JPH09255334A - Production of bulk-oxide superconductor - Google Patents
Production of bulk-oxide superconductorInfo
- Publication number
- JPH09255334A JPH09255334A JP8065900A JP6590096A JPH09255334A JP H09255334 A JPH09255334 A JP H09255334A JP 8065900 A JP8065900 A JP 8065900A JP 6590096 A JP6590096 A JP 6590096A JP H09255334 A JPH09255334 A JP H09255334A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- powder
- phase
- oxide superconductor
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半溶融法(メルト
プロセス法)でREBa2Cu3O7-x(xは欠損失量、
REは希土類元素)系のバルク酸化物超電導体を作製す
る作製方法に関し、特に、バルク酸化物超電導体を用い
た磁気浮上装置、磁気シールド、超電導バルクマグネッ
トの作製技術に適用して有効な技術に関するものであ
る。TECHNICAL FIELD The present invention relates to REBa 2 Cu 3 O 7-x (x is a loss amount, a semi-melting method).
RE relates to a manufacturing method for manufacturing a bulk oxide superconductor of a rare earth element type, and particularly relates to a technology effectively applied to a manufacturing technology of a magnetic levitation device, a magnetic shield, and a superconducting bulk magnet using the bulk oxide superconductor. It is a thing.
【0002】[0002]
【従来の技術】特開平7−111213号公報に記載さ
れるように、溶融法でREBa2Cu3O7-x(xは欠損
量)(以下、RE123と称する)系の超電導バルク体
内のピンニングセンタに磁場を捕捉するバルク酸化物超
電導体を用いた超電導磁石が開示されている。2. Description of the Related Art As described in JP-A-7-111213, pinning in a superconducting bulk body of REBa 2 Cu 3 O 7-x (x is a deficient amount) (hereinafter referred to as RE123) system by a melting method. A superconducting magnet using a bulk oxide superconductor that captures a magnetic field at the center is disclosed.
【0003】一般に行われている溶融法で、これら超電
導体を作製すると、希土類元素のイオン半径が大きいた
め、Baサイトと容易に置換し、臨界温度が大きく低下
してしまうという問題があった。例えば、H.Uwe et a
l.:Physica C vol.153-155(1988)P.930-931にその関連
技術が開示されている。When these superconductors are manufactured by a commonly used melting method, there is a problem that the ionic radius of the rare earth element is large, so that the Ba site is easily replaced and the critical temperature is greatly lowered. For example, H.Uwe et a
l .: Physica C vol.153-155 (1988) P.930-931 discloses the related art.
【0004】また、RE123は、材料のμmオーダの
構造から、主に(a)多結晶、(b)単結晶、(c)バ
ルク(超電導相中にピン止め点を有し、すぐれた超電導
特性を示す)の3つの範疇に分類される。RE123 is mainly composed of (a) polycrystal, (b) single crystal, (c) bulk (having a pinning point in the superconducting phase, and having excellent superconducting characteristics, because of its structure in the order of μm. Are shown).
【0005】RE123バルク超電導体は、半溶融法
(メルトプロセス法)により作製される。この半溶融法
には、MTG(Melt-Txture-Growth process)法、M
PMG(Melt-Powder-Txture-Growth process)法
(“Melt processed high-temperature superconductor
s” World Scientific,Editor.Masato Murakami参照)、
QMG(Quench and Melt Growth process)法、PD
MG法(Platinum Doped Melt Growth process:白
金添加溶融法,固体物理 Vol.26 No12 1991 p11〜17参
照)などが知られている。The RE123 bulk superconductor is manufactured by the semi-melting method (melt process method). This semi-melting method includes MTG (Melt-Txture-Growth process) method, M
PMG (Melt-Powder-Txture-Growth process) method
(“Melt processed high-temperature superconductor
s ”World Scientific, Editor. Masato Murakami),
QMG (Quench and Melt Growth process) method, PD
MG method (Platinum Doped Melt Growth process: platinum addition melting method, solid-state physics Vol.26 No12 1991 p11-17 reference) etc. are known.
【0006】特に、前記QMG法、MPMG法は、図2
に示すように、原料を1400℃で溶融後急冷して中
間体を作製する溶融急冷過程と溶融成長過程の2段階
の熱処理過程から成っている。この方法によると、試料
は通常の溶融法よりも211相が微細に分散した組織が
得られ、さらにクラックが減少し、強いピニング力が得
られることが知られている。Particularly, the QMG method and the MPMG method are shown in FIG.
As shown in FIG. 5, the raw material is melted at 1400 ° C. and then rapidly cooled to form an intermediate, which is a two-step heat treatment process including a melt quenching process and a melt growth process. According to this method, it is known that the sample has a structure in which the 211 phase is finely dispersed, a crack is reduced, and a strong pinning force is obtained, as compared with the usual melting method.
【0007】また、前記PDMG法(白金添加溶融法)
は、Y123系の超電導体の仮焼粉末と白金粉末(0.
5重量%)を混合した後、ペレット状に成形する。この
成形体を1100℃で1時間、半溶融状態とした後、1
000℃から940℃まで1℃/時(h)でゆっくり降
温し結晶成長させる。その後アニールする。このよう
に、白金を添加した溶融法でY123系の超電導体を作
製すると、Y211相が微細分散した組織となり高い臨
界電流密度Jcの超電導バルク体を得ることができる。Further, the PDMG method (platinum addition melting method)
Is a calcined powder of Y123 superconductor and platinum powder (0.
5% by weight) and then molded into pellets. After this molded body was put in a semi-molten state at 1100 ° C. for 1 hour, 1
The temperature is slowly lowered from 000 ° C to 940 ° C at 1 ° C / hour (h) to grow crystals. Then anneal. As described above, when a Y123-based superconductor is produced by the melting method in which platinum is added, the Y211 phase has a finely dispersed structure and a superconducting bulk body having a high critical current density Jc can be obtained.
【0008】[0008]
【発明が解決しようとする課題】本発明者は、前記従来
の技術を検討した結果、以下の問題点を見いだした。SUMMARY OF THE INVENTION The present inventor has found the following problems as a result of studying the above conventional technology.
【0009】低い磁場での臨界電流密度を向上するに
は、超電導体中に分散した第2相(常電導体)を微細化
することが不可欠である。しかし、RE123系超電導
体に対して従来の方法をそのまま用いるとRE211相
やRE411の第2相が粗大化してしまうという問題が
あった。以下にその理由について検討して見る。In order to improve the critical current density in a low magnetic field, it is essential to miniaturize the second phase (normal conductor) dispersed in the superconductor. However, when the conventional method is used as it is for the RE123-based superconductor, there is a problem that the RE211 phase and the second phase of the RE411 become coarse. The reason for this will be examined below.
【0010】前記従来のMPMG法をYBCO系に対し
て用いた場合、溶融急冷後に得られる組織は、YBCO
系の場合、Y2O3とアモルファス相(BaCu2O2相を
含む)のみでY123やY211等の相を含まない。When the conventional MPMG method is applied to the YBCO system, the structure obtained after the melt quenching is YBCO.
In the case of a system, only Y 2 O 3 and an amorphous phase (including a BaCu 2 O 2 phase) are not included, and a phase such as Y123 or Y211 is not included.
【0011】一方、希土類系超電導体の場合には溶融急
冷後に得られる相が、Y系と異なりRE123やRE2
11(あるいはRE422)という相がRE2O3とアモ
ルファス相と一緒にできる。このRE211(あるいは
RE422)は数10ミクロンに成長しているため、そ
の後に粉砕混合しても、粗大なRE211(あるいはR
E422)がそのまま残ってしまう。On the other hand, in the case of a rare earth-based superconductor, the phase obtained after melt quenching is different from that of the Y-based RE123 and RE2.
The phase 11 (or RE422) can be combined with RE 2 O 3 and the amorphous phase. Since this RE211 (or RE422) has grown to several tens of microns, even if it is crushed and mixed after that, a coarse RE211 (or R
E422) remains as it is.
【0012】希土類系超電導体で溶融急冷後に123相
や211相あるいは422相の第2相ができてしまう理
由は、図3(RE123系の擬2元系相図)に示すよう
に、希土類系超電導体の状態図では太線で示す液相線の
傾きが、Y系に比べて急になっているためである。これ
は液相中への希土類元素の溶解度の温度変化がY系に比
べて大きいことを示している。Y系の場合、溶解度の温
度変化が少ないために、温度変化による相の成長速度が
小さく、Y2O3+液相は急冷後にもそのままY2O3+ア
モルファスとして残る。The reason why a second phase of 123 phase, 211 phase or 422 phase is formed after melting and quenching in a rare earth superconductor is as shown in FIG. 3 (RE123 system pseudo binary system phase diagram). This is because the liquid phase line indicated by a thick line in the state diagram of the superconductor has a steeper slope than that of the Y system. This indicates that the temperature change of the solubility of the rare earth element in the liquid phase is larger than that of the Y system. In the case of the Y system, since the temperature change of the solubility is small, the growth rate of the phase due to the temperature change is small, and the Y 2 O 3 + liquid phase remains as Y 2 O 3 + amorphous even after being rapidly cooled.
【0013】一方、希土類元素、例えば、Ndの場合で
あれば、急冷中に溶解度の急激な変化が起るため、液相
から大量のNdが供給され、Nd2O3がNd123やN
d422も急激に成長してしまうため、溶融急冷後にN
d2O3やアモルファス相の他に123相や第2相が残っ
てしまう結果となる。On the other hand, in the case of a rare earth element, for example, Nd, a large amount of Nd is supplied from the liquid phase since Nd 2 O 3 is supplied with a large amount of Nd because the solubility rapidly changes during the rapid cooling.
Since d422 also grows rapidly, N after melting and quenching
As a result, in addition to d 2 O 3 and the amorphous phase, the 123 phase and the second phase remain.
【0014】本発明の目的は、超電導特性のよいバルク
酸化物超電導体の作製方法を提供することにある。An object of the present invention is to provide a method for producing a bulk oxide superconductor having good superconducting properties.
【0015】本発明の他の目的は、超電導体中に分散し
た第2相(常電導体)を微細化するバルク酸化物超電導
体の作製方法を提供することにある。Another object of the present invention is to provide a method for producing a bulk oxide superconductor which miniaturizes the second phase (normal conductor) dispersed in the superconductor.
【0016】本発明の前記ならびにその他の目的及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かにする。The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
【0017】[0017]
【課題を解決するための手段】本願によって開示される
発明のうち代表的なものの概要を簡単に説明すれば、以
下のとおりである。The following is a brief description of an outline of a typical invention among the inventions disclosed by the present application.
【0018】(1)半溶融法(メルトプロセス法)でR
EBa2Cu3O7-x(xは欠損量、REは希土類元素)
系の超電導体を作製する酸化物超電導体はバルクの作製
方法であって、前記予め結晶化したREBa2Cu3O
7-x系の超電導体の粉末と、RE2BaCuO5もしくは
RE4Ba2Cu2O5系の第2相常電導体の粒径を可能な
限り小さい径にした粉末を出発原料として用いたもので
ある。(1) R by the semi-melt method (melt process method)
EBa 2 Cu 3 O 7-x (x: deficiency, RE: rare earth element)
The oxide superconductor for producing the system superconductor is a bulk production method, and the previously crystallized REBa 2 Cu 3 O is used.
A powder of 7-x type superconductor and a powder of RE 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 5 type second phase normal conductor with the smallest possible particle size were used as starting materials. It is a thing.
【0019】(2)前記(1)のバルク酸化物超電導体
の作製方法において、RE2BaCuO5もしくはRE4
Ba2Cu2O5系の第2相常電導体の粉末として、RE2
BaCuO5もしくはRE4Ba2Cu2O5系の第2相常
電導体の結晶を粉砕した後分級したもの、あるいはスプ
レードライ法、共沈法、金属アルコキシド等から得られ
る粒径3μm以下の微細な粉末を用いたものである。(2) In the method for producing a bulk oxide superconductor according to the above (1), RE 2 BaCuO 5 or RE 4 is used.
As a powder of a Ba 2 Cu 2 O 5 -based second-phase normal conductor, RE 2
BaCuO 5 or RE 4 Ba 2 Cu 2 O 5 type second-phase normal conductor crystals are pulverized and then classified, or fine particles having a particle size of 3 μm or less obtained by a spray dry method, a coprecipitation method, a metal alkoxide, or the like. It uses a powder.
【0020】(3)前記(1)のバルク酸化物超電導体
の作製方法において、予め結晶化したREBa2Cu3O
7-x系の超電導体の粉末と、RE2BaCuO5もしくは
RE4Ba2Cu2O5系の第2相常電導体の粒径を可能な
限り小さい径にした粉末の代りに、予め結晶化したRE
Ba2Cu3O7-x系の超電導体の粉末を厚さ3μm以下
のRE2BaCuO5もしくはRE4Ba2Cu2O5系の第
2相常電導体でコーティングしたものを用いたものであ
る。(3) In the method for producing a bulk oxide superconductor according to (1) above, REBa 2 Cu 3 O precrystallized.
Instead of the powder of 7-x type superconductor powder and the RE 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 5 type second phase normal conductor powder with the smallest possible particle size, pre-crystallized Transformed RE
Ba 2 Cu 3 O 7-x based superconductor powder coated with a RE 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 5 based second phase normal conductor having a thickness of 3 μm or less is used. is there.
【0021】[0021]
【発明の実施の形態】以下、本発明の一実施形態につい
て説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.
【0022】本実施形態のバルク酸化物超電導体の作製
方法は、発出原料として、予め結晶化したNdBa2C
u3O7-x(Nd123)系の超電導体の粉末と、Nd4
Ba2Cu2O5(Nd422)もしくはNd2BaCuO
5(Nd211)系の第2相常電導体を粉砕し、分級
し、粒径を1μm以下の微細な粉末にしたものを用い
た。第2相常電導体の粉末の粒径は、超電導特性上は可
能な限り小さい径にした粉末が理想であるが、製作の手
間及びコスト点から粒径1μm以下の微細な粉末が好ま
しい。The method for producing the bulk oxide superconductor according to the present embodiment uses the pre-crystallized NdBa 2 C as the starting material.
u 3 O 7-x (Nd123) -based superconductor powder and Nd 4
Ba 2 Cu 2 O 5 (Nd422) or Nd 2 BaCuO
A 5 (Nd211) -based second-phase normal conductor was pulverized and classified to obtain a fine powder having a particle size of 1 μm or less. The particle size of the powder of the second-phase normal conductor is ideally a powder that is as small as possible in view of the superconducting property, but a fine powder having a particle size of 1 μm or less is preferable from the viewpoint of labor and cost of production.
【0023】前記Nd123の結晶粉末と、Nd422
の結晶の粒径を1μm以下の微細な粉末を、目的組成に
なるように秤量して混合し、直径20mm高さ7mmに
圧粉成形してペレットを作製する。この成形体(ペレッ
ト)をアルゴン中1%酸素分圧の雰囲気下で1080℃
で30分間溶融し、1030℃に急冷した後、960℃
まで毎時−1℃(−1℃/h)で徐冷し、Nd123系
のバルク酸化物超電導体を得た。その結果、Nd123
中に分散するNd422の第2相の平均粒径がMPMG
法で作製したものでは10μm以上であったのに対し、
2μm程度となった。Nd123 crystal powder and Nd422
A fine powder having a crystal grain size of 1 μm or less is weighed and mixed so as to have a target composition, and is pressed into a diameter of 20 mm and a height of 7 mm to produce pellets. This molded body (pellet) is heated to 1080 ° C. in an atmosphere of 1% oxygen partial pressure in argon.
After melting for 30 minutes and quenching to 1030 ℃, 960 ℃
To -1 ° C./hour (-1 ° C./h) to obtain an Nd123-based bulk oxide superconductor. As a result, Nd123
The average particle size of the second phase of Nd422 dispersed therein is MPMG
Whereas the thickness produced by the method was 10 μm or more,
It became about 2 μm.
【0024】図1はMPMG法で得られたNd123系
のバルク酸化物超電導体と本実施形態の方法で得られた
Nd123系のバルク酸化物超電導体の断面の走査型電
子顕微鏡(SEM)写真である。図1において、(a)
はMPMG法で得られたNd123系のバルク酸化物超
電導体の走査型電子顕微鏡(SEM)写真、(b)は本
実施形態の方法で得られたNd123系のバルク酸化物
超電導体の断面の走査型電子顕微鏡(SEM)写真、白
い部分はNd422の第2相、黒い部分がNd123相
である。FIG. 1 is a scanning electron microscope (SEM) photograph of a cross section of the Nd123-based bulk oxide superconductor obtained by the MPMG method and the Nd123-based bulk oxide superconductor obtained by the method of the present embodiment. is there. In FIG. 1, (a)
Is a scanning electron microscope (SEM) photograph of the Nd123-based bulk oxide superconductor obtained by the MPMG method, and (b) is a cross-sectional scan of the Nd123-based bulk oxide superconductor obtained by the method of the present embodiment. Scanning electron microscope (SEM) photograph, the white part is the second phase of Nd422, and the black part is the Nd123 phase.
【0025】また、本実施形態の方法で得られたNd1
23系のバルク酸化物超電導体は、0テスラ(T)にお
ける臨界電流密度が20000A/cm2から5000
0A/cm2に向上した。これにより、Nd123系の
バルク酸化物超電導体を用いた超電導マグネットの実用
化が図れる。Further, Nd1 obtained by the method of the present embodiment
The 23-type bulk oxide superconductor has a critical current density at 0 Tesla (T) of 20000 A / cm 2 to 5000.
It was improved to 0 A / cm 2 . As a result, it is possible to put the superconducting magnet using the Nd123-based bulk oxide superconductor into practical use.
【0026】また、前記実施形態ではNd4Ba2Cu2
O5(Nd422)もしくはNd2BaCuO5(Nd2
11)系の第2相常電導体を粉砕し、分級して粒径を1
μm以下の微細な粉末にしたものを用いたが、粒径を3
μm以下もしくは2μm以下の微細な粉末にしたものを
用いた場合においても、Nd123中に分散するNd4
22の第2相の平均粒径をMPMG法で作製したものに
比べて小さくすることができた。In the above embodiment, Nd 4 Ba 2 Cu 2 is used.
O 5 (Nd422) or Nd 2 BaCuO 5 (Nd2
11) The second phase normal conductor of the system is crushed and classified to have a particle size of 1
A fine powder of less than μm was used, but the particle size was 3
Nd4 dispersed in Nd123 even when a fine powder having a size of less than or equal to 2 μm is used.
The average particle size of the second phase of No. 22 could be made smaller than that of the one prepared by the MPMG method.
【0027】以上、本発明者がなされた発明を実施形態
(実施例)に基づき具体的に説明したが、本発明は、前
記実施形態(実施例)に限定されるものではなく、その
要旨を逸脱しない範囲において種々変更し得ることはい
うまでもない。Although the invention made by the present inventor has been specifically described based on the embodiments (examples), the present invention is not limited to the above-described embodiments (examples), and the gist thereof is not limited. It goes without saying that various changes can be made without departing from the scope.
【0028】[0028]
【発明の効果】本願によって開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、以
下のとおりである。The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.
【0029】RE123中に分散するRE422もしく
はRE211などの第2相の平均粒径を微細にしたバル
ク酸化物超電導体が得られるので、超電導特性のよいバ
ルク酸化物超電導体を作製することができた。また、臨
界電流密度の高いRE123系のバルク酸化物超電導体
を合成することができた。Since a bulk oxide superconductor in which the average particle diameter of the second phase such as RE422 or RE211 dispersed in RE123 is made fine is obtained, a bulk oxide superconductor having good superconducting properties can be produced. . Further, it was possible to synthesize a RE123-based bulk oxide superconductor having a high critical current density.
【図1】MPMG法で得られたNd123系のバルク酸
化物超電導体と本発明の実施形態の方法で得られたNd
123系のバルク酸化物超電導体の断面の走査型電子顕
微鏡(SEM)写真である。FIG. 1 is an Nd123-based bulk oxide superconductor obtained by MPMG method and Nd obtained by a method according to an embodiment of the present invention.
It is a scanning electron microscope (SEM) photograph of a cross section of a 123-based bulk oxide superconductor.
【図2】QMG法、MPMG法を説明するための図であ
る。FIG. 2 is a diagram for explaining a QMG method and an MPMG method.
【図3】RE123(RE=Nd、Sm、Y)系の擬2
元系相図である。FIG. 3 is a pseudo-2 of RE123 (RE = Nd, Sm, Y) system.
It is an original phase diagram.
フロントページの続き (72)発明者 小城 宏樹 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 坂井 直道 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 村上 雅人 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内Front page continued (72) Inventor Hiroki Ogi 1-14-3 Shinonome, Koto-ku, Tokyo Inside the Institute for Superconductivity Engineering, International Superconductivity Research Center (72) Inventor Naomichi Sakai 1-14 Shinonome, Koto-ku, Tokyo No. 3 International Superconducting Industrial Technology Research Center, Superconducting Engineering Laboratory (72) Inventor Masato Murakami 1-14-3 Shinonome, Koto-ku, Tokyo International Superconducting Industrial Technology Center, Superconducting Engineering Laboratory
Claims (3)
ocess法)でREBa2Cu3O7-x(xは欠損量、REは
希土類元素)系のバルク超電導体を作製するバルク酸化
物超電導体の作製方法であって、前記予め結晶化したR
EBa2Cu3O7-x系の超電導体の粉末と、RE2BaC
uO5もしくはRE4Ba2Cu2O5系の第2相常電導体
の粒径を可能な限り小さい径にした粉末を出発原料とし
て用いたことを特徴とするバルク酸化物超電導体の作製
方法。1. A semi-melt method (melt process method: Melt pr
The method for producing a bulk oxide superconductor for producing a REBa 2 Cu 3 O 7-x (x is a deficiency amount, RE is a rare earth element) -based bulk superconductor according to the above
EBa 2 Cu 3 O 7-x based superconductor powder and RE 2 BaC
uO 5 or RE 4 Ba 2 Cu 2 O 5 type second-phase normal conductor powder having the smallest possible particle size used as a starting material. .
導体の作製方法において、RE2BaCuO5もしくはR
E4Ba2Cu2O5系の第2相常電導体の粉末として、R
E2BaCuO5もしくはRE4Ba2Cu2O5系の第2相
常電導体の結晶を粉砕した後分級したもの、あるいはス
プレードライ法、共沈法、金属アルコキシド等から得ら
れる粒径3μm以下の微細な粉末を用いたことを特徴と
するバルク酸化物超電導体の作製方法。2. The method for producing a bulk oxide superconductor according to claim 1, wherein RE 2 BaCuO 5 or R is used.
As a powder of the E 4 Ba 2 Cu 2 O 5 system second-phase normal conductor, R
E 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 5 type second-phase normal conductor crystals pulverized and then classified, or obtained by spray-drying method, coprecipitation method, metal alkoxide, etc., particle size of 3 μm or less A method for producing a bulk oxide superconductor characterized by using the fine powder of.
導体の作製方法において、予め結晶化したREBa2C
u3O7-x系の超電導体の粉末と、RE2BaCuO5もし
くはRE4Ba2Cu2O5系の第2相常電導体の粒径を可
能な限り小さい径にした粉末の代りに、予め結晶化した
REBa2Cu3O7-x系の超電導体の粉末を厚さ3μm
以下のRE2BaCuO5もしくはRE4Ba2Cu2O5系
の第2相常電導体でコーティングしたものを用いたこと
を特徴とするバルク酸化物超電導体の作製方法。3. The method for producing a bulk oxide superconductor according to claim 1, wherein REBa 2 C precrystallized is used.
Instead of the powder of u 3 O 7-x system superconductor and the powder of RE 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 5 system second phase normal conductor with the smallest possible particle size. , Pre-crystallized REBa 2 Cu 3 O 7-x based superconductor powder with a thickness of 3 μm
A method for producing a bulk oxide superconductor, characterized by using the following RE 2 BaCuO 5 or RE 4 Ba 2 Cu 2 O 5 -based second-phase normal conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8065900A JPH09255334A (en) | 1996-03-22 | 1996-03-22 | Production of bulk-oxide superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8065900A JPH09255334A (en) | 1996-03-22 | 1996-03-22 | Production of bulk-oxide superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09255334A true JPH09255334A (en) | 1997-09-30 |
Family
ID=13300310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8065900A Pending JPH09255334A (en) | 1996-03-22 | 1996-03-22 | Production of bulk-oxide superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09255334A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011389A1 (en) * | 2004-07-26 | 2006-02-02 | International Superconductivity Technology Center, The Juridical Foundation | METHOD FOR PRODUCING RE-Ba-Cu-O OXIDE SUPERCONDUCTOR |
-
1996
- 1996-03-22 JP JP8065900A patent/JPH09255334A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011389A1 (en) * | 2004-07-26 | 2006-02-02 | International Superconductivity Technology Center, The Juridical Foundation | METHOD FOR PRODUCING RE-Ba-Cu-O OXIDE SUPERCONDUCTOR |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3074753B2 (en) | Method for producing bismuth-based oxide superconductor | |
JP2839415B2 (en) | Method for producing rare earth superconducting composition | |
JP3008453B2 (en) | Method for manufacturing bismuth-based superconductor | |
JPH04292819A (en) | Manufacture of oxide superconductive wire | |
Yoshida et al. | Effects of the platinum group element addition on preparation of YBCO superconductor by melt growth method | |
JPH08697B2 (en) | Oxide superconductor and method for manufacturing the same | |
JP3767841B2 (en) | Oxide superconductor with high critical current density | |
JP2995796B2 (en) | Manufacturing method of oxide superconductor | |
JPH09255334A (en) | Production of bulk-oxide superconductor | |
JPH0536317A (en) | Manufacture of bismuth-based oxide superconductive wire material | |
EP0676817B1 (en) | Method of preparing high-temperature superconducting wire | |
EP0834931B1 (en) | Oxide superconductor having large magnetic levitation force and its production method | |
JP3155333B2 (en) | Method for producing oxide superconductor having high critical current density | |
JP2850310B2 (en) | Superconductive metal oxide composition and method for producing the same | |
US6599862B2 (en) | Method for preparing bismuth-based high temperature superconductors | |
JP2828396B2 (en) | Oxide superconductor and manufacturing method thereof | |
JP2803819B2 (en) | Manufacturing method of oxide superconductor | |
US7008906B2 (en) | Oxide high-critical temperature superconductor acicular crystal and its production method | |
KR20070114778A (en) | Re123 oxide superconductor and method for manufacturing same | |
JP3160900B2 (en) | Manufacturing method of superconducting material | |
JP2914799B2 (en) | Manufacturing method of oxide superconducting bulk material | |
Lee et al. | Effects of Melt Chemistry and Platinum Doping in the Refinement of Y2 Ba1Cu1Oy Particles for the System Y‐Ba‐Cu‐O | |
JP2931446B2 (en) | Method for producing rare earth oxide superconductor | |
JP2004203727A (en) | Oxide superconductor having high critical current density | |
JPH04292812A (en) | Manufacture of bismuth-based oxide superconductive wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070227 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070717 |