JPH0925417A - Heat-sensitive and electroconductive polymer, its production and solid electrolytic capacitor using the same electroconductive polymer - Google Patents

Heat-sensitive and electroconductive polymer, its production and solid electrolytic capacitor using the same electroconductive polymer

Info

Publication number
JPH0925417A
JPH0925417A JP17472995A JP17472995A JPH0925417A JP H0925417 A JPH0925417 A JP H0925417A JP 17472995 A JP17472995 A JP 17472995A JP 17472995 A JP17472995 A JP 17472995A JP H0925417 A JPH0925417 A JP H0925417A
Authority
JP
Japan
Prior art keywords
heat
conductive polymer
resistant conductive
organic compound
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17472995A
Other languages
Japanese (ja)
Other versions
JP2701798B2 (en
Inventor
Takashi Fukami
隆 深海
Atsushi Kobayashi
淳 小林
Masashi Oi
正史 大井
Tomitaro Hara
富太郎 原
Shinji Takeoka
真司 武岡
Kimihisa Yamamoto
公寿 山本
Hidetoshi Tsuchida
英俊 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15983642&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0925417(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17472995A priority Critical patent/JP2701798B2/en
Publication of JPH0925417A publication Critical patent/JPH0925417A/en
Application granted granted Critical
Publication of JP2701798B2 publication Critical patent/JP2701798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce the subject polymer, comprising an organic compound represented by a specific formula as a component, capable of providing an electroconductive polymeric film having high reliability in high-temperature air and useful as a solid electrolytic capacitor. SOLUTION: This heat-resistant and electroconductive polymer such as polypyrrole, polythiophene or polyaniline comprises an organic compound represented by the formula (X)l -(M)m -(Y)n [X is either of COOH and OH; M is an organic compound; Y is a strong anionic dissociating group; (l), (m) and (n) are each >=1], preferably the one represented by the formula (X)l -(Ar)m -(SO3 <-> )n (Ar is an aromatic compound) (e.g. sodium p-phenolsulfonate) as a component. This polymer is obtained by carrying out the chemical oxidation polymerization, preferably electrolytic oxidation polymerization of the polymer in a solution containing the organic compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池、コンデン
サ、ダイオード、表示素子、センサーなどの電子デバイ
スに利用される耐熱性導電性高分子およびその製造方法
に関し、とくにこの導電性高分子を用いた固体電解コン
デンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant conductive polymer for use in electronic devices such as batteries, capacitors, diodes, display elements, and sensors, and a method for producing the same. The present invention relates to a solid electrolytic capacitor.

【0002】[0002]

【従来の技術】導電性高分子は、従来π電子を有する芳
香族化合物の化学的、または電気化学的酸化により製造
されている。しかし、アニオンがドーピングされた高酸
化状態であるため、熱、酸素、光、水等の協同的な外部
刺激による性能の劣化が著しく、長期で安定に性能保持
することが困難とされてきた。特に熱に対しては劣化が
著しく、デバイスの開発に対して限界となっていた。
2. Description of the Related Art Conventionally, conductive polymers have been produced by chemical or electrochemical oxidation of aromatic compounds having π electrons. However, since it is in a highly oxidized state doped with anions, its performance is significantly degraded by cooperative external stimuli such as heat, oxygen, light, and water, and it has been difficult to maintain stable performance for a long period of time. In particular, the deterioration with respect to heat was remarkable, which was a limit to the development of the device.

【0003】通常導電性高分子の重合には、例えば電解
重合をする場合、重合性モノマーと支持電解質の混合溶
液を電解液として用いることが知られている。
In the polymerization of conductive polymers, for example, in the case of electrolytic polymerization, it is known that a mixed solution of a polymerizable monomer and a supporting electrolyte is used as an electrolytic solution.

【0004】ところで耐熱性向上のため、特開平5−2
1281、特開平5−21283では重合性モノマー、
支持電解質に加えて、NO2 基、CN基、SO2 NO2
基、CX3 基、COR基、SOR基、COOH基、CO
OR基、SCOR基、CONH2 基(但しRはアルキル
基、Xはハロゲン)の少なくとも一つから選ばれる置換
基を有する芳香族誘導体もしくはフェノール誘導体また
はフェノキシド誘導体を混合させた電解液を用いて電解
重合法により導電性高分子を得ることを提案している。
Incidentally, in order to improve heat resistance, Japanese Patent Application Laid-Open No.
1281, JP-A-5-21283 discloses a polymerizable monomer,
In addition to the supporting electrolyte, NO 2 groups, CN groups, SO 2 NO 2
Group, CX 3 group, COR group, SOR group, COOH group, CO
Electrolysis using an electrolyte mixed with an aromatic derivative, a phenol derivative or a phenoxide derivative having a substituent selected from at least one of an OR group, a SCOR group, and a CONH 2 group (where R is an alkyl group and X is a halogen) It is proposed to obtain a conductive polymer by a polymerization method.

【0005】また、特開平3−114213では導電性
高分子のドーパントとして、I2 ,Br2 ,SO3 ,A
sF6 ,SbF6 等の電子受容体あるいはBF4 - ,C
lO4 - ,PF6 - ,ASF6 - 等のアニオンを用いる
ことを提案している。
In Japanese Patent Application Laid-Open No. 3-114213, I 2 , Br 2 , SO 3 , A
electron acceptors such as sF 6 and SbF 6 or BF 4 , C
It has been proposed to use anions such as 10 4 , PF 6 and ASF 6 .

【0006】さらに、特開平1−170010では導電
性高分子のドーパント中にCOOH基やOH基にあわせ
て必ずフッ素(F)を含有することにより、著しい誘電
体酸化皮膜の補修能力を付与することができることを提
案している。
[0006] Further, Japanese Patent Application Laid-Open No. 1-170010 discloses that a conductive polymer dopant always contains fluorine (F) in accordance with a COOH group or an OH group, thereby providing a remarkable ability to repair a dielectric oxide film. Suggest that you can.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
5−21281、特開平5−21283では3成分混合
系を用いているが、一般に3成分混合系ではその適正条
件範囲は非常に狭く、また、適正濃度での制御が困難で
ある。
However, in JP-A-5-21281 and JP-A-5-21283, a three-component mixed system is used. In general, a three-component mixed system has a very narrow range of appropriate conditions. It is difficult to control at an appropriate concentration.

【0008】また、特開平3−114213では分子量
の小さいドーパントを用いており、この場合導電性高分
子主鎖からの脱ドープ(ドーパントの脱離)が起こりや
すいことが知られている。この脱ドープ現象は高温下ほ
ど顕著になり、従って高温下での安定性が低下する。
In Japanese Patent Application Laid-Open No. 3-114213, a dopant having a small molecular weight is used. In this case, it is known that undoping (dopant removal) from the conductive polymer main chain is likely to occur. This undoping phenomenon becomes more pronounced at higher temperatures, so that the stability at high temperatures is reduced.

【0009】さらに、特開平1−114213ではフッ
素を含む化合物をドーパントとして用いているが、フッ
素を含む化合物は合成が困難であり、従って高価になり
工業的には不向きである。また、フッ素を含むドーパン
トは酸性度が高く、樹脂外装した場合に外装樹脂を腐食
するおそれがある。また、特開平1−170010にお
いての効果は誘電体酸化皮膜の補修能力に限定されてい
るのに対し、本発明の効果は耐熱性の向上である。
Furthermore, in JP-A-1-114213, a compound containing fluorine is used as a dopant, but a compound containing fluorine is difficult to synthesize, and therefore is expensive and industrially unsuitable. Further, the fluorine-containing dopant has a high acidity and may corrode the exterior resin when it is packaged with the resin. The effect of JP-A-1-170010 is limited to the ability to repair a dielectric oxide film, whereas the effect of the present invention is to improve heat resistance.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため耐熱性導電性高分子およびその製造方
法、並びにこの導電性高分子を用いた固体電解コンデン
サについて鋭意研究を行った。その結果、特定の化学構
造式を有する耐熱性導電性高分子およびその製造方法、
並びにこの導電性高分子を用いた固体電解コンデンサの
発明に至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on a heat-resistant conductive polymer, a method for producing the same, and a solid electrolytic capacitor using the conductive polymer. . As a result, a heat-resistant conductive polymer having a specific chemical structural formula and a method for producing the same,
Further, the invention of a solid electrolytic capacitor using the conductive polymer has been reached.

【0011】すなわち、 (1)図1の化学構造式1で表される有機化合物を成分
として含有させたことを特徴とする耐熱性導電性高分
子。 (2)化学構造式1のうち、有機化合物Mが芳香族化合
物、強アニオン性解離基Yがスルホン酸基であることを
特徴とした、図2の化学構造式2で表される(1)項記
載の耐熱性導電性高分子。 (3)導電性高分子がポリピロールポリチオフェン、ポ
リアニリンであることを特徴とする耐熱性導電性高分
子。 (4)上記耐熱性導電性高分子を化学構造式1で表され
る有機化合物を含む溶液中で化学酸化重合したことを特
徴とする上記耐熱性導電性高分子の製造方法。 (5)上記耐熱性導電性高分子を化学構造式2で表され
る有機化合物を含む溶液中で化学酸化重合したことを特
徴とする上記耐熱性導電性高分子の製造方法。 (6)上記耐熱性導電性高分子を化学構造式1で表され
る有機化合物を含む溶液中で電解酸化重合したことを特
徴とする上記耐熱性導電性高分子の製造方法。 (7)上記耐熱性導電性高分子を化学構造式2で表され
る有機化合物を含む溶液中で電解酸化重合したことを特
徴とする上記耐熱性導電性高分子の製造方法。 (8)導電性高分子がポリピロールであることを特徴と
した耐熱性導電性高分子の製造方法。 (9)皮膜形成性金属上に、誘電体酸化皮膜、固体電解
質、導電層を順次形成した後に陽・陰極端子を取り出
し、樹脂外装した固体電解コンデンサにおいて、上記固
体電解質が化学構造式1で表される耐熱性導電性高分子
であることを特徴とする固体電解コンデンサ。 (10)皮膜形成性金属上に、誘電体酸化皮膜、固体電
解質、導電層を順次形成した後に陽・陰極端子を取り出
し、樹脂外装した固体電解コンデンサにおいて、上記固
体電解質が化学構造式2耐熱性導電性高分子であること
を特徴とする固体電解コンデンサ。 (11)皮膜形成性金属上に、誘電体酸化皮膜、固体電
解質、導電層を順次形成した後に陽・陰極端子を取り出
し、樹脂外装した固体電解コンデンサにおいて、上記固
体電解質が耐熱性導電性ポリピロールであることを特徴
とする固体電解コンデンサ。である。
(1) A heat-resistant conductive polymer comprising an organic compound represented by the chemical structural formula 1 in FIG. 1 as a component. (2) In chemical structural formula 1, organic compound M is an aromatic compound, and strong anionic dissociating group Y is a sulfonic acid group, and is represented by chemical structural formula 2 in FIG. Item 8. The heat-resistant conductive polymer according to item 1. (3) A heat-resistant conductive polymer, wherein the conductive polymer is polypyrrole polythiophene or polyaniline. (4) The method for producing a heat-resistant conductive polymer, wherein the heat-resistant conductive polymer is chemically oxidized and polymerized in a solution containing an organic compound represented by Chemical Formula 1. (5) The method for producing a heat-resistant conductive polymer, wherein the heat-resistant conductive polymer is chemically oxidized and polymerized in a solution containing an organic compound represented by Chemical Formula 2. (6) The method for producing a heat-resistant conductive polymer, wherein the heat-resistant conductive polymer is electrolytically oxidized and polymerized in a solution containing an organic compound represented by Chemical Formula 1. (7) The method for producing a heat-resistant conductive polymer, wherein the heat-resistant conductive polymer is electrolytically oxidatively polymerized in a solution containing an organic compound represented by the chemical structural formula 2. (8) A method for producing a heat-resistant conductive polymer, wherein the conductive polymer is polypyrrole. (9) A dielectric oxide film, a solid electrolyte, and a conductive layer are sequentially formed on a film-forming metal, and then the positive and negative terminals are taken out. In a solid electrolytic capacitor with a resin exterior, the solid electrolyte is represented by the chemical structural formula 1. A solid electrolytic capacitor characterized by being a heat-resistant conductive polymer to be used. (10) A dielectric oxide film, a solid electrolyte, and a conductive layer are sequentially formed on a film-forming metal, and then the positive / negative terminals are taken out. A solid electrolytic capacitor characterized by being a conductive polymer. (11) A dielectric oxide film, a solid electrolyte, and a conductive layer are sequentially formed on a film-forming metal, and then the positive and negative electrodes are taken out. In a solid electrolytic capacitor provided with a resin, the solid electrolyte is made of heat-resistant conductive polypyrrole. A solid electrolytic capacitor characterized by the following. It is.

【0012】導電性高分子のドーパントとしてOH基ま
たはCOOH基の少なくとも一方を含む化合物を用いる
ことにより、3成分系での比較的困難な重合から2成分
系の比較的容易な重合が可能になり、さらに従来、高温
/空気雰囲気下で用いることの出来なかった化学的に不
安定な導電性高分子が、本来の性能を長期にわたり安定
に保持することが可能となった。
By using a compound containing at least one of an OH group and a COOH group as a dopant for the conductive polymer, it is possible to carry out relatively difficult polymerization of a three-component system to relatively easy polymerization of a two-component system. Furthermore, a chemically unstable conductive polymer which could not be used in a high-temperature / air atmosphere can maintain its original performance stably for a long period of time.

【0013】本発明により、信頼性の高い導電性高分子
を用いた光、電子、電磁デバイスが可能となる。
According to the present invention, an optical, electronic, or electromagnetic device using a highly reliable conductive polymer can be obtained.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施例1〕重合溶液として0.1M ピロール/0.
1M p−フェノールスルホン酸ナトリウム/Britton-
Robinson緩衝溶液(pH=1.8)を使用し、作用極お
よび対極にステンレス電極板(6cm×6cm)を用
い、定電流(2.5mA)で20分間電解を行った。参
照極は飽和カロメル電極とした。電解後、電極上に生成
したポリピロール膜(0.02mm厚)を水およびアセ
トンにより洗浄、電極上から剥離して真空中にて12時
間乾燥を行った後、10mmφの円形に切り取った。こ
れを空気中で加熱(150℃、100時間)し、標準4
端子法により測定した抵抗値より加熱中の電導度を算出
した。その結果、加熱中の電導度の変化は小さく、熱劣
化による電導度の低下は測定中に示した最も高い導電度
の80%程度で、高い熱安定度が認められた。
[Example 1] 0.1 M pyrrole / 0.
1M sodium p-phenolsulfonate / Britton-
Using a Robinson buffer solution (pH = 1.8), a stainless steel electrode plate (6 cm × 6 cm) was used for the working electrode and the counter electrode, and electrolysis was performed at a constant current (2.5 mA) for 20 minutes. The reference electrode was a saturated calomel electrode. After the electrolysis, the polypyrrole film (0.02 mm thick) formed on the electrode was washed with water and acetone, peeled off from the electrode, dried in a vacuum for 12 hours, and then cut into a 10 mmφ circle. This is heated in air (150 ° C, 100 hours), and standard 4
The electrical conductivity during heating was calculated from the resistance value measured by the terminal method. As a result, the change in conductivity during heating was small, and the decrease in conductivity due to thermal deterioration was about 80% of the highest conductivity shown during measurement, and high thermal stability was recognized.

【0015】〔比較例1〕重合溶液として0.1M ピ
ロール/0.1M p−トルエンスルホン酸ナトリウム
/Britton-Robinson緩衝溶液(pH=1.8)を使用し
た以外は実施例1と同様の条件で生成したポリピロール
を空気中で加熱(150℃)し電導度を測定した。その
結果、ポリピロールの電導度は加熱後20時間で測定中
に示した最も高い値の5%にまで低下し、加熱によるポ
リピロールの電導度の劣化が確認された。
Comparative Example 1 The same conditions as in Example 1 were used except that a 0.1 M pyrrole / 0.1 M sodium p-toluenesulfonate / Britton-Robinson buffer solution (pH = 1.8) was used as a polymerization solution. Was heated (150 ° C.) in air to measure the electric conductivity. As a result, the electric conductivity of the polypyrrole decreased to 5% of the highest value shown during the measurement 20 hours after the heating, and deterioration of the electric conductivity of the polypyrrole due to the heating was confirmed.

【0016】〔実施例2〕重合溶液として0.1M ピ
ロール/0.1M スルホサリチル酸/水溶液を使用し
た以外は実施例1と同様の条件で生成したポリピロール
を空気中で150℃、100時間加熱し、標準4端子法
により測定した抵抗値より加熱中の電導度を算出した。
その結果、加熱中電導度に変化は見られず、熱劣化によ
る電導度の低下は測定中に示した最も高い値の90%程
度で、高い熱安定度が認められた。
Example 2 Polypyrrole produced under the same conditions as in Example 1 except that 0.1 M pyrrole / 0.1 M sulfosalicylic acid / water solution was used as a polymerization solution was heated in air at 150 ° C. for 100 hours. The electric conductivity during heating was calculated from the resistance value measured by the standard 4-terminal method.
As a result, no change was observed in the conductivity during heating, and the decrease in conductivity due to thermal degradation was about 90% of the highest value shown during the measurement, indicating high thermal stability.

【0017】〔比較例2〕重合溶液として0.1M ピ
ロール/0.1M 2−ナフタレンスルホン酸/ナトリ
ウム/水溶液を使用した以外は、実施例1と同様の条件
で生成したポリピロールを空気中で加熱(150℃)し
電導度を測定した。その結果、ポリピロールの電導度は
加熱後30時間で測定中に示した最も高い値の15%に
まで低下し、加熱によるポリピロールの電導度の劣化が
確認された。
Comparative Example 2 Polypyrrole produced under the same conditions as in Example 1 except that a 0.1 M pyrrole / 0.1 M 2-naphthalenesulfonic acid / sodium / water solution was used as a polymerization solution was heated in air. (150 ° C.) and the conductivity was measured. As a result, the conductivity of polypyrrole was reduced to 15% of the highest value shown during the measurement 30 hours after heating, and deterioration of the conductivity of polypyrrole due to heating was confirmed.

【0018】〔実施例3〕重合溶液として0.1M チ
オフェン/0.1M スルホ安息香酸/アセトニトリル
を使用し、作用極および対極にステンレス電極板(6c
m×6cm)を用い、定電流(2.5mA)で20分間
電解を行った。参照極は飽和カロメル電極とした。電解
後、電極上に生成したポリチオフェン膜(0.02mm
厚)を水およびアセトンにより洗浄、電極上から剥離
し、真空中にて12時間乾燥を行った後、10mmφの
円形に切り取った。これを空気中で150℃、100時
間加熱し、標準4端子法により測定した抵抗値より加熱
中の電導度を算出した。その結果、加熱中電導度に変化
は見られず、熱劣化による電導度の低下は測定中に示し
た最も高い値の85%程度で、高い熱安定度が認められ
た。
Example 3 A 0.1 M thiophene / 0.1 M sulfobenzoic acid / acetonitrile solution was used as a polymerization solution, and a stainless steel electrode plate (6c
(m × 6 cm), and electrolysis was performed at a constant current (2.5 mA) for 20 minutes. The reference electrode was a saturated calomel electrode. After electrolysis, polythiophene film (0.02mm) formed on the electrode
Was washed with water and acetone, peeled off from the electrode, dried in a vacuum for 12 hours, and then cut into a 10 mmφ circle. This was heated in air at 150 ° C. for 100 hours, and the conductivity during heating was calculated from the resistance value measured by the standard four-terminal method. As a result, there was no change in the conductivity during heating, and the decrease in conductivity due to thermal degradation was about 85% of the highest value shown during the measurement, indicating high thermal stability.

【0019】〔実施例4〕重合溶液として0.2mol
アニリン/0.1mol スルホサリチル酸/塩酸1
50mlを使用し、酸化剤として過硫酸アンモニウムを
使用して、25時間かけて化学酸化重合を行った。沈殿
したポリマーをろ別し、蒸留水で洗浄液のpHが6以上
になるまで洗浄し、続いてメタノールで溶液が透明にな
るまで繰り返し洗浄した後、真空中にて12時間乾燥を
行い、乾燥後約7mgを秤量、0.1mm厚、10mm
φのペレット状に加圧成形した。これを空気中で150
℃、100時間加熱し、標準4端子法により測定した抵
抗値より加熱中の電導度を算出した。その結果、加熱中
電導度に変化は見られず、熱劣化による電導度の低下は
測定中に示した最も高い値の90%で、高い熱安定度が
認められた。
Example 4 0.2 mol as a polymerization solution
Aniline / 0.1 mol sulfosalicylic acid / hydrochloric acid 1
Using 50 ml, ammonium persulfate was used as an oxidizing agent, and chemical oxidative polymerization was carried out for 25 hours. The precipitated polymer is separated by filtration, washed with distilled water until the pH of the washing solution becomes 6 or more, then repeatedly washed with methanol until the solution becomes transparent, and then dried under vacuum for 12 hours. Weigh about 7mg, 0.1mm thickness, 10mm
It was pressed into a pellet of φ. 150 in air
After heating at 0 ° C for 100 hours, the electric conductivity during heating was calculated from the resistance value measured by the standard 4-terminal method. As a result, no change was observed in the electrical conductivity during heating, and the decrease in electrical conductivity due to thermal degradation was 90% of the highest value shown during the measurement, indicating high thermal stability.

【0020】〔実施例5〕あらかじめ陽極リード線3を
引き出したタンタル焼結体4(2mm×3mm×1m
m)をリン酸水溶液中において11.5Vで陽極酸化し
て誘電体酸化皮膜5を形成した後、0.1M ピロー
ル、0.2M フェリシアン化カリウム、0.1M m
−スルホ安息香酸を含むエーテル溶液を浸透、乾燥、純
水洗浄を5回繰り返し、最後に再度乾燥し誘電体酸化皮
膜5上にポリピロール膜6を形成した。その上に順次グ
ラファイトペースト層7、銀ペースト層8を形成した。
陽極リード線3に陽極端子9を溶接、陰極側には導電性
接着剤10を介して陰極端子11を接続した後、モール
ド樹脂12を用いて樹脂外装を行い固体電解コンデンサ
を得た。
Example 5 A tantalum sintered body 4 (2 mm × 3 mm × 1 m
m) was anodized in a phosphoric acid aqueous solution at 11.5 V to form a dielectric oxide film 5, and then 0.1 M pyrrole, 0.2 M potassium ferricyanide, 0.1 M m
-Penetration of ether solution containing sulfobenzoic acid, drying and washing with pure water were repeated 5 times, and finally drying was performed again to form polypyrrole film 6 on dielectric oxide film 5. A graphite paste layer 7 and a silver paste layer 8 were sequentially formed thereon.
The anode terminal 9 was welded to the anode lead wire 3, the cathode terminal 11 was connected to the cathode side via a conductive adhesive 10, and then resin-encased using a mold resin 12 to obtain a solid electrolytic capacitor.

【0021】得られたコンデンサを150℃空気中で1
000時間の高温無負荷試験を実施し、その前後での1
kHzでの静電容量・100kHzでの等価直列抵抗
(ESR)を測定した。
The obtained capacitor was placed in air at 150 ° C. for 1 hour.
000 hours high-temperature no-load test, and before and after
The capacitance at kHz and the equivalent series resistance (ESR) at 100 kHz were measured.

【0022】その結果、試験前後での静電容量、ESR
の比はそれぞれ0.88,1.15で有り高温雰囲気下
で安定したコンデンサが得られた。
As a result, the capacitance before and after the test, the ESR
Are 0.88 and 1.15, respectively, and a stable capacitor was obtained in a high temperature atmosphere.

【0023】〔比較例2〕実施例5の0.1M m−ス
ルホ安息香酸を0.1M p−トルエンスルホン酸に変
更した以外は実施例5と同様にコンデンサを作成した。
Comparative Example 2 A capacitor was produced in the same manner as in Example 5 except that the 0.1 M m-sulfobenzoic acid in Example 5 was changed to 0.1 M p-toluenesulfonic acid.

【0024】得られたコンデンサを実施例5と同様に、
150℃空気中で1000時間の高温無負荷試験を実施
し、その前後での1kHzでの静電容量・100kHz
での等価直列抵抗(ESR)を測定した。
The obtained capacitor was used in the same manner as in Example 5,
A 1000-hour high-temperature no-load test was performed in air at 150 ° C., and before and after that, the capacitance at 1 kHz and 100 kHz
Was measured for equivalent series resistance (ESR).

【0025】その結果、試験前後での静電容量、ESR
の比はそれぞれ0.21,52.9となり高温雰囲気下
でコンデンサ特性が大きく劣化した。
As a result, the capacitance before and after the test, the ESR
Were 0.21 and 52.9, respectively, and the capacitor characteristics were significantly deteriorated in a high-temperature atmosphere.

【0026】以上の結果を表1、表2にまとめた。The above results are summarized in Tables 1 and 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】このように本発明を用いれば、高温空気
中で信頼性の高い導電性高分子膜が得られ、さらに前記
導電性高分子を固体電解コンデンサに用いることで高温
空気中において安定固体電解コンデンサが得られる。
As described above, according to the present invention, a highly reliable conductive polymer film can be obtained in high-temperature air, and the conductive polymer can be stabilized in high-temperature air by using the conductive polymer in a solid electrolytic capacitor. A solid electrolytic capacitor is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】化学構造式1FIG. 1 Chemical structural formula 1

【図2】化学構造式2FIG. 2 Chemical structural formula 2

【図3】固体電解コンデンサの断面図FIG. 3 is a sectional view of a solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 化学構造式1 2 化学構造式2 3 陽極リード線 4 タンタル焼結体 5 誘電体酸化皮膜 6 ポリピロール膜 7 グラファイトペースト層 8 銀ペースト層 9 陽極端子 10 導電性接着剤 11 陰極端子 12 モールド樹脂 Reference Signs List 1 Chemical structural formula 1 2 Chemical structural formula 2 3 Anode lead wire 4 Tantalum sintered body 5 Dielectric oxide film 6 Polypyrrole film 7 Graphite paste layer 8 Silver paste layer 9 Anode terminal 10 Conductive adhesive 11 Cathode terminal 12 Mold resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 富太郎 東京都中野区中野4−20−7 (72)発明者 武岡 真司 東京都世田谷区玉川3−40−16 フォレス ト玉川404 (72)発明者 山本 公寿 東京都大田区田園調布南9−2−304 (72)発明者 土田 英俊 東京都練馬区関町南2−10−10 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomitaro Hara 4-20-7 Nakano, Nakano-ku, Tokyo (72) Inventor Shinji Takeoka 3-40-16 Tamagawa, Setagaya-ku, Tokyo Forest Tamagawa 404 (72) Inventor Koju Yamamoto 9-2-304 Denenchofu Minami, Ota-ku, Tokyo (72) Inventor Hidetoshi Tsuchida 2-10-10 Seki-cho Minami, Nerima-ku, Tokyo

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 下記の化学構造式1で表される有機化合
物を成分として含有させたことを特徴とする耐熱性導電
性高分子。 (X)1 −(M)m −(Y- n ・・・1 但し、X:−COOH基または−OH基の少なくとも一
方、M:有機化合物 Y:強アニオン性解離基、l,m,nは1以上の整数
1. A heat-resistant conductive polymer comprising an organic compound represented by the following chemical structural formula 1 as a component. (X) 1- (M) m- (Y ) n ... 1 wherein X: at least one of —COOH group or —OH group, M: organic compound Y: strong anionic dissociating group, 1, m, n is an integer of 1 or more
【請求項2】 前記化学構造式1のうち、有機化合物M
が芳香族化合物、強アニオン性解離基Yがスルホン酸基
であることを特徴とした、化学構造式2で表される請求
項1記載の耐熱性導電性高分子。 (X)1 −(Ar)m −(SO3 - n ・・・2 但し、X:−COOH基または−OH基の少なくとも一
方、Ar:芳香族化合物 l,m,nは1以上の整数
2. The organic compound M of the above chemical structural formula 1.
Is a aromatic compound, and the strong anionic dissociating group Y is a sulfonic acid group. (X) 1- (Ar) m- (SO 3 ) n ... 2 where X: at least one of —COOH group or —OH group, Ar: aromatic compound 1, m, and n are integers of 1 or more
【請求項3】 前記導電性高分子がポリピロール、ポリ
チオフェン、ポリアニリンであることを特徴とする請求
項1記載の耐熱性導電性高分子。
3. The heat-resistant conductive polymer according to claim 1, wherein the conductive polymer is polypyrrole, polythiophene, or polyaniline.
【請求項4】 前記耐熱性導電性高分子を化学構造式1
で表される有機化合物を含む溶液中で化学酸化重合した
ことを特徴とする請求項1記載の耐熱性導電性高分子の
製造方法。
4. The heat-resistant conductive polymer is represented by the following chemical structural formula 1.
The method for producing a heat-resistant conductive polymer according to claim 1, wherein the polymer is chemically oxidized and polymerized in a solution containing an organic compound represented by the formula:
【請求項5】 前記耐熱性導電性高分子を化学構造式2
で表される有機化合物を含む溶液中で化学酸化重合した
ことを特徴とする請求項2記載の耐熱性導電性高分子の
製造方法。
5. The heat-resistant conductive polymer according to chemical formula 2
3. The method for producing a heat-resistant conductive polymer according to claim 2, wherein the polymer is chemically oxidized and polymerized in a solution containing an organic compound represented by the formula:
【請求項6】 前記耐熱性導電性高分子を化学構造式1
で表される有機化合物を含む溶液中で電解酸化重合した
ことを特徴とする請求項1記載の耐熱性導電性高分子の
製造方法。
6. The heat-resistant conductive polymer according to chemical formula 1
The method for producing a heat-resistant conductive polymer according to claim 1, wherein the electrolytic polymerization is carried out in a solution containing an organic compound represented by the formula:
【請求項7】 前記耐熱性導電性高分子を化学構造式2
で表される有機化合物を含む溶液中で電解酸化重合した
ことを特徴とする請求項2記載の耐熱性導電性高分子の
製造方法。
7. The heat-resistant conductive polymer is represented by the following chemical structural formula 2.
3. The method for producing a heat-resistant conductive polymer according to claim 2, wherein the electrolytic oxidation polymerization is carried out in a solution containing an organic compound represented by the formula:
【請求項8】 導電性高分子がポリピロールであること
を特徴とする請求項4記載の耐熱性導電性高分子の製造
方法。
8. The method for producing a heat-resistant conductive polymer according to claim 4, wherein the conductive polymer is polypyrrole.
【請求項9】 皮膜形成性金属上に、誘電体酸化皮膜、
固体電解質、導電層を順次形成した後に陽・陰極端子を
取り出し、樹脂外装した固体電解コンデンサにおいて、 前記固体電解質が請求項1記載の耐熱性導電性高分子で
あることを特徴とする固体電解コンデンサ。
9. A dielectric oxide film on a film-forming metal,
A solid electrolytic capacitor comprising a solid electrolyte and a conductive layer, in which the positive / negative terminals are taken out and then covered with a resin, wherein the solid electrolyte is the heat-resistant conductive polymer according to claim 1. .
【請求項10】 皮膜形成性金属上に、誘電体酸化皮
膜、固体電解質、導電層を順次形成した後に陽・陰極端
子を取り出し、樹脂外装した固体電解コンデンサにおい
て、 前記固体電解質が請求項2記載の耐熱性導電性高分子で
あることを特徴とする固体電解コンデンサ。
10. A solid electrolytic capacitor in which a dielectric oxide film, a solid electrolyte, and a conductive layer are sequentially formed on a film-forming metal, and then a positive electrode terminal and a negative electrode terminal are taken out, and the resin-coated solid electrolytic capacitor is used. A solid electrolytic capacitor characterized in that it is a heat-resistant conductive polymer.
【請求項11】 皮膜形成性金属上に、誘電体酸化皮
膜、固体電解質、導電層を順次形成した後に陽・陰極端
子を取り出し、樹脂外装した固体電解コンデンサにおい
て、 前記固体電解質が請求項3記載の耐熱性導電性高分子で
あることを特徴とする固体電解コンデンサ。
11. A solid electrolytic capacitor in which a dielectric oxide film, a solid electrolyte, and a conductive layer are sequentially formed on a film-forming metal, and then a positive / negative terminal is taken out and covered with a resin. A solid electrolytic capacitor characterized in that it is a heat-resistant conductive polymer.
JP17472995A 1995-07-11 1995-07-11 Heat-resistant conductive polymer, method for producing the same, and solid electrolytic capacitor using the conductive polymer Expired - Lifetime JP2701798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17472995A JP2701798B2 (en) 1995-07-11 1995-07-11 Heat-resistant conductive polymer, method for producing the same, and solid electrolytic capacitor using the conductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17472995A JP2701798B2 (en) 1995-07-11 1995-07-11 Heat-resistant conductive polymer, method for producing the same, and solid electrolytic capacitor using the conductive polymer

Publications (2)

Publication Number Publication Date
JPH0925417A true JPH0925417A (en) 1997-01-28
JP2701798B2 JP2701798B2 (en) 1998-01-21

Family

ID=15983642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17472995A Expired - Lifetime JP2701798B2 (en) 1995-07-11 1995-07-11 Heat-resistant conductive polymer, method for producing the same, and solid electrolytic capacitor using the conductive polymer

Country Status (1)

Country Link
JP (1) JP2701798B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986046A (en) * 1997-03-07 1999-11-16 Nec Corporation Oxzidant solution for synthesizing heat-resistant electroconductive polymer and method for preparing electroconductive polymer
WO2001036382A1 (en) * 1999-11-16 2001-05-25 Mitsui Chemicals, Inc. Process for producing benzenesulfonic acid derivative compound, dopant, conductive polymeric material, and solid electrolytic capacitor
EP1138669A4 (en) * 1998-11-13 2002-01-23 Mitsui Chemicals Inc Benzenesulfonic acid derivative compounds, process for producing the same, and use thereof
WO2004075220A1 (en) * 2003-02-19 2004-09-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986046A (en) * 1997-03-07 1999-11-16 Nec Corporation Oxzidant solution for synthesizing heat-resistant electroconductive polymer and method for preparing electroconductive polymer
EP1138669A4 (en) * 1998-11-13 2002-01-23 Mitsui Chemicals Inc Benzenesulfonic acid derivative compounds, process for producing the same, and use thereof
WO2001036382A1 (en) * 1999-11-16 2001-05-25 Mitsui Chemicals, Inc. Process for producing benzenesulfonic acid derivative compound, dopant, conductive polymeric material, and solid electrolytic capacitor
WO2004075220A1 (en) * 2003-02-19 2004-09-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US7289313B2 (en) 2003-02-19 2007-10-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing same

Also Published As

Publication number Publication date
JP2701798B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
JPH1197296A (en) Solid electrolytic capacitor and its manufacture
JP5637544B2 (en) Solid electrolytic capacitor
JPH0546693B2 (en)
JP3228323B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0458165B2 (en)
JP2701798B2 (en) Heat-resistant conductive polymer, method for producing the same, and solid electrolytic capacitor using the conductive polymer
US5965062A (en) Electrically-conductive polymer and production method thereof, and solid-electrolytic capacitor
KR20000053593A (en) Method for producing a solid electrolytic capacitor
JP4259794B2 (en) Manufacturing method of solid electrolytic capacitor
JP4565730B2 (en) Solid capacitor and manufacturing method thereof
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JP2010090324A (en) Dopant solution for conductive polymer, dopant solution also serving as oxidizer for conductive polymer, conductive composition, solid electrolytic capacitor and method for manufacturing the same
JP3649526B2 (en) Conductive polyaniline composition and solid electrolytic capacitor using the same as solid electrolyte
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JP5327844B2 (en) Electrolytic polymerization liquid for forming conductive polymer, conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JPH02130906A (en) Solid electrolytic capacitor and manufacture thereof
JPH01225110A (en) Solid electrolytic capacitor
JP2730330B2 (en) Capacitor and manufacturing method thereof
JPS6474712A (en) Manufacture of solid electrolytic capacitor
JPH0448709A (en) Manufacture of solid electrolytic capacitor
JPH05152169A (en) Manufacture of solid electrolytic capacitor
JP2005259807A (en) Solid electrolytic capacitor and its manufacturing method
JP2991408B2 (en) Method for producing polyaniline and method for producing solid electrolytic capacitor
JP2776113B2 (en) Manufacturing method of capacitor
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970902