JP4899118B2 - Method for producing non-single crystal semiconductor material - Google Patents

Method for producing non-single crystal semiconductor material Download PDF

Info

Publication number
JP4899118B2
JP4899118B2 JP2005117162A JP2005117162A JP4899118B2 JP 4899118 B2 JP4899118 B2 JP 4899118B2 JP 2005117162 A JP2005117162 A JP 2005117162A JP 2005117162 A JP2005117162 A JP 2005117162A JP 4899118 B2 JP4899118 B2 JP 4899118B2
Authority
JP
Japan
Prior art keywords
dilution rate
hydrogen dilution
film
semiconductor material
crystal semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005117162A
Other languages
Japanese (ja)
Other versions
JP2006295060A (en
Inventor
学 伊藤
道雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toppan Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Toppan Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005117162A priority Critical patent/JP4899118B2/en
Publication of JP2006295060A publication Critical patent/JP2006295060A/en
Application granted granted Critical
Publication of JP4899118B2 publication Critical patent/JP4899118B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Led Devices (AREA)

Description

本発明は、シリコンナノ結晶を含む材料を精密に粒径分布させることで優れた特性を持つ非単結晶半導体材料、光電変換素子、発光素子、および非単結晶半導体材料の製造方法に関する。   The present invention relates to a non-single-crystal semiconductor material, a photoelectric conversion element, a light-emitting element, and a method for producing a non-single-crystal semiconductor material having excellent characteristics by precisely distributing the particle size of a material containing silicon nanocrystals.

従来、アモルファスマトリックス中にナノ粒子を散在させた材料は、水素化アモルファスシリコンの劣化を減らす優れた特性がある。また、発光材料として働く等の優れた特性が知られている。近年、アモルファスシリコン作成条件と微結晶シリコン作成条件(水素希釈率条件)の境界領域においてナノ結晶埋め込み型アモルファスシリコン材料が得られる。
[D. Tsu, et.al. Applied Physics Letter 71, 1317 (1997)]
Conventionally, a material in which nanoparticles are dispersed in an amorphous matrix has excellent characteristics for reducing deterioration of hydrogenated amorphous silicon. Also, excellent properties such as working as a light emitting material are known. In recent years, a nanocrystal-embedded amorphous silicon material can be obtained in a boundary region between an amorphous silicon preparation condition and a microcrystalline silicon preparation condition (hydrogen dilution rate condition).
[D. Tsu, et. al. Applied Physics Letter 71, 1317 (1997)]

しかし、上述した技術では、境界領域材料が得られるパラメーター領域は極めて狭く、わずかでも所定条件からずれるとこの材料が得られないという問題があり製造技術上で大きな問題となっている。また、薄膜シリコン材料は膜成長方向に対して異方性をもって成長するためこのような境界領域で膜成長した場合などは特に膜全体において均一な特性が得られないという問題を抱えている。さらに、シリコンナノ結晶の粒径や分布を精密に制御する方法はないのが現状である。すなわち、シリコンナノ結晶を含む材料を安価に実現することはなされておらず、特に精密な粒径分布が極めて困難である。   However, in the above-described technique, the parameter region in which the boundary region material can be obtained is extremely narrow, and there is a problem that this material cannot be obtained even if it is slightly deviated from the predetermined condition. In addition, since a thin film silicon material grows with anisotropy in the film growth direction, there is a problem that uniform characteristics cannot be obtained in the whole film especially when the film is grown in such a boundary region. Furthermore, there is currently no method for precisely controlling the particle size and distribution of silicon nanocrystals. That is, a material containing silicon nanocrystals has not been realized at low cost, and a particularly precise particle size distribution is extremely difficult.

以上の点を鑑み本発明の目的は、アモルファスシリコン材料中にナノ結晶をほぼ均一に埋め込んだナノ結晶埋め込み型アモルファス材料を実現し、優れた特性を持つ非単結晶半導体材料、光電変換素子、発光素子、および非単結晶半導体材料の製造方法を提供することである。   In view of the above points, an object of the present invention is to realize a nanocrystal-embedded amorphous material in which nanocrystals are almost uniformly embedded in an amorphous silicon material, and have excellent characteristics in non-single-crystal semiconductor materials, photoelectric conversion elements, light emission It is to provide a device and a method for manufacturing a non-single-crystal semiconductor material.

本願発明の請求項1によれば、基材上に、CVD法によりシラン系又はゲルマン系ガスと水素系ガスを用いて半導体層を成膜する成膜工程を含む、シリコンを主体とするアモルファス材料中に粒径1nm〜5nmの結晶シリコンを散在させた非単結晶半導体材料又はゲルマニウムを主体とするアモルファス材料中に粒径1nm〜5nmの結晶ゲルマニウムを散在させた非単結晶半導体材料の製造方法であって、前記成膜工程が、(水素系ガスの流量)/(シラン系又はゲルマン系ガスの流量)で表される水素希釈率条件が25〜100である高水素希釈率条件で成膜する工程と、前記水素希釈率条件が2〜20である低水素希釈率条件で成膜する工程を交互に繰り返すことを特徴とする非単結晶半導体材料の製造方法を提供することができる。 According to claim 1 of the present invention, an amorphous material mainly composed of silicon, including a film forming step of forming a semiconductor layer on a base material by a CVD method using a silane-based or germane-based gas and a hydrogen-based gas. A non-single crystal semiconductor material in which crystalline silicon having a particle size of 1 nm to 5 nm is dispersed, or a non-single crystal semiconductor material in which crystalline germanium having a particle size of 1 nm to 5 nm is dispersed in an amorphous material mainly composed of germanium. The film formation step is performed under a high hydrogen dilution rate condition where the hydrogen dilution rate condition expressed by (flow rate of hydrogen gas) / (flow rate of silane or germane gas) is 25 to 100. It is possible to provide a method for producing a non-single-crystal semiconductor material, characterized by alternately repeating a step and a step of forming a film under a low hydrogen dilution rate condition where the hydrogen dilution rate condition is 2 to 20.

従って、アモルファスシリコン材料中にナノ結晶をほぼ均一に埋め込んだナノ結晶埋め込み型アモルファス材料を実現し、優れた特性を持つ非単結晶半導体材料の製造方法を提供することができる。   Therefore, a nanocrystal-embedded amorphous material in which nanocrystals are embedded almost uniformly in an amorphous silicon material can be realized, and a method for manufacturing a non-single-crystal semiconductor material having excellent characteristics can be provided.

また、本願発明の請求項2によれば、基材上に、CVD法によりシラン系又はゲルマン系ガスと水素系ガスを用いて半導体層を成膜する成膜工程を含む、シリコンを主体とするアモルファス材料中に粒径1nm〜3nmの結晶シリコンを散在させた非単結晶半導体材料又はゲルマニウムを主体とするアモルファス材料中に粒径1nm〜3nmの結晶ゲルマニウムを散在させた非単結晶半導体材料の製造方法であって、前記成膜工程が、(水素系ガスの流量)/(シラン系又はゲルマン系ガスの流量)で表される水素希釈率条件が25〜70である高水素希釈率条件で成膜する工程と、前記水素希釈率条件が2〜10である低水素希釈率条件で成膜する工程を交互に繰り返すことを特徴とする非単結晶半導体材料の製造方法を提供することができる。 According to claim 2 of the present invention , silicon is mainly used, which includes a film forming step for forming a semiconductor layer on a base material by a CVD method using a silane-based or germane-based gas and a hydrogen-based gas. Production of non-single-crystal semiconductor material in which crystalline silicon having a particle size of 1 nm to 3 nm is dispersed in an amorphous material or non-single-crystal semiconductor material in which crystalline germanium having a particle size of 1 to 3 nm is dispersed in an amorphous material mainly composed of germanium In the method, the film forming step is performed under a high hydrogen dilution rate condition in which a hydrogen dilution rate condition represented by (flow rate of hydrogen gas) / (flow rate of silane or germane gas) is 25 to 70. It is possible to provide a method for producing a non-single crystal semiconductor material, characterized by alternately repeating a film forming step and a film forming step under a low hydrogen dilution rate condition where the hydrogen dilution rate condition is 2 to 10. That.

従って、アモルファスシリコン材料中にナノ結晶をほぼ均一に埋め込んだナノ結晶埋め込み型アモルファス材料を実現し、優れた特性を持つ非単結晶半導体材料の製造方法を提供することができる。   Therefore, a nanocrystal-embedded amorphous material in which nanocrystals are embedded almost uniformly in an amorphous silicon material can be realized, and a method for manufacturing a non-single-crystal semiconductor material having excellent characteristics can be provided.

請求項1の発明によれば、アモルファスシリコン材料(又はアモルファスゲルマニウム材料)中にナノ結晶をほぼ均一に埋め込んだナノ結晶埋め込み型アモルファス材料を実現し、優れた特性を持つ非単結晶半導体材料の製造方法を提供することができる。 According to the first aspect of the present invention, a nanocrystal-embedded amorphous material in which nanocrystals are embedded almost uniformly in an amorphous silicon material (or amorphous germanium material) is realized, and a non-single-crystal semiconductor material having excellent characteristics is manufactured. A method can be provided.

請求項2の発明によれば、アモルファスシリコン材料(又はアモルファスゲルマニウム材料)中にナノ結晶をほぼ均一に埋め込んだナノ結晶埋め込み型アモルファス材料を実現し、優れた特性を持つ非単結晶半導体材料の製造方法を提供することができる。 According to the invention of claim 2 , a nanocrystal-embedded amorphous material in which nanocrystals are embedded almost uniformly in an amorphous silicon material (or amorphous germanium material) is realized, and a non-single-crystal semiconductor material having excellent characteristics is manufactured. A method can be provided.

以下に図面を用いて本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(第1実施形態)
本発明の第1実施形態について、図1を参照して説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIG.

本発明の第1実施形態に係る非単結晶半導体材料は、図1に示すように、シリコン(又はゲルマニウム)を主体とするアモルファス材料3中に粒径1nm〜5nmの結晶シリコン(又は結晶ゲルマニウム)2を散在させたことを特徴とする非単結晶半導体材料1とする。 Non-single-crystal semiconductor material according to the first embodiment of the present invention, as shown in FIG. 1, a silicon (or germanium) crystalline silicon particle size 1nm~5nm amorphous material 3 mainly made of (or crystalline germanium) 2 is a non-single-crystal semiconductor material 1 characterized by being scattered.

非単結晶半導体材料1の製造方法について説明する。   A method for manufacturing the non-single crystal semiconductor material 1 will be described.

非単結晶半導体材料1を成膜するにはプラズマCVD法、光CVD法、熱CVD法、Hot−wire CVD法のうちの何れかを任意に組み合わせた方法で作製することができるが、好ましくはプラズマCVD法を用いる。プラズマCVD法において印加する高周波電圧の周波数が13〜120MHzであり、より好ましくは13MHz〜80MHzである。   The non-single-crystal semiconductor material 1 can be formed by any combination of plasma CVD, photo CVD, thermal CVD, and hot-wire CVD, but preferably A plasma CVD method is used. The frequency of the high frequency voltage applied in the plasma CVD method is 13 to 120 MHz, more preferably 13 MHz to 80 MHz.

使用するガスは、シラン系またはゲルマニウム系ガスとしてはモノシラン、ジシラン、ジクロロシラン、4フッ化珪素、ゲルマンなどが挙げられるがこれらに限定されるものでは無い。希釈ガスとしては水素、重水素などが挙げられる。また必要に応じてヘリウム、ネオン、アルゴン、キセノン、クリプトン等の希ガス、またはバンドギャップを上昇させるためにメタン、アセチレン等を使用することもできる。   Examples of the gas used include, but are not limited to, monosilane, disilane, dichlorosilane, silicon tetrafluoride, germane and the like as silane or germanium gases. Examples of the dilution gas include hydrogen and deuterium. If necessary, methane, acetylene, or the like can be used to increase the band gap, or a rare gas such as helium, neon, argon, xenon, or krypton.

本発明の第1実施形態に係る非単結晶半導体材料を適用した非単結晶半導体材料の製造方法(水素希釈率変調法)は、図2に示すように、成膜工程において、水素希釈率条件[水素系ガスの流量/(シラン系又はゲルマン系ガスの流量)]の高い高水素希釈率条件で、高水素希釈率膜(非単結晶半導体材料)1を成膜する工程、及び水素希釈率条件の低い低水素希釈率条件で、低水素希釈率膜4を成膜する工程を交互に繰り返すことを特徴とする。 The non-single crystal semiconductor material manufacturing method (hydrogen dilution rate modulation method) to which the non-single crystal semiconductor material according to the first embodiment of the present invention is applied, as shown in FIG. A step of forming a high hydrogen dilution rate film (non-single crystal semiconductor material) 1 under a high hydrogen dilution rate condition of [ ( flow rate of hydrogen-based gas ) / (flow rate of silane-based or germane gas)], and hydrogen The step of forming the low hydrogen dilution rate film 4 under low hydrogen dilution rate conditions with low dilution rate conditions is repeated alternately.

高水素希釈率膜1または低水素希釈率膜4のどちらを先に成膜してもよい。図2では、高水素希釈率膜1および低水素希釈率膜4が交互に成膜され、積層されている構造を示している。   Either the high hydrogen dilution rate film 1 or the low hydrogen dilution rate film 4 may be formed first. FIG. 2 shows a structure in which the high hydrogen dilution rate film 1 and the low hydrogen dilution rate film 4 are alternately formed and stacked.

高水素希釈率条件で成膜する工程と、低水素希釈率条件で成膜する工程は、一定の時間ごとに変化させ、パルス状に流量を変化させても良いし、またなだらかに変化させてもかまわない。   The process of forming a film under a high hydrogen dilution rate condition and the process of forming a film under a low hydrogen dilution rate condition may be changed at regular intervals, and the flow rate may be changed in pulses, or may be changed gently. It doesn't matter.

高水素希釈条件では結晶が成長しやすく、図1に示した構造となり、低水素希釈率条件では結晶成長がしにくい。この高水素希釈条件で結晶を成長させ、前述の粒径の適正範囲以上にならないうちに成膜条件を低水素希釈条件にし、これを繰り返すことで、粒径が1〜5nmの範囲内であるナノ粒子(結晶シリコン又は結晶ゲルマニウム2)を含む半導体材料を作成することができる。 Crystals are likely to grow under high hydrogen dilution conditions, resulting in the structure shown in FIG. 1, and crystal growth is difficult under low hydrogen dilution conditions. The crystal is grown under this high hydrogen dilution condition, and the film forming condition is set to the low hydrogen dilution condition before the particle diameter is not more than the proper range of the above-mentioned particle diameter. By repeating this, the particle diameter is in the range of 1 to 5 nm. A semiconductor material containing nanoparticles (crystalline silicon or crystalline germanium 2) can be made.

図3は、高水素希釈率条件および低水素希釈率条件を変調する場合に、シラン系もしくはゲルマン系の原料ガスの流量、希釈ガスの流量のどちらか片方(この場合は、シラン流量)を変化させたときの成膜時間に対するシラン流量、水素流量、希釈率を示している。なお、希釈率R1は、低水素希釈率条件、希釈率R2は、高水素希釈率条件とする。このように、高水素希釈率条件および低水素希釈率条件を変調する際には、シラン系もしくはゲルマン系の原料ガスの流量、希釈ガスの流量のどちらか片方を変化させても良い。   Fig. 3 shows that when either the high hydrogen dilution rate condition or the low hydrogen dilution rate condition is modulated, either the silane or germane source gas flow rate or the dilution gas flow rate (in this case, the silane flow rate) is changed. The silane flow rate, the hydrogen flow rate, and the dilution rate are shown with respect to the film formation time. The dilution rate R1 is a low hydrogen dilution rate condition, and the dilution rate R2 is a high hydrogen dilution rate condition. Thus, when modulating the high hydrogen dilution rate condition and the low hydrogen dilution rate condition, one of the flow rate of the silane-based or germane-based source gas and the flow rate of the dilution gas may be changed.

また、図4は、高水素希釈率条件および低水素希釈率条件を変調する場合に、シラン系もしくはゲルマン系の原料ガスの流量、希釈ガスの流量の両方を同時に変化させたときの成膜時間に対するシラン流量、水素流量、希釈率を示している。なお、希釈率R1は、低水素希釈率条件、希釈率R2は、高水素希釈率条件とする。このように、高水素希釈率条件および低水素希釈率条件を変調する際には、シラン系もしくはゲルマン系の原料ガスの流量、希釈ガスの流量の両方を同時に変化させても良い。   FIG. 4 shows the film formation time when both the flow rate of the silane or germane source gas and the flow rate of the dilution gas are changed simultaneously when the high hydrogen dilution rate condition and the low hydrogen dilution rate condition are modulated. Shows the silane flow rate, hydrogen flow rate, and dilution rate. The dilution rate R1 is a low hydrogen dilution rate condition, and the dilution rate R2 is a high hydrogen dilution rate condition. Thus, when modulating the high hydrogen dilution rate condition and the low hydrogen dilution rate condition, both the flow rate of the silane or germane source gas and the flow rate of the dilution gas may be changed simultaneously.

ガス流量を変化させる場合は、マスフローコントローラを自動制御し時間変調を行うことが好ましい。図5は、時間変調に同期させ高水素希釈率膜作製時に投入電力を増加させ、また低水素希釈率膜作製時に導入電力を減少させたときの成膜時間に対するシラン流量、水素流量、希釈率、投入電力値を示している。このように、ガス流量を変化させる場合は、時間変調に同期させ高水素希釈率膜作製時に投入電力を増加させ、また低水素希釈率膜作製時に導入電力を減少させることもまた好ましい。   When changing the gas flow rate, it is preferable to perform time modulation by automatically controlling the mass flow controller. FIG. 5 shows the silane flow rate, the hydrogen flow rate, and the dilution rate with respect to the film formation time when the input power is increased at the time of manufacturing the high hydrogen dilution rate film in synchronization with the time modulation and the introduced power is decreased at the time of manufacturing the low hydrogen dilution rate film. The input power value is shown. As described above, when changing the gas flow rate, it is also preferable to increase the input power when producing the high hydrogen dilution rate film in synchronism with time modulation and reduce the introduced power when producing the low hydrogen dilution rate film.

なお、変調時間は、両条件とも少なくとも成膜室のガス滞在時間以上であることが望ましい。ガス滞在時間よりも短くなるとマスフローコントローラではガス流量が変化していても反応容器内では完全にガスが入れ替わらず所望のガス流量比が得られないことがあるからである。   Note that the modulation time is desirably at least longer than the gas residence time in the film formation chamber in both conditions. This is because if the gas flow time is shorter than the gas residence time, even if the gas flow rate is changed in the mass flow controller, the gas is not completely replaced in the reaction vessel, and a desired gas flow rate ratio may not be obtained.

また、高水素希釈率条件の時の水素希釈率比は、25〜100の範囲であることが好ましい。この範囲より大きいと結晶サイズが大きくなりすぎたり良好な膜質を得られないことが多い。またこの範囲より小さいと結晶化が起こりにくくなる。また、低水素希釈率条件の時の水素希釈率比は、2〜10の範囲内であることが好ましい。この範囲であれば良好な膜特性を維持することができる。   Moreover, it is preferable that the hydrogen dilution rate ratio at the time of high hydrogen dilution rate conditions is the range of 25-100. If it is larger than this range, the crystal size is often too large or good film quality cannot be obtained. If it is smaller than this range, crystallization hardly occurs. Moreover, it is preferable that the hydrogen dilution rate ratio at the time of low hydrogen dilution rate conditions exists in the range of 2-10. Within this range, good film characteristics can be maintained.

さらに、高水素希釈率条件で成膜する工程で積層される層(高水素希釈率膜1)は、1nm以上6nm以下の範囲内であると好ましい。1nmよりも薄いと結晶成長が起こらず、6nmより厚くなると結晶粒が大きくなりすぎ、膜特性が悪化する。低水素希釈率条件で成膜する工程で積層される層は、1nm以上20nm以下の範囲内であると好ましい。1nmよりも薄いと高水素希釈率条件で成長した層の結晶粒の成長を止めることが難しく、20nmより厚くなると膜特性が悪化する。   Furthermore, it is preferable that the layer (high hydrogen dilution rate film 1) stacked in the step of forming a film under the high hydrogen dilution rate condition is in the range of 1 nm to 6 nm. If it is thinner than 1 nm, crystal growth does not occur, and if it is thicker than 6 nm, the crystal grains become too large and the film characteristics deteriorate. The layer stacked in the step of forming a film under the low hydrogen dilution rate condition is preferably in the range of 1 nm to 20 nm. If it is thinner than 1 nm, it is difficult to stop the growth of crystal grains in a layer grown under a high hydrogen dilution rate condition, and if it is thicker than 20 nm, the film characteristics deteriorate.

さらには、高水素希釈率条件と低水素希釈率条件を用いて交互にサブレーヤーを積層する場合、高水素希釈率条件で積層するサブレーヤーの膜厚が1nm以上4nm以下とし、低水素希釈率条件で積層するサブレーヤーの膜厚が1nm以上20nm以下であることが重要である。低水素希釈率条で作成したサブレーヤーの膜厚が1nmよりも薄いと高水素希釈率条件で成長した層の結晶粒の成長を止めることが難しく20nm以上となると光劣化が抑制できなくなる。高水素希釈率条で作成したサブレーヤーの膜厚においては1nm以下であると結晶粒が成長できないし、また4nm以上となると結晶粒径が大きくなりすぎて結晶粒が再結合中心となってしまう。   Furthermore, when the sublayers are alternately stacked using the high hydrogen dilution rate condition and the low hydrogen dilution rate condition, the thickness of the sublayer stacked under the high hydrogen dilution rate condition is set to 1 nm to 4 nm, and the low hydrogen dilution rate condition is set. It is important that the thickness of the laminated sub-layer is 1 nm or more and 20 nm or less. If the thickness of the sublayer produced under the low hydrogen dilution rate is thinner than 1 nm, it is difficult to stop the growth of crystal grains in the layer grown under the high hydrogen dilution rate, and if it exceeds 20 nm, the photodegradation cannot be suppressed. If the thickness of the sublayer produced under the high hydrogen dilution ratio is 1 nm or less, crystal grains cannot grow, and if it is 4 nm or more, the crystal grain size becomes too large and the crystal grains become recombination centers.

なお、この高水素希釈率条件で成膜する工程で積層される層(高水素希釈率膜1)、低水素希釈率条件で成膜する工程で積層される層(低水素希釈率膜4)は、それぞれ上述したナノ粒子含有層、アモルファス層に対応するものではあるが、高水素希釈率条件で成膜する工程で積層される層においては、結晶粒が成長する前に薄いアモルファス層(いわゆるインキュベーションレーヤー)が成長した後に核形成が起こり、結晶成長が進むために一般的には高水素希釈率条件で作成した層の膜厚よりも成長するナノ結晶は一般的には小さくなる。   In addition, the layer (high hydrogen dilution rate film 1) laminated in the step of forming a film under the high hydrogen dilution rate condition, and the layer (low hydrogen dilution rate film 4) laminated in the step of forming a film under the low hydrogen dilution rate condition. Respectively correspond to the nanoparticle-containing layer and the amorphous layer described above, but in the layer laminated in the film forming step under the high hydrogen dilution rate condition, a thin amorphous layer (so-called so-called amorphous layer is formed before the crystal grains grow). Since the nucleation occurs after the incubation layer) is grown and the crystal growth proceeds, the nanocrystals that grow are generally smaller than the film thickness of the layer prepared under high hydrogen dilution rate conditions.

以上のように、高水素希釈率膜1である非単結晶半導体材料は、低水素希釈率膜4と積層構造とすることで、光照射に対し安定で、優れた電気的光学的特性をもつ半導体材料とすることができる。また、粒子サイズが粒径1nm〜5nmの範囲内であることにより、量子サイズ効果が得られ、優れた特性を得ることができる。   As described above, the non-single-crystal semiconductor material that is the high hydrogen dilution rate film 1 has a laminated structure with the low hydrogen dilution rate film 4, so that it is stable to light irradiation and has excellent electro-optical characteristics. It can be a semiconductor material. Further, when the particle size is in the range of 1 nm to 5 nm, a quantum size effect can be obtained and excellent characteristics can be obtained.

また、結晶シリコン又は結晶ゲルマニウム2の体積分率が、非単結晶半導体材料1に対し、0.5%以上10%以下であることが好ましい。この範囲内であれば、ナノ粒子の特性を活かした各種デバイスとして用いたときに良好なデバイス特性が得られるものである。 The volume fraction of crystalline silicon or crystalline germanium 2 is preferably 0.5% or more and 10% or less with respect to the non-single-crystal semiconductor material 1. Within this range, good device characteristics can be obtained when used as various devices utilizing the characteristics of nanoparticles.

本発明の第1実施形態で用いる基材としては、用途に応じて様々なものを用いることができる。絶縁性材料、導電性材料のどちらであっても構わないし、また可撓性、非可撓性のどちらでも可能である。具体的には、例えばガラス、石英、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン−テトラフルオロエチレン共重合樹脂、耐候性ポリエチレンテレフタレート、耐候性ポリプロピレン、ガラス繊維強化アクリル樹脂フィルム、ガラス繊維強化ポリカーボネート、ポリイミド、透明性ポリイミド、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリアクリル系樹脂、SUS薄板、Alフォイルなどを使用することができるが、これらに限定されるわけではない。これらは単独の基材として使用してもよいが、二種以上を積層した複合基材を使用することもできる。   As a base material used in the first embodiment of the present invention, various materials can be used depending on applications. Either an insulating material or a conductive material may be used, and either flexible or non-flexible is possible. Specifically, for example, glass, quartz, polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polyvinyl fluoride film, ethylene-tetrafluoroethylene copolymer Resin, weather resistant polyethylene terephthalate, weather resistant polypropylene, glass fiber reinforced acrylic resin film, glass fiber reinforced polycarbonate, polyimide, transparent polyimide, fluorine resin, cyclic polyolefin resin, polyacryl resin, SUS thin plate, Al foil, etc. It can be used, but is not limited to these. These may be used as a single substrate, but a composite substrate in which two or more kinds are laminated can also be used.

(第2実施形態)
本発明に係る非単結晶半導体材料を適用した半導体材料は、様々な分野に応用できる。
(Second Embodiment)
The semiconductor material to which the non-single-crystal semiconductor material according to the present invention is applied can be applied to various fields.

例えば、本発明の第2実施形態として、当該半導体材料の上下に電極を設けることで発光効率が高く、かつ製造方法が安い発光素子とすることができる(図6参照:後述)。   For example, as a second embodiment of the present invention, by providing electrodes on the top and bottom of the semiconductor material, a light-emitting element with high luminous efficiency and a low manufacturing method can be obtained (see FIG. 6: described later).

発光素子とする場合、粒子サイズや成膜条件などの諸条件は以下のようにすることが好ましい。   In the case of a light emitting element, it is preferable that various conditions such as particle size and film forming conditions are as follows.

粒子サイズは1nm〜5nmの範囲内であることが好ましく、この範囲であれば量子サイズ効果のために、優れた発光特性を示す。   The particle size is preferably in the range of 1 nm to 5 nm, and if in this range, excellent emission characteristics are exhibited due to the quantum size effect.

また、結晶部分の体積分率が0.5%以上10%であることが好ましく、0.5%よりも低いと発光効率が悪く、また10%を越えるとナノ結晶の粒径を制御することが極めて困難となる。   In addition, the volume fraction of the crystal part is preferably 0.5% or more and 10%, and if it is lower than 0.5%, the luminous efficiency is poor, and if it exceeds 10%, the grain size of the nanocrystal is controlled. Is extremely difficult.

高水素希釈率条件で成膜する工程で積層される層の膜厚は、1nm以上6nm以下であることが好ましい。1nmより薄いと結晶粒の成長が困難になり、また6nmより厚いと結晶粒径が大きくなりすぎて発光効率が悪くなる。   The thickness of the layer stacked in the step of forming a film under a high hydrogen dilution rate condition is preferably 1 nm or more and 6 nm or less. If it is thinner than 1 nm, it is difficult to grow crystal grains, and if it is thicker than 6 nm, the crystal grain size becomes too large, resulting in poor luminous efficiency.

低水素希釈率条件で成膜する工程で積層される層の膜厚は1nm以上20nm以下であることが好ましい。1nmよりも薄いと高水素希釈率条件で成長した層の結晶粒の成長を止めることが難しく、20nmより厚くなると膜中に含まれるナノ結晶の数が減って発光効率が悪くなる。   The thickness of the layer stacked in the step of forming a film under the low hydrogen dilution rate condition is preferably 1 nm or more and 20 nm or less. If it is thinner than 1 nm, it is difficult to stop the growth of crystal grains in the layer grown under the high hydrogen dilution rate condition, and if it is thicker than 20 nm, the number of nanocrystals contained in the film is reduced and the luminous efficiency is deteriorated.

高水素希釈率条件の水素希釈率比が25〜100の範囲、低水素希釈率条件の水素希釈率比が2〜10の範囲内であることが好ましく、25を下回ると結晶化が起こりにくく、また100を上回ると高水素希釈率条件膜成膜中にその下地にある低水素希釈率条件膜を結晶化し、結晶サイズが5nmを上回り量子サイズ効果を得られなくなることがある。低水素希釈率条件の水素希釈率比を2〜10の範囲で制御することで良好な発光特性を維持することができる。   It is preferable that the hydrogen dilution rate ratio of the high hydrogen dilution rate condition is in the range of 25 to 100, and the hydrogen dilution rate ratio of the low hydrogen dilution rate condition is in the range of 2 to 10. If it exceeds 100, the low hydrogen dilution rate condition film underlying the high hydrogen dilution rate condition film may be crystallized, and the crystal size may exceed 5 nm and the quantum size effect may not be obtained. Good light emission characteristics can be maintained by controlling the hydrogen dilution rate ratio of the low hydrogen dilution rate condition in the range of 2 to 10.

発光素子に用いる電極として発光側は、透明、非発光側は透明、不透明に限定されるものではない。透明電極は、例えば、厚さ10〜500nmの酸化スズ、酸化インジウム、酸化亜鉛等の酸化物、もしくは厚さ5〜15nmの金、白金、パラジウム、銀およびこれらの合金等の金属薄膜などが挙げられるがこれらに限定されるものではない。これらの透光性の導電膜は放出光を良く透過し、かつ表面抵抗の小さい層が好ましく、例えば、厚さ5〜15nmの金、白金層、厚さ30〜200nmのスズドープ酸化インジウム層が特に好ましい。透明電極は、例えばスパッタ法、真空蒸着法、イオンプレーティング法、プラズマCVD法、ゾルゲル法、印刷法等で堆積させる。不透明な電極としては例えば鉄、クロム、チタン、タンタル、ニオブ、モリブデン、ニッケル、アルミニウム、コバルト等の金属、ニクロム、ステンレス等の合金からなる金属薄膜が用いられるがこれらに限定されるものではない。これらの金属層は、例えば真空蒸着、スパッタリング、イオンプレーティング法、印刷法、メッキ法の手段によって設ける。   The electrodes used in the light emitting element are not limited to the light emitting side being transparent and the non-light emitting side being transparent or opaque. Examples of transparent electrodes include oxides such as tin oxide, indium oxide and zinc oxide having a thickness of 10 to 500 nm, or metal thin films such as gold, platinum, palladium, silver and alloys thereof having a thickness of 5 to 15 nm. However, it is not limited to these. These light-transmitting conductive films are preferably layers that transmit the emitted light well and have a low surface resistance, such as gold and platinum layers having a thickness of 5 to 15 nm, and tin-doped indium oxide layers having a thickness of 30 to 200 nm. preferable. The transparent electrode is deposited by, for example, a sputtering method, a vacuum evaporation method, an ion plating method, a plasma CVD method, a sol-gel method, a printing method, or the like. As the opaque electrode, for example, a metal thin film made of a metal such as iron, chromium, titanium, tantalum, niobium, molybdenum, nickel, aluminum, or cobalt, or an alloy such as nichrome or stainless steel is used, but is not limited thereto. These metal layers are provided by means of, for example, vacuum deposition, sputtering, ion plating, printing, or plating.

また発光素子の耐候性をあげるために、発光素子にガスバリアー層を設けることも可能である。例えば、ケイ素酸化物(SiOx)、ケイ素窒化物(SiNx)、酸化アルミニウム(AlxOy)のいずれかの単独、もしくは二種以上の混合系の蒸着層、または無機−有機のハイブリッドコート層のうちのいずれか一種、または二種以上を組み合わせた複合層を好適に使用できる。上記、ケイ素酸化物(SiOx)、ケイ素窒化物(SiNx)、酸化アルミニウム(AlxOy)などの蒸着層は、例えば蒸着法、スパッタ法、CVD法、ディッピング法、ゾルゲル法などにより基材上に容易に形成することができる。このようなガスバリア層の厚さは、5〜500nmの範囲が適当であり、特に30〜150nmの範囲が好ましい。   In order to increase the weather resistance of the light-emitting element, a gas barrier layer can be provided on the light-emitting element. For example, any one of silicon oxide (SiOx), silicon nitride (SiNx), aluminum oxide (AlxOy) alone, or a mixed deposition layer of two or more kinds, or an inorganic-organic hybrid coat layer A composite layer in which one kind or a combination of two or more kinds can be suitably used. Vapor deposition layers such as silicon oxide (SiOx), silicon nitride (SiNx), and aluminum oxide (AlxOy) can be easily formed on a substrate by, for example, vapor deposition, sputtering, CVD, dipping, or sol-gel. Can be formed. The thickness of such a gas barrier layer is suitably in the range of 5 to 500 nm, particularly preferably in the range of 30 to 150 nm.

具体的には、図6に示すように、一対の電極層7、11とp型半導体8、i型半導体9、n型半導体10を有する光電変換素子とし、i型半導体9として本発明の非単結晶半導体材料1を用いることができる。このようにすることで、光照射に対して極めて安定でかつ変換効率の高い薄膜シリコン系太陽電池を提供することができる。   Specifically, as shown in FIG. 6, a photoelectric conversion element having a pair of electrode layers 7 and 11, a p-type semiconductor 8, an i-type semiconductor 9, and an n-type semiconductor 10 is used. A single crystal semiconductor material 1 can be used. By doing in this way, the thin film silicon solar cell which is very stable with respect to light irradiation and has high conversion efficiency can be provided.

本発明の非単結晶半導体材料1を有する光電変換素子とした場合、粒子サイズや成膜条件などの諸条件は以下のようにすることが好ましい。   When the photoelectric conversion element having the non-single-crystal semiconductor material 1 of the present invention is used, it is preferable that various conditions such as particle size and film forming conditions are as follows.

粒子サイズは、1nm〜3nmの範囲内であることが好ましい。この範囲内であれば、光劣化を抑制しつつ良好な太陽電池特性を実現できる。粒径が3nm以下になると量子サイズ効果で結晶シリコンのバンドギャップが増加しアモルファスシリコンと同程度となるため、光励起されたキャリアは結晶部分で再結合されることはない。   The particle size is preferably in the range of 1 nm to 3 nm. Within this range, good solar cell characteristics can be realized while suppressing light degradation. When the particle size is 3 nm or less, the band gap of the crystalline silicon is increased by the quantum size effect and is about the same as that of amorphous silicon, so that the photoexcited carriers are not recombined at the crystalline portion.

なお、通常アモルファスマトリックス中に5nmより大きい結晶粒が埋め込まれたようなシリコン系半導体材料を薄膜シリコン系太陽電池の発電層部分(i層)に使用すると、アモルファス部分(a−Si:Hで1.7〜1.8eV程度)と結晶部分(結晶Siは1.1eV程度)のバンドギャップの差のために、光励起されたキャリアが結晶部分で再結合し、ひいては太陽電池の特性を悪化させることになる。   When a silicon-based semiconductor material in which crystal grains larger than 5 nm are normally embedded in an amorphous matrix is used for a power generation layer portion (i layer) of a thin-film silicon-based solar cell, the amorphous portion (a-Si: H is 1). .About.7 to 1.8 eV) and the crystal part (crystal Si is about 1.1 eV), the photoexcited carriers recombine in the crystal part, thereby deteriorating the characteristics of the solar cell. become.

また、結晶部分の体積分率が0.5%以上3%であることも重要である。0.5%よりも少ないと光劣化を抑制することができず、また3%を越えると良好なデバイス特性を維持することが困難になる。   It is also important that the volume fraction of the crystal part is 0.5% or more and 3%. If it is less than 0.5%, the light deterioration cannot be suppressed, and if it exceeds 3%, it becomes difficult to maintain good device characteristics.

また、高水素希釈率条件の水素希釈率比が25〜70の範囲、低水素希釈率条件の水素希釈率比が2〜10の範囲であると太陽電池特性がより向上する。高水素希釈率条件の水素希釈率比が25を下回ると結晶化が起こりにくく、また70を上回ると高水素希釈率条件膜の成膜中にその下地にある低水素希釈率条件を結晶化し、結晶サイズが大きくなりすぎることがある。低水素希釈率条件件の水素希釈率比を2〜10の範囲で制御することで良好な膜特性を維持することができる。   Moreover, a solar cell characteristic will improve more that the hydrogen dilution rate ratio of high hydrogen dilution rate conditions is the range of 25-70, and the hydrogen dilution rate ratio of low hydrogen dilution rate conditions is the range of 2-10. Crystallization is unlikely to occur when the hydrogen dilution ratio of the high hydrogen dilution ratio is less than 25, and when it exceeds 70, the low hydrogen dilution condition underlying it is crystallized during the formation of the high hydrogen dilution condition film. The crystal size may become too large. By controlling the hydrogen dilution rate ratio of the low hydrogen dilution rate condition within the range of 2 to 10, good film characteristics can be maintained.

高水素希釈率条件で成膜する工程で積層される層は、1nm以上4nm以下の範囲内であると好ましい。1nmよりも薄いと膜中に含まれる結晶粒が大きくなりすぎ、4nmより厚くなると結晶粒径が大きくなりすぎて結晶粒が再結合中心となってしまう。低水素希釈率条件で成膜する工程で積層される層は、1nm以上20nm以下の範囲内であると好ましい。1nmよりも薄いと高水素希釈率条件で成長した層の結晶粒の成長を止めることが難しく、20nmより厚くなると光劣化が抑制できなくなる。   The layer stacked in the step of forming a film under a high hydrogen dilution rate condition is preferably in the range of 1 nm to 4 nm. If it is thinner than 1 nm, the crystal grains contained in the film become too large, and if it is thicker than 4 nm, the crystal grain size becomes too large and the crystal grains become recombination centers. The layer stacked in the step of forming a film under the low hydrogen dilution rate condition is preferably in the range of 1 nm to 20 nm. If it is thinner than 1 nm, it is difficult to stop the growth of crystal grains in a layer grown under a high hydrogen dilution rate condition, and if it becomes thicker than 20 nm, photodegradation cannot be suppressed.

また、光電変換素子の電極としては、公知のものを用いることができる。   Moreover, a well-known thing can be used as an electrode of a photoelectric conversion element.

例えば、太陽光が入射する表側に設ける透明電極と裏面電極の組み合わせを用いることができる。   For example, a combination of a transparent electrode and a back electrode provided on the front side where sunlight enters can be used.

透明電極は、例えば、厚さ10〜500nmの酸化スズ、酸化インジウム、酸化亜鉛等の酸化物、もしくは厚さ5〜15nmの金、白金、パラジウム、銀およびこれらの合金等の金属薄膜などが挙げられるがこれらに限定されるものではない。これらの透光性の導電膜は入射太陽光を良く透過し、かつ表面抵抗の小さい層が好ましく、例えば、厚さ5〜15nmの金、白金層、厚さ30〜200nmのスズドープ酸化インジウム層が好ましい。透明電極は、例えばスパッタ法、真空蒸着法、イオンプレーティング法、プラズマCVD法、ゾルゲル法、印刷法等で堆積させる。   Examples of transparent electrodes include oxides such as tin oxide, indium oxide and zinc oxide having a thickness of 10 to 500 nm, or metal thin films such as gold, platinum, palladium, silver and alloys thereof having a thickness of 5 to 15 nm. However, it is not limited to these. These light-transmitting conductive films are preferably layers that transmit incident sunlight well and have low surface resistance. For example, a gold-platinum layer having a thickness of 5 to 15 nm and a tin-doped indium oxide layer having a thickness of 30 to 200 nm are used. preferable. The transparent electrode is deposited by, for example, a sputtering method, a vacuum evaporation method, an ion plating method, a plasma CVD method, a sol-gel method, a printing method, or the like.

また、透明電極上に金属等によるグリッド電極を形成することもできる。この場合、グリッド電極は、例えば、スクリーン印刷法、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、ゾルゲル法等で作製することができる。   A grid electrode made of metal or the like can be formed on the transparent electrode. In this case, the grid electrode can be produced by, for example, a screen printing method, a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a sol-gel method, or the like.

裏面電極としては、例えば鉄、クロム、チタン、タンタル、ニオブ、モリブデン、ニッケル、アルミニウム、コバルト等の金属、ニクロム、ステンレス等の合金からなる金属薄膜が用いられるがこれらに限定されるものではない。これらの金属層は、例えば、真空蒸着、スパッタリング、イオンプレーティング法、印刷法、メッキ法の手段によって設ける。またこれらの金属層と光電変換層との間に、例えば、厚さ2nm〜500nmの透明な電極を設けることも可能である。また裏面電極として、例えば、透明導電性酸化物薄膜を用いて太陽電池全面に透視性をもたせる、いわゆる“シースルー型太陽電池”とすることも可能である。   As the back electrode, for example, a metal thin film made of a metal such as iron, chromium, titanium, tantalum, niobium, molybdenum, nickel, aluminum, cobalt, or an alloy such as nichrome, stainless steel is used, but is not limited thereto. These metal layers are provided by means of, for example, vacuum deposition, sputtering, ion plating, printing, or plating. Further, for example, a transparent electrode having a thickness of 2 nm to 500 nm can be provided between the metal layer and the photoelectric conversion layer. Further, as the back electrode, for example, a so-called “see-through solar cell” can be used in which a transparent conductive oxide thin film is used to make the entire surface of the solar cell transparent.

また、太陽電池素子の耐候性をあげるために、上記の層上あるいは層間のいずれかに設けガスバリアー層を設けることも可能である。例えば、ケイ素酸化物(SiOx)、ケイ素窒化物(SiNx)、酸化アルミニウム(AlxOy)のいずれかの単独、もしくは二種以上の混合系の蒸着層、または無機−有機のハイブリッドコート層のうちのいずれか一種、または二種以上を組み合わせた複合層を好適に使用できる。   Moreover, in order to raise the weather resistance of a solar cell element, it is also possible to provide a gas barrier layer on either the above layer or between layers. For example, any one of silicon oxide (SiOx), silicon nitride (SiNx), aluminum oxide (AlxOy) alone, or a mixed deposition layer of two or more kinds, or an inorganic-organic hybrid coat layer A composite layer in which one kind or a combination of two or more kinds can be suitably used.

上述したケイ素酸化物(SiOx)、ケイ素窒化物(SiNx)、酸化アルミニウム(AlxOy)などの蒸着層は、例えば蒸着法、スパッタ法、CVD法、ディッピング法、ゾルゲル法などにより基材上に容易に形成することができる。このようなガスバリア層の厚さは、例えば5〜500nmの範囲が適当であり、特に30〜150nmの範囲が好ましい。   Vapor deposition layers such as silicon oxide (SiOx), silicon nitride (SiNx), and aluminum oxide (AlxOy) described above can be easily formed on a substrate by, for example, vapor deposition, sputtering, CVD, dipping, sol-gel, or the like. Can be formed. The thickness of such a gas barrier layer is, for example, suitably in the range of 5 to 500 nm, particularly preferably in the range of 30 to 150 nm.

さらに、上述したシリコンおよびゲルマニウムを主成分とする非単結晶太陽電池においては、pin型(スーパーストレートタイプ)太陽電池、nip型(サブストレートタイプ)太陽電池のどちらの構成をとっても構わないし、いわゆるタンデム型、トリプル型太陽電池のように素子を複数個積層しても構わない。   Furthermore, in the non-single crystal solar cell mainly composed of silicon and germanium described above, either a pin type (super straight type) solar cell or a nip type (substrate type) solar cell may be used. A plurality of elements may be stacked like a triple solar cell.

図6は、本発明の水素希釈率変調法によりi層を作製したpin型薄膜シリコン太陽電池を示した断面図である(比較例1)。   FIG. 6 is a cross-sectional view showing a pin-type thin film silicon solar cell in which an i-layer is produced by the hydrogen dilution rate modulation method of the present invention (Comparative Example 1).

比較例1では、透明基板6上に透明導電膜7を例えば200nm設け、その上に、例えばプラズマCVD法でp型アモルファスシリコン薄膜8を設ける。続いて、本発明のナノ結晶粒を含むi型アモルファスシリコン薄膜9、n型アモルファスシリコン薄膜10を設け、最後に透明導電膜11、金属電極12を設ける。   In Comparative Example 1, a transparent conductive film 7 is provided on a transparent substrate 6 with a thickness of, for example, 200 nm, and a p-type amorphous silicon thin film 8 is provided thereon with, for example, a plasma CVD method. Subsequently, an i-type amorphous silicon thin film 9 and an n-type amorphous silicon thin film 10 containing nanocrystal grains of the present invention are provided, and finally a transparent conductive film 11 and a metal electrode 12 are provided.

図7は、ナノ結晶粒を含むi型アモルファスシリコン薄膜(サンプル1)を作製する際の処理工程を示したプログラム図である。   FIG. 7 is a program diagram showing the processing steps for producing an i-type amorphous silicon thin film (sample 1) containing nanocrystal grains.

プログラムで高水素希釈率条件(水素希釈率40、膜厚3nm相当)、低希釈率条件(水素希釈率4、膜厚12nm相当)で希釈率を変調し、合計300nmの膜厚だけi層を作製した。すなわち、高水素希釈率膜(膜厚3nm相当)及び低水素希釈率(膜厚12nm相当)の積層膜が、それぞれ約20層前後となる。   The program modulates the dilution rate under the conditions of high hydrogen dilution rate (hydrogen dilution rate 40, equivalent to film thickness 3 nm) and low dilution rate condition (hydrogen dilution rate 4, equivalent to film thickness 12 nm). Produced. That is, each of the high hydrogen dilution rate film (corresponding to a film thickness of 3 nm) and the low hydrogen dilution rate (corresponding to a film thickness of 12 nm) is about 20 layers each.

図8は、ナノ結晶粒を含むi型アモルファスシリコン薄膜(サンプル2)を作製する際の別の処理工程を示したプログラム図である。   FIG. 8 is a program diagram showing another processing step when producing an i-type amorphous silicon thin film (sample 2) containing nanocrystal grains.

高水素希釈率条件(水素希釈率25、膜厚2nm相当)、低希釈率条件(水素希釈率5、膜厚2nm相当)で希釈率を変調し、合計300nmの膜厚だけi層を作製した。すなわち、高水素希釈率膜(膜厚2nm相当)及び低水素希釈率(膜厚2nm相当)の積層膜が、それぞれ約75層前後となる。   The dilution rate was modulated under high hydrogen dilution rate conditions (hydrogen dilution rate 25, film thickness equivalent to 2 nm) and low dilution rate conditions (hydrogen dilution rate 5, film thickness equivalent to 2 nm), and an i-layer was produced with a total film thickness of 300 nm. . That is, the high hydrogen dilution rate film (equivalent to a film thickness of 2 nm) and the low hydrogen dilution rate (equivalent to a film thickness of 2 nm) are approximately 75 layers each.

図9は、ナノ結晶粒を含むi型アモルファスシリコン薄膜(比較例2)を作製する際の別の処理工程を示したプログラム図である。   FIG. 9 is a program diagram showing another processing step when producing an i-type amorphous silicon thin film containing nanocrystal grains (Comparative Example 2).

高水素希釈率条件(水素希釈率40、膜厚6nm相当)、低希釈率条件(水素希釈率4、膜厚4nm相当)で希釈率を変調し、合計300nmの膜厚だけi層を作製した。すなわち、高水素希釈率膜(膜厚6nm相当)及び低水素希釈率(膜厚4nm相当)の積層膜が、それぞれ約30層前後となる。   The dilution rate was modulated under high hydrogen dilution rate conditions (equivalent to hydrogen dilution rate of 40 and film thickness of 6 nm) and low dilution rate conditions (equivalent of hydrogen dilution rate of 4 and film thickness of 4 nm) to produce i layers with a total film thickness of 300 nm. . That is, the laminated film of the high hydrogen dilution rate film (equivalent to a film thickness of 6 nm) and the low hydrogen dilution rate (equivalent to a film thickness of 4 nm) each have about 30 layers.

図10は、上述した図7〜図9で作製したサンプルおよび比較例の光照射(擬似太陽光AM1.5 1SUN 500時間照射)前後の太陽電池特性を示した図である。   FIG. 10 is a diagram showing the solar cell characteristics before and after light irradiation (pseudo sunlight AM1.5 1SUN 500 hours irradiation) of the samples prepared in FIGS. 7 to 9 and the comparative example described above.

本実施形態で作成したサンプル1、2は、光照射にたいして極めて安定であるのに対して、比較例1は劣化前の初期値では高い値を示しているにもかかわらず光照射後、大きく変換効率が減少している。また、比較例2は、ナノ結晶の粒径が大きすぎるために初期効率そのものが低い。   Samples 1 and 2 prepared in the present embodiment are extremely stable with respect to light irradiation, whereas Comparative Example 1 shows a high value in the initial value before deterioration, and greatly converted after light irradiation. Efficiency is decreasing. In Comparative Example 2, the initial efficiency itself is low because the particle size of the nanocrystal is too large.

以上の結果から本実施形態による太陽電池が光照射後最も優れたデバイス特性を示すことがわかる。   From the above results, it can be seen that the solar cell according to the present embodiment exhibits the most excellent device characteristics after light irradiation.

(第3実施形態)
また、本発明に係る非単結晶半導体材料を適用した半導体材料を発光素子として用いることもできる。
(Third embodiment)
A semiconductor material to which the non-single-crystal semiconductor material according to the present invention is applied can also be used as a light-emitting element.

図11は、本発明のナノ結晶粒を含む非単結晶材料(サンプル3)を作製する際の処理工程を示したプログラム図である。   FIG. 11 is a program diagram showing processing steps when producing a non-single crystal material (sample 3) containing nanocrystal grains of the present invention.

高水素希釈率条件(水素希釈率40、膜厚3nm相当)、低希釈率条件(水素希釈率4、膜厚12nm相当)で希釈率を変調し、合計300nmの膜厚だけ石英基材(膜厚1.1mm)上に非単結晶材料を作製した。すなわち、高水素希釈率膜(膜厚3nm相当)及び低水素希釈率(膜厚4nm相当)の積層膜が、それぞれ約43層前後となる。   The dilution rate is modulated under the high hydrogen dilution rate condition (hydrogen dilution rate 40, equivalent to film thickness 3 nm) and low dilution rate condition (hydrogen dilution rate 4, equivalent to film thickness 12 nm). A non-single crystal material was fabricated on a thickness of 1.1 mm. That is, each of the high hydrogen dilution rate film (corresponding to a film thickness of 3 nm) and the laminated film of the low hydrogen dilution rate (corresponding to a film thickness of 4 nm) is about 43 layers each.

図12は、本発明のナノ結晶粒を含む非単結晶材料(サンプル4)を作製する際の処理工程を示したプログラム図である。   FIG. 12 is a program diagram showing processing steps when producing a non-single crystal material (sample 4) containing nanocrystal grains of the present invention.

高水素希釈率条件(水素希釈率25、膜厚2nm相当)、低希釈率条件(水素希釈率5、膜厚2nm相当)で希釈率を変調し、合計300nmの膜厚だけ石英基材(膜厚1.1mm)上に非単結晶材料を作製した。すなわち、高水素希釈率膜(膜厚2nm相当)及び低水素希釈率(膜厚2nm相当)の積層膜が、それぞれ約75層前後となる。   Quartz substrate (film) with a total film thickness of 300 nm by modulating the dilution ratio under high hydrogen dilution conditions (hydrogen dilution ratio 25, equivalent to film thickness 2 nm) and low dilution ratio conditions (hydrogen dilution ratio 5, equivalent to film thickness 2 nm) A non-single crystal material was fabricated on a thickness of 1.1 mm. That is, the high hydrogen dilution rate film (equivalent to a film thickness of 2 nm) and the low hydrogen dilution rate (equivalent to a film thickness of 2 nm) are approximately 75 layers each.

図13は、本発明のナノ結晶粒を含む非単結晶材料(比較例3)を作製する際の処理工程を示したプログラム図である。   FIG. 13 is a program diagram showing processing steps when producing a non-single crystal material (comparative example 3) containing nanocrystal grains of the present invention.

高水素希釈率条件(水素希釈率40、膜厚18nm相当)、低希釈率条件(水素希釈率4、膜厚2nm相当)で希釈率を変調し、合計300nmの膜厚だけ石英基材(膜厚1.1mm)上に非単結晶材料を作製した。すなわち、高水素希釈率膜(膜厚18nm相当)及び低水素希釈率(膜厚2nm相当)の積層膜が、それぞれ約15層前後となる。   Quartz substrate (film) with a total film thickness of 300 nm by modulating the dilution ratio under high hydrogen dilution conditions (hydrogen dilution ratio 40, film thickness equivalent to 18 nm) and low dilution conditions (hydrogen dilution ratio 4, film thickness equivalent to 2 nm) A non-single crystal material was fabricated on a thickness of 1.1 mm. That is, the high hydrogen dilution rate film (equivalent to a film thickness of 18 nm) and the laminated film having a low hydrogen dilution rate (equivalent to a film thickness of 2 nm) each have about 15 layers.

図14は、上述したサンプル及び比較例を作製した非単結晶材料の発光特性を評価した図である。   FIG. 14 is a graph showing an evaluation of the light emission characteristics of the non-single-crystal material produced for the sample and the comparative example described above.

発光の励起には連続発振のHe-Cdレーザー(波長325nm)を用いた。その結果を図14に示す。サンプル3、4では、可視領域部分に強い発光が観察されるのに対して、比較例3では発光が観察されていない。   A continuous wave He-Cd laser (wavelength: 325 nm) was used for excitation of light emission. The results are shown in FIG. In Samples 3 and 4, strong light emission is observed in the visible region, whereas in Comparative Example 3, no light emission is observed.

以上、本発明の各実施形態を説明してきたが、本発明は各実施の携帯に記載された構成・条件に限られるものではない。また、発光をフォトルミネセンスとして観察しているが、ナノ結晶を含む非単結晶材料にキャリアを注入することによって発光させることが可能である。また、このような注入発光が実現した場合には、半導体集積回路装置の入出力を光によって行う際の光源として用いることができ、同じシリコンプロセスからなるので、プロセス整合性が良く、安価に信頼性の高い発光素子を提供することができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations and conditions described in the mobile phones of the embodiments. Although light emission is observed as photoluminescence, light can be emitted by injecting carriers into a non-single-crystal material including nanocrystals. In addition, when such injection light emission is realized, it can be used as a light source when the input / output of the semiconductor integrated circuit device is performed by light, and since it is made of the same silicon process, it has good process consistency and is inexpensive and reliable. A highly light-emitting element can be provided.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明の第1実施形態に係る非単結晶半導体材料を示した断面図。Sectional drawing which showed the non-single-crystal semiconductor material which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る非単結晶半導体材料を適用した非単結晶半導体材料の製造方法を示した断面図。Sectional drawing which showed the manufacturing method of the non-single-crystal semiconductor material to which the non-single-crystal semiconductor material which concerns on 1st Embodiment of this invention is applied. 本発明の第1実施形態に係る高水素希釈率条件および低水素希釈率条件を変調する場合に、シラン系もしくはゲルマン系の原料ガスの流量、希釈ガスの流量のどちらか片方を変化させたときの成膜時間に対するシラン流量、水素流量、希釈率を示した図。When modulating the high hydrogen dilution rate condition and the low hydrogen dilution rate condition according to the first embodiment of the present invention, when either the flow rate of the silane or germane source gas or the flow rate of the dilution gas is changed The figure which showed the silane flow rate, hydrogen flow rate, and dilution rate with respect to the film-forming time. 本発明の第1実施形態に係る高水素希釈率条件および低水素希釈率条件を変調する場合に、シラン系もしくはゲルマン系の原料ガスの流量、希釈ガスの流量の両方を同時に変化させたときの成膜時間に対するシラン流量、水素流量、希釈率を示した図。When the high hydrogen dilution rate condition and the low hydrogen dilution rate condition according to the first embodiment of the present invention are modulated, both the flow rate of the silane or germane source gas and the flow rate of the dilution gas are changed simultaneously. The figure which showed the silane flow rate, hydrogen flow rate, and dilution rate with respect to film-forming time. 本発明の第1実施形態に係る時間変調に同期させ高水素希釈率膜作製時に投入電力を増加させ、また低水素希釈率膜作製時に導入電力を減少させたときの成膜時間に対するシラン流量、水素流量、希釈率、投入電力値を示した図。The silane flow rate relative to the film formation time when the input power is increased at the time of manufacturing the high hydrogen dilution rate film in synchronization with the time modulation according to the first embodiment of the present invention and the input power is decreased at the time of manufacturing the low hydrogen dilution rate film, The figure which showed the hydrogen flow rate, the dilution rate, and the input electric power value. 水素希釈率変調法によりi層を作製したpin型薄膜シリコン太陽電池を示した断面図。Sectional drawing which showed the pin type thin film silicon solar cell which produced i layer by the hydrogen dilution rate modulation method. 本発明の第2実施形態に係るナノ結晶粒を含むi型アモルファスシリコン薄膜を作製する際の処理工程を示したプログラム図。The program figure which showed the process process at the time of producing the i-type amorphous silicon thin film containing the nanocrystal grain which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るナノ結晶粒を含むi型アモルファスシリコン薄膜を作製する際の別の処理工程を示したプログラム図。The program figure which showed another processing process at the time of producing the i-type amorphous silicon thin film containing the nanocrystal grain which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るナノ結晶粒を含むi型アモルファスシリコン薄膜を作製する際の別の処理工程を示したプログラム図。The program figure which showed another processing process at the time of producing the i-type amorphous silicon thin film containing the nanocrystal grain which concerns on 2nd Embodiment of this invention. 図7〜図9で作製したサンプルおよび比較例に擬似太陽光を照射し、測定した結果を示す図。The figure which shows the result of having irradiated pseudo-sunlight to the sample produced in FIGS. 7-9, and a comparative example, and measuring. 本発明の第3実施形態にに係るナノ結晶粒を含む非単結晶材料を作製する際の処理工程を示したプログラム図。The program figure which showed the process process at the time of producing the non-single-crystal material containing the nanocrystal grain concerning 3rd Embodiment of this invention. 本発明の第3実施形態にに係るナノ結晶粒を含む非単結晶材料を作製する際の処理工程を示したプログラム図。The program figure which showed the process process at the time of producing the non-single-crystal material containing the nanocrystal grain concerning 3rd Embodiment of this invention. 本発明の第3実施形態にに係るナノ結晶粒を含む非単結晶材料を作製する際の処理工程を示したプログラム図。The program figure which showed the process process at the time of producing the non-single-crystal material containing the nanocrystal grain concerning 3rd Embodiment of this invention. 水素希釈率変調法で作製した非単結晶材料の室温での発光特性を示す図。The figure which shows the light emission characteristic in the room temperature of the non-single-crystal material produced by the hydrogen dilution rate modulation method.

符号の説明Explanation of symbols

1…非単結晶半導体材料、2…結晶ゲルマニウム、3…アモルファス材料、3.4、ンプル、4…低水素希釈率膜、6…透明基板、7…透明導電膜、8…i型半導体、9…n型半導体、11…透明導電膜、12…金属電極 DESCRIPTION OF SYMBOLS 1 ... Non-single-crystal semiconductor material, 2 ... Crystal germanium, 3 ... Amorphous material, 3.4, Sample, 4 ... Low hydrogen dilution rate film, 6 ... Transparent substrate, 7 ... Transparent conductive film, 8 ... i-type semiconductor, 9 ... n-type semiconductor, 11 ... transparent conductive film, 12 ... metal electrode

Claims (2)

基材上に、CVD法によりシラン系又はゲルマン系ガスと水素系ガスを用いて半導体層を成膜する成膜工程を含む、シリコンを主体とするアモルファス材料中に粒径1nm〜5nmの結晶シリコンを散在させた非単結晶半導体材料又はゲルマニウムを主体とするアモルファス材料中に粒径1nm〜5nmの結晶ゲルマニウムを散在させた非単結晶半導体材料の製造方法であって、
前記成膜工程が、(水素系ガスの流量)/(シラン系又はゲルマン系ガスの流量)で表される水素希釈率条件が25〜100である高水素希釈率条件で成膜する工程と、前記水素希釈率条件が2〜20である低水素希釈率条件で成膜する工程を交互に繰り返すことを特徴とする非単結晶半導体材料の製造方法。
Crystalline silicon having a particle size of 1 nm to 5 nm in an amorphous material mainly composed of silicon, including a film forming step of forming a semiconductor layer on a substrate by a CVD method using a silane-based or germane-based gas and a hydrogen-based gas A method for producing a non-single crystal semiconductor material in which crystalline germanium having a particle size of 1 nm to 5 nm is dispersed in a non-single crystal semiconductor material or an amorphous material mainly composed of germanium ,
The film forming step is a step of forming a film under a high hydrogen dilution rate condition in which a hydrogen dilution rate condition represented by (flow rate of hydrogen gas) / (flow rate of silane or germane gas) is 25 to 100; A method for producing a non-single-crystal semiconductor material, characterized in that the steps of film formation under low hydrogen dilution rate conditions where the hydrogen dilution rate conditions are 2 to 20 are repeated alternately.
基材上に、CVD法によりシラン系又はゲルマン系ガスと水素系ガスを用いて半導体層を成膜する成膜工程を含む、シリコンを主体とするアモルファス材料中に粒径1nm〜3nmの結晶シリコンを散在させた非単結晶半導体材料又はゲルマニウムを主体とするアモルファス材料中に粒径1nm〜3nmの結晶ゲルマニウムを散在させた非単結晶半導体材料の製造方法であって、
前記成膜工程が、(水素系ガスの流量)/(シラン系又はゲルマン系ガスの流量)で表される水素希釈率条件が25〜70である高水素希釈率条件で成膜する工程と、前記水素希釈率条件が2〜10である低水素希釈率条件で成膜する工程を交互に繰り返すことを特徴とする非単結晶半導体材料の製造方法。
Crystalline silicon having a particle size of 1 nm to 3 nm in an amorphous material mainly composed of silicon, including a film forming step of forming a semiconductor layer on a base material by a CVD method using a silane-based or germane-based gas and a hydrogen-based gas A method for producing a non-single crystal semiconductor material in which crystalline germanium having a particle size of 1 nm to 3 nm is dispersed in a non-single crystal semiconductor material or an amorphous material mainly composed of germanium ,
The film forming step is a step of forming a film under a high hydrogen dilution rate condition in which a hydrogen dilution rate condition represented by (flow rate of hydrogen gas) / (flow rate of silane or germane gas) is 25 to 70; A method for producing a non-single-crystal semiconductor material, wherein the steps of forming a film under a low hydrogen dilution rate condition where the hydrogen dilution rate condition is 2 to 10 are alternately repeated.
JP2005117162A 2005-04-14 2005-04-14 Method for producing non-single crystal semiconductor material Expired - Fee Related JP4899118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117162A JP4899118B2 (en) 2005-04-14 2005-04-14 Method for producing non-single crystal semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117162A JP4899118B2 (en) 2005-04-14 2005-04-14 Method for producing non-single crystal semiconductor material

Publications (2)

Publication Number Publication Date
JP2006295060A JP2006295060A (en) 2006-10-26
JP4899118B2 true JP4899118B2 (en) 2012-03-21

Family

ID=37415274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117162A Expired - Fee Related JP4899118B2 (en) 2005-04-14 2005-04-14 Method for producing non-single crystal semiconductor material

Country Status (1)

Country Link
JP (1) JP4899118B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295234B2 (en) 2008-05-26 2013-09-18 三菱電機株式会社 Thin film forming apparatus and semiconductor film manufacturing method
KR100925123B1 (en) * 2008-09-08 2009-11-04 주식회사 엔피홀딩스 Solar cell and method for manufacturing the same
KR101106480B1 (en) * 2009-06-12 2012-01-20 한국철강 주식회사 Method for Manufacturing Photovoltaic Device
KR101072472B1 (en) * 2009-07-03 2011-10-11 한국철강 주식회사 Method for Manufacturing Photovoltaic Device
US8557687B2 (en) * 2009-07-23 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Method for forming microcrystalline semiconductor film and method for manufacturing thin film transistor
JP5502210B2 (en) * 2010-12-24 2014-05-28 三菱電機株式会社 Microcrystalline semiconductor thin film manufacturing method
JP5880629B2 (en) * 2014-06-24 2016-03-09 セイコーエプソン株式会社 Photoelectric conversion device, electronic device, method for manufacturing photoelectric conversion device, and method for manufacturing electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145719A (en) * 1989-10-31 1991-06-20 Agency Of Ind Science & Technol Silicon thin film and manufacture thereof
JPH05243607A (en) * 1992-02-28 1993-09-21 Kanegafuchi Chem Ind Co Ltd Light emitting material of large area and manufacture
JP3162781B2 (en) * 1992-03-04 2001-05-08 三洋電機株式会社 Method for forming semiconductor thin film and apparatus for forming this film
JPH06204540A (en) * 1992-12-28 1994-07-22 Canon Inc Photovoltaic element
JPH0918038A (en) * 1995-06-29 1997-01-17 Mitsui Toatsu Chem Inc Photoelectric conversion element
US6087580A (en) * 1996-12-12 2000-07-11 Energy Conversion Devices, Inc. Semiconductor having large volume fraction of intermediate range order material
JP3679595B2 (en) * 1998-02-17 2005-08-03 キヤノン株式会社 Photovoltaic element and manufacturing method thereof
JP2002343990A (en) * 2001-05-16 2002-11-29 Toppan Printing Co Ltd Photovoltaic element

Also Published As

Publication number Publication date
JP2006295060A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
Stuckelberger et al. Progress in solar cells from hydrogenated amorphous silicon
JP4899118B2 (en) Method for producing non-single crystal semiconductor material
JP6125594B2 (en) Method for manufacturing photoelectric conversion device
WO2003065462A1 (en) Tandem thin-film photoelectric transducer and its manufacturing method
JPWO2009142187A1 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2007288043A (en) Transparent conductive film for photoelectric converter and manufacturing method thereof
TWI543387B (en) Photoelectric conversion device and manufacturing method thereof
JP2012023350A (en) Method of producing photoelectric conversion device
JP2004260014A (en) Multilayer type thin film photoelectric converter
WO2005078154A1 (en) Process for producing transparent conductive film and process for producing tandem thin-film photoelectric converter
TWI466816B (en) Vertically oriented nanowires array structure and method thereof
EP1830412A1 (en) Method for fabricating an optical sensitive layer of a solar cell having silicon quantum dots
JP2009117463A (en) Thin-film photoelectric conversion device
JP2009267222A (en) Manufacturing method of substrate with transparent conductive film for thin-film photoelectric converter
Kumagai et al. Bayesian optimization of hydrogen plasma treatment in silicon quantum dot multilayer and application to solar cells
KR101771410B1 (en) Photoelectric conversion device and method for manufacturing the same
JP2012023347A (en) Photoelectric conversion device and method of producing the same
US7399654B2 (en) Method for fabricating optical sensitive layer of solar cell having silicon quantum dots
JP5143289B2 (en) Photovoltaic device and manufacturing method thereof
JP5109230B2 (en) Non-single crystal solar cell manufacturing method
RU2501121C2 (en) Photocell and method of making photocell
JP2006210559A (en) Non-single-crystal solar battery, manufacturing method thereof, and non-single-crystal solar battery manufacturing apparatus
JP4691889B2 (en) Non-single crystal solar cell and method of manufacturing non-single crystal solar cell
KR101116857B1 (en) Solar cell and method of fabricating the same
TWI405343B (en) Flexible solar cell with high conversion efficiency and the manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees