JPH09241839A - Sputtering device and production of semiconductor device - Google Patents

Sputtering device and production of semiconductor device

Info

Publication number
JPH09241839A
JPH09241839A JP8072096A JP8072096A JPH09241839A JP H09241839 A JPH09241839 A JP H09241839A JP 8072096 A JP8072096 A JP 8072096A JP 8072096 A JP8072096 A JP 8072096A JP H09241839 A JPH09241839 A JP H09241839A
Authority
JP
Japan
Prior art keywords
plate
collimating plate
sputtering
collimator plate
collimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8072096A
Other languages
Japanese (ja)
Inventor
Yuichiro Fujiwara
雄一郎 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8072096A priority Critical patent/JPH09241839A/en
Publication of JPH09241839A publication Critical patent/JPH09241839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To deposit, for example, low-resistance conductor films with good coverage into fine contact holes in a sputtering stage in production of a semiconductor device. SOLUTION: A collimating plate 3 having penetrating cylindrical holes over the entire surface is arranged between a target 1 and a substrate 5 to be deposited and while this substrate 5 to be deposited is kept rotated by a rotating mechanism 7, sputtering is executed. The angle (>=0 to <=90 deg.) formed by the central line of the cylindrical holes of the collimating plate 3 and the normal direction of the collimating plate 3 is set at >=2 kinds. While the sputtered particles 2 before the collimation have various directions, the sputtered particles 4 past the collimating plate 3 are collimated in the inclination direction of the cylinder of the collimating plate 3. The coverage of the deposits mainly on the bottoms of the contact holes 6 is improved with the device having the small angle formed by the central line of the cylindrical holes of the collimating plate 3 and the normal direction of the collimating plate 3, the coverage of the deposits mainly on the flanks of the contact holes 6 is improved with the device having the large angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリング装
置及び半導体装置の製造方法に関し、より詳細には、半
導体装置の製造において微細なコンタクト孔内に例えば
低抵抗導電体膜をカバレージよく堆積するコリメートス
パッタリング装置及び半導体装置の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering device and a method for manufacturing a semiconductor device, and more particularly, to collimating sputtering for depositing, for example, a low resistance conductor film in a fine contact hole with good coverage in manufacturing a semiconductor device. The present invention relates to a device and a method for manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】近年、LSIの集積度が向上し、コンタ
クト孔の深さ/開口径すなわちアスペクト比が大きくな
っている。従来のスパッタ法では、このような高アスペ
クト比のコンタクト孔にアルミニウムを主成分とする合
金、高融点金属、金属シリサイドとの積層膜等の導電体
膜を被覆性よく形成することが困難である。
2. Description of the Related Art In recent years, the degree of integration of LSIs has improved, and the depth / opening diameter of contact holes, that is, the aspect ratio has increased. In the conventional sputtering method, it is difficult to form a conductor film such as a laminated film of an alloy containing aluminum as a main component, a refractory metal, and a metal silicide in such a contact hole having a high aspect ratio with good coverage. .

【0003】そこで、被堆積基板に対してスパッタ粒子
を垂直方向に強くコリメートするコリメートスパッタ法
が種々提案されている。特開平5−239637号公報
では、コリメート板の円筒状の穴すべての中心線がコリ
メート板の法線方向に対して平行であり、特開平5−1
82962号公報では、コリメート板の円筒状の穴はコ
リメート板の法線方向に対して平行でない適当な角度を
有するように形成されている。
Therefore, various collimated sputtering methods have been proposed in which sputtered particles are strongly collimated in the vertical direction with respect to a substrate to be deposited. In JP-A-5-239637, the center lines of all the cylindrical holes of the collimator plate are parallel to the normal direction of the collimator plate.
In Japanese Patent No. 82962, the cylindrical hole of the collimator plate is formed so as to have an appropriate angle that is not parallel to the normal direction of the collimator plate.

【0004】[0004]

【発明が解決しようとする課題】コリメート板の円筒状
の穴すべての中心線がコリメート板の法線方向に対して
平行な場合、コンタクト孔の底部での高カバレージが期
待できるが、コンタクト孔の側面への堆積が減少し、断
線を起こし易くなったり、コンタクト抵抗を増加させる
問題点がある。
When the center lines of all the cylindrical holes of the collimating plate are parallel to the normal direction of the collimating plate, high coverage at the bottom of the contact hole can be expected, but There are problems that deposition on the side surface is reduced, disconnection is likely to occur, and contact resistance is increased.

【0005】一方、コリメート板の円筒状の穴がコリメ
ート板の法線方向に対して平行でない適当な角度、例え
ば、コリメート板の円筒状の穴すべてがコリメート板の
法線方向に対して正の角度(0度を越え90度未満)を
なす場合は、コンタクト孔の底部での堆積が減少し、断
線を起こし易くなったり、コンタクト抵抗を増加させる
問題点がある。
On the other hand, the cylindrical hole of the collimator plate is not parallel to the normal direction of the collimator plate at an appropriate angle, for example, all the cylindrical holes of the collimator plate are positive with respect to the normal direction of the collimator plate. When the angle (more than 0 degree and less than 90 degrees) is formed, there are problems that deposition at the bottom of the contact hole is reduced, wire breakage easily occurs, and contact resistance increases.

【0006】本発明は、上記問題点に鑑み、スパッタ法
によるコンタクト孔への例えば導電体の堆積における段
差被覆性を向上させ、高アスペクト比の微細コンタクト
の低抵抗化、安定化を実現するスパッタリング装置及び
半導体装置の製造方法を提供するものである。
In view of the above problems, the present invention improves the step coverage in the deposition of a conductor in a contact hole by a sputtering method, and realizes a low resistance and stabilization of a fine contact having a high aspect ratio. Provided is a device and a method for manufacturing a semiconductor device.

【0007】[0007]

【課題を解決するための手段】本発明は、貫通した円筒
状の穴を全面に有するコリメート板をターゲットと基板
との間に設置したスパッタリング装置において、前記コ
リメート板の円筒状の穴の中心線と前記コリメート板の
法線方向とのなす角度が2種類以上であることを特徴と
する。また、前記のスパッタリング装置において、前記
2種類以上の角度が0度以上90度未満であることを特
徴とする。また、前記のスパッタリング装置において、
前記2種類以上の角度のうち1つの種類の角度が0度で
あることを特徴とする。さらに、本発明は、コリメート
板を用いたスパッタリング堆積方法を行う半導体装置の
製造方法であって、前記コリメート板を通過した粒子
は、前記コリメート板の円筒状の穴の中心線と前記コリ
メート板の法線方向とのなす角度が2種類以上の分布を
持つことを特徴とする。また、前記の半導体装置の製造
方法において、前記2種類以上の角度が0度以上90度
未満であることを特徴とする。
SUMMARY OF THE INVENTION The present invention is a sputtering apparatus in which a collimating plate having a through-hole cylindrical hole is installed between a target and a substrate, and the center line of the cylindrical hole of the collimating plate is provided. It is characterized in that the angle between the normal direction of the collimator plate and two or more types. Further, in the above sputtering apparatus, the two or more kinds of angles are 0 degrees or more and less than 90 degrees. Further, in the above sputtering device,
One of the two or more types of angles is 0 degree. Furthermore, the present invention is a method for manufacturing a semiconductor device that performs a sputtering deposition method using a collimator plate, wherein particles that have passed through the collimator plate are the centerline of a cylindrical hole of the collimator plate and the collimator plate. It is characterized in that the angle with the normal direction has two or more types of distribution. Further, in the method for manufacturing a semiconductor device, the two or more types of angles are 0 degrees or more and less than 90 degrees.

【0008】[0008]

【作用】本発明によれば、貫通した円筒状の穴を全面に
有するコリメート板を使用したスパッタリングにおい
て、該コリメート板の円筒状の穴の中心線とコリメート
板の法線方向とのなす角度が小さいものは主としてコン
タクト孔の底部での堆積物のカバレージを向上させ、角
度が大きいものは主としてコンタクト孔の側面での堆積
物のカバレージを向上させる。
According to the present invention, in the sputtering using a collimating plate having a through-hole, a cylindrical hole, the angle between the center line of the cylindrical hole of the collimating plate and the normal direction of the collimating plate is Smaller ones mainly improve the coverage of the deposits at the bottom of the contact holes, and larger ones mainly improve the coverage of the deposits on the sides of the contact holes.

【0009】[0009]

【発明の実施の形態】以下、本発明を実施形態につき図
面を参照して説明する。図1は実施形態によるスパッタ
リング装置の構成を示す概要図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of the sputtering apparatus according to the embodiment.

【0010】スパッタリングするターゲット1、コリメ
ート板3の円筒状の穴の中心線とコリメート板3の法線
方向とのなす角度が0度と適当な角度θだけ傾いた円筒
からなるコリメート板3、コンタクト孔6が形成された
被堆積基板5が図のように配置される。この配置で回転
機構7により被堆積基板5を回転しながらスパッタを開
始すると、ターゲット1とコリメート板3との空間に
は、いろいろな速度方向を有したコリメート前のスパッ
タ粒子2が存在するが、コリメート板3を通過した後の
スパッタ粒子4は、コリメート板3の円筒の傾きの方向
にコリメートされている。
The target 1 to be sputtered, the collimating plate 3 made of a cylinder in which the angle formed by the center line of the cylindrical hole of the collimating plate 3 and the normal direction of the collimating plate 3 is inclined by 0 ° and an appropriate angle θ, and the contact. The deposition substrate 5 in which the holes 6 are formed is arranged as shown in the figure. When sputtering is started while rotating the deposition target substrate 5 by the rotation mechanism 7 in this arrangement, sputtered particles 2 before collimation having various speed directions exist in the space between the target 1 and the collimator plate 3. The sputtered particles 4 that have passed through the collimator plate 3 are collimated in the direction of the inclination of the cylinder of the collimator plate 3.

【0011】[0011]

【実施例】第1実施例では、ターゲット1としてTi
(チタン)、被堆積基板5として表面酸化膜に直径0.
5μm、深さ1.5μmのコンタクト孔6(底面積=
0.19μm2 、側面積=2.36μm2 、アスペクト
比=3)を形成したSi(シリコン)ウエハ5を使用
し、コリメート板3の穴の角度0度及び5度(穴の数は
同数)とした。スパッタ条件は、例えば以下の通りとし
た。 DCパワー :8kW プロセスガス:Ar スパッタ圧力:0.4Pa 基板加熱温度:150℃
EXAMPLES In the first example, Ti was used as the target 1.
(Titanium), the surface oxide film as the deposition target substrate 5 has a diameter of 0.
5 μm, 1.5 μm deep contact hole 6 (bottom area =
0.19 .mu.m 2, lateral area = 2.36Myuemu 2, aspect ratio = 3) was formed Si (silicon) using wafer 5, the angle 0 ° and 5 ° of the hole of the collimator plate 3 (the number of holes equal) And The sputtering conditions were as follows, for example. DC power: 8 kW Process gas: Ar Sputtering pressure: 0.4 Pa Substrate heating temperature: 150 ° C.

【0012】まず、Tiターゲット1より種々の方向を
向いたTi粒子2がたたき出され、コリメート板3を通
過する。次に、コリメート板3を通過したTi粒子4
は、コリメート板3の円筒状の穴の中心線とコリメート
板3の法線方向とのなす角度が0度または5度を中心と
した方向の分布を持ち、それぞれSiウエハ5に形成さ
れたコンタクト孔6の側壁や底部に堆積する。
First, Ti particles 2 oriented in various directions are knocked out from a Ti target 1 and pass through a collimator plate 3. Next, Ti particles 4 that have passed through the collimator plate 3
Has a distribution in the direction in which the angle formed by the center line of the cylindrical hole of the collimator plate 3 and the normal direction of the collimator plate 3 is centered around 0 ° or 5 °, and the contacts formed on the Si wafer 5 respectively. Deposit on the side wall and bottom of the hole 6.

【0013】このようにして得られたSiウエハ5のコ
ンタクト孔6の断面を走査電子顕微鏡で観察したとこ
ろ、従来のすべての穴が0度のコリメート板を使用した
場合に比較して、コンタクト孔6の底部でのTi堆積物
の厚さは減少したが、側面でのTi堆積物の厚さは増加
していた。
When the cross section of the contact hole 6 of the Si wafer 5 thus obtained is observed by a scanning electron microscope, the contact hole is smaller than that in the case where a collimating plate having all the holes of 0 degrees is used. The thickness of the Ti deposit at the bottom of No. 6 was reduced, but the thickness of the Ti deposit at the side was increased.

【0014】また、このSiウエハ5のコンタクト抵抗
を測定した結果、従来のすべての穴が0度のコリメート
板を使用した場合に比較して、コンタクト抵抗は5%低
下した。コリメート板3のそれぞれの穴から出たTi粒
子4がコンタクト孔6の底部、側面いずれに堆積したか
を区別することは不可能であるが、コリメート板3の円
筒状の穴の中心線とコリメート板3の法線方向とのなす
角度が0度からの粒子が減少したことによりコンタクト
孔6の底部での堆積物のカバレージは低下したが、5度
からの粒子はコンタクト孔6の側面での堆積物のカバレ
ージを向上させたと考えられる。
Further, as a result of measuring the contact resistance of the Si wafer 5, the contact resistance was reduced by 5% as compared with the conventional case where a collimating plate having 0 ° holes is used. It is impossible to distinguish whether the Ti particles 4 coming out from each hole of the collimating plate 3 are deposited on the bottom portion or the side surface of the contact hole 6, but the center line of the cylindrical hole of the collimating plate 3 and the collimating plate The coverage of the deposit at the bottom of the contact hole 6 was reduced due to the decrease of particles from the angle of 0 degree with the normal direction of the plate 3, but the particles from 5 degrees were on the side surface of the contact hole 6. It is thought that the coverage of the sediment was improved.

【0015】第2実施例では、被堆積基板5として表面
酸化膜に直径0.75μm、深さ1.5μmのコンタク
ト孔6(底面積=0.19μm2 、側面積=2.36μ
2、アスペクト比=2)を形成したSi(シリコン)
ウエハ5を使用し、コリメート板3の円筒状の穴の中心
線とコリメート板3の法線方向とのなす角度が0度、5
度及び10度(穴の数は同数)のコリメート板3を用
い、その他の条件は第1実施例と同一である。
In the second embodiment, a contact oxide 6 having a diameter of 0.75 μm and a depth of 1.5 μm (bottom area = 0.19 μm 2 , side area = 2.36 μm) is formed on the surface oxide film as the deposition target substrate 5.
m 2 and aspect ratio = 2) formed Si (silicon)
Using the wafer 5, the angle formed by the center line of the cylindrical hole of the collimator plate 3 and the normal line direction of the collimator plate 3 is 0 °, 5
Degrees and 10 degrees (the same number of holes) are used for the collimating plate 3, and other conditions are the same as those in the first embodiment.

【0016】このようにして得られたSi(シリコン)
ウエハ5のコンタクト抵抗と第1実施例で得られた結果
と比較して、さらに3%コンタクト抵抗が低下した。こ
れは、アスペクト比の小さいコンタクト孔6の場合に
は、コリメート板3の円筒状の穴の中心線とコリメート
板3の法線方向とのなす角度が大きい方がより有効であ
ることを示唆している。
Si (silicon) thus obtained
Compared with the contact resistance of the wafer 5 and the result obtained in the first embodiment, the contact resistance was further reduced by 3%. This suggests that in the case of the contact hole 6 having a small aspect ratio, it is more effective if the angle formed by the center line of the cylindrical hole of the collimating plate 3 and the normal direction of the collimating plate 3 is large. ing.

【0017】以上のように、貫通した円筒状の穴を全面
に有するコリメート板を使用したスパッタリングにおい
て、コリメート板3の円筒状の穴の中心線とコリメート
板3の法線方向とのなす角度(0度以上90度未満)を
2種類以上とすることにより、コンタクト孔6の底部及
び側面での堆積物のカバレージを向上させ、コンタクト
抵抗の低減を実現することができる。
As described above, in sputtering using a collimator plate having a through-hole, which is a cylindrical hole, the angle between the center line of the cylindrical hole of the collimator plate 3 and the normal direction of the collimator plate 3 ( By setting two or more types (0 degrees or more and less than 90 degrees), it is possible to improve the coverage of deposits on the bottom and side surfaces of the contact hole 6 and reduce the contact resistance.

【0018】[0018]

【発明の効果】以上のように、本発明によれば、貫通し
た円筒状の穴を全面に有するコリメート板を使用したス
パッタリングにおいて、コリメート板の円筒状の穴の中
心線とコリメート板の法線方向とのなす角度(0度以上
90度未満)を2種類以上とすることにより、コンタク
ト孔の底部及び側面での堆積物のカバレージを向上さ
せ、コンタクト抵抗を下げ、かつ安定化させることがで
きる。
As described above, according to the present invention, the center line of the cylindrical hole of the collimator plate and the normal line of the collimator plate are used in the sputtering using the collimator plate having the through-hole cylindrical hole. By forming two or more kinds of angles (0 degrees or more and less than 90 degrees) with the direction, it is possible to improve the coverage of the deposit on the bottom and side surfaces of the contact hole, reduce the contact resistance, and stabilize the contact resistance. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態によるスパッタリング装置の
構成を示す概要図である。
FIG. 1 is a schematic diagram showing a configuration of a sputtering apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ターゲット 2 コリメート前のスパッタ粒子 3 コリメート板 4 コリメート後のスパッタ粒子 5 被堆積基板 6 コンタクト孔 7 回転機構 1 Target 2 Sputtered Particles Before Collimation 3 Collimated Plate 4 Sputtered Particles After Collimation 5 Deposited Substrate 6 Contact Hole 7 Rotation Mechanism

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 貫通した円筒状の穴を全面に有するコリ
メート板をターゲットと基板との間に設置したスパッタ
リング装置において、 前記コリメート板の円筒状の穴の中心線と前記コリメー
ト板の法線方向とのなす角度が2種類以上であることを
特徴とするスパッタリング装置。
1. A sputtering apparatus in which a collimator plate having a through-hole cylindrical hole is installed between a target and a substrate, wherein a center line of the cylindrical hole of the collimator plate and a normal direction of the collimator plate. A sputtering device characterized in that there are two or more types of angles formed by and.
【請求項2】 前記2種類以上の角度が0度以上90度
未満であることを特徴とする請求項1に記載のスパッタ
リング装置。
2. The sputtering apparatus according to claim 1, wherein the two or more types of angles are 0 degrees or more and less than 90 degrees.
【請求項3】 前記2種類以上の角度のうち1つの種類
の角度が0度であることを特徴とする請求項1に記載の
スパッタリング装置。
3. The sputtering apparatus according to claim 1, wherein one of the two or more types of angles has an angle of 0 degree.
【請求項4】 コリメート板を用いたスパッタリング堆
積方法を行う半導体装置の製造方法であって、 前記コリメート板を通過した粒子は、前記コリメート板
の円筒状の穴の中心線と前記コリメート板の法線方向と
のなす角度が2種類以上の分布を持つことを特徴とする
半導体装置の製造方法。
4. A method of manufacturing a semiconductor device, which performs a sputtering deposition method using a collimator plate, wherein the particles that have passed through the collimator plate have a center line of a cylindrical hole of the collimator plate and a method of the collimator plate. A method for manufacturing a semiconductor device, characterized in that the angle formed with the line direction has two or more types of distribution.
【請求項5】 前記2種類以上の角度が0度以上90度
未満であることを特徴とする請求項4に記載の半導体装
置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 4, wherein the two or more types of angles are 0 degrees or more and less than 90 degrees.
JP8072096A 1996-03-08 1996-03-08 Sputtering device and production of semiconductor device Pending JPH09241839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8072096A JPH09241839A (en) 1996-03-08 1996-03-08 Sputtering device and production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8072096A JPH09241839A (en) 1996-03-08 1996-03-08 Sputtering device and production of semiconductor device

Publications (1)

Publication Number Publication Date
JPH09241839A true JPH09241839A (en) 1997-09-16

Family

ID=13726202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8072096A Pending JPH09241839A (en) 1996-03-08 1996-03-08 Sputtering device and production of semiconductor device

Country Status (1)

Country Link
JP (1) JPH09241839A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072400A1 (en) * 2014-11-05 2016-05-12 株式会社東芝 Processing device and collimator
JP6039117B1 (en) * 2016-01-25 2016-12-07 株式会社東芝 Processing device and collimator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072400A1 (en) * 2014-11-05 2016-05-12 株式会社東芝 Processing device and collimator
JP2016089224A (en) * 2014-11-05 2016-05-23 株式会社東芝 Processing apparatus and collimator
US10147589B2 (en) 2014-11-05 2018-12-04 Kabushiki Kaisha Toshiba Processing apparatus and collimator
US10755904B2 (en) 2014-11-05 2020-08-25 Kabushiki Kaisha Toshiba Processing apparatus and collimator
JP6039117B1 (en) * 2016-01-25 2016-12-07 株式会社東芝 Processing device and collimator
JP2017133047A (en) * 2016-01-25 2017-08-03 株式会社東芝 Processing apparatus and collimator

Similar Documents

Publication Publication Date Title
JP4202593B2 (en) Method of forming ruthenium film by chemical vapor deposition while changing process conditions and ruthenium film formed thereby
US6045666A (en) Aluminum hole filling method using ionized metal adhesion layer
KR100328901B1 (en) HIGH THROUGHPUT Al-Cu THIN FILM SPUTTERING PROCESS ON SMALL CONTACT VIA FOR MANUFACTURABLE BEOL WIRING
US5580823A (en) Process for fabricating a collimated metal layer and contact structure in a semiconductor device
JP2001358091A (en) Method and device for filling low temperature metal in contact, via, and trench on semiconductor wafer and flattening
US6066358A (en) Blanket-selective chemical vapor deposition using an ultra-thin nucleation layer
EP0818817A2 (en) Aluminium hole filling using ionized metal adhesion layer
JPH09186102A (en) Manufacture of semiconductor device
JP3315211B2 (en) Electronic components
JP3395299B2 (en) Semiconductor device wiring structure and wiring forming method
JPH09241839A (en) Sputtering device and production of semiconductor device
JPH09330890A (en) Method for forming metal thin film
JP3114674B2 (en) Film forming apparatus and film forming method
JP3732010B2 (en) Method for depositing low resistivity titanium oxynitride (TiON) film that gives excellent texture to the conductor layer deposited in a later step
JPS61183433A (en) Thin film of aluminum alloy and its production
JP3471266B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2004140198A (en) Semiconductor device and its manufacturing method
JPH02271634A (en) Formation of multi-layer wiring
JP2002367999A (en) Electronic component and manufacturing method therefor
JPH10172923A (en) Forming mehtod for metallic wiring for semiconductor device
JP2707951B2 (en) Sputtering method
KR100215830B1 (en) Forming method for metal wiring
JP2002016064A (en) Low-permittivity hexagonal boron nitride film, interlayer dielectric and its manufacturing method
JP2841457B2 (en) Method of forming aluminum film
JP2781239B2 (en) Deposition film formation method