JPH09249952A - Production of aluminum forged product - Google Patents

Production of aluminum forged product

Info

Publication number
JPH09249952A
JPH09249952A JP8333196A JP8333196A JPH09249952A JP H09249952 A JPH09249952 A JP H09249952A JP 8333196 A JP8333196 A JP 8333196A JP 8333196 A JP8333196 A JP 8333196A JP H09249952 A JPH09249952 A JP H09249952A
Authority
JP
Japan
Prior art keywords
forging
weight
forged product
treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8333196A
Other languages
Japanese (ja)
Inventor
Hidenobu Kawai
秀信 河合
Hajime Kamio
一 神尾
Tatsu Yamada
達 山田
Hirotsugu Yunoki
裕嗣 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP8333196A priority Critical patent/JPH09249952A/en
Publication of JPH09249952A publication Critical patent/JPH09249952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a forged product having a structure after heat treatment in which recrystallized grains are finely controlled on the whole face and free from anisotropy in mechanical properties. SOLUTION: An extruded material of an aluminum alloy having a compsn. contg., by weight, 1.0 to 1.5% Si, 0.4 to 0.9% Cu, 0.8 to 1.5% Mg and 0.3 to 0.9% Cr, and in which the content of Fe is regulated to 0.05 to 0.2% and that of Zn to <=0.25% is cut, is heated at 450 to 500 C, is subjected to primary forging using a die held at 400 to 460 deg.C, is again heated at 500 to 540 deg.C, is subjected to secondary forging using a die held at 400 to 460 deg.C and is subjected to heat treatment in which it is subjected to solution treatment at 510 to 545 deg.C for 2 to 6hr, is water-cooled and is subsequently subjected to aging treatment at 160 to 190 deg.C for 4 to 12hr. The aluminum alloy to be used may contain 0.03 to 0.05% Ti, 0.0001 to 0.01% B, 0.2 to 0.6% Mn and 0.1 to 0.2% Zr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的強度に優れた車
両用部品等のアルミ鍛造製品を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a forged aluminum product such as a vehicle part having excellent mechanical strength.

【0002】[0002]

【従来の技術】車両用等に使用される部品としては、鉄
系の材料が多用されていた。しかし、軽量化,燃費向
上,高性能化に伴いアルミニウム合金の鍛造品が用いら
れるケースが増加しつつある。使用されるアルミニウム
合金としては、耐食性及び強度に優れていることが要求
されるため、一般的にAl−Mg−Si系合金を熱間鍛
造して製造されている。
2. Description of the Related Art Iron-based materials have been widely used as parts used for vehicles and the like. However, as the weight is reduced, the fuel consumption is improved, and the performance is improved, the number of cases where aluminum alloy forged products are used is increasing. Since the aluminum alloy used is required to have excellent corrosion resistance and strength, it is generally manufactured by hot forging an Al—Mg—Si alloy.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来のAl
−Mg−Si系合金は、熱間鍛造又はその後の熱処理に
よって加工組織が粗大な再結晶粒になったり、或いは再
結晶粒が急成長して二次再結晶組織が発生し、結果とし
て十分な強度が得られない。本発明は、このような問題
を解消すべく案出されたものであり、使用するアルミニ
ウム合金の組成,押出し,鍛造及び熱処理を特定された
条件下で組み合わせることにより、全面微細な再結晶粒
にコントロールされた熱処理後の組織をもち、機械的性
質に異方性のない鍛造品を提供することを目的とする。
However, conventional Al
In the —Mg—Si alloy, the work structure becomes coarse recrystallized grains by hot forging or the subsequent heat treatment, or the recrystallized grains rapidly grow to generate a secondary recrystallized structure, and as a result, sufficient recrystallized structure occurs. No strength can be obtained. The present invention has been devised to solve such a problem, and by combining the composition of the aluminum alloy to be used, extrusion, forging and heat treatment under specified conditions, it becomes possible to obtain fine recrystallized grains on the entire surface. It is an object of the present invention to provide a forged product having a controlled heat-treated structure and having no anisotropy in mechanical properties.

【0004】[0004]

【課題を解決するための手段】本発明の製造方法では、
Si:1.0〜1.5重量%,Cu:0.4〜0.9重
量%,Mg:0.8〜1.5重量%及びCr:0.3〜
0.9重量%を含み、Fe:0.05〜0.2重量%,
Zn:0.25重量%以下に規制したアルミニウム鋳塊
を均質化処理した後、押出し直後の素材温度が450〜
500℃となるように押出し、所定の長さに切断する。
1工程で熱間鍛造する場合には、鍛造直後の素材温度が
450〜500℃となるように鍛造し、次いで510〜
545℃×2〜6時間の加熱処理を施し、水冷後、16
0〜190℃×4〜12時間の加熱処理を施す。
According to the manufacturing method of the present invention,
Si: 1.0-1.5 wt%, Cu: 0.4-0.9 wt%, Mg: 0.8-1.5 wt% and Cr: 0.3-
Including 0.9% by weight, Fe: 0.05 to 0.2% by weight,
Zn: After the aluminum ingot regulated to 0.25% by weight or less is homogenized, the material temperature immediately after extrusion is 450 to
It is extruded to 500 ° C. and cut into a predetermined length.
When performing hot forging in one step, forging is performed so that the material temperature immediately after forging is 450 to 500 ° C, and then 510 to 510
Heat-treated at 545 ° C for 2 to 6 hours, cooled with water, and then cooled to 16
Heat treatment is performed at 0 to 190 ° C. for 4 to 12 hours.

【0005】形状が複雑で製造が多工程に及ぶ場合に
は、前述の組成をもつアルミニウム鋳塊を均質化処理し
た後、押出し直後の素材温度が450〜500℃となる
ように押出し、切断し、該押出し材を450〜500℃
に加熱し、400〜460℃に保持した金型を使用して
一次鍛造直後の素材温度が450〜500℃となるよう
に一次鍛造し、再度一次鍛造品を500〜540℃に加
熱し、二次鍛造直後の素材温度が450〜500℃とな
るように400〜460℃に保持した金型を使用して形
状の複雑な製品に二次鍛造し、510〜545℃×2〜
6時間の加熱,水冷後に160〜190℃×4〜12時
間の加熱を施す熱処理を行い、所定の鍛造品形状に機械
加工する。すなわち、鍛造加工時の素材温度を鍛造の回
数に関係なく、450〜500℃の温度範囲に維持する
ことが重要である。使用するアルミニウム合金は、T
i:0.03〜0.05重量%,B:0.0001〜
0.01重量%及びMn:0.2〜0.6重量%含むこ
とができる。更にZr:0.1〜0.2重量%を含むア
ルミニウム合金も使用可能である。
When the shape is complicated and the production involves many steps, the aluminum ingot having the above-mentioned composition is homogenized, then extruded so that the material temperature immediately after extrusion is 450 to 500 ° C., and cut. The extruded material at 450 to 500 ° C.
To the material temperature immediately after the primary forging using a die held at 400 to 460 ° C so that the material temperature immediately after the primary forging is 450 to 500 ° C, and the primary forged product is again heated to 500 to 540 ° C, Secondary forging into a product with a complicated shape using a die held at 400 to 460 ° C so that the material temperature immediately after the next forging is 450 to 500 ° C, 510 to 545 ° C x 2
After heating for 6 hours and cooling with water, a heat treatment of heating at 160 to 190 ° C. for 4 to 12 hours is performed, and a predetermined forged product shape is machined. That is, it is important to maintain the material temperature during the forging process within the temperature range of 450 to 500 ° C. regardless of the number of times the forging is performed. The aluminum alloy used is T
i: 0.03 to 0.05% by weight, B: 0.0001 to
0.01 wt% and Mn: 0.2 to 0.6 wt% may be included. Further, an aluminum alloy containing Zr: 0.1 to 0.2 wt% can also be used.

【0006】本発明で使用するアルミニウム合金に含ま
れる合金元素及びその含有量は、次の通りである。 Si:1.0〜1.5重量% 析出効果によってアルミニウム合金の強度を向上させる
元素である。Mgと併用添加しているので、T6処理時
の時効処理によってMg2 Si系化合物が析出し、強度
向上作用が得られる。このようなSi添加の作用は、S
i含有量が1.0重量%以上で顕著となる。しかし、
1.5重量%を超える多量のSi含有は、Siの粒界析
出に起因した粒界脆化が生じ易く、押出し及び鍛造加工
性等を低下させる。 Cu:0.4〜0.9重量% マトリックスを固溶強化し、且つT6処理時の時効処理
によってCuAl2及びAl−Cu−Mg系金属間化合
物も析出し、Mg2 Si析出による強度改善作用を促進
させる上で有効な合金元素であり、0.4重量%以上の
含有量が必要とされる。しかし、0.9重量%を超える
多量のCuを含有させると、焼入れ感受性が高くなり、
耐食性が劣化する。
The alloying elements contained in the aluminum alloy used in the present invention and their contents are as follows. Si: 1.0 to 1.5% by weight It is an element that improves the strength of the aluminum alloy by the precipitation effect. Since it is added together with Mg, the Mg 2 Si-based compound is precipitated by the aging treatment during the T6 treatment, and the strength improving action is obtained. The action of such Si addition is S
It becomes remarkable when the i content is 1.0% by weight or more. But,
When a large amount of Si is contained in excess of 1.5% by weight, grain boundary embrittlement due to grain boundary precipitation of Si is likely to occur, resulting in deterioration of extrusion and forgeability. Cu: 0.4 to 0.9% by weight Solid solution strengthening of the matrix, and CuAl 2 and Al-Cu-Mg based intermetallic compound are also precipitated by the aging treatment at the time of T6 treatment, and strength improving action by Mg 2 Si precipitation It is an alloying element effective in promoting the above-mentioned phenomenon, and a content of 0.4% by weight or more is required. However, when a large amount of Cu exceeding 0.9% by weight is contained, quenching sensitivity becomes high,
Corrosion resistance deteriorates.

【0007】Mg:0.8〜1.5重量% T6処理時の時効処理によりSiと反応しMg2 Si系
化合物となってマトリックスに析出し、アルミニウム合
金の強度を向上させる。この析出効果を得るため、0.
8重量%以上のMg含有量が必要である。しかし、1.
5重量%を超えるMgを含有させると、析出硬化作用が
飽和するばかりでなく、焼入れ感受性が高くなる。 Cr:0.3〜0.9重量% Mnと共同して再結晶粒の粗大化を抑制する上で重要な
合金元素であり、0.3重量%以上の含有量が必要であ
る。Crが再結晶粒の成長を抑制する作用は、特に二次
鍛造及びその後のT6処理で発揮され、T6処理後の組
織を全面微細な組織にする。しかし、0.9重量%を超
えてCrを含有させるとき、加工性が低下する。
Mg: 0.8-1.5 wt% By aging treatment during T6 treatment, it reacts with Si to form a Mg 2 Si-based compound which precipitates in the matrix and improves the strength of the aluminum alloy. In order to obtain this precipitation effect, 0.
A Mg content of 8% by weight or more is required. However, 1.
When Mg is contained in an amount of more than 5% by weight, not only the precipitation hardening effect is saturated, but also the quenching sensitivity becomes high. Cr: 0.3 to 0.9% by weight It is an important alloying element for suppressing the coarsening of recrystallized grains in cooperation with Mn, and the content of 0.3% by weight or more is necessary. The effect of Cr suppressing the growth of recrystallized grains is particularly exerted in the secondary forging and the subsequent T6 treatment, and makes the structure after T6 treatment a fine structure on the whole surface. However, when Cr is contained in an amount exceeding 0.9% by weight, workability is reduced.

【0008】Fe:0.05〜0.2重量% Feは、Al−Fe−Si系化合物となってマトリック
スに分散される。粗大なAl−Fe−Si系化合物は、
伸び及び耐食性に悪影響を与える。したがって、Fe含
有量の上限は、0.2重量%に定められる。しかし、F
e含有量が0.05重量%を下回るようになると、鋳造
割れが発生し易くなる。また、Fe含有量が0.05〜
0.2重量%の範囲では、Al−Fe−Si系化合物に
より鍛造品の溶体化処理時に再結晶粒の粗大化が抑制さ
れる。 Zn:0.25重量%以下 Znは、アルミスクラップ等から混入してくる不可避的
な不純物であり、少ない方が望ましい。0.25重量%
を超えるZnは、応力腐食割れの原因となりやすいの
で、Zn含有量の上限を0.25重量%に規定した。
Fe: 0.05 to 0.2 wt% Fe becomes an Al-Fe-Si compound and is dispersed in the matrix. The coarse Al-Fe-Si compound is
It adversely affects elongation and corrosion resistance. Therefore, the upper limit of the Fe content is set to 0.2% by weight. But F
When the e content is less than 0.05% by weight, casting cracks are likely to occur. Further, the Fe content is 0.05 to
In the range of 0.2% by weight, coarsening of recrystallized grains is suppressed by the Al-Fe-Si compound during solution treatment of the forged product. Zn: 0.25 wt% or less Zn is an unavoidable impurity that is mixed in from aluminum scrap or the like, and it is desirable that the amount is small. 0.25% by weight
Zn exceeding 5 is likely to cause stress corrosion cracking, so the upper limit of the Zn content is defined as 0.25% by weight.

【0009】Ti:0.03〜0.05重量% 鋳造組織の微細化を図る上で、有効な合金元素である。
鋳造組織微細化作用は、Ti含有量が0.03重量%を
超えると顕著になる。また、Ti添加によって組織が微
細化されたアルミニウム合金は、ビレットに鋳造割れ等
の欠陥が発生するのを抑制している。しかし、多量のT
i含有は、アルミニウム合金の靭性を劣化させるので、
上限を0.05重量%に設定した。 B:0.0001〜0.01重量% Tiと同様に、鋳造組織の微細化に有効な合金元素であ
り、0.0001重量%以上の含有量でその効果がみら
れる。また、B含有量の上限は、Ti含有量と同様な理
由から0.01重量%に設定した。
Ti: 0.03 to 0.05% by weight It is an effective alloying element for refining the cast structure.
The effect of refining the cast structure becomes remarkable when the Ti content exceeds 0.03% by weight. In addition, the aluminum alloy whose structure is refined by the addition of Ti suppresses the occurrence of defects such as casting cracks in the billet. However, a large amount of T
Since the inclusion of i deteriorates the toughness of the aluminum alloy,
The upper limit was set to 0.05% by weight. B: 0.0001 to 0.01 wt% Like Ti, it is an alloying element effective for refining the cast structure, and its effect is observed at a content of 0.0001 wt% or more. The upper limit of the B content was set to 0.01% by weight for the same reason as the Ti content.

【0010】Mn:0.2〜0.6重量% Crと同様に再結晶粒の成長を抑制し、T6処理後の組
織を微細に維持する上で有効な合金元素であり、0.2
重量%以上含有させることが要求される。Mnが再結晶
粒の成長を抑制する作用は、Crと併存するとき顕著な
効果となって現れ、二次鍛造及びT6処理での溶体化処
理時の再結晶粒の粗大化を抑制する。しかし、0.6重
量%を超える多量のMnを含有させるとき、鍛造時の加
工性が悪くなる。 Zr:0.1〜0.2重量% Mn及びCrと共同して、再結晶粒の粗大化を抑制する
上で有効な合金元素であり、T6処理での溶体化処理時
の再結晶粒の粗大化を抑制する。このようなZr添加の
作用は、0.1重量%以上のZr含有量で顕著になる。
しかし、多量のZr含有は加工性に悪影響を与えるの
で、Zrを添加するときは、その上限を0.2重量%と
した。
Mn: 0.2-0.6% by weight Like Cr, it is an alloying element effective in suppressing the growth of recrystallized grains and maintaining a fine structure after T6 treatment.
It is required to contain at least wt%. The effect of Mn suppressing the growth of recrystallized grains appears as a remarkable effect when coexisting with Cr, and suppresses the coarsening of recrystallized grains during the solution treatment in the secondary forging and T6 treatment. However, when a large amount of Mn exceeding 0.6% by weight is contained, the workability during forging becomes poor. Zr: 0.1 to 0.2% by weight It is an alloying element that is effective in suppressing coarsening of recrystallized grains in cooperation with Mn and Cr. Suppress coarsening. Such an effect of Zr addition becomes remarkable at a Zr content of 0.1% by weight or more.
However, if a large amount of Zr is contained, the workability is adversely affected. Therefore, when Zr is added, the upper limit is set to 0.2% by weight.

【0011】以上のように成分調整されたアルミニウム
合金は、通常の半連続鋳造法で円柱状断面をもつビレッ
ト等の鋳塊に鋳造され、均質化処理後、最終製品に見合
った形状に押出し加工される。次いで、押出し材を所定
の長さに切断する。 押出し 押出しはその後の製品特性を大きく左右するので、押出
し条件を細かく制御する必要がある。先ず、押出しに先
立って鋳造されたビレットに520〜560℃×5〜1
0時間の均質化処理を施した後、切断し、再度加熱炉に
装入して490〜510℃に加熱する。押出し直後の素
材温度が450〜500℃となるように加熱条件を制御
することが重要であり、押出し材の温度をこの範囲に調
整することによってCr,Mn,Zr等の遷移元素によ
って鍛造後のT6処理で再結晶粒の粗大化が抑制され
る。また、押出し素材の温度が450℃よりも低いと、
鍛造品のT6処理で再結晶粒が粗大化し易くなる。逆に
押出し素材の温度が500℃を超えると、押出し材にテ
アリングが発生する欠点が生じる。
The aluminum alloy whose composition has been adjusted as described above is cast into a billet or the like ingot having a cylindrical cross section by a normal semi-continuous casting method, homogenized, and then extruded into a shape suitable for the final product. To be done. Next, the extruded material is cut into a predetermined length. Extrusion Extrusion has a great influence on the subsequent product properties, so it is necessary to finely control the extrusion conditions. First, the billet cast prior to extrusion is 520 to 560 ° C x 5 to 1
After performing a homogenization treatment for 0 hours, it is cut, charged again in the heating furnace, and heated to 490 to 510 ° C. It is important to control the heating conditions so that the material temperature immediately after extrusion is 450 to 500 ° C., and by adjusting the temperature of the extruded material to this range, after the forging by the transition elements such as Cr, Mn, and Zr. The coarsening of recrystallized grains is suppressed by the T6 treatment. Also, if the temperature of the extruded material is lower than 450 ° C,
The T6 treatment of the forged product facilitates coarsening of recrystallized grains. On the contrary, if the temperature of the extruded material exceeds 500 ° C., there is a drawback that tearing occurs in the extruded material.

【0012】一次鍛造 一次鍛造工程に供する前に、切断された押出し素材を加
熱炉に装入し、450〜500℃に加熱する。このとき
の加熱温度は、最終製品のT6処理後の組織を微細にす
る上で重要である。加熱温度が、450〜500℃の範
囲にないと、T6処理後の再結晶組織が粗粒化し、均一
で微細な再結晶粒が得られない。加熱保持は、温度の均
一化を図るため、1時間程度行われる。一次鍛造では、
金型を400〜460℃に加熱している。この金型温度
は、一次鍛造中の素材が過度に冷却することを防止する
上で重要である。一次鍛造中の素材は、金型を400〜
460℃に保持することによって、450〜500℃の
温度範囲に維持される。450〜500℃の温度範囲
は、T6処理後の再結晶粒の成長を抑制する上で重要で
ある。このときの加熱温度が450℃よりも低いと変形
抵抗が増加し、鍛造が困難になるばかりでなく、後述す
る熱処理時に結晶粒が粗大化し易くなる。逆に、500
℃を超える加熱温度では、素材にバーニングが発生し易
くなる。
Primary Forging Before being subjected to the primary forging step, the cut extruded material is put into a heating furnace and heated to 450 to 500 ° C. The heating temperature at this time is important for making the structure of the final product after T6 treatment fine. If the heating temperature is not in the range of 450 to 500 ° C., the recrystallized structure after T6 treatment becomes coarse, and uniform and fine recrystallized grains cannot be obtained. The heating and holding is performed for about 1 hour in order to make the temperature uniform. In primary forging,
The mold is heated to 400 to 460 ° C. This mold temperature is important for preventing the material during primary forging from being excessively cooled. The material for the primary forging is 400-
By maintaining the temperature at 460 ° C., the temperature range of 450 to 500 ° C. is maintained. The temperature range of 450 to 500 ° C. is important for suppressing the growth of recrystallized grains after T6 treatment. If the heating temperature at this time is lower than 450 ° C., the deformation resistance increases, making not only forging difficult but also the crystal grains tend to become coarse during the heat treatment described later. Conversely, 500
If the heating temperature is higher than 0 ° C, burning tends to occur in the material.

【0013】一次鍛造では、450〜500℃に加熱さ
れた素材を型鍛造法によって上下方向に潰し、一次鍛造
品を製造する。或いは、自由鍛造によって一次鍛造品を
製造することもできる。このとき、上下方向の変形率
[(初期の押出し材長さ又は外径−鍛造後の押出し材長
さ又は外径)×(初期の押出し材長さ又は外径)-1×1
00%]は、50〜70%が好ましい。一次鍛造は、次
の製品形状に近い形を成形するための工程であり、変形
率が小さいと二次鍛造が難しくなる。しかし、過度に大
きな変形率では、鍛造割れが生じるばかりでなく、二次
鍛造による成形が困難になる。この点、50〜70%の
変形率で押出し材を鍛造すると、押出し繊維状組織が変
形方向に長く伸ばされるため、高強度の最終製品に有効
な素材となる。
In the primary forging, the raw material heated to 450 to 500 ° C. is vertically crushed by a die forging method to manufacture a primary forged product. Alternatively, the primary forged product can be manufactured by free forging. At this time, the vertical deformation rate [(initial extruded material length or outer diameter-extruded material length or outer diameter after forging) x (initial extruded material length or outer diameter) -1 x 1
[00%] is preferably 50 to 70%. Primary forging is a process for forming a shape close to the next product shape, and if the deformation rate is small, secondary forging becomes difficult. However, if the deformation ratio is excessively large, not only forging cracks will occur, but also forming by secondary forging becomes difficult. In this respect, when the extruded material is forged at a deformation rate of 50 to 70%, the extruded fibrous structure is elongated in the deformation direction, and thus the material becomes effective as a high-strength final product.

【0014】二次鍛造 一次鍛造された素材は、二次鍛造に先立って500〜5
40℃に加熱される。加熱温度500〜540℃は、通
常の熱間鍛造温度と比較すると高い設定値であるが、複
雑な形状の製品を鍛造によって作製するのに適してい
る。このときの加熱温度が540℃を超えると、二次鍛
造品に割れが発生し易くなる。逆に、500℃に達しな
い加熱温度では、T6処理での溶体化処理時に最終製品
の再結晶粒が粗粒化する。二次鍛造では、一次鍛造と同
様に鍛造中の鍛造品の温度が450〜500℃になるよ
うに、金型温度を400〜460℃の範囲に維持する。
金型温度は高い方が望ましいが、460℃を超えると、
金型の寿命が短くなることは勿論、潤滑剤のつきも悪く
なり、結果として鍛造割れ等の欠陥が生じ易くなる。逆
に400℃に満たない金型温度では、二次鍛造品のT6
処理での溶体化処理時に再結晶粒が粗大化する。一次鍛
造品は、50〜70%程度の変形率で二次鍛造品に鍛造
される。金型温度が400〜460℃でも、鍛造素材が
500〜540℃に加熱されていることと、鍛造中の変
形抵抗熱の発生もあり、鍛造品は450〜500℃に保
たれる。この温度条件は、鍛造の回数に関係なく充足さ
せることが重要である。
Secondary Forging The material that has been forged for primary is 500 to 5 before the secondary forging.
Heat to 40 ° C. The heating temperature of 500 to 540 ° C. is a high set value as compared with the normal hot forging temperature, but it is suitable for producing a product having a complicated shape by forging. If the heating temperature at this time exceeds 540 ° C, the secondary forged product is likely to crack. On the contrary, at a heating temperature which does not reach 500 ° C., the recrystallized grains of the final product are coarsened during the solution treatment in the T6 treatment. In the secondary forging, the die temperature is maintained in the range of 400 to 460 ° C so that the temperature of the forged product during the forging is 450 to 500 ° C as in the case of the primary forging.
Higher mold temperature is desirable, but if it exceeds 460 ℃,
Not only the life of the mold is shortened, but also the adhesion of the lubricant is deteriorated, and as a result, defects such as forging cracks are likely to occur. On the contrary, at a mold temperature of less than 400 ° C, the T6 of the secondary forged product is
The recrystallized grains become coarse during the solution treatment in the treatment. The primary forged product is forged into a secondary forged product with a deformation rate of about 50 to 70%. Even when the die temperature is 400 to 460 ° C, the forged material is heated to 500 to 540 ° C, and deformation resistance heat is generated during forging, so that the forged product is kept at 450 to 500 ° C. It is important that this temperature condition is satisfied regardless of the number of forgings.

【0015】熱処理 二次鍛造品は、510〜545℃×2〜6時間加熱し、
水冷した後で160〜190℃×6〜12時間加熱する
時効処理(T6処理)が施される。510〜545℃×
2〜6時間の加熱は、Mg,Si,Cu等を固溶させる
溶体化処理である。固溶したMg,Siは、後の時効工
程でMg2 Siとなって析出し、強度を確保する。Cu
は、固溶によってマトリックスを強化すると共に、一部
がCuAl2 ,Al−Cu−Mg系の金属間化合物とし
て時効処理時に析出し、強度を更に向上させる。他方、
Cr,Mn,Zr等の合金成分は、均質化処理によって
すでに微細な金属間化合物となって析出しており、溶体
化処理によってもマトリックスに固溶せず、鍛造後の再
結晶粒粗大化を防止する働きを呈するものと考えられ
る。これら析出物の作用は、鍛造温度や加工度により析
出物の形態が異なっており、ある種の特定形態や特定分
布の析出物が再結晶粒の粗大化を阻止しているものと推
察される。そして、鍛造中の素材温度が450〜500
℃付近のとき、熱間加工中に導入された歪みが冷却の途
上で開放され、溶体化処理前に鍛造品中に蓄積される歪
みエネルギーが小さくなる。そのため、溶体化処理時の
結晶成長に利用できるエネルギーが小さく、Mn,C
r,Zr系粒子により再結晶粒の粗大化が阻止される。
一方、440℃よりも低い温度で鍛造すると、冷却終了
後にも鍛造時に導入された歪みが多く残存し、残存歪み
が溶体化処理時に再結晶粒の成長エネルギーとなり、M
n,Cr,Zr系粒子が存在しても、再結晶粒の粗大化
が阻止できなくなる。逆に500℃よりも高い温度で鍛
造すると、バーニングの発生により健全な製品ができな
くなる。溶体化処理された製品は、水焼入れされ、16
0〜190℃で4〜12時間加熱する時効処理が施され
る。この時効処理によりMg2 Si,CuAl2 ,Al
−Cu−Mg系金属間化合物等が析出し、マトリックス
の強度が確保される。 機械加工 熱処理された製品は、各部の板厚調整やネジ孔加工等の
ために機械加工される。
Heat treatment The secondary forged product is heated at 510 to 545 ° C. for 2 to 6 hours,
After cooling with water, an aging treatment (T6 treatment) of heating at 160 to 190 ° C. for 6 to 12 hours is performed. 510-545 ° C ×
The heating for 2 to 6 hours is a solution treatment for solid-dissolving Mg, Si, Cu and the like. The solid-solved Mg and Si precipitate as Mg 2 Si in the subsequent aging step to secure the strength. Cu
Serves to strengthen the matrix by solid solution, partially precipitated during the aging treatment as CuAl 2, Al-Cu-Mg-based intermetallic compound further improves the strength. On the other hand,
Alloying components such as Cr, Mn, and Zr have already been precipitated as fine intermetallic compounds by the homogenization treatment, and they do not form a solid solution in the matrix even by the solution treatment, resulting in coarsening of recrystallized grains after forging. It is considered to have a preventive function. The effect of these precipitates is that the morphology of the precipitates differs depending on the forging temperature and the degree of processing, and it is speculated that certain specific morphologies and specific distributions of precipitates prevent coarsening of recrystallized grains. . And the material temperature during forging is 450 ~ 500
When the temperature is in the vicinity of ° C, the strain introduced during the hot working is released during the cooling, and the strain energy accumulated in the forged product before the solution treatment is reduced. Therefore, the energy available for crystal growth during solution treatment is small, and Mn, C
Coarsening of recrystallized grains is prevented by the r and Zr-based grains.
On the other hand, when forged at a temperature lower than 440 ° C., a large amount of strain introduced during forging remains even after the cooling is completed, and the residual strain becomes the growth energy of recrystallized grains during solution treatment, and M
Even if n, Cr, and Zr-based particles are present, coarsening of recrystallized grains cannot be prevented. On the contrary, forging at a temperature higher than 500 ° C. makes it impossible to produce a sound product due to the occurrence of burning. The solution treated product is water quenched and
An aging treatment is performed by heating at 0 to 190 ° C. for 4 to 12 hours. By this aging treatment, Mg 2 Si, CuAl 2 , Al
-Cu-Mg-based intermetallic compound and the like are deposited, and the strength of the matrix is secured. Machining The heat-treated product is machined to adjust the plate thickness of each part and to process screw holes.

【0016】[0016]

【実施例】【Example】

実施例:表1に示す成分・組成をもつアルミニウム合金
を半連続鋳造し、直径240mmのビレットを鋳造し
た。このビレットに540℃×8時間の均質化処理を施
した後、所定長さに切断し、500℃に加熱して押し出
し、直径35mmの丸棒を得た。押出し棒の押出し直後
の温度は、490℃であった。この押出し棒から直径3
5mm,長さ90mmのテスト用鍛造素材を切り出し
た。
Example: An aluminum alloy having the components and compositions shown in Table 1 was semi-continuously cast into a billet having a diameter of 240 mm. The billet was homogenized at 540 ° C. for 8 hours, cut into a predetermined length, heated to 500 ° C. and extruded to obtain a round bar having a diameter of 35 mm. The temperature immediately after extrusion of the extrusion rod was 490 ° C. This extruded rod has a diameter of 3
A test forging material having a length of 5 mm and a length of 90 mm was cut out.

【0017】 [0017]

【0018】得られた鍛造素材に480℃×1時間の均
熱処理を施した後、金型温度430℃,素材各部の変形
率として平均変形率50%で長さ方向に対して垂直な方
向から鍛造し、図1の二次成形品に近い形状にまず成形
した。このときの鍛造直後の素材温度は、450℃であ
った。この一次鍛造品を400℃及び520℃に1時間
加熱した後、金型温度430℃,平均変形率70%で長
さ方向に対して垂直な方向から二次鍛造し、図1に示す
二次鍛造品の形状に鍛造した。二次鍛造直後の素材温度
は、400℃加熱のときは380℃,520℃加熱のと
きは490℃であった。二次鍛造素材の上下方向断面の
マクロ組織を観察すると、二次鍛造温度に関係なく、図
2,図3に示すように何れの鍛造素材も全面均一で微細
な組織をもっていた。各二次鍛造品に530℃×3時間
→水焼入れの処理を施した後、上下方向の断面マクロ組
織を観察した。マクロ組織は、二次鍛造温度が400℃
のとき、図4に示すように上下方向中央部を中心にして
再結晶粒が成長した組織となっていた。これに対し、二
次鍛造温度が520℃のものでは、図5に示すように全
面が微細な再結晶組織となっており、再結晶粒の成長が
検出されなかった。
The forged material thus obtained was subjected to a soaking treatment at 480 ° C. for 1 hour, and then at a mold temperature of 430 ° C., the deformation rate of each part of the material was 50% in average deformation rate from the direction perpendicular to the longitudinal direction. It was forged and was first molded into a shape close to the secondary molded product of FIG. The material temperature immediately after forging at this time was 450 ° C. After heating this primary forged product at 400 ° C. and 520 ° C. for 1 hour, secondary forging was performed from a direction perpendicular to the length direction at a mold temperature of 430 ° C. and an average deformation rate of 70%, and the secondary forging shown in FIG. Forged into the shape of a forged product. The material temperature immediately after the secondary forging was 380 ° C. when heating at 400 ° C. and 490 ° C. when heating at 520 ° C. When the macrostructure of the vertical cross section of the secondary forging material was observed, all the forging materials had a uniform and fine structure as shown in FIGS. 2 and 3, regardless of the secondary forging temperature. After subjecting each secondary forged product to the water quenching treatment at 530 ° C. for 3 hours → water, the vertical cross-sectional macrostructure was observed. The macrostructure has a secondary forging temperature of 400 ° C.
At that time, as shown in FIG. 4, the recrystallized grains grew around the center in the vertical direction. On the other hand, when the secondary forging temperature was 520 ° C., the entire surface had a fine recrystallized structure as shown in FIG. 5, and the growth of recrystallized grains was not detected.

【0019】図4から明らかなように、二次鍛造温度が
400℃の場合、中心部の再結晶粒が粗大化している。
これは、中心部の変形率が高いことにも原因があり、変
形率が高いと、鍛造温度が低い場合に蓄積される歪みエ
ネルギーが大きく、再結晶粒が粗大化することを示して
いる。他方、試料No.2,3は、試料No.1に比較して
中心部で再結晶粒の粗大化が進行していない。これは、
Crの効果を狙った試料番号1に比べ、試料No.2では
Cr+Mn,試料No.3ではCr+Mn+Zrを複合添
加した効果が顕著に発現されていることを示している。
なお、一次鍛造温度が400℃で二次鍛造温度が520
℃の場合、及び一次鍛造温度が400℃で二次鍛造温度
が400℃の場合には、何れも溶体化処理後の再結晶組
織は、中心部が粗大化していた。このような組織をもつ
材料は、機械的性質に異方性をもつことから好ましい材
料ではない。また、時効処理では再結晶粒が粗大化して
いなかった。
As is apparent from FIG. 4, when the secondary forging temperature is 400 ° C., the recrystallized grains in the central portion are coarse.
This is also due to the high deformation rate of the central portion, and when the deformation rate is high, the strain energy accumulated when the forging temperature is low is large and the recrystallized grains become coarse. On the other hand, in samples No. 2 and 3, coarsening of recrystallized grains is not progressing in the central portion as compared with sample No. 1. this is,
Compared to the sample No. 1 aiming at the effect of Cr, it is shown that the effect of compound addition of Cr + Mn in the sample No. 2 and Cr + Mn + Zr in the sample No. 3 is significantly exhibited.
The primary forging temperature is 400 ° C and the secondary forging temperature is 520.
In all cases, the recrystallization structure after the solution treatment was coarse at the center, when the temperature was ℃, and when the primary forging temperature was 400 ° C and the secondary forging temperature was 400 ° C. A material having such a structure is not preferable because it has anisotropic mechanical properties. Moreover, the recrystallized grains were not coarsened by the aging treatment.

【0020】比較例:表1の試料No.1の組成におい
て、ビレットに540℃×8時間の均質化処理を施した
後、同じ長さに切断し、470℃に加熱して押し出し、
直径35mmの丸棒を得た。押出し直後の押出し棒の温
度は440℃であった。この鍛造素材に480℃×1時
間の加熱処理を施した後、金型温度430℃,素材各部
の変形率50%で長さ方向に対して垂直な方向から鍛造
し、図1の二次成形品に近い形状に成形した。この一次
鍛造品は、鍛造直後の温度が453℃であった。この一
次鍛造品に530℃×3時間→水焼入れの処理を施した
後、上下方向の断面マクロ組織を観察したところ、中心
部が粗粒化していた。このことから、押出し直後の素材
温度が450〜500℃を外れると、T6処理での溶体
化処理時に再結晶粒が粗大化していることが判る。
Comparative Example: In the composition of sample No. 1 in Table 1, the billet was homogenized at 540 ° C. for 8 hours, cut into the same length, and heated to 470 ° C. and extruded.
A round bar having a diameter of 35 mm was obtained. The temperature of the extrusion rod immediately after extrusion was 440 ° C. After subjecting this forging material to heat treatment at 480 ° C for 1 hour, it is forged from a direction perpendicular to the length direction at a mold temperature of 430 ° C and a deformation ratio of each part of the material of 50%, and the secondary molding of Fig. 1 is performed. Molded into a shape close to the product. The temperature of the primary forged product immediately after forging was 453 ° C. After subjecting this primary forged product to a water quenching treatment at 530 ° C. for 3 hours and then observing the cross-sectional macrostructure in the vertical direction, it was found that the central portion was coarse-grained. From this, it is understood that when the material temperature immediately after extrusion deviates from 450 to 500 ° C., the recrystallized grains are coarsened during the solution treatment in the T6 treatment.

【0021】[0021]

【発明の効果】以上に説明したように、本発明において
は、成分・組成,押出し及び鍛造を特定条件下で組み合
わせることにより、T6処理後に再結晶粒の粗大化を抑
制し、全面が均一で微細な再結晶組織としている。その
ため、機械的性質に異方性がなく、信頼性の高い高強度
鍛造製品が得られる。
As described above, in the present invention, by combining the components / compositions, extrusion and forging under specific conditions, coarsening of recrystallized grains is suppressed after T6 treatment, and the entire surface is uniform. It has a fine recrystallized structure. As a result, a highly reliable forged product having no anisotropy in mechanical properties and high reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で製造したテスト用二次鍛造品FIG. 1 is a secondary forged product for test manufactured in Example 1.

【図2】 二次鍛造温度400℃の二次鍛造を終了した
テスト用二次鍛造品のマクロ組織を示す写真
FIG. 2 is a photograph showing a macrostructure of a test forged product which has been subjected to secondary forging at a secondary forging temperature of 400 ° C.

【図3】 二次鍛造温度520℃の二次鍛造を終了した
テスト用二次鍛造品のマクロ組織を示す写真
FIG. 3 is a photograph showing a macrostructure of a test forged product that has undergone secondary forging at a secondary forging temperature of 520 ° C.

【図4】 二次鍛造温度400℃で二次鍛造した製品を
溶体化処理したテスト用二次鍛造品のマクロ組織を示す
写真
FIG. 4 is a photograph showing a macrostructure of a test secondary forged product obtained by subjecting a product secondary forged at a secondary forging temperature of 400 ° C. to a solution treatment.

【図5】 二次鍛造温度520℃で二次鍛造した製品を
溶体化処理したテスト用二次鍛造品のマクロ組織を示す
写真
FIG. 5 is a photograph showing a macrostructure of a test secondary forged product obtained by subjecting a product secondary forged at a secondary forging temperature of 520 ° C. to a solution treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 達 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 柚木 裕嗣 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsu Yamada 1-34-1, Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Nippon Light Metal Co., Ltd. Group Technology Center (72) Yuuji Yuzuki, Kambara-cho, Anbara-gun, Shizuoka Prefecture 34-1-1 Nihon Light Metal Co., Ltd. Group Technology Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si:1.0〜1.5重量%,Cu:
0.4〜0.9重量%,Mg:0.8〜1.5重量%及
びCr:0.3〜0.9重量%を含み、Fe:0.05
〜0.2重量%,Zn:0.25重量%以下に規制した
アルミニウム鋳塊を均質化処理した後、490〜510
℃に加熱して押出し直後の素材温度が450〜500℃
になるように押し出し、次いで該押出し材を切断し、鍛
造直後の素材温度が450〜500℃となるように鍛造
し、次いで510〜545℃×2〜6時間の溶体化処理
を施し、水冷後、160〜190℃×4〜12時間の時
効処理を施すことにより溶体化処理時の再結晶粒の粗大
成長を抑制したアルミ鍛造製品の製造方法。
1. Si: 1.0 to 1.5% by weight, Cu:
0.4-0.9% by weight, Mg: 0.8-1.5% by weight and Cr: 0.3-0.9% by weight, Fe: 0.05
After homogenizing the aluminum ingot regulated to 0.2 wt% or less, Zn: 0.25 wt% or less, 490 to 510
Material temperature immediately after extrusion by heating to ℃ 450-500 ℃
And extruded so that the material temperature immediately after forging is 450 to 500 ° C., then subjected to solution treatment at 510 to 545 ° C. for 2 to 6 hours, and after water cooling , 160 to 190 ° C. × 4 to 12 hours, and a method for producing an aluminum forged product in which coarse growth of recrystallized grains during solution treatment is suppressed.
【請求項2】 Si:1.0〜1.5重量%,Cu:
0.4〜0.9重量%,Mg:0.8〜1.5重量%及
びCr:0.3〜0.9重量%を含み、Fe:0.05
〜0.2重量%,Zn:0.25重量%以下に規制した
アルミニウム鋳塊を均質化処理した後、490〜510
℃に加熱して押出し直後の素材温度が450〜500℃
になるように押し出し、次いで該押出し材を切断し、一
次鍛造直後の素材温度が450〜500℃なるように該
押出し素材を450〜500℃に加熱し、400〜46
0℃に保持した金型を使用して一次鍛造し、再度一次鍛
造品を500〜540℃に加熱し、二次鍛造直後の素材
温度が450〜500℃となるように400〜460℃
に保持した金型を使用して形状の複雑な製品に二次鍛造
し、510〜545℃×2〜6時間の溶体化処理,水冷
後に160〜190℃×4〜12時間の時効処理を施す
熱処理を行い、所定の鍛造品形状に機械加工するアルミ
鍛造製品の製造方法。
2. Si: 1.0 to 1.5% by weight, Cu:
0.4-0.9% by weight, Mg: 0.8-1.5% by weight and Cr: 0.3-0.9% by weight, Fe: 0.05
After homogenizing the aluminum ingot regulated to 0.2 wt% or less, Zn: 0.25 wt% or less, 490 to 510
Material temperature immediately after extrusion by heating to ℃ 450-500 ℃
And extruded so that the material temperature immediately after primary forging is 450 to 500 ° C., the extruded material is heated to 450 to 500 ° C., and 400 to 46
Primary forging is performed using a die held at 0 ° C, the primary forged product is again heated to 500 to 540 ° C, and 400 to 460 ° C so that the material temperature immediately after the secondary forging is 450 to 500 ° C.
Secondary forging is performed on a product having a complicated shape by using the mold held in, and solution treatment is performed at 510 to 545 ° C for 2 to 6 hours, and aging treatment at 160 to 190 ° C for 4 to 12 hours is performed after water cooling. A method for manufacturing an aluminum forged product that is heat-treated and machined into a predetermined forged product shape.
【請求項3】 更にTi:0.03〜0.05重量%,
B:0.0001〜0.01重量%及びMn:0.2〜
0.6重量%を含むアルミニウム合金を使用する請求項
1又は2記載のアルミ鍛造製品の製造方法。
3. Further, Ti: 0.03 to 0.05% by weight,
B: 0.0001 to 0.01% by weight and Mn: 0.2 to
The method for manufacturing an aluminum forged product according to claim 1, wherein an aluminum alloy containing 0.6% by weight is used.
【請求項4】 更にZr:0.1〜0.2重量%を含む
アルミニウム合金を使用する請求項1〜3の何れかに記
載のアルミ鍛造製品の製造方法。
4. The method for producing an aluminum forged product according to claim 1, wherein an aluminum alloy further containing Zr: 0.1 to 0.2 wt% is used.
JP8333196A 1996-03-12 1996-03-12 Production of aluminum forged product Pending JPH09249952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8333196A JPH09249952A (en) 1996-03-12 1996-03-12 Production of aluminum forged product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8333196A JPH09249952A (en) 1996-03-12 1996-03-12 Production of aluminum forged product

Publications (1)

Publication Number Publication Date
JPH09249952A true JPH09249952A (en) 1997-09-22

Family

ID=13799456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8333196A Pending JPH09249952A (en) 1996-03-12 1996-03-12 Production of aluminum forged product

Country Status (1)

Country Link
JP (1) JPH09249952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096212A1 (en) * 2010-02-02 2011-08-11 ワシ興産株式会社 Forged billet, process for production of forged billet, and process for production of wheel
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
CN111945086A (en) * 2020-07-24 2020-11-17 中国航发北京航空材料研究院 Forging method for improving anisotropy of 6XXX aluminum alloy forging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096212A1 (en) * 2010-02-02 2011-08-11 ワシ興産株式会社 Forged billet, process for production of forged billet, and process for production of wheel
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
US11420249B2 (en) 2018-01-12 2022-08-23 Accuride Corporation Aluminum wheels and methods of manufacture
CN111945086A (en) * 2020-07-24 2020-11-17 中国航发北京航空材料研究院 Forging method for improving anisotropy of 6XXX aluminum alloy forging

Similar Documents

Publication Publication Date Title
US10435774B2 (en) 2XXX series aluminum lithium alloys having low strength differential
US8372220B2 (en) Aluminum alloy forgings and process for production thereof
JP3194742B2 (en) Improved lithium aluminum alloy system
CN109136669B (en) Aluminum alloy forging and preparation method and application thereof
US4988394A (en) Method of producing unrecrystallized thin gauge aluminum products by heat treating and further working
JPH09249951A (en) Production of aluminum forged product having fine structure
JP5233607B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP4774630B2 (en) Manufacturing method of aluminum forged parts
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
CN115053008A (en) Method for manufacturing high-strength aluminum alloy extruded material
JPH09249949A (en) Production of aluminum extruded material forged product
JPH11286758A (en) Production of forged product using aluminum casting material
JPH10110231A (en) Aluminum alloy material for casting-forging excellent in wear resistance, castability and forgeability and its production
JPH11286759A (en) Production of forged product using aluminum extruded material
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JPH04341546A (en) Production of high strength aluminum alloy-extruded shape material
JPH09249953A (en) Production of aluminum extruded material forged product
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH09249952A (en) Production of aluminum forged product
JP2003155535A (en) Aluminum alloy extruded material for automobile bracket, and production method therefor
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPS602644A (en) Aluminum alloy