JPH11333244A - Apparatus for treating discharge gas - Google Patents

Apparatus for treating discharge gas

Info

Publication number
JPH11333244A
JPH11333244A JP10158515A JP15851598A JPH11333244A JP H11333244 A JPH11333244 A JP H11333244A JP 10158515 A JP10158515 A JP 10158515A JP 15851598 A JP15851598 A JP 15851598A JP H11333244 A JPH11333244 A JP H11333244A
Authority
JP
Japan
Prior art keywords
pulse
voltage
gas
auxiliary
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10158515A
Other languages
Japanese (ja)
Other versions
JP3572942B2 (en
Inventor
Akira Senbayashi
暁 千林
Kenta Naito
健太 内藤
Koichi Naeshiro
晃一 苗代
Shigeru Kato
茂 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP15851598A priority Critical patent/JP3572942B2/en
Publication of JPH11333244A publication Critical patent/JPH11333244A/en
Application granted granted Critical
Publication of JP3572942B2 publication Critical patent/JP3572942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Treating Waste Gases (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve gas treatment efficiency by promoting the extinction of residual charge between pulse streamer discharges in a gas treatment device. SOLUTION: In this apparatus, an auxiliary power source 22 for applying an auxiliary voltage VA which is smaller in an absolute value than a pulse voltage VP outputted from a pulse power source 14 is installed between an external electrode 4 and a central electrode 6 of a gas treatment device 2. Although the auxiliary voltage VA can be applied between the electrodes 4, 6 during the interval of pulse streamer discharges at least by the application of pulse voltages VP, in this example, the auxiliary power source 22 is made as a direct current power source, and the auxiliary voltage VA is applied between electrodes 4, 6 through the pulse power source 14 constantly including a period in which the pulse voltage VP is being applied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばオゾン発
生装置、NOx ・SOx 処理装置、ダイオキシン処理装
置、脱臭装置等として用いられるものであって、処理す
べきガスをパルスストリーマ放電(パルス的に発生させ
るストリーマ放電)によって励起して処理する(例えば
オゾン発生、NOx ・SOx 低減、ダイオキシン低減、
脱臭等を行う)放電ガス処理装置に関し、より具体的に
は、ガス処理器内におけるパルスストリーマ放電の放電
と放電との間の残留電荷の消滅を促進して、ガス処理効
率を向上させる手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used, for example, as an ozone generator, a NOx / SOx processor, a dioxin processor, a deodorizer, and the like. The gas to be treated is subjected to pulse streamer discharge (pulse generation). (Eg, ozone generation, NOx / SOx reduction, dioxin reduction,
The present invention relates to a discharge gas processing apparatus for performing deodorization and the like, and more specifically, to a means for improving the gas processing efficiency by promoting the disappearance of residual charges between discharges of pulse streamer discharge in a gas processor. .

【0002】[0002]

【従来の技術】この種の放電ガス処理装置の従来例を図
6に示す。この放電ガス処理装置は、筒状(例えば円筒
状)の外部電極4のほぼ中心軸上に線状(ワイヤ状)の
中心電極6を配置して成るガス処理器2と、このガス処
理器2の外部電極4と中心電極6との間に高圧のパルス
電圧VP を繰り返して印加するパルス電源14とを備え
ている。通常は、この例のように外部電極4は接地され
ていて、中心電極6に正極性のパルス電圧VP が印加さ
れる。
2. Description of the Related Art FIG. 6 shows a conventional example of this type of discharge gas processing apparatus. The discharge gas processing apparatus includes a gas processing device 2 having a cylindrical (for example, cylindrical) external electrode 4 and a linear (wire-shaped) central electrode 6 arranged on a substantially central axis thereof. and a pulse power supply 14 to be applied repeatedly high pressure pulse voltage V P between the external electrode 4 and the center electrode 6 of the. Normally, the external electrode 4 is grounded as in this example, and a positive pulse voltage VP is applied to the center electrode 6.

【0003】外部電極4の内径は例えば10〜100m
m程度、中心電極6の外径は例えば0.2〜3mm程度
である。パルス電圧VP の大きさは例えば10〜200
kV程度、パルス電圧VP の立ち上がり時間は例えば2
0〜500ns程度である。但しこれらは、あくまでも
一例であり、ガス処理器2の構造や処理すべきガス10
の流量等の処理条件によってこれとは異なる場合もあ
る。
The inner diameter of the external electrode 4 is, for example, 10 to 100 m.
m, and the outer diameter of the center electrode 6 is, for example, about 0.2 to 3 mm. The magnitude of the pulse voltage V P is for example 10 to 200
kV or so, the rise time of the pulse voltage V P is for example 2
It is about 0 to 500 ns. However, these are merely examples, and the structure of the gas processor 2 and the gas
It may differ from this depending on the processing conditions such as the flow rate.

【0004】ガス処理器2の一端側から、その両電極
4、6間に、例えばガス源8から処理すべきガス10を
供給し、このガス10を電極4、6の長手方向に流した
状態で、両電極4、6間にパルス電源14から上記パル
ス電圧VP を繰り返して印加して、中心電極6から外部
電極4に向けて、四方八方に、かつ電極4、6の長手方
向に均一に、パルスストリーマ放電16を繰り返して発
生させる。このパルスストリーマ放電16によって、ガ
ス10を励起して、ガス10に所望の処理、例えば前述
したようなオゾン発生、NOx ・SOx 低減、ダイオキ
シン低減、脱臭等の処理を施すことができる。ガス処理
器2の他端側から処理済のガス12が取り出される。
A gas 10 to be treated is supplied from one end of the gas processor 2 between the electrodes 4 and 6 from, for example, a gas source 8, and the gas 10 flows in the longitudinal direction of the electrodes 4 and 6. The pulse voltage VP is repeatedly applied between the electrodes 4 and 6 from the pulse power source 14 so as to be uniform in all directions from the center electrode 6 to the external electrode 4 and in the longitudinal direction of the electrodes 4 and 6. Then, a pulse streamer discharge 16 is repeatedly generated. The gas 10 can be excited by the pulse streamer discharge 16 and the gas 10 can be subjected to a desired process such as the above-described processes such as ozone generation, NOx / SOx reduction, dioxin reduction, and deodorization. The processed gas 12 is taken out from the other end of the gas processor 2.

【0005】このパルスストリーマ放電を利用する技術
は、従来の無声放電や沿面放電を利用する技術よりも、
放電によって消費される電力に対するガス処理効率が2
倍近く高いことが知られており、高効率のガス処理技術
として注目されている。
The technology using the pulse streamer discharge is more effective than the conventional technology using the silent discharge and the creeping discharge.
Gas processing efficiency against electric power consumed by discharge is 2
It is known to be nearly twice as high, and is attracting attention as a highly efficient gas processing technology.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記従来の
放電ガス処理装置には次のような課題がある。
However, the above-mentioned conventional discharge gas processing apparatus has the following problems.

【0007】即ち、ガス処理器2内におけるパルススト
リーマ放電時には、例えばこの例のように中心電極6が
正電位の場合(即ち前記パルス電圧VP が正極性の場
合)、図7に示すように、中心電極6から外部電極4に
向かって正のストリーマ(先端部が正電荷であり、後続
部分が負電荷のストリーマ)17が進展する。従って、
放電終了後は、図8に示すように、中心電極6の近傍に
ドーナツ状に負の残留電荷20が生じ、かつこの負の残
留電荷20を取り巻くように正の残留電荷18が生じ、
この残留電荷18、20によって、パルス電圧VP によ
る電界E1 (図7参照)とは逆方向の電界E2 を発生す
る。
That is, at the time of pulse streamer discharge in the gas processor 2, for example, when the center electrode 6 is at a positive potential as in this example (ie, when the pulse voltage VP has a positive polarity), as shown in FIG. A positive streamer 17 (a streamer having a positive charge at the tip and a negative charge at the subsequent portion) 17 extends from the center electrode 6 toward the external electrode 4. Therefore,
After the discharge is completed, as shown in FIG. 8, a donut-shaped negative residual charge 20 is generated near the center electrode 6, and a positive residual charge 18 is generated so as to surround the negative residual charge 20.
This residual charge 18 to generate an electric field E 2 in the direction opposite to the electric field E 1 (see FIG. 7) by the pulse voltage V P.

【0008】このような残留電荷18、20が次回の放
電時まで残留していると、次回の放電のためのパルス電
圧VP による電界E1 が弱められるため、パルスストリ
ーマ放電が発生しにくくなる。従って、電極4、6間へ
の効率の良いエネルギー投入が困難になり、ガス10の
処理効率が低下する。
[0008] When such residual charges 18, 20 remaining until the next discharge, since the electric field E 1 by the pulse voltage V P for the next discharge is weakened, the pulse streamer discharge is unlikely to occur . Therefore, it is difficult to efficiently input energy between the electrodes 4 and 6, and the processing efficiency of the gas 10 is reduced.

【0009】しかも、ガス処理器2内に流すガス10の
流量が小さい低ガス流量、かつガス処理器2内でパルス
ストリーマ放電16を短い周期で発生させる高繰り返し
放電の運転条件の場合は、残留電荷18、20による上
記影響は特に大きくなる。
Further, in the case of a low gas flow rate where the flow rate of the gas 10 flowing into the gas processor 2 is small and a high repetition discharge operation condition in which the pulse streamer discharge 16 is generated in the gas processor 2 in a short cycle, the residual The above effects due to the charges 18 and 20 are particularly large.

【0010】例えば、この放電ガス処理装置をオゾン発
生装置として使用する場合は、ガス処理器2内において
例えば105 ppm程度もの高濃度のオゾンを発生させ
る必要があり、そのためには、低ガス流量(例えばガス
処理器2内でのガス滞留時間が数秒〜数十秒程度)、か
つ高繰り返し放電(例えば1kHz程度以上)の運転条
件となる。
For example, when this discharge gas processing apparatus is used as an ozone generator, it is necessary to generate ozone at a high concentration of, for example, about 10 5 ppm in the gas processing apparatus 2. (For example, the gas residence time in the gas processor 2 is about several seconds to several tens of seconds), and the operation conditions are high repetition discharge (for example, about 1 kHz or more).

【0011】ところが、上記残留電荷18、20の拡散
時間は、数ms〜数十ms程度と考えられ、繰り返し放
電の周期が100Hz程度以上の場合は、この残留電荷
18、20による上記影響を受ける。しかも、パルスス
トリーマ放電の繰り返し数の増加と共に、残留電荷1
8、20の蓄積作用が生じるため、残留電荷18、20
による上記影響は更に強まる。また、上記のような低ガ
ス流量運転では、ガス流による残留電荷18、20の拡
散もあまり期待できない。従って、残留電荷18、20
による上記影響は特に大きくなる。
However, the diffusion time of the residual charges 18 and 20 is considered to be several milliseconds to several tens of milliseconds. When the cycle of repeated discharge is about 100 Hz or more, the diffusion time of the residual charges 18 and 20 is affected by the above. . Moreover, as the number of repetitions of the pulse streamer discharge increases, the residual charge 1
8 and 20, the residual charges 18, 20
The above effect is further enhanced. Further, in the low gas flow rate operation as described above, diffusion of the residual charges 18 and 20 due to the gas flow cannot be expected much. Therefore, the residual charges 18, 20
In particular, the above-mentioned effects due to are large.

【0012】勿論、上記例とは反対に、中心電極6に負
極性のパルス電圧VP を印加する場合にも、残留電荷に
よる上記と同様の課題が存在する。
Of course, contrary to the above-described example, the same problem as described above due to residual charges also exists when a negative pulse voltage VP is applied to the center electrode 6.

【0013】上記残留電荷の影響を小さくするために
は、例えば、ガス流量を増加する、放電繰り返し数
を減らす、ガス処理器2の長さを短くして(但しその
分、ガス処理器2の数を増加する必要がある)ガス滞留
時間を短くする、ことが考えられるけれども、いずれの
場合も、通過するガスに加える放電回数が減少し、ガス
処理効果(例えばオゾン発生装置の場合であれば発生オ
ゾン濃度)が低下する。
In order to reduce the influence of the residual charge, for example, the gas flow rate is increased, the number of discharge repetitions is reduced, and the length of the gas processor 2 is shortened (however, the gas processor 2 Although it is conceivable to shorten the gas residence time (need to increase the number), in each case, the number of discharges applied to the passing gas decreases, and the gas treatment effect (for example, in the case of an ozone generator, (Generated ozone concentration).

【0014】そこでこの発明は、ガス処理器内における
パルスストリーマ放電の放電と放電との間の残留電荷の
消滅を促進して、ガス処理効率を向上させることを主た
る目的とする。
Accordingly, an object of the present invention is to improve the gas processing efficiency by promoting the elimination of residual charges between the discharges of the pulse streamer discharge in the gas processor.

【0015】[0015]

【課題を解決するための手段】この発明の放電ガス処理
装置は、少なくとも前記パルスストリーマ放電の放電と
放電との間に、前記パルス電源から出力するパルス電圧
よりも絶対値の小さい補助電圧を前記ガス処理器の外部
電極と中心電極との間に印加する補助電源を備えること
を特徴としている。
According to a first aspect of the present invention, there is provided a discharge gas treatment apparatus comprising: an auxiliary voltage having an absolute value smaller than a pulse voltage output from the pulse power supply at least between discharges of the pulse streamer discharge. It is characterized by having an auxiliary power supply applied between the external electrode and the center electrode of the gas processor.

【0016】上記構成によれば、パルスストリーマ放電
のためのパルス電圧と同極性の補助電圧を印加した場合
は、パルスストリーマ放電終了直後の正負の残留電荷
は、補助電圧の電界による吸引作用を受けて、中心電極
または外部電極にそれぞれ吸収されて消滅する。
According to the above configuration, when an auxiliary voltage having the same polarity as the pulse voltage for the pulse streamer discharge is applied, the positive and negative residual charges immediately after the end of the pulse streamer discharge are attracted by the electric field of the auxiliary voltage. Then, they are absorbed by the center electrode or the external electrode and disappear.

【0017】上記とは反対に、パルス電圧と逆極性の補
助電圧を印加した場合は、正負の残留電荷は、補助電圧
の電界による反発作用を受けて、正負の残留電荷同士が
衝突して互いに中和して消滅する。
Contrary to the above, when an auxiliary voltage having a polarity opposite to that of the pulse voltage is applied, the positive and negative residual charges are repelled by the electric field of the auxiliary voltage, and the positive and negative residual charges collide with each other. Neutralizes and disappears.

【0018】従っていずれの場合も、補助電圧印加によ
って、残留電荷の消滅を促進することができるので、低
ガス流量かつ高繰り返し放電の運転条件においても、ガ
ス処理器の電極間へ効率良くエネルギーを投入すること
が可能になり、ガス処理効率が向上する。
Therefore, in any case, the elimination of the residual charges can be promoted by applying the auxiliary voltage, so that the energy can be efficiently transferred between the electrodes of the gas processor even under the low gas flow rate and the high repetition discharge operation condition. Can be introduced, and gas processing efficiency is improved.

【0019】[0019]

【発明の実施の形態】図1は、この発明に係る放電ガス
処理装置の一例を示す図である。図6の従来例と同一ま
たは相当する部分には同一符号を付し、以下においては
当該従来例との相違点を主に説明する。
FIG. 1 is a diagram showing an example of a discharge gas processing apparatus according to the present invention. Parts that are the same as or correspond to those in the conventional example of FIG. 6 are denoted by the same reference numerals, and differences from the conventional example will be mainly described below.

【0020】この実施例においては、前述したパルス電
源14と、ガス処理器2の外部電極4との間に、補助電
源22を直列に挿入して、この補助電源22から、この
例ではパルス電源14を介して、ガス処理器2の外部電
極4と中心電極6との間に、パルス電源14から出力す
るパルス電圧VP よりも絶対値の小さい補助電圧VA
印加するようにしている。
In this embodiment, an auxiliary power supply 22 is inserted in series between the above-described pulse power supply 14 and the external electrode 4 of the gas processor 2, and from this auxiliary power supply 22, 14 through, between the external electrode 4 and the center electrode 6 of the gas processor 2, so that application of a small auxiliary voltage V a of the absolute value than the pulse voltage V P output from the pulse power supply 14.

【0021】この補助電源22から電極4、6間に印加
する補助電圧VA は、前述した残留電荷消滅促進のため
には、少なくともガス処理器2内で繰り返されるパルス
ストリーマ放電16の放電と放電との間に印加すれば良
く、そのための補助電源22の接続の仕方はこの実施例
のものに限らない。また、当該補助電圧VA は、パルス
電圧VP 印加中に印加する必要はないけれども、パルス
電圧VP 印加中を含めて、ガス処理器2の運転中は常時
印加しても良い。常時印加する場合は、補助電源22は
直流電源で良く、補助電圧VA は直流電圧で良い。これ
の方が補助電源22の構成および接続等が簡単になるの
で、この実施例では、直流の補助電源22を上記のよう
に接続して、直流の補助電圧VA を、パルス電源14を
介して電極4、6間に常時印加するようにしている。
The auxiliary voltage V A applied between the electrodes 4 and 6 from the auxiliary power supply 22 is applied to the discharge of the pulse streamer discharge 16 repeated at least in the gas processor 2 in order to promote the elimination of the residual charge. And the method of connecting the auxiliary power supply 22 for this purpose is not limited to that of this embodiment. Further, the auxiliary voltage V A, although need not be applied during the pulse voltage V P applied, including during the pulse voltage V P applied during the operation of the gas processor 2 may be applied at all times. When the voltage is always applied, the auxiliary power supply 22 may be a DC power supply, and the auxiliary voltage VA may be a DC voltage. Since this configuration simplifies the configuration and connection of the auxiliary power supply 22, in this embodiment, the DC auxiliary power supply 22 is connected as described above, and the DC auxiliary voltage VA is supplied via the pulse power supply 14. The voltage is always applied between the electrodes 4 and 6.

【0022】補助電源22からガス処理器2の電極4、
6間に印加する補助電圧VA は、パルス電源14から電
極4、6間に印加するパルス電圧VP と同極性でも良い
し、逆極性でも良い。
From the auxiliary power supply 22, the electrodes 4 of the gas processor 2,
Auxiliary voltage V A applied between 6 to the pulse power source 14 may be a pulse voltage V P and the same polarity applied between the electrodes 4 and 6, may be reversed polarity.

【0023】まず、同極性の場合について説明すると、
ガス処理器2内でのパルスストリーマ放電直後の残留電
荷の分布は、上記説明のとおり、おおよそ図2に示すよ
うになっている。これは、上記と同様、中心電極6に正
極性のパルス電圧VP を印加した場合の例である。ここ
に、パルス電圧VP と同極性の補助電圧VA が、即ち中
心電極6側を正極性とする補助電圧VA が印加される
と、正負の残留電荷18、20は、この補助電圧VA
電界E3 による吸引作用を受けて、図2中に矢印で示す
ように、正の残留電荷18は外部電極4に、負の残留電
荷20は中心電極6に、それぞれ吸引(誘導)されて、
それぞれ吸収される。従って、補助電圧VA の印加によ
って、正負の残留電荷18、20の消滅を促進すること
ができる。
First, the case of the same polarity will be described.
The distribution of the residual charges immediately after the pulse streamer discharge in the gas processor 2 is approximately as shown in FIG. 2 as described above. This is an example of a case where a positive pulse voltage VP is applied to the center electrode 6 as described above. Here, when the pulse voltage V P of the same polarity as the auxiliary voltage V A is, i.e. the center electrode 6 side auxiliary voltage V A of the positive polarity is applied, the positive and negative residual charge 18, 20, the auxiliary voltage V Under the suction effect of the electric field E 3 of A , the positive residual charge 18 is attracted (induced) to the external electrode 4 and the negative residual charge 20 is attracted (induced) to the center electrode 6, as indicated by arrows in FIG. hand,
Each is absorbed. Therefore, the disappearance of the positive and negative residual charges 18 and 20 can be promoted by applying the auxiliary voltage VA .

【0024】上記とは反対に、補助電圧VA がパルス電
圧VP と逆極性の場合は、図3に示すように、正負の残
留電荷18、20は、この補助電圧VA の電界E3 によ
る反発作用を受けて、即ち図3中に矢印で示すように、
正の残留電荷18は外部電極4から反発作用を受け、負
の残留電荷20は中心電極6から反発作用を受け、正負
の残留電荷18、20同士が衝突して互いに中和して消
滅する。従ってこの場合も、補助電圧VA の印加によっ
て、正負の残留電荷18、20の消滅を促進することが
できる。
[0024] Contrary to the above, if the auxiliary voltage V A is the pulse voltage V P and the opposite polarity, as shown in FIG. 3, the positive and negative residual charge 18, 20, the electric field E 3 of the auxiliary voltage V A , That is, as shown by the arrow in FIG.
The positive residual charge 18 receives a repulsive action from the external electrode 4, and the negative residual charge 20 receives a repulsive action from the center electrode 6. The positive and negative residual charges 18, 20 collide with each other and neutralize and disappear. Therefore, also in this case, the disappearance of the positive and negative residual charges 18 and 20 can be promoted by applying the auxiliary voltage VA .

【0025】但し、補助電圧VA がパルス電圧VP と同
極性の場合(即ち図2の場合)、仮に残留電荷18、2
0が増加し過ぎていて正負の残留電荷18、20による
空間電界E2 (図8参照)が、補助電圧VA による電界
3 と同等以上になった場合は、この補助電圧VA の電
界E3 による上記残留電荷18、20の消滅促進作用は
成されないばかりか、当該電界E3 が、正負の残留電荷
18、20同士の衝突のための空間電界E2 を弱めてし
まうことになり、補助電圧VA の印加がかえって逆効果
となる場合がある。
[0025] However, if the auxiliary voltage V A is the pulse voltage V P of the same polarity (i.e. the case of FIG. 2), if residual charge 18,2
0 is not excessively increased space electric field E 2 by the positive and negative residual charges 18, 20 (see FIG. 8), but when it becomes equal to or more than the electric field E 3 by the auxiliary voltage V A, the electric field of the auxiliary voltage V A In addition to the effect of promoting the disappearance of the residual charges 18 and 20 by E 3 , the electric field E 3 weakens the spatial electric field E 2 for collision between the positive and negative residual charges 18 and 20, The application of the auxiliary voltage VA may have the opposite effect.

【0026】このような場合は、図3の例のように、パ
ルス電圧VP とは逆極性の補助電圧VA を印加する方が
好結果が得られる。そのようにすると、この補助電圧V
A による電界E3 が、正負の残留電荷18、20による
空間電界E2 (図8参照)を強める方向に働くので、正
負の残留電荷18、20同士が引き合って衝突して消滅
するという電荷消失課程を強めることができるからであ
る。
[0026] In such a case, as in the example of FIG. 3, the pulse voltage V P How to apply a reverse polarity of the auxiliary voltage V A is good results. In this case, the auxiliary voltage V
Since the electric field E 3 due to A acts in the direction of strengthening the spatial electric field E 2 (see FIG. 8) due to the positive and negative residual charges 18 and 20, the positive and negative residual charges 18 and 20 attract each other to collide and disappear. This is because the course can be strengthened.

【0027】例えばオゾン発生装置の場合のように、低
ガス流速(例えば1〜5cm/s程度)、かつ高繰り返
し放電(例えば1kHz程度以上)の運転条件の場合
は、前述したように、残留電荷18、20が特に大量に
発生しやすいので、このような運転条件の場合には、上
記理由から、パルス電圧VP とは逆極性の補助電圧VA
を印加する方が、残留電荷18、20の消滅をより確実
に促進することができるので好ましい。
For example, as in the case of an ozone generator, when the operating conditions are a low gas flow rate (for example, about 1 to 5 cm / s) and a high repetition discharge (for example, about 1 kHz or more), the residual charge 18,20 especially since a large amount prone, when such operating conditions, for the reasons stated above, an auxiliary of the opposite polarity to the pulse voltage V P voltage V a
Is more preferable because it is possible to more reliably promote the disappearance of the residual charges 18 and 20.

【0028】正逆いずれの極性の場合も、補助電圧VA
の大きさは、パルス電圧VP の5〜20%程度で、より
具体的には10%程度で、十分に効果が得られる。これ
よりも大きい補助電圧VA は、補助電源22の絶縁設計
上好ましくない。また、逆極性の補助電圧VA を常時印
加する場合は、その分、ガス処理器2に印加するパルス
電圧の波高値も低下する(即ち|VP |−|VA |にな
る)ので、この理由からも好ましくない。
In either case, the auxiliary voltage V A
The size of the 5 to 20% of the pulse voltage V P, more specifically about 10%, sufficient effect can be obtained. A larger auxiliary voltage V A is not preferable in terms of insulation design of the auxiliary power supply 22. In addition, when the auxiliary voltage VA having the opposite polarity is constantly applied, the peak value of the pulse voltage applied to the gas processor 2 is also reduced accordingly (that is, | V P | − | V A |). It is not preferable for this reason.

【0029】次に、上記パルス電源14および補助電源
22の回路の具体例を図4に示す。
Next, a specific example of the circuit of the pulse power supply 14 and the auxiliary power supply 22 is shown in FIG.

【0030】パルス電源14は、この例では磁気パルス
圧縮回路方式のものであり、高圧充電電源26を初期コ
ンデンサ30および時定数調整インダクタ32を介して
昇圧パルストランス34の一次巻線に接続し、高圧充電
電源26に並列に放電開始スイッチ28を接続してい
る。放電開始スイッチ28は、例えばサイラトロン等の
放電スイッチ、またはサイリスタ等の半導体スイッチで
ある。昇圧パルストランス34の二次巻線とガス処理器
2の両電極4、6との間には、アース側に補助電源22
を直列に介在させて、中間コンデンサ36、最終段コン
デンサ38および二つの磁気スイッチ40、42が梯子
形(ラダー形)に接続されている。補助電源22にはコ
ンデンサ24を並列接続している。
The pulse power source 14 is of a magnetic pulse compression circuit type in this example, and connects a high voltage charging power source 26 to a primary winding of a step-up pulse transformer 34 via an initial capacitor 30 and a time constant adjusting inductor 32. A discharge start switch 28 is connected in parallel with the high voltage charging power supply 26. The discharge start switch 28 is, for example, a discharge switch such as a thyratron or a semiconductor switch such as a thyristor. An auxiliary power supply 22 is connected between the secondary winding of the step-up pulse transformer 34 and the electrodes 4 and 6 of the gas processor 2 on the ground side.
Are connected in series, the intermediate capacitor 36, the final stage capacitor 38, and the two magnetic switches 40 and 42 are connected in a ladder shape (ladder shape). A capacitor 24 is connected in parallel to the auxiliary power supply 22.

【0031】まず、パルス電源14だけの動作を説明す
ると、初期コンデンサ30に予め高圧充電電源26から
時定数調整インダクタ32および昇圧パルストランス3
4を通して初期電荷が充電される。その後、放電開始ス
イッチ28をオンすると、初期コンデンサ30の電荷
は、昇圧パルストランス34を通じて昇圧され、中間コ
ンデンサ36に充電される。この状態では、磁気スイッ
チ40は未飽和、つまりオフ状態にある。初期コンデン
サ30から中間コンデンサ36への電荷移行が進み、中
間コンデンサ36の電圧が最大になる時刻付近で、磁気
スイッチ40は飽和してオンになり、中間コンデンサ3
6の電荷は最終段コンデンサ38へと移行する。同様
に、最終段コンデンサ38の電圧が最大になる時刻付近
で、磁気スイッチ42が飽和してオンになり、最終段コ
ンデンサ38からこの例では正極性のパルス電圧VP
出力され、それがガス処理器2の中心電極6に印加され
る。初期コンデンサ30から中間コンデンサ36へ、中
間コンデンサ36から最終段コンデンサ38へ、最終段
コンデンサ38からガス処理器2への電荷移行の進行と
共に、電荷移行のパルス幅が圧縮され、初段では例えば
1〜2μs程度のパルス幅が、最終的には例えば20〜
100ns程度にまで圧縮される。このように圧縮され
たパルス電圧VP がガス処理器2に印加される。このパ
ルス電圧VP の波高値は、例えば10〜200kV程度
の範囲内である。
First, the operation of only the pulse power supply 14 will be described. First, the time constant adjusting inductor 32 and the step-up pulse transformer 3 are supplied to the initial capacitor 30 from the high voltage charging power supply 26 in advance.
4, the initial charge is charged. Thereafter, when the discharge start switch 28 is turned on, the electric charge of the initial capacitor 30 is boosted through the boosting pulse transformer 34 and the intermediate capacitor 36 is charged. In this state, the magnetic switch 40 is not saturated, that is, in an off state. Near the time when the charge transfer from the initial capacitor 30 to the intermediate capacitor 36 proceeds and the voltage of the intermediate capacitor 36 becomes maximum, the magnetic switch 40 is saturated and turned on, and the intermediate capacitor 3 is turned on.
The charge of No. 6 moves to the final stage capacitor 38. Similarly, near the time when the voltage of the final-stage capacitor 38 becomes maximum, the magnetic switch 42 is saturated and turned on, and in this example, a positive-polarity pulse voltage VP is output from the final-stage capacitor 38, and this is The voltage is applied to the center electrode 6 of the processor 2. As the charge transfer from the initial capacitor 30 to the intermediate capacitor 36, from the intermediate capacitor 36 to the final capacitor 38, and from the final capacitor 38 to the gas processor 2 progresses, the pulse width of the charge transfer is compressed. A pulse width of about 2 μs finally becomes, for example, 20 to
It is compressed to about 100 ns. The pulse voltage V P thus compressed is applied to the gas processor 2. Peak value of the pulse voltage V P is in the range, for example, about 10~200KV.

【0032】一方、補助電源22はこの例では通常の直
流電源であり、これからコンデンサ24に、パルス電圧
P とは逆極性の直流の補助電圧VA が常に印加され
る。同時に、この補助電圧VA は、直流電圧であるの
で、昇圧パルストランス34、磁気スイッチ40および
42を通して、中間コンデンサ36、最終段コンデンサ
38およびガス処理器2の両電極4、6間に印加され
る。従ってこの補助電圧VAによって、前述したガス処
理器2内における残留電荷消滅促進作用を奏する。
On the other hand, the auxiliary power source 22 is a conventional DC power supply in this example, the capacitor 24 will now auxiliary voltage V A of the DC reversed polarity is always applied to the pulse voltage V P. At the same time, since this auxiliary voltage VA is a DC voltage, it is applied between the intermediate capacitor 36, the final-stage capacitor 38, and both electrodes 4 and 6 of the gas processor 2 through the step-up pulse transformer 34 and the magnetic switches 40 and 42. You. Therefore, the auxiliary voltage V A has the effect of promoting the elimination of residual charges in the gas processor 2 described above.

【0033】即ち、この例では、ガス処理器2の電極
4、6間に、パルス電圧VP とは逆極性の補助電圧VA
が常時印加されている。従って、放電開始スイッチ28
をオンしてガス処理器2にパルス電圧VP を印加すると
きに電極4、6間に印加されるパルス電圧の大きさ(波
高値)は|VP |−|VA |となる。補助電源22を図
示例とは逆向きに接続して、ガス処理器2の電極4、6
間にパルス電圧VP と同極性の補助電圧VA を印加する
ようにしても良く、その場合に電極4、6間に印加され
るパルス電圧の大きさは|VP |+|VA |となる。
That is, in this example, an auxiliary voltage V A having a polarity opposite to that of the pulse voltage V P is applied between the electrodes 4 and 6 of the gas processor 2.
Is always applied. Therefore, the discharge start switch 28
The size of the on and the pulse voltage applied between the electrodes 4,6 when the pulse voltage is applied V P to the gas processing unit 2 (peak value) of | V P | - | V A | become. The auxiliary power supply 22 is connected in the opposite direction to the illustrated example, and the electrodes 4 and 6 of the gas
May be applied a pulse voltage V P of the same polarity as the auxiliary voltage V A between the magnitude of the pulse voltage applied between the electrodes 4 and 6 in the case | V P | + | V A | Becomes

【0034】補助電源22に並列接続したコンデンサ2
4は、放電開始スイッチ28をオンして初期コンデンサ
30の電荷を昇圧パルストランス34を通じて中間コン
デンサ36へ移行させるときの過渡電流に対するインピ
ーダンスを下げて、補助電源22に印加されるパルス電
圧を下げるためのものである。中間コンデンサ36の容
量に比べてこのコンデンサ24の容量が大きいほど、中
間コンデンサ36での分担電圧に比べてコンデンサ24
での分担電圧が下がり、それによって、補助電源22に
高電圧が印加されるのを防止すると共に、中間コンデン
サ36に効率良く電荷移行させることができる。従っ
て、コンデンサ24の容量は、中間コンデンサ36の容
量よりも十分に大きくする、例えば100倍以上にする
のが好ましい。但し、補助電源22内にコンデンサ24
と同程度以上の容量のコンデンサを有している場合は、
それがコンデンサ24と同様の作用をするので、敢えて
コンデンサ24を外付けする必要はない。
The capacitor 2 connected in parallel to the auxiliary power supply 22
4 is to lower the impedance with respect to the transient current when the discharge start switch 28 is turned on to transfer the charge of the initial capacitor 30 to the intermediate capacitor 36 through the boost pulse transformer 34, and to lower the pulse voltage applied to the auxiliary power supply 22. belongs to. As the capacity of the capacitor 24 is larger than the capacity of the intermediate capacitor 36, the capacity of the capacitor 24 is larger than the voltage shared by the intermediate capacitor 36.
, The applied voltage can be prevented from being applied to the auxiliary power supply 22, and the charge can be efficiently transferred to the intermediate capacitor 36. Therefore, it is preferable that the capacity of the capacitor 24 be sufficiently larger than the capacity of the intermediate capacitor 36, for example, 100 times or more. However, the capacitor 24 in the auxiliary power supply 22
If you have a capacitor with the same or larger capacity,
Since it operates similarly to the capacitor 24, there is no need to externally attach the capacitor 24.

【0035】なお、処理ガス量を増加させる等のため
に、上記のようなガス処理器2を複数個並列に設けても
良い。そのようにした例を図5に示す。この例は、容器
44内にガス処理器2を複数個並設し、それぞれに処理
すべきガス10を流す構造をしている。容器44は接地
されており、各ガス処理器2の外部電極4は支持板46
によってこの容器44に電気的に接続されている。各ガ
ス処理器2の中心電極6は、この例のように互いに並列
接続してパルス電源14に接続しても良いし、直列接続
してパルス電源14に接続しても良い。
In order to increase the amount of the processing gas, a plurality of the above-described gas processors 2 may be provided in parallel. FIG. 5 shows such an example. In this example, a plurality of gas processors 2 are arranged side by side in a container 44, and the gas 10 to be processed flows into each of them. The container 44 is grounded, and the external electrode 4 of each gas processor 2 is
Is electrically connected to the container 44. The center electrodes 6 of the gas processors 2 may be connected in parallel to each other as in this example and connected to the pulse power supply 14, or may be connected in series and connected to the pulse power supply 14.

【0036】また、上記ガス処理器2の外部電極4は、
円筒状以外の筒状、例えば四角筒状等でも良い。筒状は
管状と言い換えることもできる。
The external electrode 4 of the gas processor 2 is
A cylindrical shape other than the cylindrical shape, for example, a square cylindrical shape may be used. A tubular shape can be rephrased as a tubular shape.

【0037】[0037]

【発明の効果】以上のようにこの発明によれば、補助電
源からガス処理器の外部電極と中心電極との間に印加す
る補助電圧によって、ガス処理器内におけるパルススト
リーマ放電の放電と放電との間の残留電荷の消滅を促進
することができるので、ガス処理器へ効率良くエネルギ
ーを投入することが可能になり、ガス処理効率が向上す
る。
As described above, according to the present invention, the discharge of the pulse streamer discharge in the gas processor is controlled by the auxiliary voltage applied between the external electrode and the center electrode of the gas processor from the auxiliary power supply. Elimination of the residual charges during the period can be promoted, so that energy can be efficiently input to the gas processor, and the gas processing efficiency is improved.

【0038】上記補助電圧を、パルスストリーマ放電の
ためのパルス電圧と逆極性にすると、低ガス流量かつ高
繰り返し放電のように、残留電荷が大量に発生しやすい
運転条件の場合にも、残留電荷の消滅をより確実に促進
して、ガス処理効率をより確実に向上させることができ
る。
If the auxiliary voltage has a polarity opposite to that of the pulse voltage for pulse streamer discharge, the residual charge can be reduced even in an operating condition in which a large amount of residual charge is generated, such as a low gas flow rate and a high repetitive discharge. Can be more reliably promoted, and the gas processing efficiency can be more reliably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る放電ガス処理装置の一例を示す
図である。
FIG. 1 is a diagram showing an example of a discharge gas processing apparatus according to the present invention.

【図2】パルスストリーマ放電の放電と放電との間に、
ガス処理器にパルス電圧と同極性の補助電圧を印加した
ときのガス処理器内の残留電荷の様子を模式的に示す図
である。
FIG. 2 shows a pulse streamer discharge between discharges.
It is a figure which shows typically the mode of the residual charge in a gas processor when an auxiliary voltage of the same polarity as a pulse voltage is applied to a gas processor.

【図3】パルスストリーマ放電の放電と放電との間に、
ガス処理器にパルス電圧と逆極性の補助電圧を印加した
ときのガス処理器内の残留電荷の様子を模式的に示す図
である。
FIG. 3 shows a pulse streamer discharge between discharges.
It is a figure which shows typically the mode of the residual charge in a gas processor when the auxiliary voltage of a polarity opposite to a pulse voltage is applied to a gas processor.

【図4】パルス電源および補助電源の回路の具体例を示
す図である。
FIG. 4 is a diagram showing a specific example of a circuit of a pulse power supply and an auxiliary power supply.

【図5】この発明に係る放電ガス処理装置の他の例を示
す図である。
FIG. 5 is a view showing another example of the discharge gas processing apparatus according to the present invention.

【図6】従来の放電ガス処理装置の一例を示す図であ
る。
FIG. 6 is a diagram showing an example of a conventional discharge gas processing device.

【図7】ガス処理器内におけるパルスストリーマ放電の
放電中の様子を模式的に示す図である。
FIG. 7 is a diagram schematically showing a state during a pulse streamer discharge in a gas processor.

【図8】ガス処理器内におけるパルスストリーマ放電の
放電直後の残留電荷の様子を模式的に示す図である。
FIG. 8 is a diagram schematically showing a state of residual charges immediately after a discharge of a pulse streamer discharge in a gas processor.

【符号の説明】[Explanation of symbols]

2 ガス処理器 4 外部電極 6 中心電極 10 処理すべきガス 14 パルス電源 22 補助電源 VP パルス電圧 VA 補助電圧2 gas processor 4 external electrode 6 center electrode 10 gas to be treated 14 pulse power supply 22 auxiliary power supply VP pulse voltage VA auxiliary voltage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 茂 京都府京都市右京区梅津高畝町47番地 日 新電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeru Kato 47 Nisshin Electric Co., Ltd., Umezu Takaunecho, Kyoto City, Kyoto Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 筒状の外部電極のほぼ中心軸上に線状の
中心電極を有していて両電極間に処理すべきガスが供給
されるガス処理器と、このガス処理器の外部電極と中心
電極との間にパルス電圧を繰り返して印加して両電極間
にパルスストリーマ放電を繰り返して発生させるパルス
電源とを備える放電ガス処理装置において、少なくとも
前記パルスストリーマ放電の放電と放電との間に、前記
パルス電源から出力するパルス電圧よりも絶対値の小さ
い補助電圧を前記ガス処理器の外部電極と中心電極との
間に印加する補助電源を備えることを特徴とする放電ガ
ス処理装置。
1. A gas processor having a linear central electrode substantially on the central axis of a cylindrical external electrode and supplying a gas to be processed between the two electrodes, and an external electrode of the gas processor. A pulse power supply that repeatedly applies a pulse voltage between the first electrode and the central electrode to repeatedly generate a pulse streamer discharge between the two electrodes, wherein at least a discharge between the pulse streamer discharge And an auxiliary power supply for applying an auxiliary voltage having an absolute value smaller than a pulse voltage output from the pulse power supply between an external electrode and a center electrode of the gas processing device.
【請求項2】 前記補助電圧が、前記パルス電圧と逆極
性である請求項1記載の放電ガス処理装置。
2. The discharge gas processing apparatus according to claim 1, wherein the auxiliary voltage has a polarity opposite to that of the pulse voltage.
JP15851598A 1998-05-22 1998-05-22 Discharge gas treatment equipment Expired - Fee Related JP3572942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15851598A JP3572942B2 (en) 1998-05-22 1998-05-22 Discharge gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15851598A JP3572942B2 (en) 1998-05-22 1998-05-22 Discharge gas treatment equipment

Publications (2)

Publication Number Publication Date
JPH11333244A true JPH11333244A (en) 1999-12-07
JP3572942B2 JP3572942B2 (en) 2004-10-06

Family

ID=15673433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15851598A Expired - Fee Related JP3572942B2 (en) 1998-05-22 1998-05-22 Discharge gas treatment equipment

Country Status (1)

Country Link
JP (1) JP3572942B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151295A (en) * 2000-11-13 2002-05-24 Yaskawa Electric Corp Discharge generating device
JP2002153834A (en) * 2000-11-16 2002-05-28 Mitsubishi Heavy Ind Ltd Treatment method and treatment equipment for making ash and soil pollution-free
JP2004527077A (en) * 2001-03-27 2004-09-02 アピト コープ.エス.アー. Plasma surface treatment method and apparatus for implementing the method
WO2005025021A1 (en) * 2003-08-29 2005-03-17 Daikin Industries, Ltd. Electric discharge device and air purifier device
AU2008201913B2 (en) * 2003-08-29 2009-01-08 Daikin Industries, Ltd. Electric discharge device and air purifier device
JP2011006284A (en) * 2009-06-25 2011-01-13 Toyota Motor Corp Ozonizer
CN106422704A (en) * 2016-11-04 2017-02-22 浙江大学 Integrated system for deeply removing various pollutants
JP2018038961A (en) * 2016-09-07 2018-03-15 三菱電機株式会社 Fluid purifying device and fluid purifying method
JP2019512150A (en) * 2016-02-18 2019-05-09 エーイーエス グローバル ホールディングス, プライベート リミテッド Device for controlled overshoot in an RF generator
JP2019534531A (en) * 2016-09-02 2019-11-28 ソムニオ グローバル ホールディングス,エルエルシー Apparatus and method for free radical generation
US12040164B2 (en) 2022-04-22 2024-07-16 Somnio Global Holdings, Llc Free radical generation device and methods thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151295A (en) * 2000-11-13 2002-05-24 Yaskawa Electric Corp Discharge generating device
JP2002153834A (en) * 2000-11-16 2002-05-28 Mitsubishi Heavy Ind Ltd Treatment method and treatment equipment for making ash and soil pollution-free
JP2004527077A (en) * 2001-03-27 2004-09-02 アピト コープ.エス.アー. Plasma surface treatment method and apparatus for implementing the method
KR100966198B1 (en) * 2003-08-29 2010-06-25 다이킨 고교 가부시키가이샤 Air cleaning apparatus
KR100754111B1 (en) 2003-08-29 2007-08-31 다이킨 고교 가부시키가이샤 Electric discharge device and air purifier device
US7377962B2 (en) 2003-08-29 2008-05-27 Daikin Industries, Ltd. Electric discharge device and air purifying device
AU2004302996B2 (en) * 2003-08-29 2008-05-29 Daikin Industries, Ltd. Discharge device and air purifying device
AU2008201913B2 (en) * 2003-08-29 2009-01-08 Daikin Industries, Ltd. Electric discharge device and air purifier device
WO2005025021A1 (en) * 2003-08-29 2005-03-17 Daikin Industries, Ltd. Electric discharge device and air purifier device
JP2011006284A (en) * 2009-06-25 2011-01-13 Toyota Motor Corp Ozonizer
JP2019512150A (en) * 2016-02-18 2019-05-09 エーイーエス グローバル ホールディングス, プライベート リミテッド Device for controlled overshoot in an RF generator
JP2019534531A (en) * 2016-09-02 2019-11-28 ソムニオ グローバル ホールディングス,エルエルシー Apparatus and method for free radical generation
JP2018038961A (en) * 2016-09-07 2018-03-15 三菱電機株式会社 Fluid purifying device and fluid purifying method
CN106422704A (en) * 2016-11-04 2017-02-22 浙江大学 Integrated system for deeply removing various pollutants
CN106422704B (en) * 2016-11-04 2022-10-14 浙江大学 Integrated deep removal system for multiple pollutants
US12040164B2 (en) 2022-04-22 2024-07-16 Somnio Global Holdings, Llc Free radical generation device and methods thereof

Also Published As

Publication number Publication date
JP3572942B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
US6362604B1 (en) Electrostatic precipitator slow pulse generating circuit
US5130003A (en) method of powering corona discharge in ozone generators
JP3572942B2 (en) Discharge gas treatment equipment
JP2002538576A (en) Methods and devices for ion generation
JP2005222779A (en) Plasma processing device
US8173075B2 (en) Device for generation of pulsed corona discharge
JP4378592B2 (en) Control method of discharge generator
JP2009016288A (en) High-voltage generating circuit, ion generator, and electric device
EP1716728A2 (en) Plasma-generating device and method of treating a gaseous medium
JP3991252B2 (en) Equipment for decomposing organic substances in exhaust gas by pulse corona discharge
KR100191681B1 (en) Deodoring method and deodoring device by sawtooth wave corona discharge
JPH09241007A (en) Ozone generating method and device
JP2004289886A (en) Pulse power supply unit
KR100997165B1 (en) Transformer using plasma generating apparatus for air cleaning and sterilizing
JP2001203093A (en) Static charge elimination method and static eliminator
JPH09320791A (en) Static electricity eliminating method of movable body
JP3582379B2 (en) Discharge gas treatment method
JP3450452B2 (en) Plasma chemical reactor
RU2219136C2 (en) Method and device for purification of liquid and gaseous mediums
JPS58135107A (en) Ozone generator
DE19643925C2 (en) Process for operating a gas discharge
JPH11333285A (en) Discharge gas treatment device
JP2010162435A (en) Pulse discharge method for exhaust gas treatment, and apparatus therefor
JP2002274814A (en) Ozone-generating device
JPH10110936A (en) Gas processing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees