JPH09245829A - Organic electrolyte lithium secondary battery - Google Patents

Organic electrolyte lithium secondary battery

Info

Publication number
JPH09245829A
JPH09245829A JP8047178A JP4717896A JPH09245829A JP H09245829 A JPH09245829 A JP H09245829A JP 8047178 A JP8047178 A JP 8047178A JP 4717896 A JP4717896 A JP 4717896A JP H09245829 A JPH09245829 A JP H09245829A
Authority
JP
Japan
Prior art keywords
constant voltage
lithium secondary
secondary battery
charge
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8047178A
Other languages
Japanese (ja)
Inventor
Nobuharu Koshiba
信晴 小柴
Toshihiko Ikehata
敏彦 池畠
堅一 ▲高▼田
Kenichi Takada
Tatsuo Mori
辰男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8047178A priority Critical patent/JPH09245829A/en
Publication of JPH09245829A publication Critical patent/JPH09245829A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PROBLEM TO BE SOLVED: To enhance a charge/discharge cycle characteristic and stabilize a constant voltage overcharge characteristic in an organic electrolyte lithium secondary battery. SOLUTION: By using an electrolyte prepared by dissolving LiN(C2 F5 SO2 )2 in an organic solvent, a charge/discharge characteristic is enhanced, and a constant voltage overcharge characteristic is stabilized. By containing ethylene carbonate(EC) as the solvent, the charge/discharge characteristic is further enhanced, and by containing γ-butyrolactone (γ-BL), the constant voltage overcharge characteristic is further stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、移動用直流電源、
メモリーバックアップ電源などとして用いられる充放電
可能な有機電解液リチウム二次電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile DC power supply,
The present invention relates to a chargeable / dischargeable organic electrolyte lithium secondary battery used as a memory backup power source or the like.

【0002】[0002]

【従来の技術】充放電可能な有機リチウム二次電池とし
て、正極に五酸化バナジウム、負極に金属リチウム又
は、リチウム合金、電解液にリチウム塩を溶解した有機
溶媒を用いた電池系があり、3Vの高い電圧を有し、エ
ネルギー密度もニカド電池の1.5倍から2倍あり、有
用な電池である。この電池系の電解液としてLiBF4
やLiClO4,LiCF3SO3などのリチウム塩を溶
解した有機溶媒が電解液として検討されている。
2. Description of the Related Art As a rechargeable organic lithium secondary battery, there is a battery system using vanadium pentoxide for the positive electrode, metallic lithium or a lithium alloy for the negative electrode, and an organic solvent in which a lithium salt is dissolved in an electrolytic solution. It has a high voltage and an energy density of 1.5 to 2 times that of a NiCd battery, making it a useful battery. LiBF 4 was used as the electrolyte of this battery system.
An organic solvent in which a lithium salt such as LiClO 4 or LiCF 3 SO 3 is dissolved has been studied as an electrolytic solution.

【0003】[0003]

【発明が解決しようとする課題】正極に五酸化バナジウ
ム、負極にリチウムアルミニウム合金を用いた組合せの
場合、放電電圧が約3V、充電電圧が3.5V付近とな
るが、用いる電解液によって充放電サイクル寿命や定電
圧過充電特性が変わってくる。例えば、プロピレンカ−
ボネ−ト(以下PCと略する)と1,2−ジメトキシエ
タン(以下DMEと略する)の混合溶媒に溶解するリチ
ウム塩としてLiClO4を用いた場合、充放電サイク
ルはある程度良好であるが、定電圧過充電特性が悪くな
る。例えば、60℃の高温雰囲気中で、3.5Vの定電
圧で連続充電を行うと内部抵抗が徐々に上昇しはじめ、
やがて充放電が不能となってしまう。また、同じ溶媒で
リチウム塩としてLiBF4を用いた場合、定電圧過充
電特性は良好となるが、充放電サイクル特性がLiCl
4よりかなり低下してしまう。さらに、LiCF3SO
3を用いた場合、充放電サイクル特性も定電圧過充電特
性も悪くなってしまう。本発明では電解液の改良によ
り、充放電サイクル特性、並びに定電圧過充電特性の双
方を向上させようとするものである。
In the case of a combination using vanadium pentoxide for the positive electrode and a lithium aluminum alloy for the negative electrode, the discharge voltage is about 3V and the charging voltage is around 3.5V, but depending on the electrolyte used, charging / discharging may occur. The cycle life and constant voltage overcharge characteristics change. For example, propylene car
When LiClO 4 is used as a lithium salt dissolved in a mixed solvent of carbon dioxide (hereinafter abbreviated as PC) and 1,2-dimethoxyethane (hereinafter abbreviated as DME), the charge / discharge cycle is somewhat good, The constant voltage overcharge characteristics deteriorate. For example, when continuously charged at a constant voltage of 3.5 V in a high temperature atmosphere of 60 ° C., the internal resistance starts to rise gradually,
Eventually, charging / discharging becomes impossible. When LiBF 4 is used as the lithium salt in the same solvent, the constant voltage overcharge characteristics are good, but the charge / discharge cycle characteristics are LiCl 4.
It is much lower than O 4 . In addition, LiCF 3 SO
When 3 is used, both charge and discharge cycle characteristics and constant voltage overcharge characteristics deteriorate. The present invention is intended to improve both the charge / discharge cycle characteristics and the constant voltage overcharge characteristics by improving the electrolytic solution.

【0004】[0004]

【課題を解決するための手段】電解液として、化学式で
LiN(C25SO22と表されるリチウム塩を溶解し
た有機溶媒を用いるものである。さらに、有機溶媒とし
てエチレンカーボーネート(以下ECと略する)または
γ−ブチロラクトン(以下γ−BLと略する)を含有さ
せるものである。
As an electrolytic solution, an organic solvent in which a lithium salt represented by the chemical formula LiN (C 2 F 5 SO 2 ) 2 is dissolved is used. Further, it contains ethylene carbonate (hereinafter abbreviated as EC) or γ-butyrolactone (hereinafter abbreviated as γ-BL) as an organic solvent.

【0005】[0005]

【発明の実施の形態】LiN(C25SO22はイミド
塩の一種である。この種のものとしてLiN(CF3
22などがあり電解質としてよく検討されているが、
これを用いた場合、LiClO4を用いた場合よりさら
に充放電サイクル特性は向上するのであるが、残念なが
ら定電圧印加による過充電特性はあまりよくなく改善が
望まれていた。この原因としては定かではないがメチル
基(−CF3)が高電位で分解するためと考えられる。
ところが本発明のLiN(C25SO22を用いると、
例えば正極に五酸化バナジウム、負極にリチウムアルミ
ニウム合金を用いた組合せた場合、充放電サイクル特性
が向上するのみならず、60℃の高温雰囲気中で3.5
Vの定電圧過充電に対しても、安定性を示すことがわか
った。これは、メチル基よりエチル基(−C25)に変
わることにより、高電位において安定性が向上したため
と考えられる。また、本発明のリチウム塩を溶解する有
機溶媒として、通常、リチウム二次電池に一般的に用い
られるPCとDMEの混合溶媒を用いることができる。
これらに加え、ECを添加するとさらに充放電サイクル
寿命を伸ばすことができるし、また、γ−BLを添加す
ると定電圧過充電特性を向上させることができる。もち
ろん、この他によく用いられるブチレンカーボネート
(BC)、ジエトキシカーボネート(DEC)、ジメト
キシカーボネート(DMC)などいづれも混合して用い
ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION LiN (C 2 F 5 SO 2 ) 2 is a kind of imide salt. LiN (CF 3 S
O 2 ) 2 etc. are often considered as electrolytes,
When this is used, the charge-discharge cycle characteristics are further improved as compared with the case where LiClO 4 is used, but unfortunately the overcharge characteristics due to the application of a constant voltage are not so good, and improvements have been desired. The reason for this is not clear, but it is considered that the methyl group (—CF 3 ) decomposes at a high potential.
However, when LiN (C 2 F 5 SO 2 ) 2 of the present invention is used,
For example, when a combination of vanadium pentoxide for the positive electrode and a lithium aluminum alloy for the negative electrode is used, not only the charge / discharge cycle characteristics are improved, but also in a high temperature atmosphere of 60 ° C. 3.5
It was found that stability is exhibited even against constant voltage overcharge of V. It is considered that this is because the stability was improved at a high potential by changing from a methyl group to an ethyl group (—C 2 F 5 ). Further, as the organic solvent for dissolving the lithium salt of the present invention, a mixed solvent of PC and DME which is generally used for lithium secondary batteries can be used.
In addition to these, the addition of EC can further extend the charge / discharge cycle life, and the addition of γ-BL can improve the constant voltage overcharge characteristics. Of course, other well-used butylene carbonate (BC), diethoxy carbonate (DEC), dimethoxy carbonate (DMC) and the like can be mixed and used.

【0006】[0006]

【実施例】【Example】

(実施例1)以下本発明の実施例について、図面を参照
しながら説明する。図1は、本発明におけるコイン形の
有機電解液リチウム二次電池の断面図である。1は正極
端子を兼ねたケース、2は負極端子を兼ねた封口板、3
はケースと封口板とを絶縁するポリプロピレン製ガスケ
ット、4はポリプロピレン製不織布からなるセパレータ
である。5は正極であり、五酸化バナジウムを一定量2
04mg(理論電気容量約30mAh)とし、導電材で
あるカーボンブラックを5wt%、結着剤であるフッ素
樹脂を5wt%の重量比となるように混練し、直径15
mmの大きさにペレット成形し、高温真空乾燥によっ
て、脱水処理したものである。6は負極であり、リチウ
ムが5wt%のリチウムアルミニウム合金であり、厚さ
0.3mm、直径15mmのものである。電解液は、P
CとDMEを1:1で混合した溶媒にLiN(C25
22を1M/l溶解したものを用いた。電池の大きさ
は、直径20mm、厚さ2.5mmの大きさである。こ
の本発明の電池をAとする。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a coin-shaped organic electrolyte lithium secondary battery according to the present invention. 1 is a case that also serves as a positive electrode terminal, 2 is a sealing plate that also serves as a negative electrode terminal, 3
Is a polypropylene gasket that insulates the case and the sealing plate, and 4 is a separator made of polypropylene nonwoven fabric. Reference numeral 5 is a positive electrode, and a certain amount of vanadium pentoxide is 2
It was made to be 04 mg (theoretical electric capacity of about 30 mAh), and kneaded so that the carbon black as the conductive material was 5 wt% and the fluororesin as the binder was 5 wt%, and the diameter was 15
Pellets were formed into a size of mm and dehydrated by high temperature vacuum drying. Reference numeral 6 denotes a negative electrode, which is a lithium-aluminum alloy containing 5 wt% of lithium, having a thickness of 0.3 mm and a diameter of 15 mm. The electrolyte is P
LiN (C 2 F 5 S
A solution of O 2 ) 2 dissolved at 1 M / l was used. The battery has a diameter of 20 mm and a thickness of 2.5 mm. This battery of the present invention is designated as A.

【0007】比較としてまったく同じ条件でLiClO
4,LiBF4,LiCF3SO3,LiN(CF3SO2
2をそれぞれ用いて作製した電池をB,C,D,Eとす
る。これらの電池を用い、充電条件を3.5V定電圧、
保護抵抗100Ωで充電時間24時間とし、放電条件を
3kΩで2.5Vまでとし、充放電を繰り返し、初期の
放電容量に対し50%以下にまで低下した時点のサイク
ル数を比較した。その結果を表1に示す。電池Aに対
し、電池CおよびDは約半分程度あり、電池Bは70%
程度でやや劣り、Eはほぼ同程度のサイクル数である。
For comparison, LiClO under exactly the same conditions
4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 )
B, C, D and E are batteries produced by using 2 respectively. Using these batteries, charging conditions 3.5V constant voltage,
The charging time was set to 24 hours with a protective resistance of 100Ω, the discharge condition was set to 2.5 V at 3 kΩ, charging and discharging were repeated, and the number of cycles at the time when the initial discharge capacity was reduced to 50% or less was compared. Table 1 shows the results. Battery C and D are about half of battery A, and battery B is 70%.
Slightly inferior in degree, and E has almost the same number of cycles.

【0008】[0008]

【表1】 [Table 1]

【0009】また、60℃の高温雰囲気中で3.5Vの
定電圧を連続印加し、30日後、1kHzの交流法で電池
の内部抵抗を測定し、初期に対する変化率を比較した。
その結果を(表2)に示す。内部抵抗の変化率が低いの
は電池AおよびCであり、後はかなりの上昇傾向にあ
る。このことから本発明の電池Aは充放電サイクル特
性、および定電圧過充電に対し、効果的であることがわ
かる。
Further, a constant voltage of 3.5 V was continuously applied in a high temperature atmosphere of 60 ° C., and after 30 days, the internal resistance of the battery was measured by an alternating current method of 1 kHz and the rate of change from the initial value was compared.
The results are shown in (Table 2). Batteries A and C have a low rate of change in internal resistance, and after that, there is a considerable upward trend. From this, it is understood that the battery A of the present invention is effective for charge / discharge cycle characteristics and constant voltage overcharge.

【0010】[0010]

【表2】 [Table 2]

【0011】(実施例2)実施例1の電池Aの電解液の
有機溶媒にECを添加し、体積比でPC:EC:DME
=1:1:1とした。これを電池Fとする。また、同様
にγ−BLを添加し、PC:γ−BL:DME=1:
1:1とした。これを電池Gとする。
(Example 2) EC was added to the organic solvent of the electrolytic solution of the battery A of Example 1, and the volume ratio was PC: EC: DME.
= 1: 1: 1. This is referred to as a battery F. Similarly, γ-BL was added, and PC: γ-BL: DME = 1:
It was set to 1: 1. This is referred to as battery G.

【0012】これらの電池を(実施例1)と同じ条件で
充放電サイクルおよび定電圧過充電のテストを行った。
それらの結果を(表3)および(表4)に示す。
These batteries were tested for charge / discharge cycles and constant voltage overcharge under the same conditions as in (Example 1).
The results are shown in (Table 3) and (Table 4).

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】(表3)から明らかなようにECを添加し
たFは充放電サイクル数が伸びている。また、(表4)
から明らかなように定電圧過充電に対してはγ−BLを
添加した電池Gがより安定である。
As is clear from (Table 3), the number of charge / discharge cycles of F added with EC is extended. Also (Table 4)
As is clear from the above, the battery G containing γ-BL is more stable against constant voltage overcharge.

【0016】実施例において、正極に結晶五酸化バナジ
ウムを用いたがアモルファスタイプの五酸化バナジウム
やリチウムを含有したスピネル構造のLiV24なども
同様な効果があった。また、負極もリチウムアルミニウ
ム合金のみならず、リチウムを吸蔵、放出することがで
きる炭素材料なども可能である。
In the examples, crystalline vanadium pentoxide was used for the positive electrode, but amorphous type vanadium pentoxide, LiV 2 O 4 having a spinel structure containing lithium, and the like also had similar effects. Further, not only the lithium aluminum alloy but also a carbon material capable of inserting and extracting lithium can be used for the negative electrode.

【0017】[0017]

【発明の効果】以上のように、本発明の有機電解液を用
いると、リチウム二次電池において充放電サイクルおよ
び定電圧過充電に対し、効果を発揮するものである。
As described above, the use of the organic electrolytic solution of the present invention is effective in charge / discharge cycles and constant voltage overcharge in lithium secondary batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のコイン形の有機電解液リチウム二次電
池の断面図
FIG. 1 is a cross-sectional view of a coin-shaped organic electrolyte lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1.正極ケ−ス 2.封口板 3.ガスケット 4.セパレ−タ 5.正極 6.負極 1. Positive electrode case 2. Seal plate 3. Gasket 4. Separator 5. Positive electrode 6. Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 辰男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Mori 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学式LiN(C25SO22で表され
るリチウム塩を溶解した有機溶媒を電解液として用いる
ことを特徴とする有機電解液リチウム二次電池。
1. An organic electrolyte lithium secondary battery, wherein an organic solvent in which a lithium salt represented by the chemical formula LiN (C 2 F 5 SO 2 ) 2 is dissolved is used as an electrolyte.
【請求項2】 有機溶媒がエチレンカーボーネートを含
有することを特徴とする請求項1に記載の有機電解液リ
チウム二次電池。
2. The organic electrolyte lithium secondary battery according to claim 1, wherein the organic solvent contains ethylene carbonate.
【請求項3】 有機溶媒がγ−ブチロラクトンを含有す
ることを特徴とすることを特徴とする請求項1記載の有
機電解液リチウム二次電池。
3. The organic electrolyte lithium secondary battery according to claim 1, wherein the organic solvent contains γ-butyrolactone.
JP8047178A 1996-03-05 1996-03-05 Organic electrolyte lithium secondary battery Pending JPH09245829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8047178A JPH09245829A (en) 1996-03-05 1996-03-05 Organic electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8047178A JPH09245829A (en) 1996-03-05 1996-03-05 Organic electrolyte lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH09245829A true JPH09245829A (en) 1997-09-19

Family

ID=12767833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8047178A Pending JPH09245829A (en) 1996-03-05 1996-03-05 Organic electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH09245829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515460A (en) * 2016-11-03 2019-06-06 エルジー・ケム・リミテッド Lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515460A (en) * 2016-11-03 2019-06-06 エルジー・ケム・リミテッド Lithium ion secondary battery
EP3442069A4 (en) * 2016-11-03 2019-07-03 LG Chem, Ltd. Lithium ion secondary battery
US10923717B2 (en) 2016-11-03 2021-02-16 Lg Chem, Ltd. Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
EP0827231B1 (en) Non-aqueous electrolyte lithium secondary battery
JP3187929B2 (en) Lithium secondary battery
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2597091B2 (en) Lithium secondary battery
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
US7422827B2 (en) Nonaqueous electrolyte
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH01134873A (en) Organic electrolyte secondary battery
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP2000195546A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it
JPH1027627A (en) Lithium secondary battery
JP2000228215A (en) Lithium secondary battery
JPH09245829A (en) Organic electrolyte lithium secondary battery
JPH03192663A (en) Nonaqueous electrolyte secondary battery
JP2000082492A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH0359963A (en) Lithium secondary battery
JP2000058118A (en) Nonaqueous electrolyte secondary battery