JPH09239536A - Magnetic stirring welding method of steel tube - Google Patents

Magnetic stirring welding method of steel tube

Info

Publication number
JPH09239536A
JPH09239536A JP7809696A JP7809696A JPH09239536A JP H09239536 A JPH09239536 A JP H09239536A JP 7809696 A JP7809696 A JP 7809696A JP 7809696 A JP7809696 A JP 7809696A JP H09239536 A JPH09239536 A JP H09239536A
Authority
JP
Japan
Prior art keywords
welding
electrode
coil
current
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7809696A
Other languages
Japanese (ja)
Inventor
Yoshinori Ogata
佳紀 尾形
Yoshio Terada
好男 寺田
Daigo Sumimoto
大吾 住本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7809696A priority Critical patent/JPH09239536A/en
Publication of JPH09239536A publication Critical patent/JPH09239536A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the welding speed in the seam welding of a steel tube in a UOE process by surrounding a tip part of a terminal electrodes among multiple electrodes with a coil, energizing the coil to form the magnetic field, and giving the magnetic stirring to the molten metal to achieve the welding. SOLUTION: The AC current is applied to a coil in which an enamel copper wire is wound between an outer steel skin 1 and an inner steel skin 2 from an AC magnetic field power source 11 to generate the magnetic field. Welding arcs 18-21 are generated covering a part in the vicinity of a part to be welded with the flux 17 for submerged arc welding between a welding wire and a base metal 16 from each center through welding electrodes 12-15. The welding current of the fourth electrode 15 flows parallel to the surface of the base metal 16 through an arc 21 and a molten pool 22 in the radial direction. The AC current is crossed therewith, the rotational force is applied to the molten pool 22 formed by the fourth electrode 15 to stir the molten metal. This method is effective in the welding at higher speed and suppression in the undercut accompanied thereby.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はUOE鋼管の製造工
程におけるシーム部の溶接方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for welding seams in a UOE steel pipe manufacturing process.

【0002】[0002]

【従来の技術】鋼管はオイル、ガスなどの輸送手段とし
て非常に有用、かつその使用量も多いことから、その多
くは大量生産が可能なUOEプロセスによって製造がな
される。一般にUOEプロセスで鋼管を製造する場合、
厚板工程で製造されたUOE鋼管用の鋼板を用い、概略
以下の工程によってUOE鋼管が製造される。(1)ま
ず鋼板にはタブ付け工程において鋼板の長手方向の両端
部にスタートおよびエンドタブが取り付けられる。
(2)次に鋼板は開先加工工程で、その長手方向の両端
部にエッジプレーナやエッジミラー等によって開先が加
工される。(3)開先加工がなされた上記の鋼板は次の
成形工程において、断面形状がUからOすなわち、鋼管
の形状となるようにプレスされる。(4)さらに成形さ
れた鋼管素材は、その長手方向の開先加工された長手シ
ームの線に沿って溶接がなされる。
2. Description of the Related Art Steel pipes are very useful as a means of transporting oil, gas and the like, and the amount thereof is large, so that most of them are manufactured by the UOE process which enables mass production. Generally, when manufacturing steel pipes by the UOE process,
Using the steel plate for UOE steel pipe manufactured in the thick plate process, the UOE steel pipe is manufactured by the following process. (1) First, start and end tabs are attached to the steel sheet at both ends in the longitudinal direction of the steel sheet in the tab attachment process.
(2) Next, in a groove processing step, the steel sheet is processed into a groove at both ends in the longitudinal direction by an edge planer, an edge mirror or the like. (3) In the next forming step, the above-described steel sheet subjected to the groove processing is pressed so that the cross-sectional shape becomes U to O, that is, the shape of a steel pipe. (4) Further, the formed steel pipe material is welded along the line of the grooved longitudinal seam in the longitudinal direction.

【0003】シーム溶接では、(5)まず外面側の開先
底部に炭酸ガスアーク溶接法などによって全長仮付け溶
接がなされる。(6)つぎに内面側の開先に対して潜弧
溶接法で1層溶接、(7)さらに外面側の残開先部を潜
弧溶接法で1層溶接して鋼管のシーム溶接は完了する。
シーム溶接終了後、(8)溶接部の検査,(9)拡管機
による拡管矯正,(10)水圧検査などの工程をたど
り、UOE鋼管の基本的な製造は一応終了する。
In seam welding, (5) First, full-length tack welding is first performed on the bottom of the groove on the outer surface side by carbon dioxide arc welding or the like. (6) Next, one layer welding is performed on the inner surface side groove by the latent arc welding method, and (7) One layer welding is further performed on the outer surface side residual groove portion by the latent arc welding method to complete the seam welding of the steel pipe. To do.
After the seam welding is completed, the steps of (8) inspection of welded portion, (9) pipe expansion correction by a pipe expanding machine, (10) water pressure inspection, etc. are followed, and the basic production of UOE steel pipe is completed for the time being.

【0004】本発明は上記のシーム溶接にかかわるもの
であるが、シーム溶接にはUOEの各製造工場とも現在
は内面側は3〜4電極の潜弧溶接法、また外面側には4
電極の潜弧溶接法の適用が一般的となっている。3〜4
電極の多電極潜弧溶接法を採用する目的は溶接速度の高
速化、すなわち鋼管の大量生産を達成するためである。
しかし、ラインパイプ用としてのUOE鋼管はほとんど
が輸出を対象として製造を実施しているが、最近の円高
傾向のもとでは製造コストの低減が各社とも早急に解決
すべき課題となっている。
The present invention is concerned with the above-mentioned seam welding. For seam welding, however, in all UOE manufacturing factories, the inner surface side is currently a 3-4 electrode latent arc welding method, and the outer surface side is a 4 arc electrode welding method.
The application of the latent arc welding method of electrodes has become common. 3-4
The purpose of adopting the multi-electrode latent arc welding method of electrodes is to achieve a high welding speed, that is, to achieve mass production of steel pipes.
However, most UOE steel pipes for line pipes are manufactured for export, but under the recent trend of yen appreciation, reduction of manufacturing cost has become an issue that each company should solve immediately. .

【0005】シーム溶接におけるコスト低減策としては
溶接材料、電力原単位の低減などはもちろんであるが、
生産性の向上が重要な課題となっている。生産性の向上
が従来よりも重視される背景として、ラインパイプ用途
の多目的化が挙げられる。具体的にはオイル、天然ガス
の採掘環境の問題から特殊な成分系材の要求も一段と高
まっている。そのために、限られた設備規模の中で少量
多品種の鋼管を造り分ける必要性が生じてきており、生
産性の向上がコスト低減対策の要となる。
As a cost reduction measure in seam welding, it goes without saying that the welding material and the electric power consumption rate are reduced.
Improving productivity is an important issue. Behind the importance of improving productivity more than ever before is the versatility of line pipe applications. Specifically, due to the problem of the mining environment for oil and natural gas, there is an increasing demand for special component materials. For this reason, it is necessary to manufacture a large number of steel pipes in small quantities in a limited facility scale, and improvement of productivity is a key to cost reduction measures.

【0006】シーム溶接で生産性を向上させるために
は、現状の溶接速度の更なる高速度化が有効な手段とな
る。しかし、現状法で溶接速度を高める手段としては多
電極の各溶接電極の溶接電流値を高めに設定し、その分
だけ溶接速度を速くすることが一般的である。しかし、
溶接電流を極端に高め、かつ溶接速度を速くすると種々
溶接欠陥の発生が顕著になるという問題がある。溶接速
度の高速度化にともなって発生が助長される溶接欠陥と
して、(1)溶接金属中に発生する欠陥、および(2)
溶接金属の表面近傍に発生する外観上の欠陥とに大別で
きる。
In order to improve productivity in seam welding, it is an effective means to further increase the current welding speed. However, in the current method, as a means for increasing the welding speed, it is general to set the welding current value of each multi-electrode welding electrode to a higher value and to increase the welding speed accordingly. But,
When the welding current is extremely increased and the welding speed is increased, there is a problem that various welding defects occur remarkably. As welding defects that are promoted with the increase in welding speed, (1) defects that occur in the weld metal, and (2)
It can be roughly classified into appearance defects that occur near the surface of the weld metal.

【0007】前者の欠陥としては溶融スラグの巻き込み
やスラグの生成時に生じるガスに起因するブローホール
欠陥、さらには溶接金属の割れなどの欠陥である。スラ
グ巻き込み欠陥とブローホールの欠陥は、いずれも溶接
金属の溶融状態で生成した溶融スラグやガス気泡の浮上
にかかわるもので、溶接速度が速くなるほど溶接金属の
凝固時間が短くなり、溶融スラグやガス気泡が溶接金属
中にトラップされやすくなる。また溶接金属割れの欠陥
には、凝固割れ(または高温割れ)や低温割れ(または
遅れ割れ)などがある。凝固割れは、鋳物の凝固時に生
じる引け巣と同じような機構で説明される。すなわち、
溶接においても溶接速度が高速度になると、溶接入熱が
一定であっても溶接金属の凝固速度が速まり、凝固時に
生じる管の変形つまり溶接金属を開こうとする拘束力に
溶融金属の補給が十分に追いついて行けないことに起因
するものである。
The former defects include blowhole defects caused by gas entrainment of molten slag and gas generated when slag is generated, and further defects such as cracking of weld metal. Both slag inclusion defect and blowhole defect are related to the levitation of molten slag and gas bubbles generated in the molten state of the weld metal.The faster the welding speed, the shorter the solidification time of the weld metal, and Bubbles are more likely to be trapped in the weld metal. The defects of weld metal cracks include solidification cracks (or high temperature cracks) and low temperature cracks (or delayed cracks). Solidification cracking is explained by a mechanism similar to shrinkage cavities that occur during solidification of castings. That is,
Even in welding, if the welding speed becomes high, the solidification rate of the weld metal will increase even if the welding heat input is constant, and the molten metal will be replenished to the deformation of the pipe that occurs during solidification, that is, the restraining force to open the weld metal. Is due to being unable to keep up with.

【0008】また後者の外観上の欠陥は、溶接速度の高
速度化によるビード表面形状の凸状化とそれに伴うアン
ダーカットの生成である。一般的に溶接電流を高めると
アークプラズマが大きくなり、強い掘り下げ効果ととも
に、溶接金属の溶鋼流に対しても大きな運動エネルギー
が付与され溶接進行方向と逆の方向に強い溶鋼流が生じ
る。通常、多電極溶接たとえば4電極SAW法の場合、
各電極の作用は定性的に以下のような説明ができる。す
なわち先行の第1、第2電極は主として母材の掘り下げ
に寄与し、掘り出された溶鋼流は勢いよく後方へ押し流
される。次に第3電極目は第1、2電極で掘り起こされ
た溶鋼流の流れの勢いを抑制するとともに、ビード幅を
広げる作用がある。さらに第4電極目、つまり最終電極
は第1〜第3電極によって後方へ押し出される溶鋼流の
勢いをさらに弱めて凝固を安定させる機能がある。
The latter appearance defect is that the bead surface shape is made convex due to the increased welding speed, and the undercut is generated accordingly. Generally, when the welding current is increased, the arc plasma becomes large, and with a strong digging effect, large kinetic energy is applied to the molten steel flow of the weld metal, and a strong molten steel flow is generated in the direction opposite to the welding proceeding direction. Usually, in the case of multi-electrode welding, such as the 4-electrode SAW method,
The action of each electrode can be qualitatively explained as follows. That is, the preceding first and second electrodes mainly contribute to the digging of the base material, and the digged molten steel flow is vigorously pushed backward. Next, the third electrode has the function of suppressing the flow force of the molten steel flow dug up by the first and second electrodes and widening the bead width. Further, the fourth electrode, that is, the last electrode has a function of further weakening the momentum of the molten steel flow pushed backward by the first to third electrodes and stabilizing the solidification.

【0009】したがって4電極SAW法などの多電極溶
接法で溶接速度の高速化を達成するためには、上記の各
電極の電流、電圧あるいは電極角度、電極間隔などのバ
ランスが非常に重要である。溶接速度の高速化に対し
て、他の要素として使用するフラックスの溶接性も重要
である。そのため、現状のUOE各製造工場とも多電極
SAW法でそれぞれ最もバランスのとれた最高溶接速度
の条件を適用して鋼管の製造を実施している。
Therefore, in order to achieve a high welding speed in the multi-electrode welding method such as the 4-electrode SAW method, the balance of the current, voltage or electrode angle, electrode interval, etc. of each electrode is very important. . Weldability of the flux used as another element is also important for increasing the welding speed. Therefore, at each of the current UOE manufacturing plants, steel pipes are manufactured by applying the conditions of the highest balanced welding speed in the multi-electrode SAW method.

【0010】したがって現状法で単純に溶接電流を高め
て溶接速度のさらなる高速度化を図っても,アンダーカ
ットが生成したりビードの凸状化を生じるために困難で
ある。一方、高電流化や、高速度化にともなって発生す
る極端な凸ビードやアンダーカットなどの溶接欠陥は、
グラインダーによる凸ビードの手直しや補修溶接を実施
しなければならないという問題がある。現在、上記の種
々の問題点を解消することを目的として磁気撹拌を適用
する方法が提案され、一部実用に供されている。しか
し、該法の適用は1電極法にのみ限られており、1電極
法では溶接速度の高速度化に限界があり、鋼管の大量生
産用のUOEプロセスには適用できないという問題があ
る。
Therefore, even if the welding current is simply increased by the existing method to further increase the welding speed, it is difficult because the undercut is generated and the bead becomes convex. On the other hand, welding defects such as extreme convex beads and undercuts that occur with high current and high speed,
There is a problem that it is necessary to repair the convex bead by the grinder and repair welding. At present, a method of applying magnetic stirring for the purpose of solving the above-mentioned various problems has been proposed and partially put to practical use. However, the application of this method is limited to only the one-electrode method, and the one-electrode method has a limitation in increasing the welding speed, and there is a problem that it cannot be applied to the UOE process for mass production of steel pipes.

【0011】[0011]

【発明が解決しようとする課題】本発明は上述した従来
の問題点を解消すべくなされたものであって、UOEプ
ロセスにおいて、鋼管のシーム溶接における溶接速度を
向上し、生産性とその溶接品質を著しく改善できる鋼管
の溶接方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and improves the welding speed in seam welding of steel pipes in the UOE process to improve productivity and welding quality thereof. The present invention provides a method for welding a steel pipe which can significantly improve

【0012】[0012]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、多電極潜弧溶接法で鋼管を溶接する
方法において、多電極の最終電極の電極先端部をコイル
で囲い、該コイルに通電して磁場を形成し溶融金属に磁
気撹拌を与えて溶接することを特徴とする鋼管の磁気撹
拌溶接法である。
Means for Solving the Problems The present invention is to solve the above problems, and in a method of welding a steel pipe by a multi-electrode latent arc welding method, the electrode tip of the final electrode of the multi-electrode is surrounded by a coil, A magnetic stir welding method for a steel pipe, characterized in that the coil is energized to form a magnetic field and the molten metal is magnetically stirred to weld.

【0013】[0013]

【発明の実施の形態】以下本発明を図面にもとづいて詳
細に説明する。図1は本発明による多電極(4電極)の
潜弧溶接法による鋼管シームの磁気撹拌溶接法を示す側
断面で、図2は図1の正断面を示す図である。図中の1
は磁気撹拌用コイルの鋼製外皮、2は同様に鋼製内皮、
3は鋼製内皮と鋼製外皮の間にエナメル銅線を巻いたコ
イルである。4はコイルの間接水冷管、5は冷却水導入
口、6は冷却水排出口、7は冷却水仕切り壁、8は電極
へのコイル固定用治具、9は電極と鋼製内皮2間の絶縁
材、10は電極へコイル部を固定するための止めネジ、
11はコイル3に接続する交番磁場電源、12は潜弧溶
接用の第1電極(先行電極)、13は第2電極、14は
第3電極、15は第4電極(最終電極)、16は鋼管の
母材、17は潜弧溶接用のフラックス、18〜21は各
電極の溶接アーク、22は溶融池、23は潜弧溶接ビー
ド、24は潜弧溶接スラグ、25はコイルによる磁場で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. 1 is a side sectional view showing a magnetic stir welding method of a steel pipe seam by a multi-electrode (four-electrode) latent arc welding method according to the present invention, and FIG. 2 is a diagram showing a front section of FIG. 1 in the figure
Is a steel outer shell of a magnetic stirring coil, 2 is a steel inner shell,
3 is a coil in which an enamel copper wire is wound between a steel inner skin and a steel outer skin. Reference numeral 4 is an indirect water cooling tube of a coil, 5 is a cooling water inlet, 6 is a cooling water outlet, 7 is a cooling water partition wall, 8 is a jig for fixing a coil to an electrode, 9 is a space between the electrode and the steel endothelium 2. Insulating material, 10 is a set screw for fixing the coil part to the electrode,
11 is an alternating magnetic field power source connected to the coil 3, 12 is a first electrode (leading electrode) for latent arc welding, 13 is a second electrode, 14 is a third electrode, 15 is a fourth electrode (final electrode), 16 is Base material of steel pipe, 17 is a flux for latent arc welding, 18-21 is a welding arc of each electrode, 22 is a molten pool, 23 is a latent arc welding bead, 24 is a latent arc welding slag, and 25 is a magnetic field by a coil. .

【0014】上記図面において、鋼製外皮と鋼製内皮の
間に数百から数千回エナメル銅線を巻いたコイル3に交
番磁場電源11から交番電流を流し磁場を発生させる。
磁場はエナメル銅線を最終電極15の円周方向に巻き付
けているため、コイルの鋼製内皮側では溶接電極に対し
て軸方向の交番磁場25が得られる。一方、溶接電極1
2〜15を介してそれぞれの中心から溶接ワイヤと母材
との間で溶接部近傍を潜弧溶接用のフラックス17で覆
いながら溶接アーク18〜21を発生させる。母材部の
溶接アークの直下には溶融池22が形成され、さらにそ
の後方には潜弧溶接スラグ24に覆われた溶接ビード2
3が形成される。
In the above drawings, an alternating magnetic field power source 11 supplies an alternating current to a coil 3 in which an enamel copper wire is wound several hundred to several thousand times between a steel outer skin and a steel inner skin to generate a magnetic field.
Since the magnetic field is formed by winding the enamel copper wire in the circumferential direction of the final electrode 15, an alternating magnetic field 25 in the axial direction is obtained with respect to the welding electrode on the steel inner side of the coil. On the other hand, welding electrode 1
Welding arcs 18 to 21 are generated while covering the vicinity of the welded portion between the center of each of the welding wires 2 to 15 and the welding wire and the base material with the flux 17 for latent arc welding. A weld pool 22 is formed immediately below the welding arc of the base metal portion, and a welding bead 2 covered with a latent arc welding slag 24 is provided behind it.
3 is formed.

【0015】ここで第4電極の溶接電流はアーク21と
溶融池22を介して母材16の面に平行、かつ放射状に
流れる。これに対して前記の交番磁界がクロスし、フレ
ミングの左手の法則により、第4電極で形成される溶融
池に回転力が作用して溶融金属が撹拌される。このと
き、溶接時の熱からコイルを保護するため、コイルの間
接水冷管4の冷却水導入口5から冷却水を供給し、コイ
ルを間接的に冷却したのち冷却水排出口6から排水され
る。冷却水仕切り壁7は水をコイルの周方向に回転させ
て冷却能を高めるためである。
Here, the welding current of the fourth electrode flows radially and in parallel with the surface of the base material 16 via the arc 21 and the molten pool 22. On the other hand, the alternating magnetic field crosses, and according to Fleming's left-hand rule, a rotating force acts on the molten pool formed by the fourth electrode to stir the molten metal. At this time, in order to protect the coil from heat during welding, cooling water is supplied from the cooling water introduction port 5 of the indirect water cooling pipe 4 of the coil, the coil is indirectly cooled, and then discharged from the cooling water discharge port 6. . The cooling water partition wall 7 is for rotating water in the circumferential direction of the coil to enhance the cooling ability.

【0016】[0016]

【実施例】以下上記の装置により本発明の方法を実施し
た例について記述する。 母材としてX65級の厚み2
0mm、長さ2000mm、板幅が500mmの鋼板の
片面に図3に示すようなUOEの外面側と同様な開先加
工を行った。該開先内に通常のUOEプロセスと同じよ
うに20mm厚の材料用の入熱3kJ/cmの仮付けビ
ードを炭酸ガスアーク溶接法で置いた。この試験材を用
い、表1に示すような条件で磁気撹拌有無の溶接試験を
実施した。
EXAMPLES Examples of carrying out the method of the present invention using the above apparatus will be described below. Thickness of X65 grade as base material 2
A groove similar to the outer surface side of UOE as shown in FIG. 3 was formed on one surface of a steel plate having a length of 0 mm, a length of 2000 mm, and a plate width of 500 mm. A temporary bead having a heat input of 3 kJ / cm for a material having a thickness of 20 mm was placed in the groove by the carbon dioxide arc welding method in the same manner as in the normal UOE process. Using this test material, a welding test with or without magnetic stirring was carried out under the conditions shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】ここでは前記したごとく、潜弧溶接への磁
気撹拌の適用による生産性の向上という観点から20m
m厚のUOEにおける標準溶接条件、つまり溶接電流、
電圧、速度をベースとして電流を段階的に増加し、かつ
溶接速度は標準条件の溶接入熱と一致するように変化さ
せた。また標準電流、電圧で溶接速度のみ徐々に増加さ
せたものについても磁気撹拌無しの従来法と磁気撹拌を
適用した本発明法を比較試験した。溶接材料はワイヤ、
フラックスとも通常のUOEと同じものを適用した。な
お磁気撹拌の条件、すなわち交番磁場電源からの出力電
流、磁場周波数およびコイル高さの設定はあらかじめ予
備試験において効果が確認された磁場強度350ガウス
の得られる条件を適用した。
As described above, from the viewpoint of improving productivity by applying magnetic stirring to the latent arc welding, the length is 20 m.
Standard welding conditions for m-thick UOE, namely welding current,
The current was increased stepwise based on the voltage and speed, and the welding speed was changed to match the welding heat input under standard conditions. In addition, a comparative test was also performed between the conventional method without magnetic stirring and the method of the present invention to which magnetic stirring was applied, in which only the welding speed was gradually increased with standard current and voltage. Welding material is wire,
The same flux as the normal UOE was applied. The magnetic stirring condition, that is, the output current from the alternating magnetic field power source, the magnetic field frequency, and the coil height were set under the condition that a magnetic field strength of 350 gauss, which was confirmed to be effective in the preliminary test, was obtained.

【0019】溶接後、ビード部のX線透過試験、アンダ
ーカット発生率および溶込断面のマクロ試験片を各条件
毎に3個ずつ採取し研磨、腐食後ビード各部の寸法測定
を実施し、測定平均値で実用性を評価した。試験結果を
表2に示す。アンダーカットの発生率は、アンダーカッ
ト総長さとビード総長さの比で表した。実用性の評価と
して○印は実用上なんら問題なく適用可能と判断された
もの、△印は若干のビードのグラインダー手直しが必要
と判断されたもの。×印は一部ハツリおよび補修溶接が
必要と判断されたものを示す。
After welding, X-ray transmission test of bead portion, undercut occurrence rate, and three macro test pieces of penetration cross section were collected under each condition, and after polishing and corrosion, dimension measurement of each bead portion was performed and measured. Practicality was evaluated by the average value. Table 2 shows the test results. The undercut occurrence rate was expressed as the ratio of the total undercut length and the total bead length. As a practical evaluation, the ○ marks are those that were judged to be applicable without any practical problems, and the Δ marks were those that required some reworking of the bead grinder. The mark X indicates that some chipping and repair welding were judged necessary.

【0020】[0020]

【表2】 [Table 2]

【0021】磁気撹拌無しの従来法の場合、現標準条件
の試験記号がA2材は特に問題はなかった。しかし、高
電流・高速度化した試験記号B2、C2、D2材は高電
流・高速度化に伴ってビード幅が徐々に狭くなり、かつ
余盛高さも高くなり、さらにアンダーカットの発生率も
増加する傾向が確認された。特に溶接速度を2.4m/
minとした試験記号D2材はX線透過試験において内
質欠陥が認められた。また電流、電圧を標準条件として
溶接速度を徐々に高めた試験記号E2、F2材は、溶接
速度の増加につれてアンダーカットの発生率が増加し
た。一方、磁気撹拌を適用した試験記号A1〜F1材で
はいずれの条件においても実用可能な結果が得られ、多
電極潜弧溶接法で最終電極に磁気撹拌溶接を適用するこ
とによって高溶接速度化およびそれに伴うアンダーカッ
トの抑制に効果のあることが確認された。
In the case of the conventional method without magnetic stirring, there was no particular problem with the test code A2 of the current standard conditions. However, the test symbols B2, C2, and D2 with high current and high speed have a gradually narrower bead width, higher surplus height, and undercut occurrence rate with higher current and higher speed. An increasing tendency was confirmed. Especially welding speed 2.4m /
An internal defect was recognized in the test symbol D2, which was min, in the X-ray transmission test. Further, in the test symbols E2 and F2, in which the welding speed was gradually increased under the standard conditions of current and voltage, the undercut occurrence rate increased as the welding speed increased. On the other hand, with the test symbols A1 to F1 materials to which magnetic stirring was applied, practicable results were obtained under all conditions, and by applying magnetic stirring welding to the final electrode in the multi-electrode latent arc welding method, high welding speed and It was confirmed that it was effective in suppressing undercut.

【0022】[0022]

【発明の効果】以上説明したように、本発明によればU
OE鋼管の製造工程におけるシーム溶接部の溶接速度の
向上が実現でき、生産性を向上することと溶接品質を著
しく改善することが可能となる。
As described above, according to the present invention, U
It is possible to improve the welding speed of the seam welded portion in the manufacturing process of the OE steel pipe, improve the productivity, and significantly improve the welding quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気撹拌溶接方法を説明する溶接
部の横断面図
FIG. 1 is a transverse sectional view of a welded portion for explaining a magnetic stir welding method according to the present invention.

【図2】本発明による磁気撹拌溶接方法を説明する溶接
部の縦断面図
FIG. 2 is a vertical sectional view of a welded portion for explaining a magnetic stir welding method according to the present invention.

【図3】実施例における開先形状を示す図FIG. 3 is a diagram showing a groove shape in an example.

【符号の説明】[Explanation of symbols]

1 鋼製外皮 2 鋼製内皮 3 コイル 4 間接水冷管 5 冷却水導入口 6 冷却水排出口 7 冷却水仕切り壁 8 コイル固定用治具 9 絶縁材 10 止めネジ 11 交番磁場電源 12 第1電極 13 第2電極 14 第3電極 15 第4電極 16 母材 17 フラックス 18、19、20、21 溶接アーク 22 溶融池 23 潜弧溶接ビード 24 潜弧溶接スラグ 25 コイルによる磁場 1 Steel Skin 2 Steel Endothelium 3 Coil 4 Indirect Water Cooling Pipe 5 Cooling Water Inlet 6 Cooling Water Outlet 7 Cooling Water Partition Wall 8 Coil Fixing Tool 9 Insulating Material 10 Set Screw 11 Alternating Magnetic Field Power Supply 12 First Electrode 13 2nd electrode 14 3rd electrode 15 4th electrode 16 Base material 17 Flux 18, 19, 20, 21 Welding arc 22 Molten pool 23 Submerged arc welding bead 24 Submerged arc welding slag 25 Magnetic field by coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多電極潜弧溶接法で鋼管を溶接する方法
において、多電極の最終電極の電極先端部をコイルで囲
い、該コイルに通電して磁場を形成し溶融金属に磁気撹
拌を与えて溶接することを特徴とする鋼管の磁気撹拌溶
接法。
1. A method for welding a steel pipe by a multi-electrode latent arc welding method, wherein an electrode tip portion of the final electrode of the multi-electrode is surrounded by a coil, and the coil is energized to form a magnetic field to give magnetic stirring to the molten metal. Magnetic stir welding method for steel pipes, which is characterized by welding by welding.
JP7809696A 1996-03-07 1996-03-07 Magnetic stirring welding method of steel tube Withdrawn JPH09239536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7809696A JPH09239536A (en) 1996-03-07 1996-03-07 Magnetic stirring welding method of steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7809696A JPH09239536A (en) 1996-03-07 1996-03-07 Magnetic stirring welding method of steel tube

Publications (1)

Publication Number Publication Date
JPH09239536A true JPH09239536A (en) 1997-09-16

Family

ID=13652343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7809696A Withdrawn JPH09239536A (en) 1996-03-07 1996-03-07 Magnetic stirring welding method of steel tube

Country Status (1)

Country Link
JP (1) JPH09239536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011858A1 (en) * 2006-07-25 2008-01-31 Europipe Gmbh Method and device for welding metal workpieces to a transmission means immersed directly in the melt bath
CN104785906A (en) * 2012-12-20 2015-07-22 天津大学 Four-wire-integrated welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011858A1 (en) * 2006-07-25 2008-01-31 Europipe Gmbh Method and device for welding metal workpieces to a transmission means immersed directly in the melt bath
CN104785906A (en) * 2012-12-20 2015-07-22 天津大学 Four-wire-integrated welding method
CN104785906B (en) * 2012-12-20 2016-09-07 天津大学 Four integral type welding methods

Similar Documents

Publication Publication Date Title
JP6265311B1 (en) ERW Welded Stainless Clad Steel Pipe and Manufacturing Method Thereof
JP6164368B2 (en) Manufacturing method of ERW welded stainless clad steel pipe
JP2010052040A (en) Welded steel pipe joined with high-density energy beam, and manufacturing method therefor
JP2007283356A (en) Method of manufacturing uoe steel pipe
US6371359B1 (en) Stainless steel pipe and joining method thereof
JP2007516351A (en) Manufacturing method of stainless steel pipe used for piping system
JPH09239536A (en) Magnetic stirring welding method of steel tube
JPS5811317B2 (en) Horizontal electroslag build-up welding method
Cunat The welding of stainless steels
EP0786304B1 (en) Variable polarity arc technology for the repair of coated articles
JPH0985440A (en) Magnetic agitating welding method of steel tube
JP3182672B2 (en) Internal welding method of clad steel pipe
JP2002224860A (en) Butt welding method of metal by friction stir welding
JPH09277043A (en) Magnetic agitation welding method of steel tube
JP2022067423A (en) Steel material
JP2017154150A (en) Method for production of electric resistance welding clad steel tube
CN105499761B (en) Motor stator casing and magnetic pole argon arc welding technique
JPH08309527A (en) Production of clad welded steel pipe
JPH10258364A (en) Steel tube welding method giving less welding defect
JPH06198440A (en) Wear detecting method for arc welding nozzle
JPH1043859A (en) Method for welding steel tube having excellent defective welding resistance
JP4586515B2 (en) Welded steel pipe with secondary workability comparable to that of the base metal in the welded part and method for producing the same
Dharmik et al. Assessment of intelligent CMT with TIG welding on stacked thin sheets of CRNGO electrical steel
JPH10258363A (en) High-speed welding method for steel tube
RU2145913C1 (en) Method for making electrically welded metallic tubes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603