JPH09251851A - Lithium battery and manufacture thereof - Google Patents

Lithium battery and manufacture thereof

Info

Publication number
JPH09251851A
JPH09251851A JP8084537A JP8453796A JPH09251851A JP H09251851 A JPH09251851 A JP H09251851A JP 8084537 A JP8084537 A JP 8084537A JP 8453796 A JP8453796 A JP 8453796A JP H09251851 A JPH09251851 A JP H09251851A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
electrolyte
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8084537A
Other languages
Japanese (ja)
Inventor
Tetsuya Aisaka
哲彌 逢坂
Osamu Shinoura
治 篠浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
TDK Corp
Original Assignee
Waseda University
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, TDK Corp filed Critical Waseda University
Priority to JP8084537A priority Critical patent/JPH09251851A/en
Publication of JPH09251851A publication Critical patent/JPH09251851A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong a charging/discharging cycle lifetime by forming the surface of a negative electrode base plate out of metal copper or stainless steel. SOLUTION: A negative electrode 30 made of metal lithium containing carbonate ions is electrically deposited on a negative electrode base plate 20 made of copper or stainless steel. A separator 60 impregnated with an electrolyte is interposed between a positive electrode 40 made of polypyrrole and the negative electrode 30. These elements are housed inside a negative electrode cover 10 and a positive electrode container 50 in a sealed manner. Consequently, it is possible to provide a lithium secondary battery having a long-term cycle lifetime.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
関し、特に負極リチウム中に炭酸イオンを含有した型の
電池およびその製造方法に係わり、更に詳しくは炭酸イ
オンを含有した負極リチウムを担持する負極基板の改良
にかかる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a battery of a type in which carbonate ion is contained in negative electrode lithium and a method for producing the same, and more particularly to a negative electrode carrying negative electrode lithium containing carbonate ion. It is about improving the board.

【0002】[0002]

【従来の技術】近年、負極活性物質としてリチウムを用
いた電池は高エネルギー密度電池として注目されてい
る。これらの高エネルギー密度電池はVTR、通信機
器、コンピュータメモリーのバックアップ電源として使
用されているが、より一層の小型化、高性能化が求めら
れている。
2. Description of the Related Art In recent years, batteries using lithium as a negative electrode active material have been attracting attention as high energy density batteries. These high energy density batteries are used as backup power sources for VTRs, communication devices, and computer memories, but further miniaturization and higher performance are required.

【0003】これらの二次電池は、負極にリチウムを用
いているが、そのリチウムは電解液からの電極により負
極基板材料上に形成される。電解液としてプロピレンカ
ーボネート(PC)、1,2−ジメトキシエタン(DM
E)、γ−ブチロラクトン(γ−BL)、テトラヒドロ
フラン(THF)、ジメチルスルホキシド(DMS
O)、エチレンカーボネート(EC)などの非水溶媒ま
たは上記の非水溶媒の混合溶液にLiClO4 、LiB
4 、LiAsF6 、LiPF6 、LiCF3 SO3
のリチウムイオンを含有する電解質を溶解したものから
構成される。
In these secondary batteries, lithium is used for the negative electrode, and the lithium is formed on the negative electrode substrate material by the electrode from the electrolytic solution. Propylene carbonate (PC), 1,2-dimethoxyethane (DM) as electrolyte
E), γ-butyrolactone (γ-BL), tetrahydrofuran (THF), dimethyl sulfoxide (DMS)
O), ethylene carbonate (EC) or the like non-aqueous solvent or a mixed solution of the above non-aqueous solvents, LiClO 4 , LiB
It is composed of a solution of an electrolyte containing lithium ions such as F 4 , LiAsF 6 , LiPF 6 , and LiCF 3 SO 3 .

【0004】なお、リチウム電池の充放電特性の劣化は
軽金属の析出、溶出の効率が100%でないために、充
放電につれて負極の軽金属が消費されるためと考えられ
る。このために、正極容量以上のリチウムを負極に充填
しておくことが有効となることが知られている。
It is considered that the deterioration of the charge and discharge characteristics of the lithium battery is due to the fact that the light metal of the negative electrode is consumed during charge and discharge because the efficiency of light metal deposition and elution is not 100%. For this reason, it is known that it is effective to fill the negative electrode with more lithium than the positive electrode capacity.

【0005】またリチウム金属そのものは、ほとんど全
ての非水溶媒と反応するが、見掛け上安定なのは、リチ
ウム表面に形成された反応生成物質である薄い保護膜が
反応を抑制しているからである。電池においては充放電
反応は、この保護膜の存在下で起こるために電池特性に
与える影響は非常に大きい。しかし、この保護膜につい
ては十分な研究はまだされておらず、充放電可能なため
リチウムイオン伝導性であり、電解液が還元されないた
めに電子伝導性が無い膜であろうと考えられている。こ
の保護膜に大きな影響を及ぼすものが、電解液中の不純
物であり、逆に同じ観点から添加剤による検討も試みら
れてきた。たとえば「電池便覧」平成7年1月20日丸
善(株)発行第328ページには、電解液の添加剤とし
て充放電効率増加作用のあるものとしてLiI、キノン
イミン染料等と共にO2 、N2 、CO2 が上げられてい
る。
Although lithium metal itself reacts with almost all non-aqueous solvents, it is apparently stable because a thin protective film which is a reaction product substance formed on the surface of lithium suppresses the reaction. In the battery, the charge / discharge reaction takes place in the presence of this protective film, and therefore has a great influence on the battery characteristics. However, sufficient studies have not yet been made on this protective film, and it is considered that it is a film that has lithium ion conductivity because it can be charged and discharged and has no electron conductivity because the electrolytic solution is not reduced. Impurities in the electrolytic solution have a great influence on the protective film, and conversely, investigations using additives have been attempted from the same viewpoint. For example, "battery Handbook" 1989 May 20, 1995 by Maruzen Co., Ltd. issued # 328 pages, O 2, N 2 LiI, together with a quinone imine dyes such as a charge-discharge efficiency increasing effect as an additive for the electrolyte solution, CO 2 is being raised.

【0006】このリチウム電池に用いられる負極基板材
料としては数多くの研究があるが、特に電解液に炭酸ガ
スを添加した場合では発明者らにより1994年に電気
化学誌、Vo1.62,No.5,451〜452ペー
ジに報告されている論文では負極基板材料としてニッケ
ルを用いている。また同様に発明者らが1995年第3
6回電池討論会にて報告した(要旨集157ページ)よ
うに通常の銅箔およびバフ研磨して表面を鏡面状態とし
た銅では、良い特性が得られなかったために、高価なチ
タンが好ましいことが知られていた。
There have been many studies on the negative electrode substrate material used for this lithium battery, but in the case of adding carbon dioxide gas to the electrolytic solution, the inventors of the present invention published 1994 Vol. In the paper reported on pages 5,451-452, nickel is used as the negative electrode substrate material. Similarly, the inventors
As reported at the 6th battery discussion meeting (Abstracts, page 157), ordinary copper foil and buffed copper with a mirror-finished surface did not give good characteristics, so expensive titanium is preferable. Was known.

【0007】そして、今日に至るまで、電池の系への水
の混入の影響等により、その重要特性である充放電サイ
クル寿命は極めて大きな影響を受けることから、安価
に、かつ安定した電池は供給困難であった。
Until today, the charge / discharge cycle life, which is an important characteristic of the battery, is greatly affected by the influence of water mixed into the battery system, and therefore a stable and inexpensive battery can be supplied. It was difficult.

【0008】[0008]

【発明が解決しようとする課題】本発明はこのような事
情からなされたものであり、充放電サイクル寿命が長い
優れたリチウム電池およびその製造方法を提供するもの
である。
SUMMARY OF THE INVENTION The present invention has been made under these circumstances, and provides an excellent lithium battery having a long charge / discharge cycle life and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】このような目的は、本発
明に従って、金属リチウムを主成分とする負極と、該リ
チウムイオンと可逆的に電気化学反応を行う正極と、か
つリチウムイオンの移動を受け持つ電解質とを備えた電
池において、負極の金属リチウムが炭酸イオンを含有
し、かつその負極基体の表面が金属銅又はステンレス鋼
であることを特徴とするリチウム電池により達成され
る。ここに負極基体が金属銅の場合には、その表面は通
常のバフ研磨をした程度では不十分であり、エッチング
等により達成される極めて清浄な表面を必要とする。一
方、負極基体の表面がステンレス鋼の場合にはエッチン
グは必須ではなく清浄な表面なら良いが、エッチングを
行うと更に良い。
According to the present invention, such an object is to provide a negative electrode containing metallic lithium as a main component, a positive electrode which reversibly electrochemically reacts with the lithium ion, and a movement of lithium ion. In a battery provided with an electrolyte, a lithium battery characterized in that the negative electrode metallic lithium contains carbonate ions and the surface of the negative electrode substrate is metallic copper or stainless steel. Here, when the negative electrode substrate is metallic copper, the surface thereof is not sufficient by ordinary buffing, and an extremely clean surface achieved by etching or the like is required. On the other hand, when the surface of the negative electrode substrate is stainless steel, etching is not essential and a clean surface may be used, but etching is more preferable.

【0010】本発明の目的はまた、金属リチウムを主成
分とする負極と、該リチウムイオンと可逆的に電気化学
反応を行う正極と、かつリチウムイオンの移動を受け持
つ電解質とを備えた電池の製造方法において、負極の金
属リチウムの支持を行う銅を主成分としている負極基体
をエッチング処理し最表面部の酸化膜を除去した後に、
負極リチウムの電析を炭酸ガスを含有した有機溶媒中で
行うことを特徴とするリチウム電池の製造方法により達
成される。
The object of the present invention is also to manufacture a battery provided with a negative electrode containing metallic lithium as a main component, a positive electrode which reversibly carries out an electrochemical reaction with the lithium ion, and an electrolyte which is responsible for the movement of lithium ions. In the method, after removing the oxide film at the outermost surface by etching the negative electrode substrate containing copper as a main component for supporting the negative electrode metallic lithium,
This is achieved by a method for manufacturing a lithium battery, characterized in that the negative electrode lithium is electrodeposited in an organic solvent containing carbon dioxide gas.

【0011】負極基体がステンレス鋼を主成分としてい
る場合にはエッチングは必要がなく、金属リチウムを主
成分とする負極と、該リチウムイオンと可逆的に電気化
学反応を行う正極と、かつリチウムイオンの移動を受け
持つ電解質とを備えた電池において、負極リチウムの電
析を炭酸ガスを含有した有機溶媒中で行うことを特徴と
するリチウム電池の製造方法により本発明の目的が達成
される。
When the negative electrode substrate is mainly composed of stainless steel, etching is not necessary, and a negative electrode mainly composed of metallic lithium, a positive electrode which reversibly electrochemically reacts with the lithium ion, and a lithium ion The object of the present invention is achieved by a method for producing a lithium battery, characterized in that the negative electrode lithium is electrodeposited in an organic solvent containing carbon dioxide gas in a battery provided with an electrolyte responsible for the transfer of

【0012】[0012]

【発明の実施の形態】以下、本発明の具体的構成につい
て詳細に説明する。本発明のリチウム電池は負極基体上
に金属リチウムを電析して形成される負極と、該リチウ
ムイオンと可逆的に電気化学反応を行う正極と、かつリ
チウムイオンの移動を受け持つ電解質とを備えている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific configuration of the present invention will be described in detail. The lithium battery of the present invention comprises a negative electrode formed by electrodepositing metallic lithium on a negative electrode substrate, a positive electrode that reversibly performs an electrochemical reaction with the lithium ion, and an electrolyte that is responsible for lithium ion transfer. There is.

【0013】リチウム負極は非水溶媒電解液からの電析
により負極基板材料上に形成される。この電解液は従来
から知られている各種の非水溶媒またはそれら非水溶媒
の混合液を用いることが可能であるが、炭酸ガスを溶解
しておくことが重要である。電解液に炭酸ガスを溶解す
るためには、高純度炭酸ガス、例えば純度99.99%
以上の炭酸ガスを電解液中に、長時間、例えば30分間
以上流すことでほぼ、飽和状態の電解液を作製すること
が可能である。電解液中の炭酸ガス濃度の下限値につい
ては1リットルの電解液に5リットル/分の炭酸ガスを
バブリングする場合には1分間以上で効果が得られる。
実際の溶解量は1.2×102 モル/m3 程度が好まし
く、上限値は飽和溶解度である。
The lithium negative electrode is formed on the negative electrode substrate material by electrodeposition from a non-aqueous solvent electrolyte. As this electrolytic solution, various conventionally known non-aqueous solvents or mixed solutions of these non-aqueous solvents can be used, but it is important to dissolve carbon dioxide gas. To dissolve carbon dioxide in the electrolytic solution, high purity carbon dioxide, for example, 99.99% purity
By flowing the above carbon dioxide gas into the electrolytic solution for a long time, for example, for 30 minutes or more, it is possible to produce an electrolytic solution in a substantially saturated state. Regarding the lower limit of the carbon dioxide concentration in the electrolytic solution, when bubbling 5 liter / min of carbon dioxide into 1 liter of the electrolytic solution, the effect can be obtained in 1 minute or more.
The actual amount of dissolution is preferably about 1.2 × 10 2 mol / m 3 , and the upper limit is the saturated solubility.

【0014】炭酸ガスを溶解した電解液からリチウムを
電析することで、成膜されたリチウム皮膜中に炭酸イオ
ンが取り込まれる。具体的にどのような形態で含有され
るかは未だ不明である。このリチウム皮膜中に取り込ま
れた炭酸イオンが負極表面で炭酸リチウムの皮膜を形成
することにより電池の充放電特性が大幅に向上する。特
に電極表面のデンドライド成長を抑制する効果が著し
い。
By depositing lithium from an electrolytic solution in which carbon dioxide gas is dissolved, carbonate ions are incorporated into the formed lithium film. It is still unclear in what form it is contained. The carbonate ions taken into the lithium film form a film of lithium carbonate on the surface of the negative electrode, which significantly improves the charge / discharge characteristics of the battery. In particular, the effect of suppressing dendrite growth on the electrode surface is remarkable.

【0015】そして、負極基板材料として従来使用され
ていたアルミニウム、チタン、ニッケル等に替えて、銅
またはステンレス鋼を用いることで高特性が得られる。
銅またはステンレス鋼は従来材料に比べて安価であり、
産業上の利点は大きい。
High performance can be obtained by using copper or stainless steel instead of aluminum, titanium, nickel or the like which has been conventionally used as the negative electrode substrate material.
Copper or stainless steel is cheaper than conventional materials,
The industrial advantages are great.

【0016】しかし、銅の場合には通常の銅箔およびバ
ブ研磨により表面を鏡面状態とした状態の基板では充放
電特性が良くない。これは表面に形成された酸化膜が特
性に実質的に寄与しているためである。このために通常
のバフ研磨に加えて酸溶液等での表面エッチング処理が
必要である。エッチング処理により表面酸化膜が除去さ
れ、金属銅が表面にある状態でリチウムを電析すること
で高特性が得られる。エッチングは酸化力を持たない希
薄酸水溶液中、たとえば希硫酸水溶液中に浸漬すること
で可能である。またアンモニア水によりテトラアミン銅
イオン化して除去することも可能である。エッチング後
の乾燥は非常に重要で酸化物膜が再形成されないように
非酸化性雰囲気中ですばやく行われる。完全な金属表面
を得ることは非常に困難であり工業的に見れば高コスト
であることから、本発明における金属状態とは上記のよ
うな希薄酸水溶液中で処理され、すばやく乾燥された時
の表面状態を指す。光電子分光法等の高感度表面分析に
よれば、わずかに酸化物が検出されるが、その程度は未
処理の表面に比べて十分に小さい。銅基板としては不純
物の影響があるために純度99%以上が好ましく、特に
純度99.9%以上が好ましい。
However, in the case of copper, the charge and discharge characteristics are not good in a normal copper foil and a substrate whose surface is mirror-finished by bubbling. This is because the oxide film formed on the surface substantially contributes to the characteristics. Therefore, in addition to the usual buffing, surface etching treatment with an acid solution or the like is required. By etching treatment, the surface oxide film is removed, and lithium is electrodeposited with metallic copper on the surface to obtain high characteristics. The etching can be performed by dipping in a dilute aqueous acid solution having no oxidizing power, for example, a dilute sulfuric acid aqueous solution. It is also possible to ionize and remove the tetraamine copper ion with aqueous ammonia. Drying after etching is very important and is performed quickly in a non-oxidizing atmosphere so that the oxide film is not reformed. Since it is very difficult to obtain a perfect metal surface and it is costly from an industrial point of view, the metal state in the present invention means that when treated in a dilute acid aqueous solution as described above and quickly dried. Refers to the surface condition. High-sensitivity surface analysis such as photoelectron spectroscopy reveals a small amount of oxides, but to a much lesser extent than untreated surfaces. The copper substrate is preferably 99% or more in purity, and particularly preferably 99.9% or more in purity because it is influenced by impurities.

【0017】ステンレス鋼の場合には表面酸化物膜は極
めて薄いために、そのままでも使用可能であるが、エッ
チング処理を行うことがより好ましい。ここでのステン
レス鋼とは鉄にニッケルやクロムを添加し耐食性を向上
した合金を指し、特に耐食オーステナイト系すなわちJ
ISによる記号でSUS301〜SUS385から選択
されることが好ましい。
In the case of stainless steel, since the surface oxide film is extremely thin, it can be used as it is, but it is more preferable to perform etching treatment. The stainless steel here refers to an alloy in which nickel or chromium is added to iron to improve corrosion resistance, and in particular, corrosion-resistant austenitic steel, namely J
It is preferably selected from SUS301 to SUS385 by the symbol according to IS.

【0018】今まで知られていた負極基板材料は、リチ
ウムイオンが基板内部に拡散し例えばアルミニウムの場
合にはβ−LiAl合金を形成し、このβ−LiAl合
金内ではリチウムイオンの拡散が良好に行われるため高
い充放電特性が得られていた。これに対して本発明の基
板材料はリチウムと合金形成しない材料を用いることに
大きな特徴がある。
In the negative electrode substrate material that has been known so far, lithium ions diffuse inside the substrate to form a β-LiAl alloy in the case of aluminum, for example, and lithium ions diffuse well in this β-LiAl alloy. As a result, high charge / discharge characteristics were obtained. On the other hand, the substrate material of the present invention is characterized by using a material that does not form an alloy with lithium.

【0019】炭酸ガス効果と基板材料の組合せでなぜ、
特異的に高特性が得られるのかは未だ解明されていな
い。しかし、発明者らはリチウム電析反応が起こる前
に、電解液成分の還元反応が生じるが、その還元反応の
起こりにくさが重要であり、炭酸ガスによる添加剤の効
果発現にこの基板の触媒的な作用が大きな影響を及ぼし
ているためと考えている。
Why the combination of carbon dioxide effect and substrate material
It has not yet been clarified whether or not high characteristics can be obtained specifically. However, the inventors have found that the reduction reaction of the electrolytic solution component occurs before the lithium electrodeposition reaction occurs, but it is important that the reduction reaction is unlikely to occur. I think this is due to the large influence that the physical action has.

【0020】なお、基板母材に他の材料を用い、その表
面にスパッタ法等で銅やステンレス鋼の薄膜を形成した
基板も同様に用いることが可能である。これらの薄膜金
属を用いた場合も実質的な挙動は、バルクの材料を用い
た場合と全く同じである。さらに負極基板材料も上記の
金属を主成分とする合金も使用可能である。なお、負極
は金属リチウムに加えてリチウムを主成分とするLi/
Al合金やLi/ウッドメタル合金を用いても差し支え
ない。
It is also possible to similarly use a substrate in which another material is used as the substrate base material and a thin film of copper or stainless steel is formed on the surface by a sputtering method or the like. The substantial behavior when using these thin film metals is exactly the same as when using bulk materials. Further, as the negative electrode substrate material, an alloy containing the above metal as a main component can also be used. In addition, the negative electrode is Li / containing lithium as a main component in addition to metallic lithium.
Al alloy or Li / Wood metal alloy may be used.

【0021】また特に電解質に固体電解質を用いること
が好ましい。固体電解質としてはリチウム塩を含む有機
高分子複合体、特にアモルファス相中に乖離したリチウ
ムイオンがエーテル酸素との相互作用により伝導される
ポリエチレンオキシド(PEO)系高分子化合物が広く
知られている。また正極にポリピロールやポリアニリン
等のπ共役系を分子鎖内にもつ導電性高分子を用い、電
解質と電極を一体化することも小型化軽量化および薄膜
化など新機能付与の点から好ましい形態の1つである。
Further, it is particularly preferable to use a solid electrolyte as the electrolyte. As a solid electrolyte, an organic polymer composite containing a lithium salt, in particular, a polyethylene oxide (PEO) polymer compound in which lithium ions dissociated in an amorphous phase are conducted by interaction with ether oxygen is widely known. In addition, using a conductive polymer having a π-conjugated system such as polypyrrole or polyaniline in the molecular chain for the positive electrode and integrating the electrolyte and the electrode is also a preferable form from the viewpoint of adding new functions such as downsizing and weight reduction and thinning. There is one.

【0022】[0022]

【実施例および比較例】以下にその具体的実施例および
比較例を示し本発明を説明する。 実施例1、2および比較例1、2、3 プロピレンカーボネート(PC)1リットルに1モルの
LiClO4 を溶解させた電解液を用い、純度99.9
9%以上の炭酸ガスを電解液中に1時間流し、炭酸ガス
溶存電解液とした。表1に示す各種の負極基板材料を用
いた。基板はバフ研磨の後、酸溶液中でエッチング処理
を行った。エッチングは室温の10体積%の硫酸水溶液
中にて1分間の浸漬処理後、直ちに乾燥処理を行った。
また比較のためバフ研磨のみのエッチング無しの基板も
用いた。初期電析として1.0mA/cm2 の電流密度
にて1.0C/cm2 の電析を行ったものを負極とし
た。また比較のため炭酸ガスを電解中に溶存しない条件
での電析も同様の条件にて行った。このように製造され
た負極と、正極としてポリピロール、電解液には1モル
当量の過塩素酸リチウムを溶解したプロピレンカーボネ
ートをポリプロピレンセパレータとともに用いコイン型
リチウム二次電池を作製した。このコイン型リチウム電
池の概略図を図1に示す。図において、本発明の炭酸イ
オン含有金属リチウムよりなる負極30は銅又はステン
レス鋼製の負極基板20上に電析されており、ポリピロ
ール製の正極40との間に、電解液を含浸したセパレー
タ60を介在している。そしてこれらの要素は負極蓋1
0及び正極容器50内に収納され密封されている。な
お、本コイン型リチウム電池では、通常は負極のリチウ
ムの仕込量(初期電析量)を過剰とするところを、負極
の特性を評価するため、正極に用いるポリピロールの電
気容量を負極に対する表面積により大過剰量としてい
る。なお、当然ながら高純度アルゴンガスで充填された
グローブボックス内で以上の実験は行われた。充放電試
験は0.2C/cm2 の充放電電気量で行い電池電位が
2.0Vになった時点を終了条件とした。実施例1の充
放電特性を図2に示す。評価結果を表1に示す。なお、
初期電析として10C/cm2 と十分過剰に行った場合
には比較例2、3においても3000回以上の充放電寿
命特性を示し、実施例では、さらにそれ以上の特性を示
した。これは充放電寿命が初期電析量により大きく左右
されることを示している。このためサイクル寿命試験結
果の絶対値による比較は困難であり、基準試料との比較
による相対値によってのみ本発明の効果が確認されるこ
とは注意を要す。そして本実施例および比較例では実験
の効率化のため比較的短い初期電析条件下にて行った。
またより少ない初期電析量で高サイクル寿命を示すこと
が望ましいことは言うまでもない。
EXAMPLES AND COMPARATIVE EXAMPLES The present invention will be described below with reference to specific examples and comparative examples. Examples 1 and 2 and Comparative Examples 1, 2 and 3 Using an electrolytic solution prepared by dissolving 1 mol of LiClO 4 in 1 liter of propylene carbonate (PC), the purity was 99.9.
9% or more carbon dioxide gas was flowed in the electrolytic solution for 1 hour to obtain a carbon dioxide gas-dissolved electrolytic solution. Various negative electrode substrate materials shown in Table 1 were used. The substrate was buffed and then etched in an acid solution. The etching was carried out by immersing the substrate in a 10% by volume sulfuric acid aqueous solution at room temperature for 1 minute and then immediately drying it.
For comparison, a substrate without buffing and without etching was also used. As the initial electrodeposition, the electrodeposited at 1.0 C / cm 2 at a current density of 1.0 mA / cm 2 was used as the negative electrode. Further, for comparison, electrodeposition under the condition that carbon dioxide gas was not dissolved during electrolysis was also performed under the same conditions. A coin-type lithium secondary battery was manufactured by using the negative electrode thus manufactured, polypyrrole as the positive electrode, and propylene carbonate in which 1 molar equivalent of lithium perchlorate was dissolved in the electrolytic solution together with the polypropylene separator. A schematic diagram of this coin type lithium battery is shown in FIG. In the figure, a negative electrode 30 made of metallic lithium containing carbonate ions of the present invention is electrodeposited on a negative electrode substrate 20 made of copper or stainless steel, and a separator 60 impregnated with an electrolytic solution is interposed between the negative electrode substrate 20 made of copper or stainless steel and a positive electrode 40 made of polypyrrole. Intervenes. And these elements are the negative electrode lid 1.
0 and the positive electrode container 50 are housed and hermetically sealed. In the present coin-type lithium battery, the place where the amount of lithium charged in the negative electrode (the amount of initial electrodeposition) is usually excessive is used. To evaluate the characteristics of the negative electrode, the electrical capacity of the polypyrrole used for the positive electrode is determined by the surface area of the negative electrode. It is a large excess. The above experiment was naturally performed in a glove box filled with high-purity argon gas. The charging / discharging test was performed with a charging / discharging electricity quantity of 0.2 C / cm 2 , and the termination condition was set when the battery potential reached 2.0V. The charge / discharge characteristics of Example 1 are shown in FIG. Table 1 shows the evaluation results. In addition,
When the initial electrodeposition was carried out at 10 C / cm 2 in a sufficiently excessive amount, Comparative Examples 2 and 3 also exhibited charge / discharge life characteristics of 3000 times or more, and in Examples, further characteristics were exhibited. This indicates that the charge / discharge life depends largely on the amount of initial electrodeposition. Therefore, it is difficult to compare the cycle life test results by the absolute value, and it should be noted that the effect of the present invention can be confirmed only by the relative value by comparison with the reference sample. In this Example and Comparative Example, the experiment was carried out under relatively short initial electrodeposition conditions in order to improve the efficiency of the experiment.
Needless to say, it is desirable to exhibit a high cycle life with a smaller amount of initial electrodeposition.

【0023】[0023]

【表1】 [Table 1]

【0024】この結果から本発明のリチウム電池は優れ
た充放電特性を有することがわかり本発明の効果は明確
である。また、上記実施例ではコイン型非水溶媒電池に
ついて説明したが、これに限定されず、円筒形非水溶媒
電池、角型非水溶媒電池においても同様に適用できる。
From these results, it is found that the lithium battery of the present invention has excellent charge / discharge characteristics, and the effect of the present invention is clear. Further, although the coin type non-aqueous solvent battery has been described in the above-mentioned embodiment, the present invention is not limited to this, and the same can be applied to a cylindrical non-aqueous solvent battery and a rectangular non-aqueous solvent battery.

【0025】[0025]

【発明の効果】本発明のリチウム電池は優れた充放電特
性、すなわち長時間のサイクル寿命を有するリチウム二
次電池を提供するものである。
The lithium battery of the present invention provides a lithium secondary battery having excellent charge / discharge characteristics, that is, a long cycle life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコイン型リチウム二次電池の構造を示
す概略図である。
FIG. 1 is a schematic view showing the structure of a coin-type lithium secondary battery of the present invention.

【図2】本発明の実施例1の充放電特性を示す図であ
る。
FIG. 2 is a diagram showing charge / discharge characteristics of Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

10 負極ふた 20 負極基板 30 負極(リチウム) 40 正極 50 正極容器 60 セパレータ 10 Negative Lid 20 Negative Substrate 30 Negative Electrode (Lithium) 40 Positive Electrode 50 Positive Electrode Container 60 Separator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属リチウムを主成分とする負極と、該
リチウムイオンと可逆的に電気化学反応を行う正極と、
かつリチウムイオンの移動を受け持つ電解質とを備えた
電池において、負極の金属リチウムが炭酸イオンを含有
し、かつその基体表面が金属銅及びステンレス鋼より選
択されたものであることを特徴とするリチウム電池。
1. A negative electrode containing metallic lithium as a main component, and a positive electrode that reversibly undergoes an electrochemical reaction with the lithium ions,
And a battery provided with an electrolyte responsible for the transfer of lithium ions, wherein the lithium metal of the negative electrode contains carbonate ions, and the substrate surface is selected from metallic copper and stainless steel. .
【請求項2】 金属リチウムを主成分とする負極と、該
リチウムイオンと可逆的に電気化学反応を行う正極と、
かつリチウムイオンの移動を受け持つ電解質とを備えた
電池において、負極の金属リチウムの基体が銅を主成分
としているリチウム電池において負極基体をエッチング
処理し最表面部の酸化膜を除去した後に負極リチウムの
電析を炭酸ガスを含有した有機溶媒中で行うことを特徴
とするリチウム電池の製造方法。
2. A negative electrode containing metallic lithium as a main component, and a positive electrode that reversibly undergoes an electrochemical reaction with the lithium ions.
Further, in a battery provided with an electrolyte that is responsible for the transfer of lithium ions, in a lithium battery in which the negative electrode metallic lithium base body is mainly composed of copper, the negative electrode base body is etched to remove the oxide film on the outermost surface portion of the negative electrode lithium A method for producing a lithium battery, which comprises performing electrodeposition in an organic solvent containing carbon dioxide gas.
【請求項3】 金属リチウムを主成分とする負極と、該
リチウムイオンと可逆的に電気化学反応を行う正極と、
かつリチウムイオンの移動を受け持つ電解質とを備えた
電池において、負極の金属リチウムの基体がステンレス
鋼を主成分としているリチウム電池において負極リチウ
ムの電析を炭酸ガスを含有した有機溶媒中で行うことを
特徴とするリチウム電池の製造方法。
3. A negative electrode containing metallic lithium as a main component, and a positive electrode that reversibly electrochemically reacts with the lithium ions,
In addition, in a battery provided with an electrolyte that is responsible for the transfer of lithium ions, in a lithium battery in which the metallic lithium base material of the negative electrode is mainly composed of stainless steel, the negative electrode lithium is electrodeposited in an organic solvent containing carbon dioxide gas. A method for manufacturing a featured lithium battery.
JP8084537A 1996-03-14 1996-03-14 Lithium battery and manufacture thereof Pending JPH09251851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8084537A JPH09251851A (en) 1996-03-14 1996-03-14 Lithium battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8084537A JPH09251851A (en) 1996-03-14 1996-03-14 Lithium battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09251851A true JPH09251851A (en) 1997-09-22

Family

ID=13833404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8084537A Pending JPH09251851A (en) 1996-03-14 1996-03-14 Lithium battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09251851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268016A (en) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268016A (en) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery

Similar Documents

Publication Publication Date Title
JP3417054B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH07176323A (en) Electrolytic solution and negative electrode for li secondary battery
JPH07176322A (en) Electrolytic solution for li secondary battery
Kumagai et al. Electrochemical behavior of graphite electrode for lithium ion batteries in Mn and Co additive electrolytes
US4888258A (en) Lithium-lithium nitride anode
JPS6286673A (en) Electrolyte for lithium secondary battery
EP0281352B1 (en) Lithium-lithium nitride anode
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JP2001250559A (en) Lithium secondary cell
JPH0896849A (en) Nonaqueous electrolytic secondary battery
Zhao et al. Electrochemical Stability of Graphite‐Coated Copper in Lithium‐Ion Battery Electrolytes
JPH06310126A (en) Nonaquous electrolytic secondary battery
KR100277795B1 (en) Cathode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery
JPH05234583A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JPH0582168A (en) Nonaqueous electrolyte battery
JPH09251851A (en) Lithium battery and manufacture thereof
JPH07282848A (en) Nonaqueous electrolytic battery and manufacture thereof
JPH09204933A (en) Lithium secondary battery
JPH07282846A (en) Nonaqueous electrolytic battery
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JPH07169504A (en) Nonaqueous electrolytic secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPH0652848A (en) Nonaqueous electrolytic secondary battery
JP3128230B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019