JPH09255491A - Zinc oxide thin film electrode structure using oxygen closing packing plane of poly-crystal oxide thin film and its production - Google Patents

Zinc oxide thin film electrode structure using oxygen closing packing plane of poly-crystal oxide thin film and its production

Info

Publication number
JPH09255491A
JPH09255491A JP33976696A JP33976696A JPH09255491A JP H09255491 A JPH09255491 A JP H09255491A JP 33976696 A JP33976696 A JP 33976696A JP 33976696 A JP33976696 A JP 33976696A JP H09255491 A JPH09255491 A JP H09255491A
Authority
JP
Japan
Prior art keywords
thin film
oxygen
oxide thin
zno
electrode structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33976696A
Other languages
Japanese (ja)
Inventor
Choonghoon Yi
忠 ▲ケン▼ 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSEI DENKAN KK
Samsung SDI Co Ltd
Original Assignee
SANSEI DENKAN KK
Samsung Display Devices Co Ltd
Samsung Electron Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANSEI DENKAN KK, Samsung Display Devices Co Ltd, Samsung Electron Devices Co Ltd filed Critical SANSEI DENKAN KK
Publication of JPH09255491A publication Critical patent/JPH09255491A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Abstract

PROBLEM TO BE SOLVED: To obtain a high-quality electrode structure applicable to a flat plate display such as LCD or a solar battery, etc., by forming a ZnO layer on a thin film layer of an oxide of a cubic structure on a substrate.
SOLUTION: This thin film electrode structure is provided with a substrate 1, an oxide thin film layer 2 of a cubic structure or a similar cubic structure formed on the substrate 1 and a ZnO thin film 3 formed on the thin film layer 2. The thin film electrode structure is produced by forming an In2O3 thin film 2 excellent in <111> orientation characteristics on the glass substrate 1 by a sputtering method. Then the ZnO thin film 3 is formed by using a mixed gas of argon and oxygen on the In2O3 thin film 2 to give the objective thin film electrode structure. By the production method, a (111) plane as an oxygen close packing plane of the In2O3 thin film excellent in <111> orientation characteristics provides an excellent oxygen layer capable of growing (0002) plane as an oxygen close packing plane of the ZnO thin film 3.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は多結晶酸化薄膜の酸
素最密充填面を用いたZnO薄膜電極構造体及びその製
造方法に係り、特にガラス上に成膜されている多結晶酸
化薄膜の酸素最密充填面の酸素配列を用いたZnO薄膜
電極構造体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ZnO thin film electrode structure using an oxygen close-packed surface of a polycrystalline oxide thin film and a method for manufacturing the same, and more particularly to oxygen of a polycrystalline oxide thin film formed on glass. The present invention relates to a ZnO thin film electrode structure using oxygen arrangement of the closest packing surface and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ガラス基板上に成膜させた多結晶ZnO
薄膜はガラスを構成する原子の無秩序に基づいて低い結
晶性を示すため、従来、ZnO薄膜の結晶性を向上させ
るためサファイア単結晶基板やSiC単結晶基板を用い
た方法などが報告されている。しかし、単結晶基板にZ
nO薄膜を形成した場合には、基板の不透明性のためZ
nO薄膜の光学的特性である透明性が消えるので、透明
電極としては使用できない。従って、前述したように単
結晶基板を使用して形成したZnO薄膜は基板の不透過
性によりLCD(Liquid Crystal Display) のような平
板ディスプレー或は太陽電池のような装置の透明電極と
して使用できない。
2. Description of the Related Art Polycrystalline ZnO formed on a glass substrate
Since a thin film exhibits low crystallinity based on disorder of atoms constituting glass, conventionally, a method using a sapphire single crystal substrate or a SiC single crystal substrate for improving the crystallinity of a ZnO thin film has been reported. However, Z
When an nO thin film is formed, Z is due to the opacity of the substrate.
Since the optical characteristic of the nO thin film, transparency, disappears, it cannot be used as a transparent electrode. Therefore, the ZnO thin film formed using the single crystal substrate cannot be used as a transparent electrode of a flat panel display such as an LCD (Liquid Crystal Display) or a device such as a solar cell due to the impermeability of the substrate.

【0003】[0003]

【発明が解決しょうとする課題】本発明は多結晶酸化薄
膜の酸素最密充填面を用いたZnO薄膜電極構造体及び
その製造方法を提供することにその目的がある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a ZnO thin film electrode structure using an oxygen close-packed surface of a polycrystalline oxide thin film and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
本発明による多結晶酸化薄膜の酸素最密充填面を用いた
ZnO薄膜電極構造体は、基板と、前記基板上に成膜さ
れている立方構造または類似立方構造の酸化物薄膜層
と、前記酸化物薄膜層上に形成されているZnO層を具
備することを特徴とする。
In order to achieve the above-mentioned object, a ZnO thin film electrode structure using an oxygen close-packed surface of a polycrystalline oxide thin film according to the present invention is formed on a substrate and the substrate. It is characterized by comprising an oxide thin film layer having a cubic structure or a similar cubic structure and a ZnO layer formed on the oxide thin film layer.

【0005】前記本発明の電極構造体において、前記酸
化物薄膜層の素材は立方構造を有するIn2 3 、立方
構造または類似立方構造を有する物質を選択することが
望ましい。
In the electrode structure of the present invention, the material of the oxide thin film layer is preferably selected from In 2 O 3 having a cubic structure, a substance having a cubic structure or a similar cubic structure.

【0006】また、前記目的を達成するため本発明によ
る電極構造体の製造方法は、基板に立方構造または類似
立方構造を有する酸化物薄膜を形成する段階と、前記多
結晶酸化物薄膜上に結晶性に優れたZnO薄膜を形成す
る段階を含む。
In order to achieve the above object, the method of manufacturing an electrode structure according to the present invention comprises the steps of forming an oxide thin film having a cubic structure or a similar cubic structure on a substrate, and forming a crystal on the polycrystalline oxide thin film. Forming a ZnO thin film having excellent properties.

【0007】[0007]

【本発明の実施の形態】以下、添付した図面に基づき本
発明の実施例を詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0008】図1を参照すれば、1は基板、バッファ層
の機能を有するものであって、In 2 3 を含む立方構
造または類似立方構造の酸化物薄膜層である。そして、
3はZnO薄膜層である。
Referring to FIG. 1, reference numeral 1 denotes a substrate and a buffer layer.
Which has the function of TwoOThreeCubic structure including
It is an oxide thin film layer having a cubic structure or a similar cubic structure. And
3 is a ZnO thin film layer.

【0009】六方構造のZnOの(0002)面上の酸
素は正三角形の頂点に位置し、隣接酸素との距離はZn
Oの格子定数(a ZnO =0.3250)と同じ0.32
50nmであり、ABAB、即ち交番的な積層構造を有
する。バッファ層として使用される答軸晶系(bixbyit
e)立方構造を有するIn2 3 はABCABC、即ち
3つの層が交番的に積層されている構造を有し、各層の
酸素は同一配列状態を有し、酸素最密充填面である(1
11)面の酸素間の平均距離は0.3353nmであ
る。従って、In2 3 の酸素最密充填面である(11
1)面とZnOの酸素最密充填面である酸素間不整合は
僅か3%なので〈111〉配向性を有するIn2 3
膜は〈0001〉の配向性を有するZnO薄膜の成長を
容易にする良好な酸素層を提供しうる。これはZnO薄
膜の酸素最密充填面がIn2 3 薄膜の酸素最密充填面
の影響を受けるからである。従って、ガラス基板上に成
膜したZnO薄膜の結晶性向上方法は多結晶In2 3
のみならず、〈111〉配向性を有する立方構造或は類
似立方構造を有する酸化物薄膜の酸素最密充填構造を用
いても良い。
Oxygen on the (0002) plane of hexagonal ZnO is located at the apex of an equilateral triangle, and the distance from adjacent oxygen is Zn.
Same as the lattice constant of O (a ZnO = 0.3250) 0.32
It has a thickness of 50 nm and has an ABAB, that is, an alternating laminated structure. Bixbyit system used as a buffer layer
e) In 2 O 3 having a cubic structure has ABCABC, that is, a structure in which three layers are alternately stacked, oxygen in each layer has the same arrangement state, and is an oxygen closest packing surface (1
The average distance between oxygen on the (11) plane is 0.3353 nm. Therefore, it is the surface of In 2 O 3 that is closest to oxygen (11)
1) Since the mismatch between the plane and the oxygen closest packed surface of ZnO is only 3%, the In 2 O 3 thin film having the <111> orientation facilitates the growth of the ZnO thin film having the <0001> orientation. It can provide a good oxygen layer. This is because the close-packed oxygen surface of the ZnO thin film is affected by the close-packed oxygen surface of the In 2 O 3 thin film. Therefore, a method for improving the crystallinity of a ZnO thin film formed on a glass substrate is a polycrystalline In 2 O 3
In addition, an oxygen close-packed structure of an oxide thin film having a cubic structure having a <111> orientation or a similar cubic structure may be used.

【0010】また、多結晶In2 3 薄膜は光の透過性
のよい物質なのでZnO薄膜をIn2 3 薄膜上に成膜
しても光透過には問題ないのでLCDのような平板ディ
スプレーや太陽電池などの透明電極に使用できる。
Further, since the polycrystalline In 2 O 3 thin film has a good light-transmitting property, even if a ZnO thin film is formed on the In 2 O 3 thin film, there is no problem in light transmission, so that a flat panel display such as LCD or It can be used for transparent electrodes such as solar cells.

【0011】本発明によるZnO薄膜の結晶性向上法は
単結晶だけでなくガラス基板上でZnO薄膜をエピタキ
シァル成長させる場合、非常に有用な方法となる。一般
的にエピタキシァル成長は基板と積層薄膜の格子定数の
不整合の最少化によるものであるが、2面間の酸素配列
と酸素間距離を考慮した酸化物薄膜の成長法はGaN薄
膜を成長させるためのバッファ層としてのZnO薄膜の
製造に非常に有用である。
The method for improving the crystallinity of a ZnO thin film according to the present invention is a very useful method when epitaxially growing a ZnO thin film on a glass substrate as well as a single crystal. In general, epitaxial growth is based on minimizing the mismatch of the lattice constant between the substrate and the laminated thin film, but the growth method of the oxide thin film considering the oxygen arrangement between the two planes and the oxygen distance is to grow the GaN thin film. It is very useful for manufacturing a ZnO thin film as a buffer layer for

【0012】本発明はIn2 3 薄膜の酸素最密充填面
を用いて単結晶基板やそうでないガラス基板上で〈00
01〉配向の成長特性に優れたZnO薄膜を製造するた
めの方法である。
The present invention uses the close-packed surface of oxygen of In 2 O 3 thin film to form <00 on a single crystal substrate or a glass substrate which is not.
This is a method for producing a ZnO thin film having excellent 01> orientation growth characteristics.

【0013】本発明の電極構造体の制作方法を説明すれ
ば次のようである。
The manufacturing method of the electrode structure of the present invention will be described as follows.

【0014】図2に示されるように、スパッタリング方
法でガラス基板1上に〈111〉配向特性に優れたIn
2 3 薄膜2を形成する。
As shown in FIG. 2, In having excellent <111> orientation characteristics was formed on the glass substrate 1 by the sputtering method.
2 O 3 thin film 2 is formed.

【0015】図3に示されるように、In2 3 薄膜2
上にアルゴンと酸素の混合ガスを用いてZnO薄膜3を
製造する。
As shown in FIG. 3, the In 2 O 3 thin film 2
A ZnO thin film 3 is manufactured by using a mixed gas of argon and oxygen.

【0016】以上のような製造方法によれば、〈11
1〉配向特性に優れたIn2 3 薄膜の酸素最密充填面
である(111)面はZnO薄膜3の酸素最密充填面で
ある(0002)面がよく成長しうる優秀な酸素層を提
供する。従って、前述したようにbixbyiteIn2 3
(111)面とウルツ(wurzeit )ZnOの(000
2)面の酸素間距離の差は約3%であるので、ガラス基
板上で結晶性と〈0001〉配向の成長特性に優れたZ
nO薄膜の形成が可能である。
According to the above manufacturing method, <11
1) The (111) plane, which is the oxygen close-packed surface of the In 2 O 3 thin film having excellent orientation characteristics, is the oxygen close-packed surface (0002) plane of the ZnO thin film 3, which is an excellent oxygen layer that can grow well. provide. Therefore, as described above, (111) plane of bixbyiteIn 2 O 3 and (000 of wurzeit ZnO)
2) Since the difference between the oxygen distances in the plane is about 3%, Z having excellent crystallinity and <0001> orientation growth characteristics on the glass substrate.
It is possible to form an nO thin film.

【0017】即ち、ガラス基板上に成膜した多結晶In
2 3 薄膜上にZnO薄膜を成長させることにより、Z
nO薄膜の電気的、光学的特性の損失なしに結晶性と
〈0001〉配向特性に優れた薄膜を製造しうる。
That is, polycrystalline In deposited on a glass substrate
By growing a ZnO thin film on the 2 O 3 thin film, Z
It is possible to manufacture a thin film having excellent crystallinity and <0001> orientation properties without loss of electrical and optical properties of the nO thin film.

【0018】[0018]

【発明の効果】このような本発明の電極構造体はLCD
のような平板ディスプレーまたは太陽電池等に適用で
き、良好なZnOの結晶性により良質の製品が得られ
る。
The electrode structure of the present invention is an LCD.
It can be applied to such flat panel displays or solar cells, and a good quality product can be obtained due to the excellent crystallinity of ZnO.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電極構造体の概略断面図である。FIG. 1 is a schematic sectional view of an electrode structure according to the present invention.

【図2】本発明による電極構造体の製造方法の工程図で
ある。
FIG. 2 is a process drawing of a method for manufacturing an electrode structure according to the present invention.

【図3】本発明による電極構造体の製造方法の工程図で
ある。
FIG. 3 is a process drawing of a method for manufacturing an electrode structure according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/28 301 H01L 21/28 301Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location H01L 21/28 301 H01L 21/28 301Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板と、 前記基板上に形成されている立方構造または類似立方構
造の酸化物薄膜層と、 前記酸化物薄膜層上に形成されているZnO層を具備す
ることを特徴とする多結晶酸化薄膜の酸素最密充填面を
用いたZnO薄膜電極構造体。
1. A substrate, an oxide thin film layer having a cubic structure or a similar cubic structure formed on the substrate, and a ZnO layer formed on the oxide thin film layer. A ZnO thin film electrode structure using an oxygen closest packing surface of a polycrystalline oxide thin film.
【請求項2】 前記酸化物薄膜層の素材はIn2 3
成膜されていることを特徴とする請求項1に記載の多結
晶酸化薄膜の酸素最密充填面を用いたZnO薄膜電極構
造体。
2. A ZnO thin film electrode using an oxygen close-packed surface of a polycrystalline oxide thin film according to claim 1, wherein the material of the oxide thin film layer is formed of In 2 O 3. Structure.
【請求項3】 基板に立方性または類似立方性の酸化物
薄膜を形成する段階と、 前記酸化物薄膜上にZnO薄膜を結晶成長法により形成
する段階を含むことを特徴とする多結晶酸化薄膜の酸素
最密充填面の酸素配列を用いたZnO薄膜電極構造体の
製造方法。
3. A polycrystalline oxide thin film comprising: a step of forming a cubic or similar cubic oxide thin film on a substrate; and a step of forming a ZnO thin film on the oxide thin film by a crystal growth method. A method for manufacturing a ZnO thin film electrode structure using the oxygen arrangement of the oxygen closest packing surface.
【請求項4】 前記酸化物薄膜層をIn2 3 で形成す
ることを特徴とする請求項3に記載の多結晶酸化薄膜の
酸素最密充填面の酸素配列を用いたZnO薄膜電極構造
体の製造方法。
4. The ZnO thin film electrode structure using the oxygen arrangement of the closest packed surface of oxygen of the polycrystalline oxide thin film according to claim 3, wherein the oxide thin film layer is formed of In 2 O 3. Manufacturing method.
JP33976696A 1995-12-30 1996-12-19 Zinc oxide thin film electrode structure using oxygen closing packing plane of poly-crystal oxide thin film and its production Pending JPH09255491A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR19950069786 1995-12-30
KR95P69786 1995-12-30

Publications (1)

Publication Number Publication Date
JPH09255491A true JPH09255491A (en) 1997-09-30

Family

ID=19448592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33976696A Pending JPH09255491A (en) 1995-12-30 1996-12-19 Zinc oxide thin film electrode structure using oxygen closing packing plane of poly-crystal oxide thin film and its production

Country Status (4)

Country Link
JP (1) JPH09255491A (en)
DE (1) DE19654717A1 (en)
FR (1) FR2743091A1 (en)
GB (1) GB2308919A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500690B1 (en) 1999-10-27 2002-12-31 Kaneka Corporation Method of producing a thin-film photovoltaic device
KR20040107318A (en) * 2003-06-13 2004-12-20 재단법인 포항산업과학연구원 Electrochemical Preparation Method of ZnO
JP2010050342A (en) * 2008-08-22 2010-03-04 National Institute For Materials Science Amorphous base material
JP4622075B2 (en) * 2000-10-03 2011-02-02 凸版印刷株式会社 Transparent conductive material and method for producing the same
JP2012134467A (en) * 2010-11-30 2012-07-12 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556407B2 (en) * 2002-10-04 2010-10-06 住友金属鉱山株式会社 Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and photodetector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500690B1 (en) 1999-10-27 2002-12-31 Kaneka Corporation Method of producing a thin-film photovoltaic device
JP4622075B2 (en) * 2000-10-03 2011-02-02 凸版印刷株式会社 Transparent conductive material and method for producing the same
KR20040107318A (en) * 2003-06-13 2004-12-20 재단법인 포항산업과학연구원 Electrochemical Preparation Method of ZnO
JP2010050342A (en) * 2008-08-22 2010-03-04 National Institute For Materials Science Amorphous base material
JP2012134467A (en) * 2010-11-30 2012-07-12 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
US9281358B2 (en) 2010-11-30 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9634082B2 (en) 2010-11-30 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
FR2743091A1 (en) 1997-07-04
GB2308919A (en) 1997-07-09
GB9626372D0 (en) 1997-02-05
DE19654717A1 (en) 1997-07-03

Similar Documents

Publication Publication Date Title
Zhang et al. Effects of growth temperature on the characteristics of ZnO epitaxial films deposited by metalorganic chemical vapor deposition
WO1999010933A1 (en) Thin film photoelectric transducer
CN101429643A (en) Low temperature production method of transparent conductive oxide film
KR970006723B1 (en) Formation of polycrystalline silicon thin films with large grain
CA2024471A1 (en) Polycrystalline silicon thin film and transistor using the same
JP2002299661A (en) THIN-FILM CRYSTALLINE Si SOLAR CELL
JPH09255491A (en) Zinc oxide thin film electrode structure using oxygen closing packing plane of poly-crystal oxide thin film and its production
JP4899118B2 (en) Method for producing non-single crystal semiconductor material
JP4622075B2 (en) Transparent conductive material and method for producing the same
WO2001057933A1 (en) Hybrid thin-film photoelectric transducer and transparent laminate for the transducer
CN101070612A (en) Method for preparing tin-oxide mono-crystal film
JP3132516B2 (en) Transparent conductive substrate for solar cell and solar cell using the same
CN103632754A (en) Ultrathin aluminum-doped ZnO transparent conductive film and preparing method thereof
Li et al. Tuning the surface morphologies and properties of ZnO films by the design of interfacial layer
JP3725246B2 (en) Thin film photoelectric material and thin film photoelectric conversion device including the same
KR20180072989A (en) Method of fabricating passivation layer with low temperature process and silicon wafer comprising passivation layer made by thereof
CN207818602U (en) A kind of sapphire pattern substrate structure with Bragg reflector
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
CN101736399A (en) Method for preparing tin oxide single crystal film with orthogonal structure
JP3338093B2 (en) Transparent conductive film and method for manufacturing the same
CN101792901B (en) Method for preparing cubic indium oxide single-crystal film on yttrium-doped zirconia substrate
JPH06103817A (en) Conductive thin film
KR100594383B1 (en) Method of manufacturing zinc oxide thin film doped with aluminum
CN101311357B (en) Method for preparing indium oxide single crystal epitaxial film
KR100416664B1 (en) Zn-added magnesium oxide thin films and process for preparing same