JPH0925185A - Silicon carbide film coated member and its production - Google Patents

Silicon carbide film coated member and its production

Info

Publication number
JPH0925185A
JPH0925185A JP7201302A JP20130295A JPH0925185A JP H0925185 A JPH0925185 A JP H0925185A JP 7201302 A JP7201302 A JP 7201302A JP 20130295 A JP20130295 A JP 20130295A JP H0925185 A JPH0925185 A JP H0925185A
Authority
JP
Japan
Prior art keywords
cvd
temperature
sic
film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7201302A
Other languages
Japanese (ja)
Other versions
JP3227353B2 (en
Inventor
Takeshi Inaba
毅 稲葉
Shuichi Takeda
修一 武田
Katsunori Sato
勝憲 佐藤
Shigeo Kato
茂男 加藤
Yukio Ito
幸夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP20130295A priority Critical patent/JP3227353B2/en
Publication of JPH0925185A publication Critical patent/JPH0925185A/en
Application granted granted Critical
Publication of JP3227353B2 publication Critical patent/JP3227353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material

Abstract

PROBLEM TO BE SOLVED: To suppress impurity diffusion from a base material and to improve corrosion resistance against fluorine plasma etching, polishing characteristics and mirror surface converging accuracy by CVD treating an SiC base material after previously heat treating at a temp. higher than the CVD treating temp. SOLUTION: A CVD treating furnace in which the SiC base material is arranged is heated at the rate of 100-600 deg.C/hr and is kept at a temp. range from at least 1.05 times of the CVD treating temp. to that lower than the m.p. of the SiC base material (e.g. <=1400 deg.C) for 0.5-2.0hr. Thereafter, the furnace is cooled to the CVD treating temp. and is kept for a prescribed period, the SiC film having the low oxygen content of <=30ppm (by weight) and >=20μm in film thickness is applied on the surface of the SiC base material by CVD treatment while passing a CVD gaseous starting material to remove moisture or the like being an oxygen source in the furnace members or the base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化珪素被膜部材及び
その製造方法に関し、詳しくは、半導体製造における熱
処理工程に使用される炉芯管、ウエーハボート等の治具
類、半導体製造におけるプラズマエッチング工程に使用
されるサセプタ、又は、シンクロトロン放射光(SOR
光)等の高エネルギー光反射用ミラーとして利用される
炭化珪素被覆部材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide coated member and a method for manufacturing the same, and more particularly, to a furnace core tube used in a heat treatment step in semiconductor manufacturing, jigs such as wafer boats, and plasma etching in semiconductor manufacturing. Susceptor or synchrotron radiation (SOR) used in the process
The present invention relates to a silicon carbide coated member used as a mirror for reflecting high energy light such as light) and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から、半導体製造工程においては、
主に炭化珪素で構成される各種部材が用いられている。
特に、炭化珪素(SiC)と炭素(C)との成形体に珪
素(Si)を含浸させて得られる反応焼結SiC(Si
−SiC)表面上にSiC膜を被覆した部材は、耐熱
性、耐食性に優れる、金属不純物の含有量が極めて少
ない、基材内部からウエーハへの金属不純物の拡散を
抑制できる、緻密質で内在気孔を有さず、高硬度で、
研磨特性に優れる等の優れた特長を有しており、半導体
製造用の熱処理治具や、SOR光用ミラーの母材として
使用されている。上記の特長は、主として表面に被覆さ
れたCVD−SiC膜の特性に起因し、半導体製造用の
熱処理治具やSOR光用ミラーとして用いられる場合、
CVD−SiC膜は一般的に20μm以上の膜厚で被覆
する必要があり、通常、熱CVD法で形成されている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing process,
Various members mainly composed of silicon carbide are used.
In particular, a reaction-sintered SiC (Si) obtained by impregnating a molded body of silicon carbide (SiC) and carbon (C) with silicon (Si)
-SiC) A member whose surface is covered with a SiC film has excellent heat resistance and corrosion resistance, has an extremely low content of metal impurities, can suppress the diffusion of metal impurities from the inside of the base material into the wafer, and has dense internal pores. It has high hardness without
It has excellent features such as excellent polishing characteristics and is used as a base material for heat treatment jigs for semiconductor manufacturing and mirrors for SOR light. The above characteristics are mainly due to the characteristics of the CVD-SiC film coated on the surface, and when used as a heat treatment jig for semiconductor manufacturing or a mirror for SOR light,
The CVD-SiC film generally needs to be coated with a film thickness of 20 μm or more, and is usually formed by a thermal CVD method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、例え
ば、半導体拡散炉用炉芯管として反応焼結SiC管の内
表面に形成された従来のCVD法によるCVD−SiC
膜では、炉芯管基材または炉芯管外周からの金属不純物
の外方拡散が充分に抑制されず、超高純度が要求される
近年の半導体製造用としては、決して充分なものでなか
った。また、半導体プラズマエッチング用サセプタとし
て、反応焼結SiC板状体の表面に形成された従来の熱
CVD法によるCVD−SiC膜では、エッチング媒体
となるフッ素プラズマに対する耐食性が充分といえず、
交換頻度が高くなっていた。更に、シンクロトロン放射
光反射用ミラーとして、自焼結SiC基板の表面に形成
された従来の熱CVD法によるCVD−SiC膜では、
光反射面のダイヤモンド研磨において、充分な鏡面形成
ができず、そのため集光精度において充分な値が得られ
ていなかった。発明者らは、上記熱CVD法によりSi
C膜が被覆形成された各種半導体製造用部材が、各種用
途における性能が充分に発現され得ない点について、根
源的に且つ総合的に検討した。その結果、それらのいず
れもCVD−SiC膜中の酸素濃度と深く関係すること
を知見し、各部材のCVD−SiC膜中の酸素濃度を所
定以下にすることにより、各部材性能が向上させ得るこ
とから、本発明を完成した。
However, for example, a conventional CVD-SiC CVD-SiC formed on the inner surface of a reaction-sintered SiC tube as a furnace core tube for a semiconductor diffusion furnace.
The film was not sufficient for the recent semiconductor manufacturing in which ultra high purity is required because the outward diffusion of metal impurities from the furnace core tube base material or the furnace core tube outer periphery is not sufficiently suppressed. . Further, as a susceptor for semiconductor plasma etching, a conventional CVD-SiC film formed on the surface of a reaction-sintered SiC plate by the conventional thermal CVD method cannot be said to have sufficient corrosion resistance to fluorine plasma serving as an etching medium,
The replacement frequency was high. Furthermore, as a mirror for synchrotron radiation reflection, a conventional CVD-SiC film formed on the surface of a self-sintered SiC substrate by a thermal CVD method,
In the diamond polishing of the light-reflecting surface, a sufficient mirror surface could not be formed, and therefore, a sufficient value was not obtained in converging accuracy. The inventors of the present invention used the above thermal CVD method to produce Si.
Fundamentally and comprehensively, the fact that various semiconductor manufacturing members coated with a C film could not sufficiently exhibit the performance in various applications was examined. As a result, it was found that all of them are deeply related to the oxygen concentration in the CVD-SiC film, and by setting the oxygen concentration in the CVD-SiC film of each member to a predetermined value or less, the performance of each member can be improved. Therefore, the present invention has been completed.

【0004】[0004]

【課題を解決するための手段】本発明によれば、SiC
質基材表面に、CVD法により厚さ20μm以上にSi
C膜を被覆してなると共に、該SiC膜中の酸素濃度が
30ppm(重量)以下であることを特徴とする炭化珪
素膜被覆部材が提供される。
According to the present invention, SiC
Si on the surface of high quality substrate by CVD method to a thickness of 20 μm or more
There is provided a silicon carbide film-covered member which is formed by coating a C film and has an oxygen concentration in the SiC film of 30 ppm (weight) or less.

【0005】本発明の炭化珪素膜被覆部材は上記のよう
に構成され、SiC質基材表面に被覆されたCVD−S
iC膜の酸素含有量が30ppm以下とされているた
め、不純物拡散の抑制に優れ、フッ素プラズマに対する
耐食性に充分な効果を示し、ダイヤモンド等による表面
研磨による高平坦性が得られる。そのため、例えば、シ
ンクロトロン放射光の高集光精度を発揮することができ
る。
The silicon carbide film-coated member of the present invention is constructed as described above, and CVD-S coated on the surface of the SiC-based substrate.
Since the oxygen content of the iC film is 30 ppm or less, it is excellent in suppressing the diffusion of impurities, has a sufficient effect on the corrosion resistance to fluorine plasma, and has high flatness by surface polishing with diamond or the like. Therefore, for example, it is possible to exhibit high focusing accuracy of the synchrotron radiation light.

【0006】また、本発明は、SiC質基材を配置する
CVD処理炉を100〜600℃/時で、1000〜1
300℃のCVD処理温度より高く且つ該SiC質基材
の融点より低い高温度まで昇温し、該高温度で所定時間
保持し、その後、該CVD温度まで降温して所定時間保
持した後、CVD原料ガスを流通させてCVD処理する
ことを特徴とする炭化珪素膜被覆部材の製造方法を提供
する。本発明の炭化珪素膜被覆部材の製造方法におい
て、上記高温度が、少なくともCVD処理温度の1.0
5倍以上の温度であり、且つ、1400℃以下の温度で
あることが好ましい。また、その高温度で保持する所定
時間が0.5〜2.0時間であることが好ましい。更
に、上記SiC質基材が、反応焼結SiCからなること
が好ましい。
Further, according to the present invention, a CVD treatment furnace for arranging a SiC base material is used at 100 to 600 ° C./hour for 1000 to 1
The temperature is raised to a high temperature that is higher than the CVD treatment temperature of 300 ° C. and lower than the melting point of the SiC-based substrate, and is held at the high temperature for a predetermined time, and then, is lowered to the CVD temperature and is held for a predetermined time, and then CVD is performed. Provided is a method for manufacturing a silicon carbide film-coated member, which is characterized in that a source gas is circulated and a CVD process is performed. In the method for manufacturing a silicon carbide film-coated member of the present invention, the high temperature is at least 1.0 of the CVD processing temperature.
It is preferable that the temperature is 5 times or more and 1400 ° C. or less. Further, it is preferable that the predetermined time of holding at the high temperature is 0.5 to 2.0 hours. Furthermore, it is preferable that the SiC base material is made of reaction-sintered SiC.

【0007】本発明の炭化珪素膜被覆部材の製造方法で
は、所定の昇温速度にてCVD処理温度以上の所定温度
にすると共にその温度に所定時間保持し、その後、CV
D処理温度まで下げ、更にそのCVD処理温度で所定時
間保持した後、従来と同様なCVD処理をすることによ
り、炉内部材及び基材中の酸素源となる水分等を除去で
き、形成されるCVD−SiC膜が低酸素含有量とな
り、低酸素含有量の炭化珪素膜被覆部材を得ることがで
きる。
In the method for manufacturing a silicon carbide film-coated member of the present invention, the temperature is raised to a predetermined temperature equal to or higher than the CVD processing temperature at a predetermined temperature rising rate, and the temperature is maintained for the predetermined time, and then the CV is applied.
D The temperature is lowered to the treatment temperature, and the temperature is further maintained at the CVD treatment temperature for a predetermined time, and then the same CVD treatment as in the conventional method is performed, whereby moisture or the like serving as an oxygen source in the furnace member and the base material can be removed and formed. The CVD-SiC film has a low oxygen content, and a silicon carbide film coating member having a low oxygen content can be obtained.

【0008】[0008]

【発明の実施の形態】以下、本発明について詳しく説明
する。本発明の炭化珪素被覆部材において、炭化珪素を
被覆する基材は、例えば、従来から耐熱性基材として公
知である反応焼結SiC(Si−SiC)を用いること
ができる。本発明は、上記反応焼結SiCの高温での高
強度を利用すると共に、含有不純物の飛散や拡散をCV
D−SiC膜被覆により防止し、更に、被覆のCVD−
SiC膜の性状を向上させるものである。また、本発明
のCVD−SiC膜は、従来のCVD−SiC膜と同様
に、厚さ20μm以上に形成する。20μm以下では、
SiC膜が有する特性を十分発現することができないた
めである。本発明の上記反応焼結SiC基板上に被覆す
るCVD−SiC膜中の酸素濃度は、30ppm以下で
あり、好ましくは10ppm以下である。30ppmを
超えた場合は、膜中にSiO2 が存在することを無視で
きないためである。この場合、酸素濃度はゼロであれば
最も好ましいが、CVD処理操作上ゼロとすることは困
難であり、後記の実施例においては0.3ppmが最低
値であった。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the silicon carbide-coated member of the present invention, the base material coated with silicon carbide may be, for example, reaction-sintered SiC (Si-SiC), which is conventionally known as a heat-resistant base material. The present invention utilizes the high strength of the above reaction-sintered SiC at high temperature, and at the same time, prevents the impurities contained therein from scattering or diffusing.
Prevent by D-SiC film coating, and further coating CVD-
It improves the properties of the SiC film. Further, the CVD-SiC film of the present invention is formed to have a thickness of 20 μm or more like the conventional CVD-SiC film. Below 20 μm,
This is because the characteristics of the SiC film cannot be sufficiently exhibited. The oxygen concentration in the CVD-SiC film coated on the reaction sintered SiC substrate of the present invention is 30 ppm or less, preferably 10 ppm or less. This is because when it exceeds 30 ppm, the presence of SiO 2 in the film cannot be ignored. In this case, the oxygen concentration is most preferable to be zero, but it is difficult to set it to zero in view of the CVD processing operation, and 0.3 ppm was the minimum value in Examples described later.

【0009】本発明の上記CVD−SiC膜は、熱CV
D処理工程に先立ち所定の昇温速度でCVD処理温度以
上とし、その後CVD処理温度として処理することによ
り得ることができる。このCVD処理温度以上の温度に
保持することが、反応焼結SiCのCVD−SiC膜被
覆に有効であることは、発明者らが初めて見出したもの
である。即ち、熱CVD法によるCVD−SiCの形成
は、文献等の研究報告では1200〜2200K(92
7〜1927℃)の幅広い温度範囲で行われるが、実際
的なCVD処理においては、基材の材質からその基材が
変化するような、例えば、材質の融点以上は当然のこ
と、その融点付近に設定する等は、基材維持の観点から
全く考察されていない。例えば、反応焼結SiCを基材
とする場合では、基材中にシリコンが存在するため、シ
リコンの融点である1420℃未満、通常、約1000
〜1300℃でCVD処理を行っている。しかし、発明
者らは、通常のCVD−SiC被覆において、酸素が高
濃度で含有されるという事実があり、また、発明者らに
よれば、特に、CVD炉内にカーボン材などが使用され
ている場合は、酸素の含有率が高くなることから、反応
焼結SiC上へCVD処理でSiC膜を被覆する通常の
処理温度でも、基材中やCVD炉内で使用される治具類
に吸着したり、含有される水分、CO、CO2 ガスを完
全に除去されていないことを認識し、それにより、簡単
な操作で、可能な限り炉内の酸素源を除去することがで
きる方法について検討した結果、CVD処理温度以上の
高温、で処理した後、CVD処理でSiC被覆すること
に到った。更に、その高温処理及びCVD処理工程の温
度及びその保持時間、温度降下速度等の処理温度パター
ンについて検討した。
The above CVD-SiC film of the present invention is a thermal CV film.
It can be obtained by increasing the temperature to or above the CVD processing temperature at a predetermined temperature rising rate before the D processing step and then processing at the CVD processing temperature. The inventors have for the first time found that maintaining the temperature at or above this CVD treatment temperature is effective for coating a CVD-SiC film of reaction-sintered SiC. That is, the formation of CVD-SiC by the thermal CVD method is reported to be 1200 to 2200K (92
7 to 1927 ° C.) in a wide temperature range, but in a practical CVD process, the material changes from the material of the base material to that of the base material. No setting has been considered from the viewpoint of maintaining the base material. For example, when reaction-sintered SiC is used as the base material, since silicon exists in the base material, the melting point of silicon is less than 1420 ° C., usually about 1000.
The CVD process is performed at ˜1300 ° C. However, the present inventors have the fact that oxygen is contained in a high concentration in a normal CVD-SiC coating, and according to the present inventors, particularly, a carbon material or the like is used in a CVD furnace. If it is present, the oxygen content will be high, so it will be adsorbed to jigs used in the base material or in the CVD furnace even at the normal processing temperature for coating the SiC film on the reaction-sintered SiC by CVD processing. And recognize that the contained water, CO, and CO 2 gas have not been completely removed, so that a method that can remove the oxygen source in the furnace as much as possible by a simple operation is studied. As a result, after processing at a temperature higher than the CVD processing temperature, the SiC coating was performed by the CVD processing. Further, the temperature of the high temperature treatment and the CVD treatment process, the holding time thereof, the treatment temperature pattern such as the temperature drop rate, were examined.

【0010】即ち、図1はCVD炉内の温度工程を示す
温度と時間との関係図である。図1において、0−Aは
昇温工程であり、A−Bは昇温で到達したA点での温度
に保持する工程であり、B−Cは温度降下工程であり、
C−DはC点での温度で保持する工程である。また、E
−Fは昇温工程0−Aの途中のE点での温度にF点まで
保持する工程である。図1において、0−Aの昇温工程
における昇温速度は、通常のCVD処理炉の昇温速度と
同様であり、100〜600℃/時で行うことができ
る。E、F、C、D点は、いずれもCVD処理の温度で
あり、従来と同様に反応焼結SiCを基材とする場合は
約1000〜1300℃でCVD処理する。A、B点
は、反応焼結SiC中に含有されるSiの融点付近の温
度で、約1350〜1400℃である。0−E−Fライ
ン工程は、ほぼCVD処理温度に到達した時点でCVD
を開始する。このパターンは、従来のCVD−SiC膜
の被覆処理パターンであり、高温処理することなくCV
D処理を開始するもので、CVD−SiC膜中の酸素濃
度が高いことは従来と同様となる。0−A−B−C−D
ライン工程でのCVD処理を開始する工程パターンを検
討した。シリコンの融点付近のAまたはB点でCVD処
理を開始した場合は、1400℃での保持時間を1.5
時間以上に設定すれば水分除去は充分であるが、得られ
るCVD膜は、柱状晶が著しく発達した結晶形態となる
ため、半導体用熱処理治具やミラーとしては好ましくな
い。また、温度降下したC点で直にCVD処理を開始し
た場合は、温度が不安定となることから膜質の再現性が
乏しく好ましくない。0−E−C−Dライン工程のCV
D処理温度で比較的長時間保持してCVD処理を開始す
るパターンは、従来法より若干の低減が認められるが、
炉内の水分やCOガスが充分に除去されず、酸素濃度の
低減が図れない。
That is, FIG. 1 is a relational diagram of temperature and time showing the temperature process in the CVD furnace. In FIG. 1, 0-A is a temperature raising step, AB is a step of maintaining the temperature at point A reached by the temperature raising, BC is a temperature decreasing step,
CD is a process of maintaining the temperature at point C. Also, E
-F is a step of maintaining the temperature at point E in the middle of temperature raising step 0-A up to point F. In FIG. 1, the temperature raising rate in the 0-A temperature raising step is the same as the temperature raising rate of a normal CVD processing furnace, and can be performed at 100 to 600 ° C./hour. Points E, F, C, and D are all temperatures of the CVD process, and when reaction-sintered SiC is used as the base material, the CVD process is performed at about 1000 to 1300 ° C. as in the conventional case. Points A and B are temperatures around the melting point of Si contained in the reaction-sintered SiC and are about 1350 to 1400 ° C. In the 0-EF line process, when the CVD processing temperature is almost reached, the CVD process is performed.
To start. This pattern is a conventional CVD-SiC film coating pattern, and is a CV pattern without high temperature treatment.
Since the D treatment is started, the oxygen concentration in the CVD-SiC film is high as in the conventional case. 0-A-B-C-D
The process pattern for starting the CVD process in the line process was examined. When the CVD process is started at the point A or B near the melting point of silicon, the holding time at 1400 ° C. is 1.5
If the time is set longer than the time, the water removal is sufficient, but the resulting CVD film is not preferable as a heat treatment jig for semiconductors or a mirror because it has a crystal form in which columnar crystals are significantly developed. Further, if the CVD process is started directly at the point C where the temperature has dropped, the temperature becomes unstable and the reproducibility of the film quality is poor, which is not preferable. CV in 0-E-C-D line process
The pattern in which the CVD process is started by holding the D process temperature for a relatively long time shows a slight reduction as compared with the conventional method.
Moisture and CO gas in the furnace are not sufficiently removed, and the oxygen concentration cannot be reduced.

【0011】本発明の炭化珪素膜被覆部材の製造におけ
るCVD処理は、図1における0−A−B−C−Dライ
ンの温度工程を採用し、高温処理した後、D点でCVD
処理を開始する方法である。即ち、CVD処理温度より
高温まで昇温し、その温度で所定時間保持した後、CV
D処理温度まで温度を降下させた後、更に所定時間保持
してCVD処理を開始する温度工程でCVD処理する方
法である。この場合A点の到達温度は、1000〜13
00℃のCVD処理温度より高く且つ該SiC質基材の
融点より低い温度であり、好ましくは、少なくとも通常
のCVD処理温度1000〜1300℃の1.05倍以
上の温度であり、且つ、1400℃以下の温度である。
一般に、このA点の温度がSiC質基材の融点、例えば
1420℃以上であると基材中のシリコンが融解すると
同時に、基材が形状を保持できず好ましくない。一方、
CVD処理温度の1000〜1300℃の1.05倍未
満の温度、例えば1030℃未満であると炉内の水分や
COガスの除去するために長時間を要し効率が悪く、通
常、1350〜1400℃の範囲で高温処理することが
好ましい。また、保持時間は、炉体形状や炉内で使用さ
れているカーボン材の容量などにより異なり、各処理条
件に応じて適宜選択すればよい。通常、所定の温度まで
昇温した後、CVD処理まで約0.5〜4.0時間設定
すれば十分であり、好ましくは、上記高温処理温度で約
0.5〜2.0時間保持し、その後、CVD処理温度ま
で降下して約1.0〜2.0時間保持する。上記高温処
理温度の保持時間が、0.5時間未満では酸素濃度の充
分な低減が図れず、また、2.0時間を超えて処理して
も実質的な効果は同等であり、工業的に製造コストを考
えた場合2.0時間以下とすることが好ましい。
The CVD process in the production of the silicon carbide film coated member of the present invention employs the temperature process of the 0-A-B-C-D line in FIG.
This is the method of starting the process. That is, the temperature is raised to a temperature higher than the CVD processing temperature, the temperature is maintained for a predetermined time,
In this method, the temperature is lowered to the D processing temperature, and then the CVD processing is performed in a temperature step in which the CVD processing is started by holding the temperature for a predetermined time. In this case, the temperature reached at the point A is 1000 to 13
The temperature is higher than the CVD treatment temperature of 00 ° C. and lower than the melting point of the SiC substrate, preferably at least 1.05 times the normal CVD treatment temperature of 1000 to 1300 ° C., and 1400 ° C. The temperatures are as follows:
Generally, if the temperature at point A is the melting point of the SiC-based substrate, for example, 1420 ° C. or higher, the silicon in the substrate melts and at the same time the substrate cannot maintain its shape, which is not preferable. on the other hand,
If the temperature is less than 1.05 times 1000 to 1300 ° C. of the CVD processing temperature, for example, less than 1030 ° C., it takes a long time to remove water and CO gas in the furnace and the efficiency is low. It is preferable to perform high temperature treatment in the range of ° C. Further, the holding time differs depending on the shape of the furnace body and the capacity of the carbon material used in the furnace, and may be appropriately selected according to each processing condition. Usually, it is sufficient to set the temperature to a predetermined temperature and then set the CVD process for about 0.5 to 4.0 hours, and preferably hold the high temperature treatment temperature for about 0.5 to 2.0 hours. Then, the temperature is lowered to the CVD processing temperature and maintained for about 1.0 to 2.0 hours. If the holding time at the above-mentioned high temperature treatment is less than 0.5 hours, the oxygen concentration cannot be sufficiently reduced, and even if the treatment is performed for more than 2.0 hours, the substantial effect is the same. Considering the manufacturing cost, it is preferably 2.0 hours or less.

【0012】[0012]

【実施例】本発明について実施例に基づき、更に詳細に
説明する。但し、本発明は、下記の実施例に制限される
ものでない。 実施例1 上記図1の0−A−B−C−Dラインで示される温度工
程で下記のように反応焼結SiC質基材の表面を高温処
理し、更にCVD−SiC被覆処理した。図1におい
て、0−Aの昇温工程を室温から400℃/時の昇温速
度で約3.5時間で1400℃まで昇温した。その後、
A−Bの保持を1400℃で60分保持した後、B−C
の温度降下を1時間で1200℃まで温度降下した。更
に、C−Dの保持を1200℃で60分間保持した。そ
の後、D点において、1200℃で原料ガスのSiCl
4 、CH4 及びH2 をそれぞれ標準状態で0.5、0.
3及び2.0リットル/分で供給流通させ150分間C
VD処理して50μmの厚さのSiC膜を被覆した。
EXAMPLES The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. Example 1 The surface of a reaction-sintered SiC-based substrate was subjected to a high temperature treatment and a CVD-SiC coating treatment as described below in the temperature step indicated by the 0-A-B-C-D line in FIG. In FIG. 1, the temperature raising step of 0-A was performed from room temperature to 1400 ° C. at a temperature raising rate of 400 ° C./hour in about 3.5 hours. afterwards,
After holding A-B at 1400 ° C. for 60 minutes, B-C
The temperature was dropped to 1200 ° C. in 1 hour. Further, the CD was held at 1200 ° C. for 60 minutes. After that, at the point D, at 1200 ° C., the raw material gas SiCl
4 , CH 4 and H 2 are 0.5, 0.
Supply and distribute at 3 and 2.0 liters / minute for 150 minutes C
VD treatment was applied to cover a 50 μm thick SiC film.

【0013】上記で形成されたCVD−SiC膜中の酸
素濃度を測定した。CVD−SiC膜中の酸素の測定
は、SIMS(二次イオン質量分析法)により行った。
この酸素測定法においては、予め酸素濃度を調整したS
iC標準サンプルを準備し、SiC中のSiイオン強度
と酸素イオン強度から、相対感度係数(RSF)CR
下式(1)により求め、得られたRSFを基に下式
(2)により試料中の酸素濃度DS を算出した。このS
IMSによる酸素濃度定量測定は、ppm以下の感度に
て精度10〜20%程度で容易に行うことができる。但
し、式中、DO は標準サンプルに注入した酸素濃度(原
子数/cm2 )、Ir はマトリックス(Siまたは炭素
(C))の測定イオン強度、Is は試料中の酸素元素の
測定イオン強度、dは測定深さ(cm)、nは測定深さ
までのデータ数をそれぞれ表す。 CR =DO ・Ir ・n/d・ΣIs (1) DS =CR ・Is /Ir (2) 本実施例においては、酸素濃度1×1015原子数/cm
2 に調整したSiC標準サンプルを準備し、パーキン・
エルマー・6600・SIMSを用い、一次イオン種C
s+ 、一次イオン加速電圧5KeV、一次イオン電流5
00nA、ラスター領域200×315(μm)、分析
領域90×140(μm)の条件で表面から約2μmの
深さで測定した。その結果、酸素濃度は3ppmであっ
た。
The oxygen concentration in the CVD-SiC film formed above was measured. The oxygen in the CVD-SiC film was measured by SIMS (secondary ion mass spectrometry).
In this oxygen measuring method, the S
An iC standard sample was prepared, and a relative sensitivity coefficient (RSF) C R was calculated from the following formula (1) from the Si ion strength and oxygen ion strength in SiC, and the sample was calculated from the obtained RSF by the following formula (2). The oxygen concentration D S in the inside was calculated. This S
The oxygen concentration quantitative measurement by IMS can be easily performed with a sensitivity of ppm or less and an accuracy of about 10 to 20%. However, in the formula, D O is the oxygen concentration (number of atoms / cm 2 ) injected into the standard sample, I r is the measured ionic strength of the matrix (Si or carbon (C)), and I s is the measurement of oxygen element in the sample. Ionic strength, d represents the measurement depth (cm), and n represents the number of data up to the measurement depth. C R = D O · I r · n / d · ΣI s (1) D S = C R · I s / I r (2) In this embodiment, the oxygen concentration is 1 × 10 15 atoms / cm 2.
Prepare a SiC standard sample adjusted to 2 and
Using Elmer 6600 SIMS, primary ion species C
s + , primary ion acceleration voltage 5 KeV, primary ion current 5
The measurement was performed at a depth of about 2 μm from the surface under the conditions of 00 nA, raster region 200 × 315 (μm), and analysis region 90 × 140 (μm). As a result, the oxygen concentration was 3 ppm.

【0014】実施例2〜6 図1の温度工程図において、A点温度、A−B点の保持
時間、C点の温度及びC−D点保持時間を、それぞれ表
1に示したように変化させ、Fe濃度100ppmの1
0×5×50(mm)の平板状の反応焼結SiC材表面
に、実施例1と同様にしてCVD−SiC膜を膜厚50
μmで被覆した。実施例1と同様にして測定した各Si
C膜の酸素濃度を表1に示した。この際、酸素濃度0.
3ppm未満となるCVD−SiC膜の形成を試みたが
できなかった。なお、表1には実施例1の結果も併せて
記載した。
Examples 2 to 6 In the temperature process chart of FIG. 1, the temperature at the point A, the holding time at the point AB, the temperature at the point C and the holding time at the point C-D were changed as shown in Table 1, respectively. And Fe concentration 100ppm 1
A CVD-SiC film having a film thickness of 50 is formed on the surface of a 0x5x50 (mm) plate-shaped reaction sintered SiC material in the same manner as in Example 1.
coated with μm. Each Si measured in the same manner as in Example 1
Table 1 shows the oxygen concentration of the C film. At this time, the oxygen concentration is 0.
An attempt was made to form a CVD-SiC film having a content of less than 3 ppm, but it was not possible. The results of Example 1 are also shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】比較例1〜2 図1の温度工程図において、E点まで実施例1と同様に
昇温した後、表2に示した時間でE−F点までその温度
を保持し、その後、従来のCVD処理方式と同様に、F
点から実施例2と同様にしてCVD処理して50μmの
厚さのSiC膜を被覆した。同様に測定した各SiC膜
の酸素濃度を表2に示した。
Comparative Examples 1 to 2 In the temperature process chart of FIG. 1, the temperature was raised up to point E in the same manner as in Example 1, then the temperature was maintained up to point E-F at the time shown in Table 2, and thereafter, As with the conventional CVD processing method, F
From this point, a CVD process was performed in the same manner as in Example 2 to coat a SiC film having a thickness of 50 μm. Table 2 shows the oxygen concentration of each SiC film measured similarly.

【0017】[0017]

【表2】 [Table 2]

【0018】(不純物の拡散評価試験)上記実施例2〜
4及び比較例1〜2で得られた各CVD−SiC膜被覆
のSiC板試料について不純物の拡散評価を行った。各
試料Sをそれぞれ、図2に示した加熱装置において、F
e含有量0.001ppmの100gの高純度石英粉末
1中に入れ、装置内をAr雰囲気にし、外部ヒータ2に
より熱電対3を用い1300℃に加熱制御して、500
時間、1000時間、2000時間それぞれ熱処理し
た。各時間経過の試料を取り出した後、石英粉中のFe
増加量を測定した。その結果を図3に示した。図3よ
り、本発明のCVD−SiC膜被覆の反応焼結SiC質
基材が、不純物の拡散を防止する効果が高いことが明ら
かである。
(Impurity Diffusion Evaluation Test) Above Examples 2 to 2
Diffusion evaluation of impurities was performed on the SiC plate samples coated with the respective CVD-SiC films obtained in Example 4 and Comparative Examples 1 and 2. In each of the heating devices shown in FIG.
e) It was put in 100 g of high-purity quartz powder 1 having a content of 0.001 ppm, the inside of the apparatus was made into an Ar atmosphere, and the heating was controlled to 1300 ° C. by using the thermocouple 3 by the external heater 2,
Heat treatment was performed for 1,000 hours and 2000 hours. After taking out the sample after each time, Fe in the quartz powder
The amount of increase was measured. The results are shown in Fig. 3. It is clear from FIG. 3 that the CVD-SiC film-coated reaction-sintered SiC substrate of the present invention has a high effect of preventing diffusion of impurities.

【0019】(フッ素プラズマエッチング耐食性評価試
験)上記実施例2〜4及び比較例1〜2で得られた各C
VD−SiC膜被覆のSiC板試料について、フッ素プ
ラズマに対する耐食性について測定した。試験装置には
CDE(ケミカルドライエッチング装置)を用い、出力
600W、CF4 流量を標準状態で120cc/分、O
2 流量を標準状態で40cc/分、試料温度150℃、
暴露時間100分の条件で各試料表面のフッ素プラズマ
によるエッチングレートを測定した。その結果を表3に
示した。この耐食性評価により本発明のCVD−SiC
膜被覆の反応焼結SiC質基材は、エッチングレートが
比較例のものに比し1ケタ良好であり、耐フッ素プラズ
マ性に優れることが明らかである。これは含有酸素量が
少なくSi−O結合が殆どないためと推定される。
(Fluorine Plasma Etching Corrosion Resistance Evaluation Test) Each C obtained in the above Examples 2 to 4 and Comparative Examples 1 and 2
The SiC plate sample coated with the VD-SiC film was measured for corrosion resistance to fluorine plasma. A CDE (Chemical Dry Etching Equipment) is used as the test equipment, the output is 600 W, the CF 4 flow rate is 120 cc / min in the standard state, and O
2 flow rate in standard condition 40cc / min, sample temperature 150 ° C,
The etching rate by fluorine plasma of each sample surface was measured under the condition of exposure time of 100 minutes. Table 3 shows the results. Based on this corrosion resistance evaluation, the CVD-SiC of the present invention
It is clear that the film-coated reaction-sintered SiC substrate has an etching rate of one digit better than that of the comparative example and is excellent in fluorine plasma resistance. It is presumed that this is because the oxygen content is small and there is almost no Si—O bond.

【0020】[0020]

【表3】 [Table 3]

【0021】(研磨特性評価試験)上記実施例2〜4及
び比較例1〜2で得られた各CVD−SiC膜被覆のS
iC板試料について、研磨特性評価を行った。各試料の
表面をダイヤモンドペーストを用いてバフ研磨し、得ら
れた鏡面の表面粗さを測定した。その結果を表4に示し
た。表4より明らかなように、本発明のCVD−SiC
膜被覆の反応焼結SiC質部材が、比較例に比し良好な
表面が得られることが分かる。また、この結果、本発明
のCVD−SiC膜が、組成的に均一なSiCに限りな
く近く、物性(硬度)差が小さくなっていることが推定
される。
(Polishing Characteristic Evaluation Test) S of each CVD-SiC film coating obtained in Examples 2 to 4 and Comparative Examples 1 to 2 above.
The polishing characteristics of the iC plate sample were evaluated. The surface of each sample was buffed with a diamond paste, and the surface roughness of the obtained mirror surface was measured. The results are shown in Table 4. As is clear from Table 4, the CVD-SiC of the present invention
It can be seen that the film-coated reaction-sintered SiC material has a better surface than the comparative example. Further, as a result, it is estimated that the CVD-SiC film of the present invention is as close as possible to compositionally uniform SiC, and the difference in physical properties (hardness) is small.

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【発明の効果】本発明の炭化珪素膜被覆部材は、CVD
処理するに先立ち、予めCVD処理温度以上の高温で熱
処理した後、CVD処理することにより製造される。本
発明の方法により得られる炭化珪素膜被覆部材は、Si
C質基材表面を被覆されるCVD−SiC膜が、従来法
のCVD−SiC膜に比して、酸素濃度が著しく低減さ
れることから、基材からの不純物拡散を抑制し、フッ素
プラズマエッチング耐食性に優れ、また、研磨特性に優
れ集光精度のよい鏡面を得ることができ、例えば、半導
体拡散炉の炉芯管、半導体プラズマエッチング用サセプ
タ、シンクロトロン反射光用ミラーの母材等の各種の半
導体製造工程の構造部材材料として好適に用いることが
できる。
The silicon carbide film-covered member of the present invention is formed by CVD.
Prior to the treatment, it is manufactured by performing a heat treatment in advance at a high temperature equal to or higher than the CVD treatment temperature and then performing a CVD treatment. The silicon carbide film-coated member obtained by the method of the present invention is made of Si
Since the oxygen concentration of the CVD-SiC film coated on the surface of the C-type substrate is significantly reduced as compared with the conventional CVD-SiC film, the diffusion of impurities from the substrate is suppressed and the fluorine plasma etching is performed. It is possible to obtain a mirror surface with excellent corrosion resistance and excellent polishing characteristics and good condensing accuracy. For example, various materials such as a furnace core tube of a semiconductor diffusion furnace, a susceptor for semiconductor plasma etching, and a base material for a mirror for synchrotron reflection light, etc. Can be suitably used as a structural member material in the semiconductor manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるCVD炉内の温度工程を示す温
度と時間との関係図である。
FIG. 1 is a relationship diagram of temperature and time showing a temperature process in a CVD furnace in the present invention.

【図2】本発明の実施例で用いた不純物拡散試験炉の模
式図である。
FIG. 2 is a schematic diagram of an impurity diffusion test furnace used in an example of the present invention.

【図3】本発明の実施例及び比較例における不純物拡散
試験の結果を示す熱処理時間と不純物(Fe)増加量と
の関係図である。
FIG. 3 is a diagram showing the relationship between the heat treatment time and the amount of increase in impurities (Fe) showing the results of the impurity diffusion test in Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

S 試料 1 充填石英粉末 2 ヒータ 3 熱電対 S sample 1 filled quartz powder 2 heater 3 thermocouple

フロントページの続き (72)発明者 加藤 茂男 山形県西置賜郡小国町大字小国町378 東 芝セラミックス株式会社小国製造所内 (72)発明者 伊藤 幸夫 山形県西置賜郡小国町大字小国町378 東 芝セラミックス株式会社小国製造所内Front page continuation (72) Inventor Shigeo Kato 378 Oguni-machi, Oguni-cho, Nishiokitama-gun, Yamagata Prefecture In the Oguni Factory of Toshiba Ceramics Co., Ltd. Company Oguni Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 SiC質基材表面に、CVD法により厚
さ20μm以上にSiC膜を被覆してなると共に、該S
iC膜中の酸素濃度が30ppm(重量)以下であるこ
とを特徴とする炭化珪素膜被覆部材。
1. A surface of a SiC substrate is coated with a SiC film having a thickness of 20 μm or more by a CVD method, and
A silicon carbide film-covered member, wherein the oxygen concentration in the iC film is 30 ppm (weight) or less.
【請求項2】 SiC質基材を配置するCVD処理炉を
100〜600℃/時で、1000〜1300℃のCV
D処理温度より高く且つ該SiC質基材の融点より低い
高温度まで昇温し、該高温度で所定時間保持し、その
後、該CVD温度まで降温して所定時間保持した後、C
VD原料ガスを流通させてCVD処理することを特徴と
する炭化珪素膜被覆部材の製造方法。
2. A CVD furnace in which a SiC substrate is placed at 100 to 600 ° C./hour and a CV of 1000 to 1300 ° C.
D The temperature is raised to a high temperature higher than the treatment temperature and lower than the melting point of the SiC-based substrate, and the temperature is maintained at the high temperature for a predetermined time, and then the temperature is lowered to the CVD temperature and maintained for a predetermined time.
A method for manufacturing a silicon carbide film-covered member, which comprises subjecting a VD source gas to circulation to perform a CVD process.
【請求項3】 前記高温度が、少なくとも前記CVD処
理温度の1.05倍以上の温度であり、且つ、1400
℃以下の温度である請求項2記載の炭化珪素膜被覆部材
の製造方法。
3. The high temperature is at least 1.05 times higher than the CVD processing temperature, and 1400.
The method for producing a silicon carbide film-coated member according to claim 2, wherein the temperature is not higher than 0 ° C.
【請求項4】 前記高温度で保持する所定時間が0.5
〜2.0時間である請求項2または3記載の炭化珪素膜
被覆部材の製造方法。
4. The predetermined time for holding at the high temperature is 0.5
The method for manufacturing a silicon carbide film-coated member according to claim 2 or 3, wherein the method is for 2.0 hours.
【請求項5】 前記SiC質基材が、反応焼結SiCか
らなる請求項2、3または4記載の炭化珪素膜被覆部材
の製造方法。
5. The method for manufacturing a silicon carbide film-covered member according to claim 2, 3 or 4, wherein the SiC base material is made of reaction-sintered SiC.
JP20130295A 1995-07-13 1995-07-13 Silicon carbide film-coated member and method of manufacturing the same Expired - Fee Related JP3227353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20130295A JP3227353B2 (en) 1995-07-13 1995-07-13 Silicon carbide film-coated member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20130295A JP3227353B2 (en) 1995-07-13 1995-07-13 Silicon carbide film-coated member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0925185A true JPH0925185A (en) 1997-01-28
JP3227353B2 JP3227353B2 (en) 2001-11-12

Family

ID=16438750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20130295A Expired - Fee Related JP3227353B2 (en) 1995-07-13 1995-07-13 Silicon carbide film-coated member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3227353B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950566A (en) * 1982-08-23 1984-03-23 ゼロツクス・コ−ポレ−シヨン Method of forming thin film transistor
US6259119B1 (en) * 1997-12-18 2001-07-10 Lg. Philips Lcd Co, Ltd. Liquid crystal display and method of manufacturing the same
JP2001313397A (en) * 2000-02-22 2001-11-09 Semiconductor Energy Lab Co Ltd Semiconductor device and its forming method
US20030020847A1 (en) * 2001-07-25 2003-01-30 Lg.Philips Lcd Co., Ltd. Array substrate for liquid crystal display device and fabricating method thereof
JP2005165309A (en) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method for manufacturing the same
JP2006108169A (en) * 2004-09-30 2006-04-20 Semiconductor Energy Lab Co Ltd Display device manufacturing method
JP2007114360A (en) * 2005-10-19 2007-05-10 Nec Lcd Technologies Ltd Liquid crystal display provided with thin film transistor and its manufacturing method
JP2007243144A (en) * 2006-03-07 2007-09-20 Au Optronics Corp Manufacturing method for pixel array substrate
JP2008039843A (en) * 2006-08-01 2008-02-21 Casio Comput Co Ltd Display panel using light emitting device, and method of manufacturing the same
JP2008066680A (en) * 2006-09-11 2008-03-21 Samsung Electronics Co Ltd Wiring structure, wiring forming method, thin-film transistor substrate and manufacturing method thereof
JP2008165240A (en) * 2006-12-29 2008-07-17 Lg Display Co Ltd Liquid crystal display, method of manufacturing the same, and method of method for manufacturing two metal layered structure
US20090309099A1 (en) * 2008-06-11 2009-12-17 Samsung Electronics Co., Ltd. Display device and method of manufacturing the same
WO2013008403A1 (en) * 2011-07-08 2013-01-17 シャープ株式会社 Thin film transistor substrate and method for producing same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950566A (en) * 1982-08-23 1984-03-23 ゼロツクス・コ−ポレ−シヨン Method of forming thin film transistor
US6259119B1 (en) * 1997-12-18 2001-07-10 Lg. Philips Lcd Co, Ltd. Liquid crystal display and method of manufacturing the same
JP2001313397A (en) * 2000-02-22 2001-11-09 Semiconductor Energy Lab Co Ltd Semiconductor device and its forming method
US20030020847A1 (en) * 2001-07-25 2003-01-30 Lg.Philips Lcd Co., Ltd. Array substrate for liquid crystal display device and fabricating method thereof
JP2005165309A (en) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method for manufacturing the same
JP2006108169A (en) * 2004-09-30 2006-04-20 Semiconductor Energy Lab Co Ltd Display device manufacturing method
JP2007114360A (en) * 2005-10-19 2007-05-10 Nec Lcd Technologies Ltd Liquid crystal display provided with thin film transistor and its manufacturing method
JP2007243144A (en) * 2006-03-07 2007-09-20 Au Optronics Corp Manufacturing method for pixel array substrate
JP2008039843A (en) * 2006-08-01 2008-02-21 Casio Comput Co Ltd Display panel using light emitting device, and method of manufacturing the same
JP2008066680A (en) * 2006-09-11 2008-03-21 Samsung Electronics Co Ltd Wiring structure, wiring forming method, thin-film transistor substrate and manufacturing method thereof
JP2008165240A (en) * 2006-12-29 2008-07-17 Lg Display Co Ltd Liquid crystal display, method of manufacturing the same, and method of method for manufacturing two metal layered structure
US20090309099A1 (en) * 2008-06-11 2009-12-17 Samsung Electronics Co., Ltd. Display device and method of manufacturing the same
WO2013008403A1 (en) * 2011-07-08 2013-01-17 シャープ株式会社 Thin film transistor substrate and method for producing same

Also Published As

Publication number Publication date
JP3227353B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
US3753775A (en) Chemical polishing of sapphire
JPH1012563A (en) Member for heat treatment of high-purity cvd-sic semiconductor and its manufacture
CN113519040A (en) Method for measuring resistivity of silicon single crystal
JP3317781B2 (en) Method of manufacturing susceptor for heat treatment of semiconductor wafer
JPH1012692A (en) Dummy wafer
US4624735A (en) Constituent members of a semiconductor element-manufacturing apparatus and a reaction furnace for making said constituent members
JP2005303045A (en) Silicon component and manufacturing method thereof
JP3227353B2 (en) Silicon carbide film-coated member and method of manufacturing the same
JP2000302576A (en) Graphite material coated with silicon carbide
JP3698372B2 (en) CVD-SiC coated member
JP2004269300A (en) Method for manufacturing lithium tantalate crystal
JP2001257163A (en) Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device
KR100607890B1 (en) Film thickness measuring monitor wafer
US7601227B2 (en) High purification method of jig for semiconductor heat treatment
JPH0712017B2 (en) SiC / Si for X-ray lithography Lower 3 Lower N 4 Film forming method
JPH0665629B2 (en) Ceramic material for semiconductor manufacturing apparatus and manufacturing method thereof
JPS59189622A (en) Diffusion furnace process tube for semiconductor
JP3262696B2 (en) Silica glass member having glassy carbon coating
JPH10287495A (en) High-purity silicon carbide-based semiconductor treating member and its production
JP2000119064A (en) SiC FORM AND ITS PRODUCTION
JP2001130964A (en) Silicon carbide material and jig for rtp device
JPS61251528A (en) Mold for forming glass lens and production thereof
JPH0585502B2 (en)
JP3257645B2 (en) Method of manufacturing ceramic device
JP3347475B2 (en) Covering member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees