JP2707951B2 - Sputtering method - Google Patents
Sputtering methodInfo
- Publication number
- JP2707951B2 JP2707951B2 JP5196737A JP19673793A JP2707951B2 JP 2707951 B2 JP2707951 B2 JP 2707951B2 JP 5196737 A JP5196737 A JP 5196737A JP 19673793 A JP19673793 A JP 19673793A JP 2707951 B2 JP2707951 B2 JP 2707951B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- sputtering method
- substrate
- particles
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はスパッタ方法に関し、特
に、スパッタ粒子の直進性を改善したマグネトロンスパ
ッタ方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering method, and more particularly to a magnetron sputtering method with improved straightness of sputtered particles.
【0002】[0002]
【従来の技術】一般に半導体装置の製造工程では、半導
体基板上に金属膜を被着し、これを所要のパターンに加
工して電極、配線を形成している。近年、半導体装置の
素子の微細化に伴って電極および配線も微細化され、こ
れにともなってアスペクト比の大きなコンタクトホール
内への金属膜被着に高いボトムカバレッジ性が求められ
るようになってきている。例えば、多層金属膜によって
半導体とのコンタクトをとる場合、ボトムカバレッジ性
が劣っているとコンタクトをとるための金属材料が不足
して良好なコンタクトが形成されないことになるからで
ある。2. Description of the Related Art Generally, in a process of manufacturing a semiconductor device, a metal film is deposited on a semiconductor substrate and processed into a required pattern to form an electrode and a wiring. In recent years, electrodes and wirings have been miniaturized with miniaturization of elements of semiconductor devices, and accordingly, high bottom coverage has been required for deposition of a metal film in a contact hole having a large aspect ratio. I have. For example, when contacting a semiconductor with a multi-layered metal film, if the bottom coverage is poor, the metal material for contacting is insufficient, and a good contact cannot be formed.
【0003】被着金属膜のボトムカバレッジ性を改善す
る手段として、コリメータを用いるスパッタ方法が知ら
れている。この方法は、図1に示すように、ターゲット
103と半導体基板107との間に、該基板の法線方向
に進行するスパッタ粒子を選択的に通過させるコリメー
タ106を配し、処理ガス導入部102よりArガスを
導入し、マグネトロン101によってプラズマを発生さ
せスパッタ蒸着を行うものである。As a means for improving the bottom coverage of a deposited metal film, a sputtering method using a collimator is known. In this method, as shown in FIG. 1, a collimator 106 is provided between a target 103 and a semiconductor substrate 107 for selectively passing sputter particles traveling in a normal direction of the substrate, and a processing gas introduction unit 102 is provided. Ar gas is further introduced, plasma is generated by the magnetron 101, and sputter deposition is performed.
【0004】上記のようなコリメータを用いるスパッタ
方法は、特開平1−116070号公報により公知であ
る。また、Ar以外の処理ガスを用いて行うスパッタ方
法は、特開昭63−29504号公報、特開平2−14
8417号公報により公知である。前者は、Al膜等を
成膜するバイアススパッタ法において、処理ガスにAr
より重いKrガス、Xeガス、Rnガス等を用いること
により、ガス成分がシリコンウェハ中に取り込まれるの
を防止しようとするものであり、また、後者は、Ti下
地上に、CoCr膜をイオンビームスパッタ法にて被着
する際に、処理ガスにKrまたはXeを使ってスパッタ
することにより、垂直の異方性磁界Hkを向上させよう
とするものである。A sputtering method using a collimator as described above is known from Japanese Patent Application Laid-Open No. Hei 1-116070. A sputtering method using a processing gas other than Ar is disclosed in JP-A-63-29504 and JP-A-2-14.
No. 8417 is known. In the former, in a bias sputtering method for forming an Al film or the like, Ar gas is used as a processing gas.
The use of a heavier Kr gas, Xe gas, Rn gas, or the like is intended to prevent gas components from being taken into a silicon wafer. At the time of deposition by sputtering, Kr or Xe is used as a processing gas to improve the vertical anisotropic magnetic field Hk.
【0005】[0005]
【発明が解決しようとする課題】上述した従来のコリメ
ータを使用するスパッタ方法では、図3(b)に示され
るように、ターゲットから放出されるスパッタ粒子の方
向に異方性がないため、以下の問題点があった。 発生するスパッタ粒子の基板への被着率が低く、成
膜に長時間を要し作業性が悪かった。 スパッタ粒子のコリメータ側壁への堆積量が多くな
り、パーティクルが発生し易くなるため、歩留り低下の
原因となった。 ターゲットの寿命が短く、交換作業の工数を含めて
コストアップの要因となっていた。In the above-mentioned conventional sputtering method using a collimator, as shown in FIG. 3B, since the direction of the sputtered particles emitted from the target is not anisotropic, There was a problem. The deposition rate of the generated sputter particles on the substrate was low, and a long time was required for film formation, and workability was poor. The amount of sputter particles deposited on the side wall of the collimator increases, and particles are easily generated, which causes a decrease in yield. The life of the target was short, and this increased costs, including the number of man-hours for replacement work.
【0006】[0006]
【課題を解決するための手段】上記問題点を解決するた
め、本発明によれば、マグネトロン上にターゲットを配
し、ターゲットに対向して被加工物の基板を配置し、前
記ターゲットと前記基板との間に、前記基板の法線方向
に進行するスパッタ粒子を選択的に通過させるコリメー
タを配置してスパッタ蒸着を行うスパッタ方法におい
て、処理ガスにArより比重の大きなガスを用いること
を特徴とするマグネトロンスパッタ方法が提供される。To solve the above problems [Means for Solving the Problems] According to the present invention, arranged targets on magnetron, the substrate of the workpiece disposed opposite the target, before
A normal direction of the substrate between the target and the substrate
Collimation that selectively passes sputtered particles that travel through
In sputtering method for performing sputter deposition by placing the data, magnetron sputtering method characterized by Ru with large gas specific gravity than Ar process gas is provided.
【0007】[0007]
【作用】上記問題点を解決するための実験・試作過程に
おいて、本発明者等は、マグネトロンスパッタ法ではA
rイオンより重いイオン、即ちKr、Xe、Rnイオン
を用いてターゲットをスパッタすると、放出されるスパ
ッタ粒子の放出方向が、図3(a)に示されるように、
ターゲット面の垂直方向に強い指向性をもつことを見い
だした。また、同様の傾向は、Arイオンを上記元素イ
オンと混合した処理ガスを用いた場合にも認められた。
よって、マグネトロンスパッタ法において、処理ガス
に、Krガス、Xeガス、Rnガスまたはこれらのガス
にArガスを混合したものを用い、かつ、ターゲットと
前記基板との間に、前記基板の法線方向に進行するスパ
ッタ粒子を選択的に通過させるコリメータを配置するこ
とにより、上記各問題点を解決することができ、そして
ボトムカバレッジ性に優れた被膜を形成することが可能
となる。In an experiment / prototype process for solving the above-mentioned problems, the present inventors have proposed that the magnetron sputtering method uses A
When the target is sputtered using ions heavier than r ions, that is, Kr, Xe, and Rn ions, the emission direction of the emitted sputtered particles is as shown in FIG.
It has been found that it has strong directivity in the vertical direction of the target plane. The same tendency was also observed when using a processing gas in which Ar ions were mixed with the above element ions.
Therefore, in the magnetron sputtering method, Kr gas, Xe gas, Rn gas, or a mixture of these gases with Ar gas is used as a processing gas , and a target gas is used .
A spa that travels in a direction normal to the substrate between the substrate and the substrate.
The Rukoto to place the collimator for selectively passing jitter particles, it is possible to solve the above problems, and it is possible to form a film excellent in bottom coverage.
【0008】[0008]
【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は、本発明によるスパッタ法を実現す
るためのスパッタ装置の縦断面図である。このスパッタ
装置では、チャンバ100内において、マグネトロン1
01上にターゲット103が配置され、このターゲット
103と対向する位置に被処理基板である半導体基板1
07が図示されない基板ホルダー上に保持されている。
さらに、ターゲット103と半導体基板107との間に
は、垂直方向のスパッタ粒子を選択的に通過させるコリ
メータ106が配置され、またチャンバ外壁には、処理
ガス導入部102と、ポンプ105に連通した排気口1
04が設けられている。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a sputtering apparatus for realizing a sputtering method according to the present invention. In this sputtering apparatus, the magnetron 1
The target 103 is disposed on the semiconductor substrate 1 which is a substrate to be processed.
07 is held on a substrate holder (not shown).
Further, a collimator 106 for selectively passing vertical sputtered particles is disposed between the target 103 and the semiconductor substrate 107, and an exhaust gas communicating with a processing gas introduction unit 102 and a pump 105 is provided on an outer wall of the chamber. Mouth 1
04 is provided.
【0009】処理ガス導入部102からは、本発明に従
って、Krガス、Xeガス、Rnガスまたはこれらのガ
スにArガスを混合したガスが導入される。これにより
プラズマが発生し、ターゲット103のスパッタが行わ
れる。ここで発生したスパッタ粒子は、従来例の場合と
相違して、垂直方向に強い指向性を持っている。この発
生した付着粒子は、コリメータ106に開口された穴を
通して半導体基板107に到達する。このコリメータ1
06を通過することにより付着粒子の方向性はさらに整
えられ半導体基板表面の法線方向に進行する付着粒子の
みが半導体基板に到達するようになる。According to the present invention, a Kr gas, a Xe gas, a Rn gas, or a gas obtained by mixing these gases with an Ar gas is introduced from the processing gas introduction unit 102. As a result, plasma is generated, and the target 103 is sputtered. The sputtered particles generated here have strong directivity in the vertical direction unlike the case of the conventional example. The generated adhered particles reach the semiconductor substrate 107 through a hole opened in the collimator 106. This collimator 1
06, the directionality of the attached particles is further adjusted, and only the attached particles traveling in the normal direction of the semiconductor substrate surface reach the semiconductor substrate.
【0010】以下、本スパッタ装置内に処理ガスとして
Xeガスを導入し、マグネトロンによりプラズマを発生
させることによりTiの堆積を行った実施例について説
明する。図2は、本発明によるスパッタ方法によりTi
膜を堆積する工程を工程順に示した半導体装置の縦断面
図である。まず、図2(a)に示すように、半導体基板
201上に、窒化膜の堆積、リソグラフィとエッチング
技術および選択酸化法を施して素子分離領域202を形
成する。次いで、イオン注入法等の方法により半導体基
板201上に拡散領域203を形成する。続いて、気相
化学成長法により層間絶縁膜204を堆積し、通常のリ
ソグラフィ技術およびRIE(Reactive Ion Etching)
法により、図2(b)に示すように、層間絶縁膜204
に拡散領域203の表面を露出させるコンタクトホール
205を開口する。An embodiment in which Xe gas is introduced as a processing gas into the sputtering apparatus and plasma is generated by a magnetron to deposit Ti is described below. FIG. 2 shows that the sputtering method according to the present invention
FIG. 4 is a vertical cross-sectional view of the semiconductor device, showing a step of depositing a film in the order of steps. First, as shown in FIG. 2A, an element isolation region 202 is formed on a semiconductor substrate 201 by depositing a nitride film, performing lithography and etching, and performing selective oxidation. Next, a diffusion region 203 is formed on the semiconductor substrate 201 by a method such as an ion implantation method. Subsequently, an interlayer insulating film 204 is deposited by a chemical vapor deposition method, and a normal lithography technique and RIE (Reactive Ion Etching) are used.
By the method, as shown in FIG.
Then, a contact hole 205 for exposing the surface of the diffusion region 203 is opened.
【0011】この基板を、図1に示す本発明によるスパ
ッタ装置内に導入し、Xeガスを処理ガスとしてTi膜
の堆積を行う。本実施例では、処理ガスとしてアルゴン
ガスよりも比重の大きいXeガスを用いていることによ
り、ターゲットから発生するスパッタ粒子の進行方向が
揃えられており、コリメータ通過後の付着粒子量の減少
は僅かであるので、成膜を短時間で完了することができ
る。その際、半導体基板に向かう粒子の方向が基板の法
線方向と一致しているため、図2(c)に示すように、
アスペクト比の大きいコンタクトホール内部にも十分な
膜厚のTi膜206が堆積される。The substrate is introduced into the sputtering apparatus according to the present invention shown in FIG. 1, and a Ti film is deposited using Xe gas as a processing gas. In this embodiment, since the Xe gas having a specific gravity larger than that of the argon gas is used as the processing gas, the traveling directions of the sputtered particles generated from the target are aligned, and the amount of the adhering particles after passing through the collimator is slightly reduced. Therefore, the film formation can be completed in a short time. At this time, since the direction of the particles toward the semiconductor substrate coincides with the normal direction of the substrate, as shown in FIG.
A Ti film 206 having a sufficient thickness is also deposited inside the contact hole having a large aspect ratio.
【0012】このように堆積したTi膜206に対し急
速熱処理を行うことにより、Ti膜と基板との界面にS
iとTiとの反応層207を形成する。その後、気相化
学成長法により、TiN膜208を全面に堆積しさらに
その上にアルミニウム膜209を堆積し、リソグラフィ
技術とドライエッチングによりパターニングして拡散領
域203と接続された配線を形成する。By performing a rapid heat treatment on the Ti film 206 deposited as described above, an S
A reaction layer 207 of i and Ti is formed. Thereafter, a TiN film 208 is deposited on the entire surface by a chemical vapor deposition method, and an aluminum film 209 is further deposited thereon, and is patterned by lithography and dry etching to form a wiring connected to the diffusion region 203.
【0013】このようにして形成された半導体装置で
は、コンタクトホール底部に厚いTi膜を堆積すること
が可能なため、安定した電気特性を得ることができる。
また、コリメータを通して付着粒子を堆積させるため、
処理ガスのイオンが直接基板に到達することがなく、基
板への損傷が著しく低減される。さらに、コリメータへ
の付着物によるパーティクルの発生が著しく減少したこ
とによりそれに起因する不良の発生も激減している。In the semiconductor device formed as described above, a thick Ti film can be deposited at the bottom of the contact hole, so that stable electric characteristics can be obtained.
Also, in order to deposit the adhered particles through the collimator,
The ions of the processing gas do not directly reach the substrate, and damage to the substrate is significantly reduced. Further, since the generation of particles due to deposits on the collimator has been significantly reduced, the occurrence of defects due to this has also been drastically reduced.
【0014】[0014]
【発明の効果】以上説明したように、本発明によるスパ
ッタ法ではアルゴンガスより比重の重いガスを処理ガス
として用いているため、ターゲットより放出される付着
粒子の進行方向がターゲット面の放線方向に揃うように
なり、付着粒子の直進性が向上し、コリメータを通過す
る際に付着粒子がコリメータにより進行を妨げられなく
なり、高アスペクト比のコンタクトホールにおいても良
好な成膜を短時間で形成しうるようになる。また、コリ
メータに付着する粒子数が激減することにより、ターゲ
ットの有効利用が可能となり、またパーティクルの発生
が少なくなり歩留りが向上する。さらに、コリメータを
介すことにより処理ガスのプラズマに基板が曝されるこ
とがなくなるため、基板への損傷のない成膜が実現でき
る。As described above, in the sputtering method according to the present invention, since a gas having a higher specific gravity than argon gas is used as a processing gas, the traveling direction of the adhered particles emitted from the target is in the normal direction of the target surface. Alignment improves the straightness of the adhered particles, prevents the adhered particles from being hindered by the collimator when passing through the collimator, and can form a good film in a short time even in a high aspect ratio contact hole. Become like Further, since the number of particles adhering to the collimator is drastically reduced, the target can be effectively used, and the generation of particles is reduced and the yield is improved. Further, since the substrate is not exposed to the plasma of the processing gas through the collimator, a film can be formed without damaging the substrate.
【図1】本発明によるスパッタ法を実現するためのスパ
ッタ装置の断面図。FIG. 1 is a sectional view of a sputtering apparatus for realizing a sputtering method according to the present invention.
【図2】本発明によるスパッタ法を用いた半導体装置の
製造方法を説明するための工程断面図。FIG. 2 is a process cross-sectional view illustrating a method for manufacturing a semiconductor device using a sputtering method according to the present invention.
【図3】本発明および従来例のスパッタ法によるスパッ
タ粒子の指向性を示すグラフ。FIG. 3 is a graph showing directivity of sputtered particles by the sputtering method of the present invention and a conventional example.
100 チャンバ 101 マグネトロン 102 処理ガス導入部 103 ターゲット 104 排気口 105 ポンプ 106 コリメータ 107、201 半導体基板 202 素子分離領域 203 拡散領域 204 層間絶縁膜 205 コンタクトホール 206 Ti膜 207 SiとTiとの反応層 208 TiN膜 209 アルミニウム膜 REFERENCE SIGNS LIST 100 chamber 101 magnetron 102 processing gas introduction unit 103 target 104 exhaust port 105 pump 106 collimator 107, 201 semiconductor substrate 202 element isolation region 203 diffusion region 204 interlayer insulating film 205 contact hole 206 Ti film 207 reaction layer of Si and Ti 208 TiN Film 209 Aluminum film
Claims (2)
ゲットに対向して被加工物の基板を配置し、前記ターゲ
ットと前記基板との間に、前記基板の法線方向に進行す
るスパッタ粒子を選択的に通過させるコリメータを配置
してスパッタ蒸着を行うスパッタ方法において、処理ガ
スにArより比重の大きなガスを用いることを特徴とす
るスパッタ方法。A target is placed on a magnetron, and a substrate of a workpiece is placed facing the target.
Between the slot and the substrate in a direction normal to the substrate.
Collimator to selectively pass through sputtered particles
In sputtering method for performing sputter deposition by a sputtering method characterized by Ru with large gas specific gravity than Ar process gas.
ガスまたはこれらのガスとArガスとの混合ガスを用い
ることを特徴とする請求項1記載のスパッタ方法。2. A process gas comprising Kr gas, Xe gas, and Rn gas.
2. The sputtering method according to claim 1, wherein a gas or a mixed gas of these gases and an Ar gas is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5196737A JP2707951B2 (en) | 1993-07-15 | 1993-07-15 | Sputtering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5196737A JP2707951B2 (en) | 1993-07-15 | 1993-07-15 | Sputtering method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0734240A JPH0734240A (en) | 1995-02-03 |
JP2707951B2 true JP2707951B2 (en) | 1998-02-04 |
Family
ID=16362766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5196737A Expired - Fee Related JP2707951B2 (en) | 1993-07-15 | 1993-07-15 | Sputtering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2707951B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4734864B2 (en) * | 2004-07-28 | 2011-07-27 | パナソニック株式会社 | Sputtering method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01116070A (en) * | 1987-10-29 | 1989-05-09 | Internatl Business Mach Corp <Ibm> | Sputtering apparatus |
JPH03279294A (en) * | 1990-03-29 | 1991-12-10 | Mitsubishi Materials Corp | Growth of epitaxial layer |
-
1993
- 1993-07-15 JP JP5196737A patent/JP2707951B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01116070A (en) * | 1987-10-29 | 1989-05-09 | Internatl Business Mach Corp <Ibm> | Sputtering apparatus |
JPH03279294A (en) * | 1990-03-29 | 1991-12-10 | Mitsubishi Materials Corp | Growth of epitaxial layer |
Also Published As
Publication number | Publication date |
---|---|
JPH0734240A (en) | 1995-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7026238B2 (en) | Reliability barrier integration for Cu application | |
US6319728B1 (en) | Method for treating a deposited film for resistivity reduction | |
KR100672101B1 (en) | Method of depositing a copper seed layer which promotes improved feature surface coverage | |
US6596133B1 (en) | Method and system for physically-assisted chemical-vapor deposition | |
JPS61179872A (en) | Apparatus and method for magnetron enhanced plasma auxiliarytype chemical vapor deposition | |
JP2001200358A (en) | Pvd-imp tungsten and tungsten nitride as liner, barrier and/or seed layer for application of tungsten, aluminum and copper | |
US6828247B2 (en) | Method for etching organic film, method for fabricating semiconductor device and pattern formation method | |
US6518191B2 (en) | Method for etching organic film, method for fabricating semiconductor device and pattern formation method | |
JPH10280154A (en) | Plasma chemical vapor growth device | |
US6451179B1 (en) | Method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma | |
JP3408463B2 (en) | Manufacturing method of semiconductor device | |
JP5159165B2 (en) | Recess filling method | |
JP2707951B2 (en) | Sputtering method | |
US20050189075A1 (en) | Pre-clean chamber with wafer heating apparatus and method of use | |
JP3931394B2 (en) | Plasma processing apparatus and plasma processing method | |
JP4032487B2 (en) | Chemical vapor deposition method of metal nitride film and method of manufacturing electronic device using the same | |
JPH11150085A (en) | Equipment and method for film formation | |
KR100510917B1 (en) | Barrier layer formation method | |
JP2003247071A (en) | System and method for manufacturing barrier metal film | |
JPH1079358A (en) | Sputtering method | |
JPH10245677A (en) | Method for continuous deposition of metallic film and metal nitride film | |
JPH06283480A (en) | Dry etching method | |
JPH03156920A (en) | Method and apparatus for formation of thin film | |
JPH07326666A (en) | Forming method of metal wiring | |
KR20020068898A (en) | Method of forming metal interconnection using ionized metal plasma apparatus and therof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19961119 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970916 |
|
LAPS | Cancellation because of no payment of annual fees |