphenol A diglycidyl ether in dimethylacetamide. 100 parts by weight ・ Tolylene diisocyanate blocked with phenol novolac 20 parts by weight ・ Bisphenol A type epoxy resin ‥‥‥‥‥‥‥‥‥ 30 parts by weight ・ Phenol novolac equivalent to bisphenol A type epoxy resin ・ Urea silane coupling Agent: 0.5 parts by weight of solvent dimethylacetamide used in the synthesis of high molecular weight epoxy polymer and a film-forming ability of resin solid content of 40% by weight dissolved in cyclohexanone in the same amount as the solvent dimethylacetamide. A thermosetting resin having a thickness of 18
The roughened surface of the electrolytic copper foil of μm is coated with a knife coater and heated and dried at a temperature of 150 ° C. for 10 minutes to remove the solvent and semi-harden the resin, and the short fibers with a thickness of 60 μm and semi-cured. A prepreg with a copper foil having a prepreg layer made of a cured epoxy resin was prepared. The prepared prepreg with a copper foil had almost no warpage, and could be cut cleanly with a cutter knife and a shear without scattering of resin and had good handleability.

【0029】(比較例3)実施例1の銅箔付きプリプレ
グに代わり、比較例3の銅箔付きプリプレグを使用した
以外は、実施例5と全く同じ方法で内層回路入り多層銅
張積層板を作製し、同じ方法で評価を行った。外層銅箔
を除去後の多層プリント配線板の熱膨張係数は、30p
pm/℃(常温下)であり、面方向(たてよこ方向)の
平均曲げ弾性率は常温下で8GPa、高温下(200
℃)で3GPaであった。また、ビッカース硬度計によ
る表面硬度は、18であった。その他の特性は、実施例
5と同等であった。
(Comparative Example 3) A multilayer copper clad laminate with an inner layer circuit was prepared in the same manner as in Example 5, except that the prepreg with a copper foil of Comparative Example 3 was used in place of the prepreg with a copper foil of Example 1. It was produced and evaluated by the same method. The coefficient of thermal expansion of the multilayer printed wiring board after removing the outer copper foil is 30 p
pm / ° C. (at room temperature), the average bending elastic modulus in the plane direction (vertical direction) is 8 GPa at room temperature and at high temperature (200
It was 3 GPa at (° C.). The surface hardness measured by a Vickers hardness tester was 18. Other characteristics were the same as in Example 5.

【0030】以上をまとめると、本発明による実施例1
〜4及び実施例9、10のプリント配線板用の銅箔付き
プリプレグは、フィルム形成能がない樹脂を使用してい
るにもかかわらず、比較例1に示したような取扱性の劣
化を発生させることなく、電気絶縁性の短繊維の配合に
よる効果により、比較例4に示した従来のフィルム形成
能を有する樹脂を使用した銅箔付きプリプレグと同等の
良好な取扱性を有している。さらに、本発明による実施
例1〜4のプリント配線板用の銅箔付きプリプレグを使
用した実施例5〜8の内層回路入り多層銅張積層板は、
比較例2の従来の銅箔付きプリプレグを使用した比較例
3の内層回路入り多層銅張積層板よりも高い剛性、低い
熱膨張係数、高い表面硬度を持つ。
In summary, the first embodiment according to the present invention will be described.
4 and the prepregs with a copper foil for printed wiring boards of Examples 9 and 10 caused deterioration of handleability as shown in Comparative Example 1 even though a resin having no film forming ability was used. Without having to do so, due to the effect of blending the electrically insulating short fibers, it has a good handling property equivalent to that of the prepreg with a copper foil using the resin having the conventional film forming ability shown in Comparative Example 4. Furthermore, the multilayer copper clad laminates with inner layer circuits of Examples 5 to 8 using the prepreg with a copper foil for printed wiring boards of Examples 1 to 4 according to the present invention,
It has higher rigidity, lower thermal expansion coefficient, and higher surface hardness than the multilayer copper clad laminate with an inner layer circuit of Comparative Example 3 using the conventional prepreg with a copper foil of Comparative Example 2.

【0031】[0031]

【発明の効果】本発明の銅箔付きプリプレグは、特殊な
フィルム形成能のある樹脂を用いるのでなく、汎用のフ
ィルム形成能のない樹脂を使用できるものであり、なお
かつ良好な取扱性が得られるものである。しかもこれを
使用した多層プリント配線板は、従来の銅箔付きプリプ
レグを使用した多層プリント配線板よりも、剛性が高い
ため実装信頼性が高く、表面硬度が高いためワイヤボン
ド性が良く、熱膨張係数が小さいため寸法安定性が良
い。したがって、本発明のプリント配線板用の銅箔付き
プリプレグは、多層プリント配線板の薄型化、高密度
化、高生産性化、高信頼性化、低コスト化に多大の貢献
をする。
INDUSTRIAL APPLICABILITY The prepreg with a copper foil of the present invention does not use a resin having a special film-forming ability, but can use a general-purpose resin having no film-forming ability, and still has good handleability. It is a thing. Moreover, the multilayer printed wiring board using this has higher rigidity and higher mounting reliability than the conventional multilayer printed wiring board using the prepreg with copper foil, and the high surface hardness provides good wire bondability and thermal expansion. Good dimensional stability due to small coefficient. Therefore, the prepreg with a copper foil for a printed wiring board according to the present invention greatly contributes to thinning, high density, high productivity, high reliability, and low cost of a multilayer printed wiring board.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】少なくとも片面が粗化された銅箔とその粗
化面上に形成されたプリプレグ層からなり、該プリプレ
グ層が、単独ではフィルム形成能のない熱硬化性樹脂中
に電気絶縁性の短繊維が分散されたものであり、かつ該
樹脂が半硬化状態であることを特徴とするプリント配線
板用の銅箔付きプリプレグ。
1. A copper foil having at least one surface roughened and a prepreg layer formed on the roughened surface. The prepreg layer alone has an electrically insulating property in a thermosetting resin having no film forming ability. The prepreg with a copper foil for a printed wiring board, characterized in that the short fibers of (1) are dispersed and the resin is in a semi-cured state.
【請求項2】電気絶縁性の短繊維がガラスである請求項
1に記載のプリント配線板用の銅箔付きプリプレグ。
2. The prepreg with a copper foil for a printed wiring board according to claim 1, wherein the electrically insulating short fiber is glass.
【請求項3】電気絶縁性の短繊維がアルミナ繊維である
請求項1に記載のプリント配線板用の銅箔付きプリプレ
グ。
3. The prepreg with a copper foil for a printed wiring board according to claim 1, wherein the electrically insulating short fibers are alumina fibers.
【請求項4】プリプレグ層中の短繊維の配合割合が5〜
50体積%であることを特徴とする請求項1に記載のプ
リント配線板用の銅箔付きプリプレグ。
4. The blending ratio of the short fibers in the prepreg layer is 5 to 5.
The prepreg with a copper foil for a printed wiring board according to claim 1, wherein the prepreg is 50% by volume.
【請求項5】単独ではフィルム形成能がない熱硬化性樹
脂に電気絶縁性短繊維を配合し、撹拌により該短繊維を
該熱硬化性樹脂中に均一に分散させた後、少なくとも片
面が粗化された銅箔の粗化面上に塗布し、加熱により前
記熱硬化性樹脂を半硬化状態にすることを特徴とするプ
リント配線板用の銅箔付きプリプレグの製造方法。
5. A thermosetting resin which alone has no film forming ability, is mixed with electrically insulating short fibers, and the short fibers are uniformly dispersed in the thermosetting resin by stirring, and then at least one surface is roughened. A method for producing a prepreg with a copper foil for a printed wiring board, which comprises applying the heat-curable resin to a semi-cured state by applying it to a roughened surface of a copper foil which has been made into a solid.
【請求項6】電気絶縁性の短繊維がガラスである請求項
5に記載のプリント配線板用の銅箔付きプリプレグの製
造方法。
6. The method for producing a prepreg with a copper foil for a printed wiring board according to claim 5, wherein the electrically insulating short fiber is glass.
【請求項7】電気絶縁性の短繊維がアルミナ繊維である
請求項5に記載のプリント配線板用の銅箔付きプリプレ
グの製造方法。
7. The method for producing a prepreg with a copper foil for a printed wiring board according to claim 5, wherein the electrically insulating short fibers are alumina fibers.
【請求項8】プリプレグ層中の短繊維の配合割合が5〜
50体積%であることを特徴とする請求項5に記載のプ
リント配線板用の銅箔付きプリプレグの製造方法。
8. The blending ratio of the short fibers in the prepreg layer is 5 to 5.
It is 50 volume%, The manufacturing method of the prepreg with a copper foil for printed wiring boards of Claim 5 characterized by the above-mentioned.
JP8063990A 1995-09-13 1996-03-21 Copper-foil-clad prepreg for printed wiring board and production thereof Pending JPH09255798A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP8063990A JPH09255798A (en) 1996-03-21 1996-03-21 Copper-foil-clad prepreg for printed wiring board and production thereof
TW85110855A TW389780B (en) 1995-09-13 1996-09-05 Prepreg for printed circuit board
MYPI96003726A MY120902A (en) 1995-09-13 1996-09-10 Prepreg for printed circuit board
KR1019960039568A KR100272884B1 (en) 1995-09-13 1996-09-12 Prepreg for printed circuit board
DE1996611020 DE69611020T2 (en) 1995-09-13 1996-09-13 Prepreg for printed circuit boards
CN96111552A CN1150377A (en) 1995-09-13 1996-09-13 Prepreg for printed circuit board
US08/712,509 US5965245A (en) 1995-09-13 1996-09-13 Prepreg for printed circuit board
EP19960306669 EP0763562B1 (en) 1995-09-13 1996-09-13 Prepreg for printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8063990A JPH09255798A (en) 1996-03-21 1996-03-21 Copper-foil-clad prepreg for printed wiring board and production thereof

Publications (1)

Publication Number Publication Date
JPH09255798A true JPH09255798A (en) 1997-09-30

Family

ID=13245237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8063990A Pending JPH09255798A (en) 1995-09-13 1996-03-21 Copper-foil-clad prepreg for printed wiring board and production thereof

Country Status (1)

Country Link
JP (1) JPH09255798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368429A (en) * 2001-06-06 2002-12-20 Hitachi Chem Co Ltd Resin film as well as metal foil with resin using the same and multilayer printed circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368429A (en) * 2001-06-06 2002-12-20 Hitachi Chem Co Ltd Resin film as well as metal foil with resin using the same and multilayer printed circuit board

Similar Documents

Publication Publication Date Title
EP0763562B1 (en) Prepreg for printed circuit board
JPWO2007040125A1 (en) Manufacturing method of prepreg with carrier, prepreg with carrier, manufacturing method of thin double-sided board, thin double-sided board, and manufacturing method of multilayer printed wiring board
JP4572423B2 (en) Method for producing copper-clad laminate, printed wiring board using the same, and multilayer printed wiring board
JPH1160951A (en) Resin composition for printed circuit board and prepreg, metal-clad laminate using the same
JP3838389B2 (en) Insulating material and multilayer printed wiring board using the same
JP2000301534A (en) Prepreg, metal-clad laminated board, and printed wiring board using prepreg and laminated board
CN114901741B (en) Thermosetting heat-conducting dielectric composite material
JP2001316564A (en) Electrical insulating resin composition, copper-foiled electrical insulating material and copper-clad laminated board
JPH09255798A (en) Copper-foil-clad prepreg for printed wiring board and production thereof
KR100187577B1 (en) Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
JP4245197B2 (en) Manufacturing method of prepreg for printed wiring board and metal-clad laminate using the same
JP3390306B2 (en) Prepreg with carrier film for printed wiring boards
JPH09202834A (en) Prepreg for printed circuit board and its production
JP4366785B2 (en) Adhesive sheet, production method thereof, multilayer printed wiring board using the adhesive sheet, and production method thereof
JP3906544B2 (en) Thermosetting resin composition, adhesive sheet, metal foil with adhesive and metal foil laminate
JP3804812B2 (en) Method for producing insulating varnish
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish
JP3932635B2 (en) Insulating varnish and multilayer printed wiring board using the same
TW201918379A (en) Copper cladding plate bent in static state, and method for manufacturing same and bend shaping method
JP3838390B2 (en) Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish
JPH11262974A (en) Manufacture of copper-clad laminate, printed circuit board and multilayer printed circuit board using it
JPH10287834A (en) Production of insulating varnish and multi-layered printed wiring board using the insulating varnish
JP2003281940A (en) Insulation resin composition, insulator with copper foil, and laminated plate with copper foil
JPH09260843A (en) Multilayer copper-clad laminate board with inner circuit and manufacturing method thereof
JPH09254313A (en) Copper-clad laminate and its manufacture

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees