JPH09254146A - Cutting or grooving method of hard brittle material - Google Patents

Cutting or grooving method of hard brittle material

Info

Publication number
JPH09254146A
JPH09254146A JP9325096A JP9325096A JPH09254146A JP H09254146 A JPH09254146 A JP H09254146A JP 9325096 A JP9325096 A JP 9325096A JP 9325096 A JP9325096 A JP 9325096A JP H09254146 A JPH09254146 A JP H09254146A
Authority
JP
Japan
Prior art keywords
processing
abrasive grain
cutting
tool
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9325096A
Other languages
Japanese (ja)
Inventor
Kenichi Ishikawa
憲一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoshi Machinery Corp
Original Assignee
Fujikoshi Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoshi Machinery Corp filed Critical Fujikoshi Machinery Corp
Priority to JP9325096A priority Critical patent/JPH09254146A/en
Publication of JPH09254146A publication Critical patent/JPH09254146A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a tool shape and processing conditions suitable for improving processing efficiency more than in a fixed abrasive grain method whose cutting efficiency has been considered to be excellent conventionally, in a processing method to be adapted to cutting processing and grooving processing of a hard brittle material. SOLUTION: By using a fixed abrasive grain tool having a linear blade shape being held by a plating layer 13 formed by electrodeposition of a fixed abrasive grain 12 on a surface of a thin plate metallic base material 11, processing is performed by supplying, to a processing section, a processing liquid in which a free abrasive grain 32 having a diameter smaller than a protruded height H of the fixed abrasive grain from the plating layer 13 of the fixed abrasive grain tool is mixed. For the fixed abrasive grain 12, a diamond abrasive grain is used. For the plating layer 13, a nickel plating layer is suitable. Also, by performing processing by adding relative vibration in a cutting direction of a blade-like tool to a work, processing efficiency is further improved and cut curving can be prevented. According to the above-mentioned method, processing efficiency at the time of continuous processing of a large number of works can be largely improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体装置の製
造に用いられるセラミックスやシリコンなどの硬質脆性
材料の切断加工や溝入れ加工に適用される加工方法に関
するもので、ブレードないしワイヤ状の母材表面に砥粒
を固定した固定砥粒工具を用いて硬質脆性材料を加工す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing method applied to cutting or grooving a hard brittle material such as ceramics or silicon used for manufacturing a semiconductor device, and a blade or wire-shaped base material. The present invention relates to a method for processing a hard brittle material using a fixed abrasive tool having abrasive particles fixed on the surface.

【0002】[0002]

【従来の技術】電子素子の材料として用いられるシリコ
ンなどは、金属に比べてはるかに固くかつ脆い。このよ
うな硬質脆性材料を精度良く加工する加工方法として、
ダイヤモンド砥粒などを用いる砥粒加工が広く行われて
いる。砥粒加工には、砥粒を有していない工具を用い、
加工具に砥粒(遊離砥粒)を混合した加工液を供給しな
がら行う遊離砥粒方式と、砥粒を固定した工具を用いて
加工を行う固定砥粒方式とがある。従来は工具及び装置
が安価な遊離砥粒方式が主流であったが、近時は加工能
率において優れる固定砥粒方式のものが注目されてい
る。工具形状は主としてブレードないしワイヤで、リン
グ状ブレードの内周を用いる内周刃切断や、並置した複
数本のブレードやワイヤを用いるマルチソー等がよく用
いられている。
2. Description of the Related Art Silicon used as a material for electronic devices is much harder and more brittle than metals. As a processing method for accurately processing such a hard brittle material,
Abrasive processing using diamond abrasive is widely performed. For the abrasive grain processing, use a tool that does not have abrasive grains,
There are a free-abrasive grain method that is performed while supplying a working liquid in which abrasive grains (free abrasive grains) are mixed to a working tool, and a fixed-abrasive method that performs processing by using a tool with the abrasive grains fixed. Conventionally, the free-abrasive grain method, in which tools and devices are inexpensive, has been the mainstream, but recently, the fixed-abrasive grain method, which is excellent in machining efficiency, has been attracting attention. The tool shape is mainly a blade or a wire, and an inner peripheral blade cutting using the inner circumference of a ring-shaped blade, a multi-saw using a plurality of juxtaposed blades or wires, and the like are often used.

【0003】一方、ラップ盤のラップの表面の修正加工
(ドレッシング)において、固定砥粒をメッキ層で固定
した修正砥石を用い、ラップの表面に遊離砥粒を混合し
た加工液を供給しながらドレッシングを行う方法が、こ
の発明の発明者らによって提唱されている(特開平8−
19959号)。しかし硬質脆性材料の砥粒加工方法と
して従来用いられていたものは、上記固定砥粒方式と遊
離砥粒方式のものであり、硬質脆性材料の切断ないし溝
入れ加工において、固定砥粒と遊離砥粒とを併用する加
工方法は知られていない。
On the other hand, in the correction processing (dressing) of the lap surface of the lapping machine, a correction grindstone in which fixed abrasive grains are fixed by a plating layer is used, and dressing is performed while supplying a working fluid in which free abrasive grains are mixed to the surface of the lap. A method of performing the above has been proposed by the inventors of the present invention (Japanese Patent Laid-Open No. 8-
19959). However, what has been conventionally used as an abrasive grain processing method for hard brittle materials is the fixed abrasive grain method and the free abrasive grain method described above. There is no known processing method that uses grains together.

【0004】[0004]

【発明が解決しようとする課題】この発明の発明者ら
は、固定砥粒と遊離砥粒とを併用した加工を硬質脆性材
料の切断ないし溝入れ加工に応用したところ、従来の固
定砥粒による切断ないし溝入れ加工より加工能率、特に
多数個のワークを連続加工するときの加工能率が大幅に
向上することを見出した。
SUMMARY OF THE INVENTION The inventors of the present invention have applied a machining method using fixed abrasive grains and free abrasive grains to cutting or grooving a hard brittle material. It has been found that the machining efficiency, especially the machining efficiency when a large number of workpieces are continuously machined, is greatly improved by cutting or grooving.

【0005】そこでこの発明は、従来遊離砥粒方式より
切削効率が良いとされていた固定砥粒方式より更に加工
能率を向上させることができる硬質脆性材料の切断ない
し溝入れ加工方法を得ることを課題としており、そのた
めに好適な工具形状や加工条件を提供することを課題と
している。
Therefore, the present invention provides a method for cutting or grooving a hard brittle material which can further improve the processing efficiency as compared with the fixed-abrasive method which was conventionally considered to have better cutting efficiency than the free-abrasive method. The problem is to provide a suitable tool shape and machining conditions for that purpose.

【0006】[0006]

【課題を解決するための手段】この発明の硬質脆性材料
の切断ないし溝入れ加工方法は、固定砥粒12を薄板金
属母材11の表面に電着したメッキ層13で保持した直
線ブレード状の固定砥粒工具1を用い、加工部に前記固
定砥粒工具のメッキ層13からの固定砥粒の突出高さH
より小径の遊離砥粒32を混合した加工液を供給しなが
ら加工を行うことを特徴とするものである。
A method of cutting or grooving a hard brittle material according to the present invention is a straight blade shape in which fixed abrasive grains 12 are held by a plating layer 13 electrodeposited on the surface of a thin metal base material 11. The fixed abrasive grain tool 1 is used, and the protruding height H of the fixed abrasive grain from the plating layer 13 of the fixed abrasive grain tool in the processing portion is H.
It is characterized in that the processing is performed while supplying the processing liquid in which the loose abrasive grains 32 having a smaller diameter are mixed.

【0007】固定砥粒12にはダイヤモンド砥粒を用
い、砥粒を保持するメッキ層13としてはニッケルメッ
キ層が適している。また、ワークにブレード状工具1の
切込み方向の相対振動を加えながら切断ないし溝入れを
行うことにより、加工能率を更に向上させ、切り曲がり
も防止できる。
Diamond abrasive grains are used as the fixed abrasive grains 12, and a nickel plating layer is suitable as the plating layer 13 for holding the abrasive grains. Further, by performing cutting or grooving while applying relative vibration in the cutting direction of the blade-shaped tool 1 to the work, the machining efficiency can be further improved and the bending can be prevented.

【0008】[0008]

【作用】加工の最初の段階では主として固定砥粒12が
切削を行い、固定砥粒方式と同等の加工能率を実現す
る。繰り返し加工を行ったために固定砥粒12の切刃が
磨耗してくると、メッキ層13からの固定砥粒32の突
出高さが低くなり、メッキ層表面とワーク3との間の間
隙が狭くなり、その狭くなった間隙に加工液中の遊離砥
粒32が保持されるようになるので、固定砥粒12の切
削力の低下を遊離砥粒32が補うようになり、複数個の
ワークの加工を行った後の加工能率が、従来の固定砥粒
方式のものに比べて大幅に向上する。またある程度の幅
を有するブレード状工具を用いるので、ワイヤのように
早期に工具が切断することがなく、多数のワークを連続
的に能率良く加工することが可能である。
In the first stage of processing, the fixed abrasive grains 12 mainly perform the cutting, and the processing efficiency equivalent to that of the fixed abrasive method is realized. When the cutting edge of the fixed abrasive 12 becomes worn due to the repeated machining, the protruding height of the fixed abrasive 32 from the plating layer 13 becomes low, and the gap between the surface of the plating layer and the work 3 becomes narrow. Since the free abrasive grains 32 in the working liquid are held in the narrowed gap, the free abrasive grains 32 compensate for the reduction in the cutting force of the fixed abrasive grains 12, and the plurality of workpieces The processing efficiency after processing is greatly improved compared to the conventional fixed abrasive grain method. Further, since a blade-shaped tool having a certain width is used, it is possible to continuously and efficiently process a large number of works without cutting the tool early like a wire.

【0009】固定砥粒を用いた硬質脆性材料の切断ない
し溝入れ加工において、ワークに切込み方向の振動を加
えながら切断を行うことにより、加工精度および加工能
率を向上させることができ、切り曲がりの防止にも有効
であることが知られている。この技術を本発明方法にも
採用することが可能で、特にワークにブレード状工具の
切込み方向(図1ないし3の上下方向)の振動を加えな
がら加工を行うことにより、簡単な構造の加工装置で加
工能率や加工精度を更に向上させることが可能である。
In cutting or grooving a hard brittle material using fixed abrasive grains, by performing the cutting while applying vibration in the cutting direction to the work, it is possible to improve the processing accuracy and the processing efficiency and It is also known to be effective in prevention. This technique can also be applied to the method of the present invention, and in particular, a machining apparatus having a simple structure can be used by performing machining while applying vibration to the workpiece in the cutting direction of the blade-shaped tool (vertical direction in FIGS. 1 to 3). It is possible to further improve the processing efficiency and processing accuracy.

【0010】[0010]

【発明の実施の形態】以下図面を参照してこの発明の実
施の形態を説明する。加工に用いた工具1は、図2、3
に示すように、薄く細長い(厚さ0.5mm、図の上下
方向の幅50mm)帯状鋼板からなる母材11の下辺部
に、ダイヤモンド砥粒12をニッケルメッキ層13で固
定した切刃14を設けたものである。
Embodiments of the present invention will be described below with reference to the drawings. The tool 1 used for machining is shown in FIGS.
As shown in FIG. 3, a cutting edge 14 in which diamond abrasive grains 12 are fixed by a nickel plating layer 13 is provided on the lower side of a base material 11 made of a thin and long strip (thickness 0.5 mm, vertical width of 50 mm in the figure) strip steel plate. It is provided.

【0011】図4は母材11へのダイヤモンド砥粒の電
着装置を示したもので、メッキ槽21内のメッキ液にダ
イヤモンド砥粒23を充填した砥粒ケース22を浸漬
し、この砥粒ケースに下辺を砥粒23に埋没した状態で
保持された母材11にニッケルメッキを行うことによ
り、母材11の下辺にダイヤモンド砥粒23を固定す
る。砥粒ケース22の側面には開口24が設けてあり、
この開口には布25が張られ、メッキ液を通過させると
ともに、砥粒23が流出するのを防止している。開口2
4の両側には、電極となるニッケル板26が配置されて
いる。
FIG. 4 shows an apparatus for electrodepositing diamond abrasive grains on the base material 11. The abrasive grain case 22 filled with the diamond abrasive grains 23 is immersed in the plating solution in the plating tank 21. The diamond abrasive grains 23 are fixed to the lower side of the base material 11 by nickel-plating the base material 11 held in the case with the lower side buried in the abrasive grains 23. An opening 24 is provided on the side surface of the abrasive grain case 22,
A cloth 25 is stretched over this opening to allow the plating solution to pass through and prevent the abrasive grains 23 from flowing out. Opening 2
On both sides of No. 4, nickel plates 26 serving as electrodes are arranged.

【0012】このようにして製作された工具ブレード1
の側面図を図2に、拡大端面図を図3に示す。ダイヤモ
ンド砥粒12は、その母材11側の部分をニッケルメッ
キ層13に埋設されて固定された状態となっている。固
定したダイヤモンド砥粒は、140〜170番(粒径8
8〜105μm)の粗さのものである。
The tool blade 1 manufactured in this way
2 is a side view and FIG. 3 is an enlarged end view. The diamond abrasive grains 12 are in a state in which the portion on the base material 11 side is embedded and fixed in the nickel plating layer 13. Fixed diamond abrasive grains are 140-170 (particle size 8
8 to 105 μm).

【0013】なおブレード1には、図4の装置で砥粒を
電着する前と後とに予備メッキと後メッキを行ってい
る。後メッキはブレードに固定された砥粒の基部をメッ
キ層に深く埋め込んで、砥粒の固定を確実にするのに有
効である。
The blade 1 is pre-plated and post-plated before and after the abrasive grains are electrodeposited by the apparatus shown in FIG. The post-plating is effective for burying the base of the abrasive grains fixed to the blade deeply in the plating layer to ensure the fixation of the abrasive grains.

【0014】このようにして製作したブレード1を、回
転すべりこ機構で往復動する工具台に張架して、幅25
mmのソーダガラスを繰り返し加工(溝入れ)した結果
を図5に示す。加工荷重はブレード1本当たり7.35
N、ブレードのストロークは110mm、往復回転数は
100rpmであり、8分間の加工を行ってその加工量
(切込み深さ、単位mm)から加工能率(mm/mi
n)を算出した。切削部に供給する加工液は、30重量
%の遊離砥粒を含む加工液(スラリー)であり、加工能
率の差を比較するための従来方法の加工には、加工液と
して水道水を用いた。なお遊離砥粒を含む加工液として
は、遊離砥粒の粗さが1500番(粒径約10μ、図5
の白丸印)、1000番(約15μ、黒丸印)、800
番(約18μ、半黒白丸印)及び600番(約25μ、
白三角印)の四種類を用いた。また水道水を用いた従来
方法の結果は図の黒三角印である。
The blade 1 manufactured in this manner is stretched on a tool table which reciprocates by a rotary sliding mechanism, and has a width of 25.
FIG. 5 shows the result of repeatedly processing (grooving) soda glass of mm. Processing load is 7.35 per blade
N, the stroke of the blade is 110 mm, the number of reciprocating revolutions is 100 rpm, and the machining efficiency (mm / mi) is calculated from the machining amount (cutting depth, unit mm) after machining for 8 minutes.
n) was calculated. The working fluid supplied to the cutting part was a working fluid (slurry) containing 30% by weight of free abrasive grains, and tap water was used as the working fluid in the conventional method for comparing the difference in working efficiency. . As the working liquid containing loose abrasive grains, the roughness of the loose abrasive grains is No. 1500 (particle diameter of about 10 μ, as shown in FIG.
No.), No. 1000 (about 15μ, black circle), 800
No. (about 18μ, half black and white circle) and No. 600 (about 25μ,
Four types of white triangle mark) were used. The results of the conventional method using tap water are indicated by black triangles in the figure.

【0015】図5より固定砥粒と遊離砥粒の両方を用い
る加工方法(以下「混合方式」という)と固定砥粒のみ
による加工方法(以下「固定砥粒方式」という)を比較
してみると、加工回数1回目の加工能率は3.75mm
/分前後であまり差はないが、加工回数が増えるに従っ
て、固定砥粒方式は混合方式に比べて加工能率が急激に
減少し、約40回で加工能率は0.125mm/分以下
となっている。これに対し混合方式は、加工能率の減少
が緩やかで加工回数80回前後でほぼ一定値となり、そ
れ以後はその値を保ち続ける。混合方式では遊離砥粒が
加工部に介在しているため、固定砥粒が目詰まりをする
ことがなく、また固定砥粒が遊離砥粒のホルダとしての
作用を果たすため、固定砥粒方式に比べて加工能率の減
少が軽減されると考えられる。
From FIG. 5, a comparison will be made between a processing method using both fixed abrasive particles and free abrasive particles (hereinafter referred to as “mixing method”) and a processing method using only fixed abrasive particles (hereinafter referred to as “fixed abrasive particle method”). And the processing efficiency of the first processing is 3.75 mm
Although there is not much difference before and after / min, the machining efficiency of the fixed abrasive method sharply decreases as compared with the mixed method as the number of machining increases, and the machining efficiency becomes 0.125 mm / min or less after about 40 times. There is. On the other hand, the mixing method has a gradual decrease in the processing efficiency and has a substantially constant value after about 80 times of processing, and thereafter keeps the value. In the mixed method, since the free abrasive particles are present in the processing part, the fixed abrasive particles do not become clogged, and the fixed abrasive particles act as a holder for the free abrasive particles. It is considered that the reduction in processing efficiency is reduced compared to the above.

【0016】また、混合方式において、加工液に混合し
た遊離砥粒の粒度が相違しても、1回目はあまり差がな
いが、それ以後は遊離砥粒径が大きいほど加工能率の減
少が緩やかである。遊離砥粒の粒径が大きくなると、砥
粒1個当たりの加工量が増大する。また固定砥粒が摩耗
したとき、図1(a)から(c)に示すように、工具の
メッキ層13と加工物3との間の間隙31(メッキ層か
らの固定砥粒の突出高さ)に存在している遊離砥粒32
が固定砥粒12によって保持されやすくなるとともに、
当該隙間に保持された遊離砥粒32が加工に大きく寄与
するためと考えられる。
Further, in the mixing method, even if the particle size of the loose abrasive grains mixed in the working fluid is different, there is not much difference in the first time, but thereafter, the larger the free abrasive grain size, the more gradual the reduction of the working efficiency. Is. As the particle size of the loose abrasive grains increases, the processing amount per abrasive grain increases. When the fixed abrasive is worn, as shown in FIGS. 1A to 1C, a gap 31 between the plating layer 13 of the tool and the workpiece 3 (the protruding height of the fixed abrasive from the plating layer) A) Abrasive grains 32 present in
Is easily held by the fixed abrasive grains 12,
It is considered that the loose abrasive grains 32 held in the gap greatly contribute to the processing.

【0017】図1は工具1に固定されたダイヤモンド砥
粒12が摩耗するに従って、加工液中の遊離砥粒32が
工具のニッケルメッキ層13と加工物3との間に保持さ
れやすくなる様子を示したもので、切削回数が少ない
(a)の状態では、メッキ層13の表面と工作物3の表
面との間の隙間31が大きく、遊離砥粒32は加工液と
ともに遊動して、あまり加工能率に寄与しないのに対
し、固定砥粒12が摩耗した同図(c)の状態では、メ
ッキ層13の表面と加工物3の表面との間の隙間31が
狭くなり、この隙間に加工液中の遊離砥粒32が保持さ
れて、加工能率に寄与することが理解される。このよう
な遊離砥粒32の作用は、遊離砥粒32の粒径が大きい
ほど有効であるが、ニッケルメッキ層13からの固定砥
粒12の突出高さHより遊離砥粒32の粒径が大きい
と、固定砥粒12の切削作用が阻害されるため、加工能
率は却って低下する。
FIG. 1 shows that as the diamond abrasive grains 12 fixed to the tool 1 are worn, the loose abrasive grains 32 in the working fluid are more likely to be held between the nickel plating layer 13 of the tool and the workpiece 3. As shown, in the state of (a) where the number of cuttings is small, the gap 31 between the surface of the plating layer 13 and the surface of the workpiece 3 is large, and the loose abrasive grains 32 float with the machining liquid, resulting in much machining. While it does not contribute to the efficiency, in the state shown in FIG. 3C in which the fixed abrasive grains 12 are worn, the gap 31 between the surface of the plating layer 13 and the surface of the workpiece 3 becomes narrow, and the machining liquid enters this gap. It is understood that the free abrasive grains 32 therein are retained and contribute to the machining efficiency. The action of such free abrasive grains 32 is more effective as the particle size of the free abrasive grains 32 is larger, but the particle size of the free abrasive grains 32 is larger than the protruding height H of the fixed abrasive grains 12 from the nickel plating layer 13. If it is large, the cutting action of the fixed abrasive 12 is hindered, so that the machining efficiency is rather reduced.

【0018】このように、従来の固定砥粒方法の切断な
いし溝入れ加工とこの発明の方法(上記混合方式)によ
る切断ないし溝入れ加工とを比較すると、切断初期にお
ける加工能率は余り差がないが、1本の工具を繰り返し
使用したときの加工能率の低下の度合いに顕著な差があ
り、連続的に多数の硬質脆性材料を切断するときの加工
能率は、この発明の方法が従来の固定砥粒方式よりはる
かに高能率である。
As described above, when the cutting or grooving process of the conventional fixed abrasive method is compared with the cutting or grooving process of the method of the present invention (the above mixing method), there is no significant difference in the working efficiency at the initial cutting stage. However, there is a remarkable difference in the degree of reduction of the working efficiency when one tool is repeatedly used, and the working efficiency when continuously cutting a large number of hard and brittle materials is the same as that of the conventional fixing method. It is much more efficient than the abrasive grain method.

【0019】図6は粒度1500番の遊離砥粒を含む加
工液を用いた加工において、工具の前述した後メッキを
30分(図6の白丸印)、40分(黒丸印)及び50分
(半黒白丸印)行った三種類工具について加工回数(横
軸)と加工能率(縦軸)との関係を測定したものであ
る。図6より明らかなように、後メッキを長く行ったも
の、すなわちメッキ層が厚いものの方が全般的に加工能
率が向上している。このことは、メッキ層の厚さの厚
い、従ってメッキ層の表面と加工物の表面との間の間隙
が狭い後メッキを多く行った工具が、図1の(a)と
(c)の対比で行った説明と同様に、メッキ層表面と加
工物の間での遊離砥粒の保持性が良く、従って加工能率
が向上すると考えられ、前述した遊離砥粒の作用の考察
と合致する。
FIG. 6 shows that in the processing using a processing liquid containing loose abrasive grains having a grain size of 1500, the above-mentioned post-plating of the tool is performed for 30 minutes (white circles in FIG. 6), 40 minutes (black circles) and 50 minutes ( The relationship between the number of times of machining (horizontal axis) and the machining efficiency (vertical axis) was measured for the three types of tools that were used. As is clear from FIG. 6, the processing efficiency is generally improved in the case where the post-plating is performed longer, that is, the case where the plating layer is thicker. This means that a tool which has a large thickness of the plating layer, and therefore has a narrow gap between the surface of the plating layer and the surface of the workpiece, has been subjected to a large amount of post-plating. Similar to the explanation given in 1., the retention of loose abrasive grains between the surface of the plating layer and the workpiece is good, and it is considered that the machining efficiency is improved, which is consistent with the consideration of the action of the loose abrasive grains described above.

【0020】[0020]

【発明の効果】以上の試験結果に示されたように、硬質
脆性材料の切断ないし溝入れ加工において、切刃部分に
固定砥粒をメッキ層で固定した直線ブレード状の固定砥
粒工具を用い、加工部に工具に固定した砥粒の突出高さ
より小さい粒径の遊離砥粒を含む加工液を供給して加工
を行うことにより、複数個の加工を行った後の工具の加
工能率が従来の固定砥粒方式での加工能率に比べてはる
かに高くなり、また1本の工具で能率良く加工を行うこ
とができるワークの個数も増大するという効果が得られ
る。なお、母材にワイヤを用いたものは、工具寿命が短
く、多数のワークを切断する前にワイヤ切れを起こして
しまうので、この発明の方法の工具には適さない。
As shown in the above test results, in cutting or grooving a hard brittle material, a fixed blade-shaped fixed abrasive tool in which fixed abrasive particles are fixed to the cutting edge portion by a plating layer is used. , The machining efficiency of the tool after multiple machining is conventionally achieved by supplying machining fluid containing free abrasive grains with a grain size smaller than the protruding height of the abrasive grains fixed to the tool to the machining section. This is far higher than the machining efficiency of the fixed abrasive grain method, and the number of workpieces that can be machined efficiently with one tool is increased. It should be noted that the one using a wire as a base material has a short tool life and causes wire breakage before cutting a large number of works, and therefore is not suitable for the tool of the method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法における遊離砥粒の作用を示す模
式図
FIG. 1 is a schematic diagram showing the action of loose abrasive grains in the method of the present invention.

【図2】固定砥粒工具の側面図[Fig. 2] Side view of a fixed-abrasive tool

【図3】固定砥粒工具の拡大断面図FIG. 3 is an enlarged sectional view of a fixed abrasive tool.

【図4】工具への砥粒の電着装置の説明図FIG. 4 is an explanatory view of an electrodeposition device for abrasive grains on a tool.

【図5】加工試験結果を示すグラフFIG. 5 is a graph showing processing test results.

【図6】後メッキ時間と加工能率の関係を示すグラフFIG. 6 is a graph showing the relationship between post-plating time and processing efficiency.

【符号の説明】[Explanation of symbols]

1 工具 11 母材 12 タイヤモンド砥粒 13 ニッケルメッキ層 32 遊離砥粒 1 Tool 11 Base Material 12 Tire Mond Abrasive Grain 13 Nickel Plating Layer 32 Free Abrasive Grain

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B24D 3/06 B24D 3/06 B B28D 7/02 B28D 7/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B24D 3/06 B24D 3/06 B B28D 7/02 B28D 7/02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硬質脆性材料の切断ないし溝入れ加工方
法において、固定砥粒(12)を薄板金属母材(11)の表面に
電着したメッキ層(13)で保持した直線ブレード状の固定
砥粒工具(1) を用い、加工部に前記固定砥粒工具のメッ
キ層(13)からの固定砥粒の突出高さ(H) より小径の遊離
砥粒(32)を混合した加工液を供給しながら加工を行うこ
とを特徴とする、硬質脆性材料の切断ないし溝入れ加工
方法。
1. A method of cutting or grooving a hard brittle material, wherein a fixed abrasive grain (12) is held by a plating layer (13) electrodeposited on the surface of a thin metal base material (11) and fixed in a straight blade shape. Using the abrasive grain tool (1), add a machining fluid that mixes free abrasive grains (32) with a diameter smaller than the protruding height (H) of the fixed abrasive grains from the plating layer (13) of the fixed abrasive grain tool to the machining part. A method for cutting or grooving a hard brittle material, characterized by performing processing while supplying.
【請求項2】 固定砥粒(12)がダイヤモンド砥粒であ
り、この固定砥粒を保持するメッキ層(13)がニッケルメ
ッキ層である、請求項1記載の硬質脆性材料の切断ない
し溝入れ加工方法。
2. The cutting or grooving of a hard brittle material according to claim 1, wherein the fixed abrasive grains (12) are diamond abrasive grains, and the plating layer (13) holding the fixed abrasive grains is a nickel plating layer. Processing method.
【請求項3】 ワークにブレード状工具(1) の切込み方
向の相対振動を加えながら加工を行うことを特徴とす
る、請求項1又は2記載の硬質脆性材料の切断ないし溝
入れ加工方法。
3. The method for cutting or grooving a hard brittle material according to claim 1, wherein the work is carried out while applying relative vibration in the cutting direction of the blade-shaped tool (1).
JP9325096A 1996-03-22 1996-03-22 Cutting or grooving method of hard brittle material Pending JPH09254146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9325096A JPH09254146A (en) 1996-03-22 1996-03-22 Cutting or grooving method of hard brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9325096A JPH09254146A (en) 1996-03-22 1996-03-22 Cutting or grooving method of hard brittle material

Publications (1)

Publication Number Publication Date
JPH09254146A true JPH09254146A (en) 1997-09-30

Family

ID=14077268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9325096A Pending JPH09254146A (en) 1996-03-22 1996-03-22 Cutting or grooving method of hard brittle material

Country Status (1)

Country Link
JP (1) JPH09254146A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492987B1 (en) * 1997-10-13 2005-09-08 삼성전자주식회사 A pad conditioner
CN102357930A (en) * 2011-08-18 2012-02-22 江苏神龙光电科技有限公司 Photovoltaic silicon material diamond band saw blade and processing method thereof
CN106363693A (en) * 2016-10-14 2017-02-01 南京航空航天大学 Tool for milling fiber reinforced composite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492987B1 (en) * 1997-10-13 2005-09-08 삼성전자주식회사 A pad conditioner
CN102357930A (en) * 2011-08-18 2012-02-22 江苏神龙光电科技有限公司 Photovoltaic silicon material diamond band saw blade and processing method thereof
CN106363693A (en) * 2016-10-14 2017-02-01 南京航空航天大学 Tool for milling fiber reinforced composite

Similar Documents

Publication Publication Date Title
US6312324B1 (en) Superabrasive tool and method of manufacturing the same
CA2773197A1 (en) Electroplated super abrasive tools with the abrasive particles chemically bonded and deliberately placed, and methods for making the same
US6540597B1 (en) Polishing pad conditioner
EP0576937A2 (en) Apparatus for mirror surface grinding
KR100609361B1 (en) Ultra fine groove chip and ultra fine groove tool
CN100344410C (en) Reparing and milling device for chemical-mechanical polishing soft pad and its producing method
KR100413371B1 (en) A diamond grid cmp pad dresser
JP2522278B2 (en) Electroformed thin blade grindstone
JP5042208B2 (en) Superabrasive tool and manufacturing method thereof
JPH09254146A (en) Cutting or grooving method of hard brittle material
JP4354482B2 (en) Truing tool
JPH05131366A (en) Diamond dressing gear for tool to hone gear or the like
JP2000288903A (en) Surface grinding method and surface grinding device using multiwire saw
JP2018103356A (en) Blade processing device and blade processing method
JP3802884B2 (en) CMP conditioner
US2691858A (en) Cutting tool
JP4142221B2 (en) Conditioner for CMP equipment
JP2679509B2 (en) Cutting wheel and cutting method
EP1252975A2 (en) Electro-deposited thin-blade grindstone
JP2004050313A (en) Abrasive wheel and grinding method
JP4169612B2 (en) Electrodeposition tool manufacturing method
JP3690994B2 (en) Electrodeposition tool manufacturing method
CN220197228U (en) Dental needle
JP3057250U (en) Electroplated dresser for CMP
JPH05237763A (en) Dressing method for electrodeposition type grinding wheel