JPH09241007A - Ozone generating method and device - Google Patents

Ozone generating method and device

Info

Publication number
JPH09241007A
JPH09241007A JP8089396A JP8089396A JPH09241007A JP H09241007 A JPH09241007 A JP H09241007A JP 8089396 A JP8089396 A JP 8089396A JP 8089396 A JP8089396 A JP 8089396A JP H09241007 A JPH09241007 A JP H09241007A
Authority
JP
Japan
Prior art keywords
discharge
voltage
electrode
ozone
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8089396A
Other languages
Japanese (ja)
Inventor
Atsushi Nakamura
淳 中村
Minoru Harada
稔 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Densan Ltd
Original Assignee
Ebara Corp
Ebara Densan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Densan Ltd filed Critical Ebara Corp
Priority to JP8089396A priority Critical patent/JPH09241007A/en
Publication of JPH09241007A publication Critical patent/JPH09241007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain ozone by impressing a high pulse voltage between a high-voltage electrode and a grounded electrode to form a steep discharge current after an electric discharge is started and generating concd. ozone. SOLUTION: An ozonizer formed with a discharge electrode part consisting of a DC power source, an inverter, a current limit reactor, a boost-up transformer and the high-voltage electrode and grounded electrode with a dielectric in between is used. An AC pulse voltage generated in the inverter with an input to the power source is impressed on the discharge electrode part through the current limit reactor and boost transformer. After an electric discharge is started by the rising of a high-voltage pulse, a discharge current rises at a sufficiently higher rate than an ionizing rate due to a steep pulse current, hence an ozonizing reaction proceeds before ion is generated, and concd. ozone is efficiently obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は無声放電又は沿面放
電によるオゾンの発生方法及び装置に係り、特に高圧電
極と接地電極とを両電極間に空隙部が形成されるように
誘電体を介在させ、両電極間に酸素ガスを流しつつ高圧
パルス電圧を印加することにより放電を起こし、高濃度
のオゾンを生成するオゾン発生方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for generating ozone by silent discharge or creeping discharge, and particularly by interposing a dielectric between a high voltage electrode and a ground electrode so that a void is formed between the electrodes. The present invention relates to an ozone generating method and apparatus for generating high-concentration ozone by causing discharge by applying a high-voltage pulse voltage while flowing oxygen gas between both electrodes.

【0002】[0002]

【従来の技術】図4は、従来のオゾン発生装置の回路構
成を示す。図示していないコンバータ部で商用交流電源
が整流され、直流電源部11が構成される。直流電源部
11は、インバータ部12に直流電源を供給し、そのブ
リッジ回路の中点c,d間に交流パルス電圧が形成され
る。インバータ部で形成された交流パルス電圧は、昇圧
トランス13により高圧パルス電圧に変換され、高圧電
極と接地電極との間に誘電体を介在させた放電電極部1
5に印加される。昇圧トランス13とインバータ部12
との間には、限流リアクトルLaが接続されている。こ
の限流リアクトルLaは、インバータ部12のスイッチ
ング素子に過渡的な電流が流れることを制限して保護す
る等の目的で設けたものである。
2. Description of the Related Art FIG. 4 shows a circuit configuration of a conventional ozone generator. A commercial AC power supply is rectified by a converter unit (not shown) to form a DC power supply unit 11. The DC power supply unit 11 supplies DC power to the inverter unit 12, and an AC pulse voltage is formed between the middle points c and d of the bridge circuit. The AC pulse voltage formed in the inverter section is converted into a high-voltage pulse voltage by the step-up transformer 13, and the discharge electrode section 1 in which a dielectric material is interposed between the high-voltage electrode and the ground electrode.
5 is applied. Step-up transformer 13 and inverter section 12
A current limiting reactor La is connected between and. The current limiting reactor La is provided for the purpose of, for example, limiting and protecting a transient current from flowing through the switching element of the inverter unit 12.

【0003】図5は、上述した回路による放電電極に印
加される電圧V及び放電電極に流れる電流Iの波形を示
す。放電電極15の両端に印加される電圧Vは、インバ
ータ部12によって形成された交流パルスが、限流リア
クトル14及び昇圧トランス13を経て印加されるた
め、図示するような略台形状の波形となる。放電電極1
5は、高圧電極と接地電極との間に誘電体を介在させた
ものであるので、図示するような等価回路に示す容量性
の負荷となる。放電電極15の図中の点線で示す回路
中、スイッチSは、閉じている時には放電状態であり、
等価的な放電抵抗Rを介して放電電流が流れることを示
し、開いている時は放電されていない状態を示す。放電
電極15に流れる電流Iは、負荷が容量性であるため、
まず充電電流が流れ、電圧Vがその立ち上がりで電圧E
b になると放電電流が流れる。放電電流は放電期間Tの
間に流れ、その後は放電が停止して電流が流れなくな
る。このため、電流Iは図示するような比較的波高値の
低いパルス状の波形となる。なお、電圧波形Vの立上り
が放電開始電圧Eb よりも大きくなった時に、立ち上が
りのカーブが少し寝てくるのは、放電電流による抵抗成
分の電圧降下のためである。
FIG. 5 shows waveforms of a voltage V applied to the discharge electrode and a current I flowing through the discharge electrode according to the above circuit. The voltage V applied to both ends of the discharge electrode 15 has a substantially trapezoidal waveform as shown because the AC pulse formed by the inverter unit 12 is applied via the current limiting reactor 14 and the step-up transformer 13. . Discharge electrode 1
No. 5 has a dielectric material interposed between the high voltage electrode and the ground electrode, and therefore has a capacitive load shown in the equivalent circuit shown in the figure. In the circuit of the discharge electrode 15 indicated by the dotted line in the figure, the switch S is in the discharge state when closed,
It shows that a discharge current flows through the equivalent discharge resistance R, and when it is open, it shows a state where it is not discharged. Since the load is capacitive, the current I flowing through the discharge electrode 15 is
First, the charging current flows, and the voltage V rises to the voltage E.
At b, discharge current flows. The discharge current flows during the discharge period T, after which the discharge stops and the current stops flowing. Therefore, the current I has a pulse-like waveform with a relatively low peak value as shown in the figure. When the rise of the voltage waveform V becomes larger than the discharge start voltage Eb, the rise curve slightly goes down because of the voltage drop of the resistance component due to the discharge current.

【0004】[0004]

【発明が解決しようとする課題】このような従来のオゾ
ン発生装置の回路構成では、高純度酸素ガスを原料とし
てオゾンを生成すると、高圧パルス電圧の立上り時にイ
オンが生成されてオゾンの発生を妨げ、エネルギー効率
が悪く、又、放電時間とともにオゾン濃度が減少して安
定性に欠けるという問題があった。これは上述したオゾ
ン発生装置の回路構成において、限流リアクトルLaを
用いて電流を制限していたために、図5に示すように放
電電流の立上りが鈍くなり、高圧パルス電圧の立上りが
鈍くなる。そして放電時に放電電極間でイオン濃度が増
加し、電子濃度が減少して励起分子量が減少する。この
ため、オゾンが生成されにくくなるという問題があっ
た。
In the circuit configuration of such a conventional ozone generator, when ozone is generated from high-purity oxygen gas as a raw material, ions are generated when the high-voltage pulse voltage rises, which hinders ozone generation. However, there is a problem that the energy efficiency is poor and the ozone concentration decreases with the discharge time, resulting in lack of stability. This is because in the circuit configuration of the ozone generator described above, the current is limited by using the current limiting reactor La, so that the rise of the discharge current becomes slow and the rise of the high-voltage pulse voltage becomes slow as shown in FIG. During discharge, the ion concentration increases between the discharge electrodes, the electron concentration decreases, and the excited molecular weight decreases. Therefore, there is a problem that ozone is less likely to be generated.

【0005】又、オゾンの生成には例えば窒素ガス(N
2)等の第3の物質が必要とされていた。第3の物質
が、イオン濃度が増加すると電極の表面にイオン層が蓄
積し、オゾン生成反応を抑制することを防げる触媒的な
働きをするためである。そして、そのために添加するガ
ス及びガスを流す設備が必要となり、ランニングコスト
が高く、装置が大型になるという問題があった。
In addition, for example, nitrogen gas (N
A third substance such as 2 ) was needed. This is because the third substance acts as a catalyst that prevents the ozone generation reaction from being suppressed by the accumulation of an ion layer on the surface of the electrode when the ion concentration increases. For that reason, there is a problem that a gas to be added and a facility for flowing the gas are required, the running cost is high, and the apparatus is large.

【0006】本発明は上述した事情に鑑みて為されたも
ので、放電時にイオンの生成速度より早い速度で放電電
流を急唆に立ち上げ、これによりイオンが生成する前
に、安定且つ高濃度のオゾン生成ができるオゾンの発生
方法及び装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and the discharge current is suddenly raised at a rate faster than the ion generation rate during discharge, whereby a stable and high concentration is achieved before the ions are generated. It is an object of the present invention to provide an ozone generating method and apparatus capable of generating ozone.

【0007】[0007]

【課題を解決するための手段】本発明のオゾン発生方法
は、高圧電極と接地電極との間に誘電体を介在させ、該
高圧電極と接地電極との間に高圧パルス電圧を印加して
無声放電又は沿面放電を発生させ、該放電空間内に酸素
ガスを通過させてオゾンを生成する方法において、前記
高圧パルスの立ち上がり時に急峻な放電電流を形成する
ことで、高濃度のオゾンを生成することを特徴とする。
In the ozone generating method of the present invention, a dielectric is interposed between a high voltage electrode and a ground electrode, and a high voltage pulse voltage is applied between the high voltage electrode and the ground electrode to produce a silent voice. In a method of generating discharge or creeping discharge and passing oxygen gas into the discharge space to generate ozone, a high-concentration ozone is generated by forming a sharp discharge current at the rising of the high-voltage pulse. Is characterized by.

【0008】又、本発明のオゾン発生装置は、直流電源
部と、交流パルス電圧を生成するインバータ部と、該イ
ンバータ部で生成された交流パルス電圧を昇圧する昇圧
トランスと、該昇圧トランスの出力端に接続された放電
電極部とからなるオゾン発生装置において、前記交流パ
ルス電圧の立ち上がりによる放電開始後に、前記放電電
極間に放電電流を急峻に立ち上げる手段を備えたことを
特徴とする。
Further, the ozone generator of the present invention includes a DC power supply section, an inverter section for generating an AC pulse voltage, a step-up transformer for stepping up the AC pulse voltage generated by the inverter section, and an output of the step-up transformer. An ozone generator comprising a discharge electrode portion connected to an end of the ozone generator is provided with means for rapidly raising a discharge current between the discharge electrodes after the start of discharge due to the rise of the AC pulse voltage.

【0009】上述した本発明によれば、放電電流をイオ
ンの生成速度より早い速度で急唆に立上げることによ
り、オゾンの発生を抑制するイオンが生成される前に、
オゾンを大量に、且つ安定に発生させることができる。
According to the above-described present invention, the discharge current is rapidly raised at a rate faster than the ion generation rate, so that before the ions that suppress the generation of ozone are generated,
A large amount of ozone can be stably generated.

【0010】[0010]

【実施例】以下、本発明の一実施例について添付図1乃
至図3を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the attached FIGS.

【0011】図1は、本発明の第1実施例のオゾン発生
装置の回路構成を示し、図2はその回路構成による放電
電極に印加される電圧V及び電流Iを示す。本実施例に
おいても、直流電源部11、インバータ部12、昇圧ト
ランス13、放電電極15等からなる回路の基本的構成
は従来の技術と同様であり、同一の要素には同一の符号
を付して重複した説明を省略する。本実施例においては
限流リアクトル部14を、リアクトルLs とLb との直
列接続と、リアクトルLa との直並列接続とする。この
中で限流リアクトルLs は、放電開始電圧Eb に達した
時の電流値でそのインダクタンスが飽和するように構成
されている。
FIG. 1 shows a circuit configuration of an ozone generator according to a first embodiment of the present invention, and FIG. 2 shows a voltage V and a current I applied to a discharge electrode according to the circuit configuration. Also in this embodiment, the basic configuration of the circuit including the DC power supply unit 11, the inverter unit 12, the step-up transformer 13, the discharge electrode 15 and the like is the same as the conventional technique, and the same elements are designated by the same reference numerals. Duplicate description is omitted. In the present embodiment, the current limiting reactor portion 14 has a series connection of the reactors Ls and Lb and a series-parallel connection with the reactor La. Among these, the current limiting reactor Ls is configured such that its inductance is saturated at the current value when the discharge starting voltage Eb is reached.

【0012】従って、点a,c間のリアクトルLacは、
リアクトルLsとLbとの直列回路と、リアクトルLa と
が並列接続された直並列回路となるので、その合成リア
クトル値式は(1)となる。
Therefore, the reactor Lac between points a and c is
Since the series circuit of the reactors Ls and Lb and the reactor La are connected in parallel, the combined reactor value expression is (1).

【数1】 放電開始電圧Eb を超えると、リアクトルLSが飽和す
ることから式(2)となる。
[Equation 1] When the discharge start voltage Eb is exceeded, the reactor L S is saturated, and therefore the equation (2) is obtained.

【数2】 [Equation 2]

【0013】更にインバータ部の半導体スイッチング素
子がオフとなると、点a,c間の限流リアクトルLacが
エネルギーを放出する。エネルギーは電源に戻される
が、その時は先ずリアクトルLs が飽和しているため、
点a,c間のリアクトルはリアクトルLa とリアクトル
Lb との並列回路となる。そして、リアクトルLs を流
れる電流が減少し、インピーダンスが回復するようにな
ると、点a,c間のリアクトルは式(1)で示されるよ
うになる。
Further, when the semiconductor switching element of the inverter section is turned off, the current limiting reactor Lac between points a and c releases energy. Energy is returned to the power supply, but at that time the reactor Ls is saturated first,
The reactor between points a and c is a parallel circuit of reactor La and reactor Lb. Then, when the current flowing through the reactor Ls decreases and the impedance is restored, the reactor between the points a and c becomes as shown by the equation (1).

【0014】以上のように限流リアクトルが変化すれ
ば、放電電極15に流れる電流は、図2に示すように放
電開始電圧Eb を過ぎた所で急峻に立ち上がるようにな
る。この急峻なインパルス的な電流により、放電電極1
5の高圧電極と接地電極の間にイオン生成速度よりも十
分早い速度で放電電流が立ち上がる事から、イオンが生
成される前にオゾン生成反応を十分に行うことができ、
大量のオゾンを効率的に発生することができる。
When the current limiting reactor changes as described above, the current flowing through the discharge electrode 15 rises sharply after passing the discharge start voltage Eb as shown in FIG. Due to this steep impulse-like current, the discharge electrode 1
Since the discharge current rises between the high voltage electrode of 5 and the ground electrode at a rate sufficiently faster than the ion generation rate, the ozone generation reaction can be sufficiently performed before the ions are generated,
A large amount of ozone can be efficiently generated.

【0015】図3は、本発明の第2実施例のオゾン発生
装置の回路構成を示す。本実施例では、限流リアクトル
La に並列にスイッチング素子18を直流電源部11と
の間に接続したものである。放電電極15で放電が開始
された直後に、スイッチング素子18をオンさせること
により、昇圧トランス13を介して急峻なパルス電流を
放電電極15に供給することができる。この急峻なパル
ス電流により、第1実施例と同様にイオン生成速度より
十分早い速度で放電電流が立ち上がるので、イオンが生
成される前に、安定且つ高濃度のオゾン生成ができる。
FIG. 3 shows the circuit configuration of an ozone generator according to the second embodiment of the present invention. In this embodiment, a switching element 18 is connected in parallel with the current limiting reactor La between the DC power supply unit 11. By turning on the switching element 18 immediately after the discharge electrode 15 starts discharging, a steep pulse current can be supplied to the discharge electrode 15 via the step-up transformer 13. The steep pulse current causes the discharge current to rise at a rate sufficiently higher than the ion generation rate as in the first embodiment, so that stable and high-concentration ozone generation can be performed before ions are generated.

【0016】上記実施例は、放電開始後にオゾン発生装
置の放電電極間に急峻な放電電流を流す手法の2つの例
を示したものである。これらの実施例に限らず、本発明
の主旨を実現するため種々の変形実施例が可能であるこ
とは言うまでもない。
The above-mentioned embodiments show two examples of a method of flowing a steep discharge current between the discharge electrodes of the ozone generator after the start of discharge. It is needless to say that the present invention is not limited to these embodiments, and various modified embodiments are possible for realizing the gist of the present invention.

【0017】[0017]

【発明の効果】以上に説明したように本発明によれば、
オゾン発生装置の放電電極間で、放電開始後急峻に放電
電流を立上ることにより、電源効率を損なうことなく、
安定高濃度のオゾン生成が可能となる。又、高濃度のオ
ゾンを生成する場合には、従来例えばN2ガス等の第3
物質が必要とされていたが、本発明のよればこのような
第3物質を用いることなく高濃度のオゾン生成が可能と
なる。このため、例えばN2ガスを流す設備が不要とな
り、オゾン発生装置の小型化とコストダウンが可能とな
る。
According to the present invention as described above,
By rapidly raising the discharge current between the discharge electrodes of the ozone generator after the start of discharge, without impairing the power supply efficiency,
It is possible to generate stable high concentration ozone. Further, in the case of producing high-concentration ozone, conventionally, for example, a third gas such as N 2 gas is used.
Although a substance was required, the present invention enables high concentration ozone production without the use of such a third substance. Therefore, for example, a facility for flowing N 2 gas is not required, and the ozone generator can be downsized and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例のオゾン発生装置の回路
図。
FIG. 1 is a circuit diagram of an ozone generator according to a first embodiment of the present invention.

【図2】図1の回路による放電電極部の電圧Vと電流I
の波形を示す図。
2 is a voltage V and a current I of a discharge electrode section according to the circuit of FIG.
FIG.

【図3】本発明の第2実施例のオゾン発生装置の回路
図。
FIG. 3 is a circuit diagram of an ozone generator according to a second embodiment of the present invention.

【図4】従来のオゾン発生装置の回路図。FIG. 4 is a circuit diagram of a conventional ozone generator.

【図5】図4の回路による放電電極部の電圧Vと電流I
の波形を示す図。
5 is a voltage V and a current I of a discharge electrode section according to the circuit of FIG.
FIG.

【符号の説明】[Explanation of symbols]

11 直流電源部 12 インバータ部 13 昇圧トランス 14 限流リアクトル 15 放電電極 La ,Lb ,Ls 限流リアクトル 11 DC power supply section 12 Inverter section 13 Step-up transformer 14 Current limiting reactor 15 Discharge electrodes La, Lb, Ls Current limiting reactor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高圧電極と接地電極との間に誘電体を介
在させ、該高圧電極と接地電極との間に高圧パルス電圧
を印加して無声放電又は沿面放電を発生させ、該放電空
間内に酸素ガスを通過させてオゾンを生成する方法にお
いて、前記高圧パルスの立ち上がり時に急峻な放電電流
を形成することで、高濃度のオゾンを生成することを特
徴とするオゾン発生方法。
1. A dielectric is interposed between a high-voltage electrode and a ground electrode, and a high-voltage pulse voltage is applied between the high-voltage electrode and the ground electrode to generate silent discharge or creeping discharge, and the discharge space In the method for generating ozone by passing oxygen gas through the substrate, a high-concentration ozone is generated by forming a steep discharge current at the rising of the high-voltage pulse.
【請求項2】 直流電源部と、交流パルス電圧を生成す
るインバータ部と、該インバータ部で生成された交流パ
ルス電圧を昇圧する昇圧トランスと、該昇圧トランスの
出力端に接続された放電電極部とからなるオゾン発生装
置において、前記交流パルス電圧の立ち上がりによる放
電開始後に、前記放電電極間に放電電流を急峻に立ち上
げる手段を備えたことを特徴とするオゾン発生装置。
2. A DC power supply unit, an inverter unit for generating an AC pulse voltage, a booster transformer for boosting the AC pulse voltage generated by the inverter unit, and a discharge electrode unit connected to the output terminal of the booster transformer. The ozone generating device according to claim 1, further comprising means for rapidly raising a discharge current between the discharge electrodes after the start of discharge due to the rise of the AC pulse voltage.
JP8089396A 1996-03-08 1996-03-08 Ozone generating method and device Pending JPH09241007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8089396A JPH09241007A (en) 1996-03-08 1996-03-08 Ozone generating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8089396A JPH09241007A (en) 1996-03-08 1996-03-08 Ozone generating method and device

Publications (1)

Publication Number Publication Date
JPH09241007A true JPH09241007A (en) 1997-09-16

Family

ID=13731052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8089396A Pending JPH09241007A (en) 1996-03-08 1996-03-08 Ozone generating method and device

Country Status (1)

Country Link
JP (1) JPH09241007A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740597B1 (en) 2000-08-31 2004-05-25 Micron Technology, Inc. Methods of removing at least some of a material from a semiconductor substrate
WO2004061929A1 (en) * 2002-12-27 2004-07-22 Hitachi Kokusai Electric Inc. Plasma generator, ozone generator, substrate processing apparatus, and method for manufacturing semiconductor device
JP2007209155A (en) * 2006-02-03 2007-08-16 Ngk Insulators Ltd Discharge device
WO2016158950A1 (en) * 2015-03-30 2016-10-06 株式会社東芝 Power circuit for driving creeping discharge element
WO2016158951A1 (en) * 2015-03-30 2016-10-06 株式会社 東芝 Power circuit for driving creeping discharge element
JP2017189114A (en) * 2017-07-19 2017-10-12 株式会社東芝 Power circuit for driving creeping discharge element
CN107546986A (en) * 2016-06-27 2018-01-05 株式会社东芝 Creeping discharge element drives power circuit
WO2018030406A1 (en) * 2016-08-10 2018-02-15 株式会社 東芝 Creeping discharge element drive device and creeping discharge element drive method
JP2018067429A (en) * 2016-10-18 2018-04-26 フィーサ株式会社 Waveform generating circuit

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740597B1 (en) 2000-08-31 2004-05-25 Micron Technology, Inc. Methods of removing at least some of a material from a semiconductor substrate
US6977230B2 (en) 2000-08-31 2005-12-20 Micron Technology, Inc. Methods of removing material from a semiconductor substrate
WO2004061929A1 (en) * 2002-12-27 2004-07-22 Hitachi Kokusai Electric Inc. Plasma generator, ozone generator, substrate processing apparatus, and method for manufacturing semiconductor device
US7514377B2 (en) 2002-12-27 2009-04-07 Hitachi Kokusai Electric Inc. Plasma generator, ozone generator, substrate processing apparatus and manufacturing method of semiconductor device
JP2007209155A (en) * 2006-02-03 2007-08-16 Ngk Insulators Ltd Discharge device
CN107529349A (en) * 2015-03-30 2017-12-29 株式会社东芝 Creeping discharge element drives power circuit
CN107529349B (en) * 2015-03-30 2020-07-14 株式会社东芝 Power supply circuit for driving creeping discharge element
JP2016189666A (en) * 2015-03-30 2016-11-04 株式会社東芝 Power supply circuit for driving surface discharge element
JP2016189667A (en) * 2015-03-30 2016-11-04 株式会社東芝 Power supply circuit for driving surface discharge element
WO2016158951A1 (en) * 2015-03-30 2016-10-06 株式会社 東芝 Power circuit for driving creeping discharge element
WO2016158950A1 (en) * 2015-03-30 2016-10-06 株式会社東芝 Power circuit for driving creeping discharge element
CN107529348A (en) * 2015-03-30 2017-12-29 株式会社东芝 Creeping discharge element drives power circuit
CN107546986A (en) * 2016-06-27 2018-01-05 株式会社东芝 Creeping discharge element drives power circuit
WO2018030406A1 (en) * 2016-08-10 2018-02-15 株式会社 東芝 Creeping discharge element drive device and creeping discharge element drive method
JP2018026959A (en) * 2016-08-10 2018-02-15 株式会社東芝 Surface discharge element drive device and surface discharge element drive method
CN109729753B (en) * 2016-08-10 2021-02-02 株式会社东芝 Creeping discharge element driving device and creeping discharge element driving method
CN109729753A (en) * 2016-08-10 2019-05-07 株式会社东芝 Creeping discharge cell driving device and creeping discharge element drive method
US10602601B2 (en) 2016-08-10 2020-03-24 Kabushiki Kaisha Toshiba Creeping discharge element drive device and creeping discharge element drive method
EP3499705A4 (en) * 2016-08-10 2020-04-29 Kabushiki Kaisha Toshiba Creeping discharge element drive device and creeping discharge element drive method
JP2018067429A (en) * 2016-10-18 2018-04-26 フィーサ株式会社 Waveform generating circuit
JP2017189114A (en) * 2017-07-19 2017-10-12 株式会社東芝 Power circuit for driving creeping discharge element

Similar Documents

Publication Publication Date Title
CN101288219B (en) Load resonant type power supply for ozonizer
US5130003A (en) method of powering corona discharge in ozone generators
US4156638A (en) Fluid treatment by electron emission
JPH03226266A (en) Pulse power supply
JPH09241007A (en) Ozone generating method and device
CN1392861A (en) Ozone generator
JP4293409B2 (en) Dielectric barrier discharge lamp lighting device
KR100191681B1 (en) Deodoring method and deodoring device by sawtooth wave corona discharge
JP2569739B2 (en) Oxygen atom generation method and apparatus
JPH11333244A (en) Apparatus for treating discharge gas
US20240008162A1 (en) Drive circuit for a dielectric barrier discharge device and method of controlling the discharge in a dielectric barrier discharge
JP2002263472A (en) Plasma processor and plasma processing method using inverter circuit
JP2004220985A (en) Plasma treatment device and plasma treatment method
WO1989001713A1 (en) Metal vapor laser
JP2004337345A (en) Deodorizing apparatus and deodorizing method
Wang et al. DSP-based PDM and PWM type voltage-fed load-resonant inverter with high-voltage transformer for silent discharge ozonizer
JP4059053B2 (en) Lighting method of high pressure discharge lamp
JPH10324504A (en) Silent-discharge ozonizing method and device therewith
JP2001274492A (en) Pulsed laser power supply
JP4061373B2 (en) Ozone generator
JPH0741305A (en) Power source device of ozonizer
JP2004289886A (en) Pulse power supply unit
JPS5826271B2 (en) silent discharge device
JP3187877B2 (en) Discharge reactor
JPH11145794A (en) Pulsating power source