JPH09249910A - Method for raising temperature of molten steel in rh degassing - Google Patents

Method for raising temperature of molten steel in rh degassing

Info

Publication number
JPH09249910A
JPH09249910A JP8058698A JP5869896A JPH09249910A JP H09249910 A JPH09249910 A JP H09249910A JP 8058698 A JP8058698 A JP 8058698A JP 5869896 A JP5869896 A JP 5869896A JP H09249910 A JPH09249910 A JP H09249910A
Authority
JP
Japan
Prior art keywords
molten steel
amount
oxygen
nozzle
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8058698A
Other languages
Japanese (ja)
Inventor
Eiji Sakurai
栄司 櫻井
Kazutoshi Kawashima
一斗士 川嶋
Eiju Matsuno
英寿 松野
Toshio Takaoka
利夫 高岡
Takeshi Murai
剛 村井
Hideto Takasugi
英登 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8058698A priority Critical patent/JPH09249910A/en
Publication of JPH09249910A publication Critical patent/JPH09249910A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for raising the temp. of molten steel in an RH degassing equipment restraining the development of MnO and FeO in slag with out deteriorating the cleanliness of the molten steel. SOLUTION: At the time of using [wt.% Mn] for Mn concn. in the molten steel 2 before raising the temp., α(kg/min) for quantity of Al flowing into a vacuum vessel 1 calculated from a product of Al concn. in the molten steel 9 and circulating flow rate, β(kg/min) for blowing oxygen quantity from a nozzle 5 and η or oxygen efficiency, the ratio of α and η×β during time raising the temp. is in the range of satisfying formula I. However, in the case the positional height of the nozzle is <=3m from the static molten steel 9 surface in a vacuum vessel 1 and in the case of dipping the nozzle 5 into the molten steel 9, the oxygen efficiency is η=1, and in the case the positional height of the nozzle 5 exceeds 3m, the oxygen efficiency η is shown in formula II. Formula I: α/η×β)>0.625×[wt% Mn]+0.625 Formula II: η= 0.12×[the positional height of the nozzle (m)] +1.36.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、RH脱ガスの真空
槽内に酸素ガスを吹き込み、真空槽内の溶鋼中Alを燃
焼させて溶鋼温度を昇熱させる方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method of blowing oxygen gas into a vacuum chamber for RH degassing and burning Al in molten steel in the vacuum chamber to raise the temperature of the molten steel.

【0002】[0002]

【従来の技術】鋼の品質向上の要求は強く、そのため転
炉出鋼以後に、脱硫・脱炭・脱水素等の二次精錬による
処理を施す鋼種は益々多くなっている。この二次精錬に
使用される精錬炉としては、真空処理による脱炭・脱水
素が可能であり、又、真空槽内の強攪拌によりフラック
スによる脱硫も可能なことから、RH脱ガス設備が広く
使用されている。
2. Description of the Related Art There is a strong demand for improving the quality of steel, and therefore, after the steel is taken out of a converter, the number of steel types subjected to secondary refining such as desulfurization, decarburization and dehydrogenation is increasing. As the refining furnace used for this secondary refining, decarburization / dehydrogenation by vacuum treatment is possible, and desulfurization by flux by strong stirring in the vacuum tank is also possible, so RH degassing equipment is widely used. in use.

【0003】RH脱ガス処理中においては、真空槽への
熱移動、大気への熱放散により、溶鋼温度は低下する。
そして同一ヒートで脱硫・脱炭・脱水素と多種の処理を
施すと共に、処理時間が延長し、この溶鋼温度低下は更
に大きくなる。
During the RH degassing process, the temperature of molten steel decreases due to heat transfer to the vacuum chamber and heat dissipation to the atmosphere.
Then, various treatments such as desulfurization, decarburization, and dehydrogenation are performed with the same heat, and the treatment time is extended, so that the molten steel temperature drop is further increased.

【0004】この温度低下を補償するために、転炉での
出鋼温度を上昇させると、転炉炉体耐火物の損耗が激し
くなり、転炉炉体耐火物の原単位上昇という弊害をもた
らす。又、アーク加熱等の電気的なエネルギーを付与し
て取鍋内で昇熱することも可能であるが、この場合は、
更に加熱装置を有した精錬設備が必要となり、設備費の
増加による弊害ばかりでなく、精錬炉間の溶鋼移送によ
る取鍋内滞在時間の延長により溶鋼の温度低下、取鍋耐
火物の損耗等の新たな弊害をもたらす。
If the tapping temperature in the converter is increased in order to compensate for this temperature decrease, the refractory body of the converter furnace body is severely worn, resulting in an increase in the basic unit of the refractory body of the converter furnace body. . It is also possible to heat the inside of the ladle by applying electric energy such as arc heating, but in this case,
Furthermore, refining equipment with a heating device is required, which not only causes harmful effects due to increased equipment costs, but also lowers temperature of molten steel due to extension of residence time in ladle due to transfer of molten steel between refining furnaces, wear of refractory ladle, etc. Bring new evil.

【0005】このため、RH脱ガス設備にて溶鋼温度を
上昇させる技術が、特公昭56−50763号公報(以
下、「先行技術1」と記す)に開示されている。先行技
術1は、真空槽の溶鋼内に酸素ガスを導入すると共に、
溶鋼にAl、Si等の発熱剤を添加して、発熱剤と酸素
ガスとの酸化反応による発熱を利用し、溶鋼を昇熱する
方法である。又、この酸化反応により多量に生成するA
2 3 等の酸化物は溶鋼中に残存すると、非金属介在
物として製品品質に悪影響をもたらすため、先行技術1
では、生成する酸化物の吸着剤を酸素ガスと同時に真空
槽内に添加し、その後の溶鋼流れによって取鍋内の溶鋼
湯面とスラグ間に移動配置させて、酸化物を吸収させて
いる。そして、吸着剤としてはCaO、SiO2 を主成
分とする合成スラグ等を用いることができるとしてい
る。
Therefore, a technique for raising the temperature of molten steel in an RH degassing facility is disclosed in Japanese Patent Publication No. 56-50763 (hereinafter referred to as "Prior Art 1"). Prior art 1 introduces oxygen gas into the molten steel of a vacuum chamber,
This is a method of adding an exothermic agent such as Al or Si to the molten steel and utilizing the heat generated by the oxidation reaction of the exothermic agent and oxygen gas to raise the temperature of the molten steel. Also, a large amount of A produced by this oxidation reaction
If oxides such as l 2 O 3 remain in the molten steel, they adversely affect the product quality as non-metallic inclusions.
In the above, the adsorbent for the produced oxide is added to the vacuum tank at the same time as the oxygen gas, and is moved and arranged between the molten steel surface in the ladle and the slag by the subsequent molten steel flow to absorb the oxide. And, as the adsorbent, synthetic slag having CaO or SiO 2 as a main component can be used.

【0006】[0006]

【発明が解決しようとする課題】Al、Si、及びMn
を含有する溶鋼に酸素ガスを吹き込み・吹き付けた場
合、酸素との親和力はAl、Si、Mn、Feの順に小
さくなるので、AlやSiは酸化し易いが、AlやSi
が溶鋼中に存在しても、MnやFeの酸化も同時に起こ
る。従って、先行技術1においても、生成する酸化物と
してAl2 3 やSiO2 の他に、MnOやFeOの低
級酸化物が混入する。
Problems to be Solved by the Invention Al, Si, and Mn
When oxygen gas is blown into or blown into molten steel containing Al, the affinity with oxygen becomes smaller in the order of Al, Si, Mn, and Fe, so Al and Si are easily oxidized, but Al and Si
Even if is present in the molten steel, Mn and Fe are simultaneously oxidized. Therefore, also in Prior Art 1, in addition to Al 2 O 3 and SiO 2 , lower oxides of MnO and FeO are mixed as oxides to be generated.

【0007】先行技術1では、生成した酸化物をスラグ
に吸着させ、溶鋼の清浄性を改善するとしているが、生
成する酸化物としてMnOやFeOを生成させた場合、
これら低級酸化物を吸収したスラグの酸素ポテンシャル
は上昇する。スラグの酸素ポテンシャルが上昇すると、
RH脱ガス処理後に溶鋼中Al又はSiとスラグ中Mn
O、FeOとの反応が発生し、溶鋼中Al又はSiは酸
化して(この酸化を「再酸化」という)Al2 3 、S
iO2 になり、結局溶鋼中にAl2 3 やSiO2 が新
たに生成することになる。そして、この再酸化はRH脱
ガス処理後継続的に起こり、RH脱ガス処理後から鋳造
までには、充分なAl2 3 及びSiO 2 の浮上時間が
ないので、生成したAl2 3 、SiO2 は溶鋼中に残
存して非金属介在物となり、従って、清浄性の高い鋼を
製造することはできない。
In the prior art 1, the generated oxide is slag
Is said to improve the cleanliness of molten steel.
When MnO or FeO is generated as an oxide to be formed,
Oxygen potential of slag absorbing these lower oxides
Rises. When the oxygen potential of slag rises,
Al or Si in molten steel and Mn in slag after RH degassing
Reaction with O and FeO occurs, and Al or Si in molten steel is acid
Alkalised (this oxidation is called "reoxidation")TwoOThree, S
iOTwoAnd eventually Al in the molten steelTwoOThreeAnd SiOTwoIs new
Will be generated. And this reoxidation is
Casting after RH degassing occurs continuously after gas treatment
By the time enough AlTwoOThreeAnd SiO TwoAscent time
Since there is noTwoOThree, SiOTwoRemains in molten steel
Existing as non-metallic inclusions, and therefore highly clean steel.
It cannot be manufactured.

【0008】本発明は上記問題に鑑みなされたもので、
その目的とするところは、スラグ中のMnO及びFeO
の生成を抑え、溶鋼の清浄性を悪化させることなく、R
H脱ガス設備で溶鋼を昇熱する方法を提供するものであ
る。
The present invention has been made in view of the above problems,
The purpose is to use MnO and FeO in the slag.
R is suppressed and R is maintained without deteriorating the cleanliness of molten steel.
It is intended to provide a method for heating molten steel in an H 2 degassing facility.

【0009】[0009]

【課題を解決するための手段】発明者等は、RH脱ガス
における昇熱時での低級酸化物の生成を防止するため調
査した結果、以下のことが明らかとなった。即ち、Al
を燃焼させ溶鋼を昇熱する際、溶鋼中の溶質元素又は溶
鋼(Fe)を燃焼させる酸素量に対し、環流により真空
槽内に入ってくるAl量が不足すると、溶鋼中Mnの燃
焼が発生し、続いてFeの燃焼も発生する。そして、溶
鋼中Mn濃度が高くなるほど、多量の真空槽内に入って
くるAl量が必要になる。又、逆に酸素が少ないと昇熱
速度が低下して昇熱時間の延長につながる。つまり、溶
鋼中Mn濃度に応じて真空槽内に入ってくるAl量と酸
素量との比を最適に制御することにより、不必要な時間
の延長なしにAlを優先的に酸化させ、スラグの酸素ポ
テンシャルの上昇を抑制することが可能となる。
Means for Solving the Problems As a result of an investigation conducted by the present inventors in order to prevent the formation of lower oxides at the time of heating during RH degassing, the following facts have become clear. That is, Al
When the molten steel is heated to heat the molten steel and the amount of oxygen that burns the solute element in the molten steel or the molten steel (Fe) is insufficient when the amount of Al entering the vacuum tank due to recirculation is insufficient, combustion of Mn in the molten steel occurs. However, combustion of Fe also occurs subsequently. Then, the higher the Mn concentration in the molten steel, the larger the amount of Al that needs to enter the vacuum chamber. On the other hand, if the amount of oxygen is small, the rate of temperature rise is reduced, leading to extension of the temperature rise time. That is, by optimally controlling the ratio of the amount of Al and the amount of oxygen that enter the vacuum chamber in accordance with the Mn concentration in the molten steel, Al is preferentially oxidized without unnecessary extension of time and slag It is possible to suppress the increase in oxygen potential.

【0010】本発明は上記知見に基づきなされたもの
で、本発明による溶鋼の昇熱方法は、RH脱ガス設備の
真空槽内にAlを含有する溶鋼を環流させ、真空槽内溶
鋼にノズルから酸素ガスを吹き込み・吹き付け、溶鋼中
のAlを燃焼させて溶鋼温度を上昇させる溶鋼の昇熱方
法において、昇熱前の溶鋼中Mn濃度を〔wt%Mn〕
とし、溶鋼中Al濃度と環流量との積として算出される
真空槽内に流入するAl量をα(kg/分)とし、ノズ
ルからの送酸量をβ(kg/分)とし、酸素効率をηと
した時、昇熱期間中、αとη×βとの比が(1)式を満
足する範囲内であることを特徴とするものである。 α/(η×β)>0.625×〔wt%Mn〕+0.625 …(1)
The present invention has been made on the basis of the above findings, and the method for heating molten steel according to the present invention is such that the molten steel containing Al is circulated in the vacuum tank of the RH degassing equipment, and the molten steel in the vacuum tank is supplied with a nozzle from a nozzle. In the method of heating molten steel in which oxygen gas is blown and blown to burn Al in molten steel to raise the molten steel temperature, the Mn concentration in the molten steel before heating is [wt% Mn]
And the amount of Al flowing into the vacuum chamber, which is calculated as the product of the Al concentration in molten steel and the annular flow rate, is α (kg / min), the amount of oxygen fed from the nozzle is β (kg / min), and the oxygen efficiency is Is defined as η, the ratio of α to η × β is within the range satisfying the expression (1) during the heating period. α / (η × β)> 0.625 × [wt% Mn] +0.625 (1)

【0011】但し、ノズル位置高さが真空槽の静止溶鋼
面から3m以下の場合及びノズルを溶鋼に浸漬させた場
合は酸素効率η=1で、ノズル位置高さが静止溶鋼面か
ら3mを超える場合は酸素効率ηは(2)式で示され
る。 η=−0.12×〔ノズル位置高さ(m)〕+1.36 ……(2)
However, when the nozzle position height is 3 m or less from the stationary molten steel surface of the vacuum chamber or when the nozzle is immersed in the molten steel, the oxygen efficiency is η = 1 and the nozzle position height exceeds 3 m from the stationary molten steel surface. In this case, the oxygen efficiency η is shown by the equation (2). η = −0.12 × [nozzle position height (m)] + 1.36 (2)

【0012】RH脱ガスでは、真空槽内を排気し減圧し
た状態で、真空槽内にノズルにて酸素ガスを導入する。
従って、ノズルが溶鋼に浸漬されていない場合は、真空
槽に導入した全ての酸素ガスが、溶鋼表面に到達して溶
質元素又は溶鋼を燃焼させるものではない。本発明者等
は、溶鋼表面に到達し、溶質元素又は溶鋼を燃焼させる
酸素量を「有効酸素量」と定義し、又、有効酸素量の送
酸量に対する比率を「酸素効率」と定義し、昇熱時の有
効酸素量を把握するために、ノズル位置高さの有効酸素
量に及ぼす影響を調査した。調査にはノズル位置高さの
変更が容易なため、図1に示す真空槽天蓋に設けた上吹
きランスを利用し、上吹きランス先端に取り付けたノズ
ルから溶鋼に酸素ガスを吹き付けた。
In RH degassing, oxygen gas is introduced into the vacuum chamber with a nozzle while the vacuum chamber is evacuated and depressurized.
Therefore, when the nozzle is not immersed in the molten steel, not all the oxygen gas introduced into the vacuum chamber reaches the surface of the molten steel to burn the solute element or the molten steel. The present inventors defined the amount of oxygen that reaches the surface of molten steel and burns the solute element or molten steel as the "effective oxygen amount", and also defines the ratio of the effective oxygen amount to the oxygen supply amount as "oxygen efficiency". In order to understand the amount of available oxygen during heating, the effect of nozzle height on the amount of available oxygen was investigated. Since it is easy to change the height of the nozzle position in the investigation, an upper blowing lance provided on the canopy of the vacuum chamber shown in FIG. 1 was used, and oxygen gas was blown to the molten steel from the nozzle attached to the tip of the upper blowing lance.

【0013】ノズル位置高さの基準点を真空槽内の静止
溶鋼面(真空槽内の静止溶鋼面とは、真空槽内の圧力と
大気圧との差により生ずる溶鋼のヘッド差を取鍋内溶鋼
面に加えた計算上の高さ位置である)とし、この静止溶
鋼面からの距離をノズル位置高さとした。図6は、25
0トンの溶鋼で初期Al濃度を0.2wt%、環流量を
150トン/分、送酸量を10〜100kg/分の条件
で、ノズル位置高さを8mまで変更した時に、溶鋼中A
l濃度の推移から有効酸素量を測定し、有効酸素量と送
酸量との比から酸素効率(η)を求め、その結果を示し
た図である。
The reference point of the nozzle position height is the stationary molten steel surface in the vacuum tank (the stationary molten steel surface in the vacuum tank is the lathe head difference caused by the difference between the pressure in the vacuum tank and the atmospheric pressure). It is the calculated height position added to the molten steel surface), and the distance from this stationary molten steel surface was taken as the nozzle position height. FIG. 6 shows 25
In the molten steel of 0 tons, when the initial Al concentration was 0.2 wt%, the ring flow rate was 150 tons / min, and the amount of oxygen supply was 10 to 100 kg / min, the nozzle position height was changed to 8 m.
It is the figure which showed the result of having measured the amount of effective oxygen from the change of 1 concentration, calculated | required the oxygen efficiency ((eta)) from the ratio of the amount of effective oxygen, and the amount of oxygen transfer.

【0014】図6に示すように、酸素効率はノズル位置
高さが3mまでは変化せず1.0であり、3mを超える
と直線的に低下した。ノズル位置高さが3mを超える範
囲は最小自乗法により、酸素効率をノズル位置高さの1
次の関数として求め、(2)式を得た。このようにし
て、本発明では酸素効率をノズル位置高さが3mまでは
1.0とし、3.0mを超える範囲は酸素効率をノズル
位置高さの関数として決定した。
As shown in FIG. 6, the oxygen efficiency did not change until the nozzle position height was 3 m and was 1.0, and when it exceeded 3 m, it decreased linearly. In the range where the nozzle position height exceeds 3 m, the oxygen efficiency is set to 1 of the nozzle position height by the least square method.
The following function was obtained to obtain the expression (2). Thus, in the present invention, the oxygen efficiency was set to 1.0 up to a nozzle position height of 3 m, and the oxygen efficiency was determined as a function of the nozzle position height in the range exceeding 3.0 m.

【0015】本発明では、酸素効率を真空槽天蓋に設置
した上吹きランス先端に取り付けたノズル位置から求め
ているが、酸素ガスを溶鋼面に吹き付ける構造のノズル
であれば、真空槽側壁に設けたノズルであっても、上吹
きランス先端に取り付けたノズルから吹き付けた場合と
酸素効率は一致する。
In the present invention, the oxygen efficiency is obtained from the position of the nozzle attached to the tip of the upper blowing lance installed on the canopy of the vacuum chamber. However, if the nozzle has a structure for blowing oxygen gas onto the molten steel surface, it is provided on the side wall of the vacuum chamber. Even with a different nozzle, the oxygen efficiency is the same as when it is blown from the nozzle attached to the tip of the upper blowing lance.

【0016】又、ノズルを溶鋼に浸漬させた場合の酸素
効率(η)も調査して、浸漬させた場合は、酸素効率
(η)は1.0であることを確認した。このようにし
て、ノズル位置を決めると酸素効率が決まることにな
る。
The oxygen efficiency (η) when the nozzle was immersed in molten steel was also investigated, and it was confirmed that the oxygen efficiency (η) was 1.0 when the nozzle was immersed. In this way, when the nozzle position is determined, the oxygen efficiency is determined.

【0017】酸素効率をノズル位置で決定し、送酸量
(β)を変更して、昇熱前後でのスラグ中のMnOピッ
クアップ量を調査した結果を図2、図3、及び図4に示
す。これらの図は後段の実施例で詳細に説明するが、昇
熱終了時における溶鋼中Al濃度と環流量との積として
算出される真空槽内に流入するAl量(α)に対する有
効酸素量(η×β)の比(α/(η×β))を横軸に、
縦軸に昇熱前後のスラグ中のMnOピックアップ量を示
したもので、図2は溶鋼中Mn濃度が0.5wt%、図
3は溶鋼中Mn濃度が1.0wt%、図4は溶鋼中Mn
濃度が1.5wt%の結果である。尚、スラグ中のFe
Oはスラグ中MnOの生成に比例して増加するので、本
発明では低級酸化物としてMnOを代表して調査した。
The oxygen efficiency was determined at the nozzle position, the amount of acid supply (β) was changed, and the amount of MnO pickup in the slag before and after heating was investigated. The results are shown in FIGS. 2, 3 and 4. . Although these figures will be described in detail in Examples in the latter stage, the effective oxygen amount (α) with respect to the Al amount (α) flowing into the vacuum chamber calculated as the product of the Al concentration in molten steel and the annular flow rate at the end of heating ( η × β) ratio (α / (η × β)) on the horizontal axis,
The vertical axis shows the amount of MnO pickup in the slag before and after heating. Fig. 2 shows the Mn concentration in molten steel at 0.5 wt%, Fig. 3 shows the Mn concentration in molten steel at 1.0 wt%, and Fig. 4 shows the molten steel. Mn
The result is that the concentration is 1.5 wt%. In addition, Fe in the slag
Since O increases in proportion to the formation of MnO in the slag, MnO was representatively investigated as a lower oxide in the present invention.

【0018】これらの図より、スラグ中のMnOピック
アップ量を1.0wt%未満に抑えるには、溶鋼中Mn
濃度が0.5wt%の場合、α/(η×β)が1.0以
上、溶鋼中Mn濃度が1.0wt%の場合には1.3以
上、溶鋼中Mn濃度が1.5wt%の場合には1.6以
上必要となり、溶鋼中Mn濃度が高くなるほどα/(η
×β)を上げる、即ち、真空槽内に流入するAl量を上
げる、又は、有効酸素量を下げる必要があることが判
る。尚、スラグ中のMnOが1wt%未満では、実施例
でも述べるように、鋳片における直径0.020mm以
上の介在物個数が3個/cm2 以下となり清浄性が高い
ので、この値を清浄性の基準とした。
From these figures, in order to suppress the amount of MnO pickup in slag to less than 1.0 wt%, Mn in molten steel should be reduced.
When the concentration is 0.5 wt%, α / (η × β) is 1.0 or more, when the Mn concentration in the molten steel is 1.0 wt%, it is 1.3 or more, and the Mn concentration in the molten steel is 1.5 wt%. In this case, 1.6 or more is required, and α / (η
It can be seen that it is necessary to increase xβ), that is, to increase the amount of Al flowing into the vacuum chamber or reduce the amount of available oxygen. If the MnO content in the slag is less than 1 wt%, the number of inclusions having a diameter of 0.020 mm or more in the cast piece is 3 pieces / cm 2 or less and the cleanliness is high, as described in Examples. Was used as the standard.

【0019】図2〜図4の結果をまとめたものが図5で
ある。図5では、スラグ中のMnOピックアップ量が
1.0wt%未満で、非金属介在物が少なく品質良好の
範囲と、非金属介在物により品質不良となる範囲との境
界線を求めた。境界線として、図5にも示すように下記
の(3)式が得られ、品質が良好な範囲は、α/(η×
β)が(3)式の境界線より大きい範囲となり、本発明
の(1)式の不等式を得ることができる。 α/(η×β)=0.625×〔wt%Mn〕+0.625 …(3)
FIG. 5 is a summary of the results of FIGS. In FIG. 5, the boundary line between the range in which the amount of MnO pickup in the slag is less than 1.0 wt% and the non-metallic inclusions are small and the quality is good, and the range in which the quality is poor due to the non-metallic inclusions is determined. As the boundary line, the following expression (3) is obtained as shown in FIG. 5, and the range of good quality is α / (η ×
β becomes a range larger than the boundary line of the expression (3), and the inequality of the expression (1) of the present invention can be obtained. α / (η × β) = 0.625 × [wt% Mn] +0.625 (3)

【0020】このようにして、スラグ中のMnO及びF
eOの上昇を抑え、溶鋼の清浄性を悪化させない溶鋼昇
熱方法が得られる。
In this way, MnO and F in the slag are
A molten steel heating method that suppresses an increase in eO and does not deteriorate the cleanliness of molten steel can be obtained.

【0021】[0021]

【発明の実施の形態】本発明の実施の形態を、図1に示
すRH脱ガス設備に適用した場合を説明する。図1にお
いて、1は真空槽、2は上昇側浸漬管、3は下降側浸漬
管、4は上吹きランス、5は上吹きランス4の先端に取
り付けたノズル、6は環流用ガス吹き込み管、7は環流
ガス、8は取鍋、9は溶鋼、10はスラグ、11は酸素
ガスである。
BEST MODE FOR CARRYING OUT THE INVENTION A case where the embodiment of the present invention is applied to the RH degassing equipment shown in FIG. 1 will be described. In FIG. 1, 1 is a vacuum tank, 2 is an ascending side immersion pipe, 3 is a descending side immersion pipe, 4 is an upper blowing lance, 5 is a nozzle attached to the tip of the upper blowing lance 4, 6 is a recirculation gas blowing pipe, 7 is reflux gas, 8 is ladle, 9 is molten steel, 10 is slag, and 11 is oxygen gas.

【0022】スラグ10の組成はAl2 3 の吸収能の
高いものほど、又、MnO、FeO含有量の低いものほ
ど、清浄な鋼が得られるので都合が良い。スラグ10中
のMnO、FeOを下げるために、転炉出鋼時流入する
転炉スラグを除滓し、新たにスラグを添加する、又は、
取鍋内スラグにAl等の脱酸剤を添加することが望まし
い。新たに添加するスラグはMnO、FeOの低級酸化
物を含まないものを使用する。
The composition of the slag 10 having a higher Al 2 O 3 absorption capacity and a lower content of MnO and FeO are more convenient because a clean steel can be obtained. In order to lower MnO and FeO in the slag 10, the converter slag that flows in at the time of tapping the converter is removed and new slag is added, or
It is desirable to add a deoxidizing agent such as Al to the slag in the ladle. The newly added slag does not contain lower oxides of MnO and FeO.

【0023】浸漬管2、3を取鍋8内の溶鋼9に浸漬
し、真空槽1内を図示せぬ排気装置にて排気すると共
に、環流用ガス吹き込み管6から環流ガス7を上昇側浸
漬管2内に吹き込むと、溶鋼9は、上昇側浸漬管2を上
昇して真空槽1内に流入し、その後、下降側浸漬管3か
ら取鍋8に戻る流れ、所謂環流を形成する。この環流量
は実測が困難であるので、本発明では(4)式の経験式
を用いて算出する。 Q=11.4×G1/3 ×D4/3 ×(ln(P1 /P2 ))1/3 ……(4)
The dipping pipes 2 and 3 are dipped in the molten steel 9 in the ladle 8, the inside of the vacuum chamber 1 is exhausted by an exhaust device (not shown), and the circulating gas is blown from the circulating gas blowing pipe 6 to the rising side. When blown into the pipe 2, the molten steel 9 rises in the ascending side immersion pipe 2 and flows into the vacuum chamber 1, and then flows back from the descending side immersion pipe 3 back to the ladle 8, forming a so-called reflux. Since it is difficult to actually measure the ring flow rate, the present invention calculates it using the empirical formula (4). Q = 11.4 × G 1/3 × D 4/3 × (ln (P 1 / P 2 )) 1/3 ...... (4)

【0024】但し、(4)式において、Qは溶鋼の環流
量(トン/分)、Gは環流ガス量(Nl/分)、Dは浸
漬管の内径(m)、P1 はガス吹き込み点圧力(tor
r)、P 2 は真空槽内圧力(torr)である。
However, in the equation (4), Q is the reflux of molten steel.
Amount (ton / min), G is the reflux gas amount (Nl / min), D is the soak rate
Inside diameter of pickling pipe (m), P1Is the gas injection point pressure (tor
r), P TwoIs the vacuum chamber pressure (torr).

【0025】溶鋼9から成分分析用試料を採取して、昇
熱前の溶鋼中Al濃度、及びMn濃度を把握する。
Samples for component analysis are taken from the molten steel 9 to grasp the Al concentration and Mn concentration in the molten steel before heating.

【0026】溶鋼中Alは酸素ガス11と反応し、発熱
して溶鋼9を昇熱しつつ減少する。従って、昇熱中、溶
鋼9にAlを追加しない場合には、昇熱前の溶鋼中Al
濃度は少なくとも溶鋼9を所定温度だけ昇熱すると等し
い量の発熱量を有した濃度でなければならない。又、昇
熱中にAlを添加する場合には、総発熱量が溶鋼9を所
定温度だけ昇熱すると等しい量の発熱量を満たす添加量
で、且つ(1)式を算出する前提条件となる真空槽1内
に流入するAl量(α)を常に確保できる溶鋼中Al濃
度としなければならない。
Al in the molten steel reacts with the oxygen gas 11 and generates heat to increase the temperature of the molten steel 9 and decrease it. Therefore, if Al is not added to the molten steel 9 during heating, Al in molten steel before heating
The concentration must have a calorific value of at least an equivalent amount when the molten steel 9 is heated by a predetermined temperature. Further, when Al is added during heating, the total calorific value is such that the total calorific value satisfies the same calorific value when the molten steel 9 is heated by a predetermined temperature, and the vacuum is a precondition for calculating the equation (1). The Al concentration in the molten steel must be such that the Al amount (α) flowing into the tank 1 can always be secured.

【0027】又、溶鋼中Al濃度が低下すると昇熱時間
が長くなるので、昇熱終了時において、溶鋼中Al濃度
を0.01wt%以上確保することが望ましい。
Further, when the Al concentration in the molten steel decreases, the heating time increases, so it is desirable to secure the Al concentration in the molten steel of 0.01 wt% or more at the end of the heating.

【0028】(4)式から算出した環流量と溶鋼中Al
濃度とから、環流により真空槽1内に流入するAl量
(α)が定まり、このAl量(α)と予め分析した溶鋼
中Mn濃度とを(1)式に代入すると、有効酸素量(η
×β)の最大値が算出できる。このようにして求めた有
効酸素量の最大値からノズル位置と、送酸量とを決める
ことができる。但し、前述したように真空槽1内に流入
するAl量(α)は昇熱が進むにつれて減少していく。
従って、(1)式から有効酸素量の最大値を求める方法
には以下の2つの方法がある。
Ring flow rate calculated from equation (4) and Al in molten steel
From the concentration, the amount of Al (α) flowing into the vacuum chamber 1 by the recirculation is determined, and by substituting this Al amount (α) and the previously analyzed Mn concentration in the molten steel into the equation (1), the effective oxygen amount (η
The maximum value of xβ) can be calculated. From the maximum value of the amount of effective oxygen thus obtained, the nozzle position and the amount of acid supply can be determined. However, as described above, the amount of Al (α) flowing into the vacuum chamber 1 decreases as the temperature rises.
Therefore, there are the following two methods for obtaining the maximum value of the effective oxygen amount from the equation (1).

【0029】一つの方法は、昇熱の進行にしたがい真空
槽1内に流入するAl量(α)の減少と共に、送酸量の
減少又はノズル位置高さの上昇により、有効酸素量(η
×β)を昇熱中に段階的又は連続的に漸次低下させる方
法である。この際、真空槽1内に流入するAl量(α)
は、昇熱中に溶鋼から分析用試料を採取して溶鋼中Al
濃度を分析すれば正確に把握できるが、有効酸素量の総
量とAlの減少量との関係を予め調査し、その関係から
溶鋼中Al濃度を推定し、Al量(α)を把握すること
も可能である。
One method is to reduce the amount of oxygen fed into the vacuum chamber 1 as the temperature rises (α) and to reduce the amount of oxygen to be fed or the height of the nozzle to increase the effective oxygen amount (η).
It is a method of gradually decreasing stepwise or continuously during heating. At this time, the amount of Al flowing into the vacuum chamber 1 (α)
Is a sample for analysis taken from the molten steel during the heating
Although it can be accurately grasped by analyzing the concentration, it is also possible to preliminarily investigate the relationship between the total amount of available oxygen and the amount of decrease in Al, estimate the Al concentration in molten steel from the relationship, and grasp the Al amount (α). It is possible.

【0030】他の一つの方法は、溶鋼を所定温度昇熱す
るに必要な昇熱量を把握し、この昇熱量に対応する量の
Alの減少量を算出し、昇熱前の溶鋼中Al濃度からA
lの減少量を差し引いて、昇熱終了時の溶鋼中Al濃度
を予測する。この予測した昇熱終了時の溶鋼中Al濃度
を基準に、環流により真空槽1内に流入するAl量を算
出し、(1)式により、有効酸素量の最大値を算出し
て、ノズル位置、及び送酸量を決める方法である。この
方法は、昇熱末期のAl濃度を前提条件として、有効酸
素量を一定で制御するので、真空槽1内に流入するAl
量が多い昇熱初期には、有効酸素量が低く抑えられ、昇
熱時間が前述の一つの方法に比べ長くなるが、途中の溶
鋼中Al分析が不要となる。
Another method is to grasp the amount of heat rise required to raise the temperature of the molten steel to a predetermined temperature, calculate the amount of decrease in Al corresponding to this amount of heat rise, and calculate the Al concentration in the molten steel before raising the temperature. To A
By subtracting the amount of decrease of l, the Al concentration in the molten steel at the end of the heating is predicted. Based on the predicted Al concentration in the molten steel at the end of heating, the amount of Al flowing into the vacuum chamber 1 by recirculation is calculated, and the maximum value of the effective oxygen amount is calculated by the formula (1) to determine the nozzle position. , And the amount of acid transfer. In this method, the effective oxygen amount is controlled to be constant on the precondition of the Al concentration in the final stage of heating, so that the Al flowing into the vacuum chamber 1
In the early stage of heating with a large amount, the effective oxygen amount is suppressed to be low, and the heating time is longer than that of the above-mentioned one method, but the analysis of Al in molten steel during the process becomes unnecessary.

【0031】以上のようにしてノズル位置、及び送酸量
を決め、上吹きランス4を介してノズル5より酸素ガス
11を真空槽1に導入し溶鋼9面に吹き込み又は吹き付
け、本発明による昇熱を開始する。所定の総送酸量とな
った時点、又は、所定の総送酸量以下であっても溶鋼温
度が所定の温度となった時点で昇熱を終了する。
The nozzle position and the amount of oxygen to be fed are determined as described above, and the oxygen gas 11 is introduced into the vacuum chamber 1 from the nozzle 5 through the upper blowing lance 4 and blown or blown onto the surface of the molten steel 9 to raise the gas according to the present invention. Start the heat. The heating is terminated at the time when the predetermined total amount of oxygen fed is reached, or when the temperature of the molten steel reaches a predetermined temperature even if the total amount of fed oxygen is not more than the predetermined amount.

【0032】尚、図1は上吹きランス4が真空槽1の天
蓋を貫通する構造であるが、上吹きランス4が真空槽1
の側壁を貫通した構造であっても、又、ノズル5が真空
槽1の側壁に固定された構造であっても、酸素ガスを溶
鋼に向けて、吹き込み・吹き付ける構造であれば、本発
明の適用は何ら支障とならない。
Although FIG. 1 shows a structure in which the upper blowing lance 4 penetrates the canopy of the vacuum chamber 1, the upper blowing lance 4 does not.
No matter whether the nozzle 5 has a structure that penetrates the side wall or the structure in which the nozzle 5 is fixed to the side wall of the vacuum chamber 1, as long as it is a structure that blows / sprays oxygen gas toward the molten steel, The application does not hinder.

【0033】[0033]

【実施例】転炉から取鍋に出鋼された250トン溶鋼を
図1に示すRH脱ガスにて、脱水素処理を行う前に、本
発明の昇熱方法を実施した。
[Example] Before the dehydrogenation treatment was performed on 250 tons of molten steel tapped from a converter into a ladle by the RH degassing shown in Fig. 1, the heating method of the present invention was carried out.

【0034】環流量の調整は、浸漬管に吹き込む環流用
Arガスの量を2000〜4000Nl/分の範囲で変
更して行い、環流量は(4)式に基づき算出した。尚、
浸漬管内径は580mmである。
The recirculation flow rate was adjusted by changing the amount of Ar gas for recirculation flow blown into the immersion tube within the range of 2000 to 4000 Nl / min, and the recirculation flow rate was calculated based on the equation (4). still,
The inner diameter of the dip tube is 580 mm.

【0035】酸化物吸収用のスラグは、焼石灰;150
0kgを転炉出鋼時に脱酸剤のAl;300kgと共に
取鍋内溶鋼上に添加した。スラグ中のMnOとFeOの
含有量は、0〜2wt%であった。
The oxide absorbing slag is burnt lime; 150
0 kg was added on the molten steel in the ladle together with 300 kg of Al as a deoxidizer at the time of tapping the converter. The content of MnO and FeO in the slag was 0 to 2 wt%.

【0036】昇熱開始前と昇熱後に溶鋼の分析用試料と
スラグの分析用試料を採取して、溶鋼中Mn濃度、Al
濃度、及びスラグ中のMnO濃度を分析した。
A sample for analysis of molten steel and a sample for analysis of slag were taken before and after the start of heating and the Mn concentration in the molten steel and Al were analyzed.
The concentration and the MnO concentration in the slag were analyzed.

【0037】真空槽内に流入するAl量は、溶鋼を所定
温度上昇させるのに必要な昇熱量を把握し、この昇熱量
に対応する量のAlの減少量を算出し、昇熱前の溶鋼中
Al濃度から昇熱量に対応する量のAlの減少量を差し
引いて、昇熱終了時の溶鋼中Al濃度を予測し、この予
測した昇熱終了時の溶鋼中Al濃度と環流量との積とし
て決めた。そして、こうして決めた真空槽内に流入する
Al量と、昇熱前の溶鋼中Mn濃度を(1)式に代入し
て、有効酸素濃度の最大値を求め、送酸量及びノズル位
置を決定し、ランスを介してノズルより送酸して昇熱を
実施した。所定量の総送酸量となった時点で送酸を停止
して昇熱を終了した。昇熱時間は8分から12分であ
る。昇熱後、脱水素処理を約15分行い、その後、連続
鋳造機にて鋳造して鋳片を得た。
As for the amount of Al flowing into the vacuum chamber, the amount of heat rise required to raise the temperature of the molten steel to a predetermined temperature is grasped, the amount of decrease in Al corresponding to this amount of heat rise is calculated, and the amount of molten steel before raising the temperature is calculated. The amount of decrease in the amount of Al corresponding to the amount of heat rise is subtracted from the medium Al concentration to predict the Al concentration in the molten steel at the end of heating, and the product of the predicted Al concentration in molten steel at the end of heating and the ring flow rate. Decided as. Then, by substituting the amount of Al flowing into the vacuum chamber thus determined and the Mn concentration in the molten steel before heating to the formula (1), the maximum value of the effective oxygen concentration is determined, and the amount of oxygen supply and the nozzle position are determined. Then, acid was sent from the nozzle through the lance to raise the temperature. When the predetermined amount of total acid feeding amount was reached, the acid feeding was stopped and the heating was completed. The heating time is 8 to 12 minutes. After heating, dehydrogenation treatment was performed for about 15 minutes, and then cast by a continuous casting machine to obtain a slab.

【0038】表1には、昇熱前の溶鋼中Mn濃度、昇熱
後の溶鋼中Al濃度、環流量、上記の方法で決めた真空
槽内に流入するAl量α、送酸量β、ノズル位置、ノズ
ル位置から求まる酸素効率η、Al量と有効酸素量との
比α/(η×β)、(1)式の右辺の計算値、及び、昇
熱前後のスラグ中のMnOピックアップ量と品質評価を
示す。尚、表1のノズル位置の欄の数字は、真空槽内の
静止溶鋼面からの高さを表し、ノズル位置「0」は溶鋼
中に浸漬させた場合を表している。
Table 1 shows the Mn concentration in the molten steel before the heating, the Al concentration in the molten steel after the heating, the ring flow rate, the Al amount α flowing into the vacuum chamber determined by the above-mentioned method, the oxygen transfer amount β, Nozzle position, oxygen efficiency η obtained from nozzle position, ratio α / (η × β) between Al amount and effective oxygen amount, calculated value on the right side of equation (1), and MnO pickup amount in slag before and after heating And show the quality evaluation. The numbers in the nozzle position column of Table 1 represent the height from the stationary molten steel surface in the vacuum chamber, and the nozzle position "0" represents the case where the nozzle was immersed in the molten steel.

【0039】[0039]

【表1】 [Table 1]

【0040】品質評価は鋳片断面の介在物調査から評価
し、直径が0.020mm以上の介在物が3個/cm2
以下を品質良好とし、それ以上を品質不良として評価し
た。尚、スラグのFeOピックアップ量は、MnOのピ
ックアップ量のほぼ半分であった。
The quality was evaluated by examining inclusions in the cross section of the slab, and 3 inclusions / cm 2 having a diameter of 0.020 mm or more were evaluated.
The following were evaluated as good quality, and the higher quality was evaluated as poor quality. The FeO pickup amount of the slag was almost half the MnO pickup amount.

【0041】表1には、α/(η×β)の値が本発明の
範囲を外れた場合、即ち、主に昇熱末期に真空槽内に流
入するAl量に対して、有効酸素量が多過ぎた場合を比
較例として記載した。
Table 1 shows that when the value of α / (η × β) is out of the range of the present invention, that is, mainly with respect to the amount of Al flowing into the vacuum chamber at the end of heating, the amount of effective oxygen is The case where there were too many was described as a comparative example.

【0042】実施例は昇熱後のAl濃度を推定して、有
効酸素量を決めたために、昇熱終了時においても未だα
/(η×β)の値が(1)式の右辺の計算値に比べて高
いものが多いが、(1)式の右辺の計算値以下となるこ
とはなく、スラグ中のMnOのピックアップも17回の
試験で、最大0.6wt%と低く抑えることができた。
又、品質評価も全て良好であった。
In the examples, since the Al concentration after heating was estimated and the amount of effective oxygen was determined, α was still obtained at the end of heating.
The value of / (η × β) is often higher than the calculated value on the right side of equation (1), but it does not become less than the calculated value on the right side of equation (1), and the pickup of MnO in the slag is also In the test of 17 times, it could be suppressed to a low value of 0.6 wt% at maximum.
The quality evaluations were all good.

【0043】比較例では、昇熱終了時のα/(η×β)
の値が(1)式の右辺の計算値に近いものは、スラグ中
のMnOのピックアップは比較的小さいが、それでもピ
ックアップ量が1wt%未満を達成することはできず、
品質評価は全て不良となり、清浄性を確保できなかっ
た。
In the comparative example, α / (η × β) at the end of heating
When the value of is close to the calculated value on the right side of the equation (1), the pickup amount of MnO in the slag is relatively small, but the pickup amount is still less than 1 wt%,
All the quality evaluations were bad, and cleanliness could not be secured.

【0044】図2、図3、及び図4に、実施例及び比較
例の表1に示したα/(η×β)を横軸に、昇熱時のス
ラグ中MnOピックアップ量を縦軸にして示す。これら
の図より、本発明の範囲内にα/(η×β)を制御した
実施例では、比較例とα/(η×β)が近い値の試験で
もMnOピックアップ量が1wt%未満となり、実施例
と比較例とで明確な差がみられる。これは、本発明の範
囲内である限り、溶鋼中のAlが優先的に燃焼し、溶鋼
中Mnの酸化を抑制するためである。
In FIGS. 2, 3 and 4, the horizontal axis is α / (η × β) shown in Table 1 of the examples and comparative examples, and the vertical axis is the amount of MnO pickup in the slag during heating. Indicate. From these figures, in the example in which α / (η × β) was controlled within the range of the present invention, the MnO pickup amount was less than 1 wt% even in the test in which α / (η × β) was close to that of the comparative example. A clear difference can be seen between the example and the comparative example. This is because as long as it is within the scope of the present invention, Al in the molten steel preferentially burns to suppress the oxidation of Mn in the molten steel.

【0045】[0045]

【発明の効果】本発明によれば、RH脱ガスでの溶鋼中
Alと酸素ガスとの酸化反応による昇熱時に、溶鋼中M
n濃度に応じて、真空槽に入ってくるAl量と、有効酸
素量との比を最適値に制御するので、溶鋼中Alを優先
的に酸化させ、スラグ中のMnO及びFeOのピックア
ップを抑制でき、その結果清浄性の高い鋳片を得ること
が可能となる。
EFFECTS OF THE INVENTION According to the present invention, M in molten steel is increased when the temperature is raised by the oxidation reaction between Al in molten steel and oxygen gas in RH degassing.
Depending on the n concentration, the ratio of the amount of Al entering the vacuum chamber and the amount of available oxygen is controlled to an optimum value, so Al in molten steel is preferentially oxidized and MnO and FeO pickup in slag are suppressed. As a result, it is possible to obtain a slab with high cleanliness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用したRH脱ガス設備の概要を示す
図である。
FIG. 1 is a diagram showing an outline of RH degassing equipment to which the present invention is applied.

【図2】溶鋼中Mn濃度が0.5wt%の時の、本発明
の実施例におけるスラグのMnOピックアップ量に及ぼ
す真空槽内に入ってくるAl量に対する有効酸素量の比
の影響を比較例と共に示した図である。
FIG. 2 is a comparative example showing the effect of the ratio of the amount of available oxygen to the amount of Al entering the vacuum chamber on the amount of MnO pickup of slag in the example of the present invention when the Mn concentration in molten steel is 0.5 wt%. It is the figure shown with.

【図3】溶鋼中Mn濃度が1.0wt%の時の、本発明
の実施例におけるスラグのMnOピックアップ量に及ぼ
す真空槽内に入ってくるAl量に対する有効酸素量の比
の影響を比較例と共に示した図である。
FIG. 3 is a comparative example showing the effect of the ratio of the amount of available oxygen to the amount of Al entering the vacuum chamber on the amount of MnO pickup of slag in the example of the present invention when the Mn concentration in molten steel is 1.0 wt%. It is the figure shown with.

【図4】溶鋼中Mn濃度が1.5wt%の時の、本発明
の実施例におけるスラグのMnOピックアップ量に及ぼ
す真空槽内に入ってくるAl量に対する有効酸素量の比
の影響を比較例と共に示した図である。
FIG. 4 is a comparative example showing the effect of the ratio of the amount of available oxygen to the amount of Al entering the vacuum chamber on the amount of MnO pickup of slag in the example of the present invention when the Mn concentration in molten steel is 1.5 wt%. It is the figure shown with.

【図5】本発明の実施例と比較例とから、昇熱中のスラ
グ中MnOのピックアップの差により、品質良好及び品
質不良となる境界線を求めた図である。
FIG. 5 is a diagram in which, according to the example of the present invention and the comparative example, a boundary line for obtaining good quality and poor quality is obtained due to a difference in pickup of MnO in slag during heating.

【図6】酸素効率に及ぼすノズル位置高さの影響を調査
した結果を示す図である。
FIG. 6 is a diagram showing a result of investigation on influence of nozzle position height on oxygen efficiency.

【符号の説明】[Explanation of symbols]

1;真空槽 2;上昇側浸漬管 3;下降側浸漬管 4;上吹きランス 5;ノズル 6;環流用ガス吹き込み管 7;環流ガス 8;取鍋 9;溶鋼 10;スラグ 11;酸素ガス 1; vacuum tank 2; ascending side immersion pipe 3; descending side immersion pipe 4; upper blowing lance 5; nozzle 6; circulating gas blowing pipe 7; circulating gas 8; ladle 9; molten steel 10; slag 11; oxygen gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高岡 利夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 村井 剛 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 高杉 英登 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshio Takaoka 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Tsuyoshi Murai 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Hideto Takasugi 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 RH脱ガス設備の真空槽内にAlを含有
する溶鋼を環流させ、真空槽内溶鋼にノズルから酸素ガ
スを吹き込み・吹き付け、溶鋼中のAlを燃焼させて溶
鋼温度を上昇させる溶鋼の昇熱方法において、 昇熱前の溶鋼中Mn濃度を〔wt%Mn〕とし、溶鋼中
Al濃度と環流量との積として算出される真空槽内に流
入するAl量をα(kg/分)とし、ノズルからの送酸
量をβ(kg/分)とし、酸素効率をηとした時、昇熱
期間中、αとη×βとの比が(1)式を満足する範囲内
であることを特徴とするRH脱ガスでの溶鋼昇熱方法。 α/(η×β)>0.625×〔wt%Mn〕+0.625 …(1) 但し、ノズル位置高さが真空槽の静止溶鋼面から3m以
下の場合及びノズルを溶鋼に浸漬させた場合は酸素効率
η=1で、ノズル位置高さが静止溶鋼面から3mを超え
る場合は酸素効率ηは(2)式で示される。 η=−0.12×〔ノズル位置高さ(m)〕+1.36 ……(2)
1. A molten steel containing Al is circulated in a vacuum tank of an RH degassing facility, oxygen gas is blown and blown into the molten steel in the vacuum tank from a nozzle, and Al in the molten steel is burned to raise the molten steel temperature. In the method of heating molten steel, the Mn concentration in the molten steel before heating is [wt% Mn], and the amount of Al flowing into the vacuum chamber calculated as the product of the Al concentration in molten steel and the ring flow rate is α (kg / Min), the amount of oxygen sent from the nozzle is β (kg / min), and the oxygen efficiency is η, the ratio of α to η × β is within the range satisfying the formula (1) during the heating period. The method for heating molten steel in RH degassing, characterized in that α / (η × β)> 0.625 × [wt% Mn] +0.625 (1) However, when the nozzle position height is 3 m or less from the stationary molten steel surface of the vacuum tank and the nozzle was immersed in the molten steel. In this case, the oxygen efficiency η = 1, and when the nozzle position height exceeds 3 m from the stationary molten steel surface, the oxygen efficiency η is expressed by equation (2). η = −0.12 × [nozzle position height (m)] + 1.36 (2)
JP8058698A 1996-03-15 1996-03-15 Method for raising temperature of molten steel in rh degassing Pending JPH09249910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8058698A JPH09249910A (en) 1996-03-15 1996-03-15 Method for raising temperature of molten steel in rh degassing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8058698A JPH09249910A (en) 1996-03-15 1996-03-15 Method for raising temperature of molten steel in rh degassing

Publications (1)

Publication Number Publication Date
JPH09249910A true JPH09249910A (en) 1997-09-22

Family

ID=13091758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8058698A Pending JPH09249910A (en) 1996-03-15 1996-03-15 Method for raising temperature of molten steel in rh degassing

Country Status (1)

Country Link
JP (1) JPH09249910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121069A (en) * 2006-11-13 2008-05-29 Kobe Steel Ltd Method for cooling steel mantle in rh-apparatus
JP2008255421A (en) * 2007-04-05 2008-10-23 Sumitomo Metal Ind Ltd Molten steel heating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121069A (en) * 2006-11-13 2008-05-29 Kobe Steel Ltd Method for cooling steel mantle in rh-apparatus
JP2008255421A (en) * 2007-04-05 2008-10-23 Sumitomo Metal Ind Ltd Molten steel heating method

Similar Documents

Publication Publication Date Title
RU2433189C2 (en) Method for obtaining steel for steel pipes with excellent resistance in acid medium
JP5904237B2 (en) Melting method of high nitrogen steel
JP3885387B2 (en) Method for producing ultra-low sulfur steel with excellent cleanability
KR100985308B1 (en) Production method for high cleanliness steel with extremely low sulfur
US3236630A (en) Oxygen steelmaking
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JPH09249910A (en) Method for raising temperature of molten steel in rh degassing
JP6547734B2 (en) Method of manufacturing low-sulfur steel
TWI486454B (en) Steel manufacturing method
JP3319244B2 (en) Heated refining method for molten steel
JPH07268440A (en) Deoxidizing method of molten steel
JP5849667B2 (en) Melting method of low calcium steel
JP2729458B2 (en) Melting method of low nitrogen steel using electric furnace molten steel.
JPH08104911A (en) Method for melting phosphorus-containing steel
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP2724035B2 (en) Vacuum decarburization of molten steel
JPH0925507A (en) Method for refining molten steel
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JPH01100216A (en) Ladle refining method for molten steel
JP3279142B2 (en) Refining method of ultra clean low carbon steel
JP4404025B2 (en) Melting method of low nitrogen steel
JP3277763B2 (en) Refining method of ultra clean low carbon steel
SU988879A1 (en) Method for oxygen blasting of metal
JP3655512B2 (en) Blowing acid heating method for medium and high carbon steel
JP2000239729A (en) Production of extra-low carbon steel excellent in cleanliness

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041214

A711 Notification of change in applicant

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Effective date: 20050309

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Effective date: 20060613

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060920

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100929

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250