JP2017154150A - Method for production of electric resistance welding clad steel tube - Google Patents

Method for production of electric resistance welding clad steel tube Download PDF

Info

Publication number
JP2017154150A
JP2017154150A JP2016038581A JP2016038581A JP2017154150A JP 2017154150 A JP2017154150 A JP 2017154150A JP 2016038581 A JP2016038581 A JP 2016038581A JP 2016038581 A JP2016038581 A JP 2016038581A JP 2017154150 A JP2017154150 A JP 2017154150A
Authority
JP
Japan
Prior art keywords
gas
gas discharge
welded
welding
clad steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016038581A
Other languages
Japanese (ja)
Other versions
JP6500810B2 (en
Inventor
岡部 能知
Takatoshi Okabe
能知 岡部
昌士 松本
Masashi Matsumoto
昌士 松本
井手 信介
Shinsuke Ide
信介 井手
聡太 後藤
Sota Goto
聡太 後藤
橋本 裕二
Yuji Hashimoto
裕二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016038581A priority Critical patent/JP6500810B2/en
Publication of JP2017154150A publication Critical patent/JP2017154150A/en
Application granted granted Critical
Publication of JP6500810B2 publication Critical patent/JP6500810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a production method for electric resistance welding clad steel tubes having excellent characteristics of a welding part without applying additional welding treatment required in prior art.SOLUTION: A production method for electric resistance welding clad steel tubes comprises: applying beveling of both end parts of a hot-rolled steel band in a width direction to obtain a V type bevel having a bevel angle of 20 to 70° and a bevel depth of 10 to 50% of total wall thickness in such a form that a clad interface is pressed from a cladding material side into a radial thickness center side; and in electric resistance welding, blowing a shield gas 5 from the gas discharge port of a nozzle for shield gas blowing coordinating the gas discharge port 1A divided into three layers in an element tube circumferential direction, to a position of 5 to 300 mm upward from the upper end of a welded part 11 facing that part by controlling the flow rate B of gas discharge from the gas discharge port of the central layer among three layers to 0.5 to 50 m/s, and that rate A (m/s) of gas discharge from the discharge ports of the remaining both end layers to satisfy the expression of 0.01≤B/A≤10.SELECTED DRAWING: Figure 1

Description

本発明は、電縫溶接クラッド鋼管の製造方法に関し、特に、電縫溶接ままで溶接部の特性が優れた電縫溶接クラッド鋼管の製造方法に関する。   The present invention relates to a method for manufacturing an ERW welded clad steel pipe, and more particularly, to a method for manufacturing an ERW welded clad steel pipe having excellent weld characteristics as it is as an ERW weld.

通常、電縫鋼管は、鋼板(鋼帯ともいう)を管状に成形し、高周波電流によって加熱・溶融された対向する鋼帯幅端部を、スクイズロールにより突き合せ加圧して溶接し製造される。電縫鋼管の場合、一般に溶接部の特性は母材より劣ると云われ、鋼管の適用に当たって、用途ごとに溶接部の靭性や強度や伸びなどの保証が常に議論されて問題となってきた。   Usually, an electric resistance welded steel pipe is manufactured by forming a steel plate (also called a steel strip) into a tubular shape and welding the opposite ends of the steel strip heated and melted by high-frequency current by butt-pressing them with a squeeze roll. . In the case of ERW steel pipe, it is generally said that the characteristics of the welded part are inferior to that of the base metal, and in application of the steel pipe, guarantees such as toughness, strength and elongation of the welded part have always been discussed for each application.

電縫溶接部の特性を低下させる原因としては、ペネトレータと呼ばれる酸化物主体の溶接欠陥が、電縫溶接時に被溶接部(詳しくは、帯材を丸めてなるオープン管である素管の周方向両端面を突き合せた部位である素管エッジ突合せ部)に生成して残留し、この残留したペネトレータを原因として靭性が低下したり強度不足になったりする例が多かった。   The cause of the deterioration of the characteristics of ERW welds is that an oxide-based welding defect called penetrator is caused by welded parts during ERW welding (specifically, the circumferential direction of the open pipe formed by rolling the strip) In many cases, the toughness is reduced or the strength is insufficient due to the remaining penetrator.

そこで、従来技術として電縫溶接不良の主原因であるペネトレータを溶接部から除くため、スクイズロールによるアプセット量を板厚よりも大きくして、溶接時に生じる酸化溶融物を管外面に排出する対策が取られてきた。   Therefore, as a conventional technique, in order to remove the penetrator, which is the main cause of ERW welding failure, from the welded part, there is a measure to make the upset amount by the squeeze roll larger than the plate thickness and discharge the oxidized melt generated during welding to the pipe outer surface. Has been taken.

しかしながら、クラッド鋼板を素材として電縫溶接クラッド鋼管を製造する場合、スクイズロールによるアプセット量を肉厚(板厚)よりも大きくすると、図6(a)に示すように、母材である普通鋼の溶融鋼および熱影響部が内面側或いは外面側またはその両側の合せ材の金属シーム部に混入する現象が生じ、過度なアプセット量の場合、溶接ビード切削後、鋼管内面への母材の露出を引き起こし、結果として、合せ材の優れた特性を活かすクラッド鋼管としての性能が失われる。例えば、管内面側の合せ材がステンレス鋼、管外面側の母材が低合金鋼であるステンレスクラッド鋼板を素材とし、上記のように肉厚よりもアプセット量を大きくして電縫溶接した電縫溶接ステンレスクラッド鋼管を、管内面に耐食性が要求される環境下で使用すると、ステンレス鋼のシーム部は、母材の低合金鋼が合せ材のステンレス鋼側に混入または内面に露出しているために、耐食性が著しく低下しており、要求性能を発揮できないという問題があった。   However, when manufacturing an ERW welded clad steel pipe using a clad steel plate as a raw material, if the upset amount by the squeeze roll is larger than the wall thickness (plate thickness), as shown in FIG. When the molten steel and heat-affected zone are mixed into the metal seam of the laminated material on the inner surface, outer surface, or both sides, and if the amount of upset is excessive, the base metal is exposed to the inner surface of the steel pipe after welding bead cutting. As a result, the performance as a clad steel pipe that makes use of the superior properties of the laminated material is lost. For example, a stainless clad steel plate made of stainless steel for the inner surface of the tube and a low alloy steel for the outer surface of the tube is made of a material, and the amount of upset is larger than the wall thickness as described above. When a sewn welded stainless steel clad steel pipe is used in an environment where corrosion resistance is required on the inner surface of the pipe, the low alloy steel of the base material is mixed into the stainless steel side of the mating material or exposed to the inner surface of the stainless steel seam. Therefore, the corrosion resistance is remarkably lowered, and there is a problem that the required performance cannot be exhibited.

このような問題に対し、特許文献1に、管状に曲成したクラッド鋼板または鋼帯の対向両縁部を突合せ溶接した溶接ビード中の少なくとも合せ材側ビードを、母材に到る深さまで切削除去し、切削除去部に合せ材と同様性質を有する肉盛溶接を施すクラッド管の製造方法が開示されている。   In order to solve such a problem, Patent Document 1 discloses that at least a laminated material side bead in a welded bead obtained by butt-welding opposite clad steel plates or steel strips which are bent in a tubular shape is cut to a depth reaching the base material. A method for manufacturing a clad pipe that is removed and is subjected to overlay welding having the same properties as the laminated material at the cut-off portion is disclosed.

また、特許文献2に、クラッド鋼帯を素管に成形し、継目エッジ部を電縫溶接した後、異種金属が侵入した溶接シームに沿って、クラッド界面部の深さまで溶融・凝固させて、該異種金属を希釈する、または、異種金属が侵入したシーム部を合せ材と同種の金属で肉盛溶接し、該肉盛溶接部を圧延して前記異種金属を希釈するクラッド鋼の鋼管製造方法が開示されている。   Further, in Patent Document 2, after forming a clad steel strip into a blank tube and performing seam welding on the seam edge portion, it is melted and solidified to the depth of the clad interface portion along the weld seam into which a dissimilar metal has infiltrated. Clad steel pipe manufacturing method for diluting the dissimilar metal, or overlay welding a seam portion into which the dissimilar metal has infiltrated with the same type of metal as the laminated material, and rolling the build-up weld to dilute the dissimilar metal Is disclosed.

さらに、特許文献3に、内面側を合せ材としたクラッド鋼溶接鋼管の製造方法において、クラッド鋼の原板または原コイルを成形して内面を合せ材とした管状体の合せ材突合せの少なくとも一部分を電縫溶接し、その後突合せ未溶接部を肉盛溶接するクラッド鋼溶接鋼管の製造方法が開示されている。   Further, in Patent Document 3, in a method for manufacturing a clad steel welded steel pipe having an inner surface as a laminated material, at least a part of a laminated material butt of a tubular body having an inner surface as a laminated material by forming a clad steel original plate or an original coil is provided. A method for manufacturing a clad steel welded steel pipe is disclosed in which electric seam welding is performed and then the butt-unwelded portion is overlay welded.

特開昭60-221173号公報JP 60-221173 A 特開昭62−156087号公報JP-A-62-156087 特開平5−154545号公報JP-A-5-154545

しかしながら、上記の特許文献1〜3に記載の技術は、いずれも電縫溶接後に、合せ材ビード部を切削除去して肉盛溶接する(特許文献1)、溶接シームに沿ってTIGアーク熱源などで溶融・凝固または肉盛溶接する(特許文献2)、突合せ未溶接部を肉盛溶接する(特許文献3)、などの追加の溶接工程が必要なため、生産性が低下し、製造コストが増大するとともに、追加の肉盛溶接で環境面の悪影響を生じるという課題があった。   However, all of the techniques described in Patent Documents 1 to 3 described above include cutting and removing the bead portion of the mating material and performing overlay welding after electro-welding (Patent Document 1), a TIG arc heat source along the welding seam, and the like. Since additional welding processes such as fusion / solidification or overlay welding (Patent Document 2) and overlay welding of the butt-unwelded part (Patent Document 3) are required, productivity is reduced and manufacturing costs are reduced. In addition to the increase, there is a problem that an additional build-up welding has an adverse environmental impact.

本発明の目的は、従来技術で必要とされている追加の溶接処理を施さなくても、優れた溶接部の特性を有する電縫溶接クラッド鋼管の製造方法を提供することである。   It is an object of the present invention to provide a method for producing an electric resistance welded clad steel pipe having excellent weld properties without performing the additional welding process required in the prior art.

発明者らは、前記課題を解決する為に鋭意検討し、その結果、素管のエッジ部加熱起点から溶接点に至る通管範囲をシールドボックスで覆わずに、前記通管範囲内で素管の被溶接部直上から被溶接部にシールドガスを吹き付ける場合、被溶接部の上端からシールドガス吹付け用ノズルにおけるシールドガスの放出口までの高さであるノズル高さ、および吹付けるシールドガスの流速を適正に制御することに加え、前記シールドガス吹付け用ノズルの構造を素管周方向に対して3層以上に分割した構造とし、両端層のガス放出口からの吹付けガス流速と残りの層のガス放出口からの吹付けガス流速の比を適性に制御することにより、被溶接部の酸素濃度を格段に低減できることを見出した。   The inventors have intensively studied to solve the above-mentioned problems, and as a result, the pipe tube range from the edge heating start point to the weld point of the pipe tube is not covered with a shield box, and the raw tube is within the pipe tube range. When the shield gas is blown from the top of the welded part to the welded part, the nozzle height, which is the height from the upper end of the welded part to the shield gas blowing nozzle, and the shielding gas to be blown In addition to appropriately controlling the flow rate, the shield gas blowing nozzle structure is divided into three or more layers in the circumferential direction of the raw tube, and the blowing gas flow rate from the gas discharge ports at both ends and the remaining It has been found that the oxygen concentration in the welded part can be significantly reduced by appropriately controlling the ratio of the flow velocity of the gas blown from the gas outlet of the layer.

さらに、図7に示すように、電縫溶接よりも前工程において、突合せ溶接部となるクラッド鋼帯幅端部に合せ材側を肉厚中央側へ押し込んだ形状のV形開先とする開先加工を施すことで、クラッド界面を肉厚中央側へ移動させ、それによって、電縫溶接中のクラッド鋼の被溶接部の溶融鋼の流れを制御でき、母材の溶融鋼および熱影響部が、鋼管内面側に位置する合せ材の金属シーム部へ混入し内面に露出することを抑制できることを見出した。また、前記V形開先を付与することにより、十分なアプセット量を付加することができるため酸化物の排出が促進される。さらには、前記V形開先を付与することで、被接合部面全体の温度分布が均一化されるため、電縫溶接部から酸化物の排出が促進され、結果的に電縫溶接部の靭性および強度の低下も防止できることを発見した。ここで、開先加工方法としてはクラッド界面を肉厚中央側へ押込む必要があり、プレス加工や圧延およびロール成形等の方法が適用できる。   Further, as shown in FIG. 7, in the process preceding ERW welding, an opening is formed as a V-shaped groove having a shape in which the mating material side is pushed into the thickness center side at the end of the clad steel strip width which is a butt weld. By applying the pre-processing, the clad interface can be moved to the center of the wall thickness, thereby controlling the flow of the molten steel in the welded part of the clad steel during ERW welding, and the molten steel and heat-affected zone of the base metal However, it discovered that it could suppress that it mixes in the metal seam part of the laminated material located in the steel pipe inner surface side, and is exposed to an inner surface. Moreover, since the sufficient upset amount can be added by providing the V-shaped groove, the discharge of oxide is promoted. Further, by providing the V-shaped groove, the temperature distribution of the entire surface of the joined portion is made uniform, so that the discharge of oxide from the ERW weld is promoted, and as a result, the ERW weld It has been discovered that a reduction in toughness and strength can also be prevented. Here, as the groove working method, it is necessary to push the clad interface toward the center of the wall thickness, and methods such as press working, rolling and roll forming can be applied.

また、溶接部の特性が優れた電縫溶接管とは、JIS G 3445の規定に準拠した偏平試験で得られる偏平高さHと管の外径Dとの比H/Dが0.3未満を達成するものであり、この条件を満たすことで破断特性に優れた溶接部を有することがこれまでの数々の評価試験により明らかとなった。即ち本発明は以下の通りである。
(1)炭素鋼の母材とステンレス鋼あるいはニッケル基合金の合せ材とからなるクラッド鋼の熱延鋼帯を管状に成形し、該熱延鋼帯の幅方向両端部を突合せ電縫溶接してなる電縫溶接クラッド鋼管の製造方法であって、前記電縫溶接前にあらかじめ前記熱延鋼帯の幅方向両端部を、クラッド界面が合せ材側から肉厚中心側へ押し込まれた形態で、ベベル角度が20〜70°、かつ、開先深さが全肉厚の10〜50%であるV形開先とする開先加工を施し、前記電縫溶接時に、被溶接部を不活性ガスからなるシールドガスでガスシールドする電縫鋼管の素管被溶接部シールド方法を用いて、前記被溶接部に対し該被溶接部上端から5〜300mm上方の位置に、素管周方向に対して3層に分割したガス放出口を配位したシールドガス吹付け用ノズルの前記ガス放出口から前記シールドガスを、前記3層のうちの中央層のガス放出口からのガス放出流速Bは、0.5〜50m/sとし、残りの両端層のガス放出口からのガス放出流速A(m/s)は式、0.01≦B/A≦10、を満たす流速として、吹付けることを特徴とする電縫溶接クラッド鋼管の製造方法。
(2)前記V形開先に加えて、前記幅方向両端部の母材側を開先加工し、X形開先とすることを特徴とする(1)に記載の電縫溶接クラッド鋼管の製造方法。
(3)前記ガス放出口の形状は、寸法の通管方向成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状であることを特徴とする(1)または(2)に記載の電縫溶接クラッド鋼管の製造方法。
(4)前記ガス放出口の全層合併した寸法の素管エッジ突合せ方向成分である幅Rは、前記ガス放出口の直下の被溶接部の端面間の最大間隔Wに対し、R/W>1.0、なる関係を満たすことを特徴とする(1)〜(3)のいずれかに記載の電縫溶接クラッド鋼管の製造方法。
(5)前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしたことを特徴とする(1)〜(4)のいずれかに記載の電縫溶接クラッド鋼管の製造方法。
Also, the ERW welded pipe with excellent weld properties means that the ratio H / D between the flat height H obtained by a flattening test in accordance with JIS G 3445 and the outer diameter D of the pipe is less than 0.3. It has been clarified by a number of evaluation tests so far that it has a weld with excellent fracture characteristics when this condition is satisfied. That is, the present invention is as follows.
(1) A hot-rolled steel strip made of clad steel consisting of a carbon steel base material and a stainless steel or nickel-base alloy laminated material is formed into a tubular shape, and both ends in the width direction of the hot-rolled steel strip are butt-welded and electro-welded. A method for producing an ERW welded clad steel pipe, wherein both ends in the width direction of the hot-rolled steel strip are pushed in advance from the laminated material side to the wall thickness center side before the ERW welding. The groove is formed into a V-shaped groove having a bevel angle of 20 to 70 ° and a groove depth of 10 to 50% of the total thickness, and the welded part is inactive during the electric resistance welding. By using the shielding method of the welded part of the ERW steel pipe which is gas shielded with the shielding gas composed of gas, the welded part is positioned at a position 5 to 300 mm above the welded part upper end with respect to the welded part with respect to the circumferential direction of the pipe. Shield gas spraying nozzle with gas outlets divided into three layers The shield gas is discharged from the gas discharge port of the gas, the gas discharge flow velocity B from the gas discharge port of the central layer of the three layers is 0.5 to 50 m / s, and the gas discharge ports of the remaining two end layers are used. The gas discharge flow rate A (m / s) is sprayed as a flow rate satisfying the formula, 0.01 ≦ B / A ≦ 10.
(2) In addition to the V-shaped groove, the base metal side of the both ends in the width direction is grooved to form an X-shaped groove. Production method.
(3) The shape of the gas discharge port is characterized by a rectangular shape having a length of 30 mm or more as a component in the direction of pipe passage and a width of 5 mm or more as a component in the element tube edge butting direction as a dimension ( The manufacturing method of the electric-resistance-welded clad steel pipe as described in 1) or (2).
(4) The width R, which is a component of the tube edge butting direction of the combined dimensions of all layers of the gas discharge port, is R / W> with respect to the maximum interval W between the end faces of the welded portion immediately below the gas discharge port. 1.0. The method for producing an electric resistance welded clad steel pipe according to any one of (1) to (3), wherein the relationship of 1.0 is satisfied.
(5) The electric resistance welded clad steel pipe according to any one of (1) to (4), wherein the gas contains 0.1% by mass or more of a reducing gas instead of the inert gas. Production method.

本発明によれば、電縫溶接部を含め全面に亘って合せ材に被覆された内面を有し、かつ溶接部の破断特性が優れた電縫溶接クラッド鋼管を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electric resistance welded clad steel pipe which has the inner surface coat | covered with the laminated material over the whole surface including the electric resistance welding part, and was excellent in the fracture | rupture characteristic of a welding part can be manufactured.

本発明の実施形態を示す概略図である。It is the schematic which shows embodiment of this invention. 複数の層に分割したノズル構造の例を示す模式図である。It is a schematic diagram which shows the example of the nozzle structure divided | segmented into the several layer. シールドガスのガス放出流速Bおよびガス流速比B/Aの適正範囲を示す説明図である。It is explanatory drawing which shows the appropriate range of the gas discharge | emission flow rate B and gas flow rate ratio B / A of shield gas. シールドガスのガス流速比B/Aと被溶接部(素管エッジ突合せ部)の酸素濃度の関係を示す線図である。It is a diagram which shows the relationship between the gas flow rate ratio B / A of shielding gas, and the oxygen concentration of a to-be-welded part (element | tube pipe | tube edge butt | matching part). 電縫溶接ステンレスクラッド鋼管の90°偏平試験における偏平値H/Dと被溶接部(素管エッジ突合せ部)の酸素濃度の関係を示す線図である。It is a diagram which shows the relationship between flat value H / D in the 90 degree flat test of an electric-welding stainless steel clad steel pipe, and the oxygen concentration of a to-be-welded part (element pipe edge butting | matching part). 管内面側の合せ材がステンレス鋼、管外面側の母材が低合金鋼である電縫溶接ステンレスクラッド鋼管の電縫溶接時のアプセット量を変えた場合の溶接部の断面を示す模式図である。This is a schematic diagram showing the cross section of the weld when the upset amount is changed during ERW welding of ESR welded stainless steel clad steel pipe where the inner surface of the pipe is stainless steel and the outer surface of the pipe is low alloy steel. is there. 電縫溶接前後の電縫溶接部の断面の形状を説明する模式図である。It is a schematic diagram explaining the shape of the cross section of the ERW welding part before and behind ERW welding. 開先加工機すなわちフィンパスロール成形機のフィンパスロールによる開先加工の一例を示す図である。It is a figure which shows an example of the groove processing by the fin pass roll of a groove processing machine, ie, a fin pass roll forming machine.

本発明者らは突合せ溶接部となるクラッド鋼帯幅方向端部の開先形状が圧接溶接工程における溶融鋼の流れや熱影響部の塑性流動に及ぼす影響について詳細に調査した。圧接溶接工程中の溶融鋼は、未溶融面に沿うようにして内面側或いは外面側へ流れ出し、その流出量は被溶接部の溶融部分の体積に比例するため、開先加工を施し溶融部分の体積を小さくすると開先を有する側への溶融鋼の流出量が減少する。そこで、クラッド鋼帯幅方向端部の合せ材側にV形開先を設け、合せ材側への溶融鋼の流出量を減らすとともに、前記V形開先を、プレス加工もしくは圧延やロール成形等の方法で合せ材側を肉厚中央側へ押し込んだ形状とすることにより、母材の溶融鋼が合せ材側の溶接シーム部の内面に露出することが防止できることを見出した。   The present inventors investigated in detail about the influence which the groove shape of the clad steel strip width direction end part used as a butt-welding part has on the flow of the molten steel and the plastic flow of the heat affected zone in the pressure welding process. The molten steel in the pressure welding process flows along the unmelted surface to the inner surface or the outer surface, and the outflow amount is proportional to the volume of the molten part of the welded part. When the volume is reduced, the outflow amount of the molten steel to the side having the groove is reduced. Therefore, a V-shaped groove is provided on the side of the clad steel strip in the width direction to reduce the amount of molten steel flowing out to the side of the laminated material, and the V-shaped groove is formed by pressing, rolling, roll forming, etc. It was found that the molten steel of the base material can be prevented from being exposed to the inner surface of the weld seam portion on the side of the mating material by forming the shape in which the laminating material side is pushed into the thickness center side by this method.

そこで、本発明では、電縫溶接部の内面ビードを切削した後、電縫溶接部を含め全面に亘って合せ材に被覆された内面を有する電縫溶接クラッド鋼管とするため、電縫溶接前にクラッド鋼帯の幅方向両端部を、クラッド界面が合せ材側から肉厚中心側へ押し込まれた形態で、ベベル角度θが20〜70°、かつ、開先深さdが、全肉厚の10〜50%であるV形開先に開先加工を施す。該V形開先として突き合せ電縫溶接することにより、母材がビード切削後の合せ材側の溶接部の表面に露出することを防止できる。   Therefore, in the present invention, after cutting the inner surface bead of the ERW welded portion, the ERW welded clad steel pipe having the inner surface covered with the laminated material over the entire surface including the ERW welded portion is formed. In the form in which the clad interface is pushed from the laminated material side to the thickness center side, the bevel angle θ is 20 to 70 ° and the groove depth d is the total thickness. A groove is formed on a V-shaped groove that is 10 to 50% of the groove. By performing butt electrowelding as the V-shaped groove, it is possible to prevent the base material from being exposed to the surface of the welded portion on the side of the mating material after bead cutting.

ベベル角度が20°未満では板厚中央部からの溶接接合界面の温度分布の均一性が保てなくなり、結果として酸化物(ペネトレータ)の排出が不十分になりやすくなる。一方、ベベル角度が70°を超えると、母材の溶融鋼および熱影響部の合せ材側への流動抑制効果が不十分となり、電縫溶接部の内面ビード切削後の鋼管内面に母材が露出する傾向が高まる。なお、電縫溶接時のアプセット量を充分に得るという観点から、ベベル角度は20°〜45°とすることがとくに好ましいことを確認した。   If the bevel angle is less than 20 °, the uniformity of the temperature distribution at the weld joint interface from the center of the plate thickness cannot be maintained, and as a result, the discharge of oxide (penetrator) tends to be insufficient. On the other hand, if the bevel angle exceeds 70 °, the effect of suppressing the flow of the base metal to the molten steel and the heat-affected zone on the side of the joining material becomes insufficient, and the base metal is formed on the inner surface of the steel pipe after bead cutting of the inner surface of the ERW weld. Increased tendency to be exposed. In addition, it was confirmed that the bevel angle is particularly preferably 20 ° to 45 ° from the viewpoint of obtaining a sufficient amount of upset at the time of ERW welding.

また、開先深さが全肉厚の10%未満では母材の溶融鋼および熱影響部の鋼管内面側の合せ材の溶接部への混入抑制効果が不十分となり、酸化物(ペネトレータ)の排出に必要なアプセット量を確保すると、鋼管内面側の合せ材溶接部に母材が混入し、電縫溶接部の内面ビード切削後の鋼管内面に母材が露出する。一方、開先深さdが全肉厚の50%を超えると、溶接接合部の組成が合せ材の組成に近い高合金組成となるため、電縫溶接部の破壊特性が低下する。   Also, if the groove depth is less than 10% of the total wall thickness, the effect of suppressing the mixing of the base metal into the welded portion of the molten steel and the welded material on the inner surface of the steel pipe in the heat-affected zone becomes insufficient, and the oxide (penetrator) If the amount of upset necessary for discharging is secured, the base material is mixed into the welded portion of the steel tube inner surface, and the base material is exposed on the inner surface of the steel pipe after bead cutting of the inner surface of the ERW weld. On the other hand, if the groove depth d exceeds 50% of the total wall thickness, the composition of the weld joint becomes a high alloy composition close to the composition of the laminated material, so that the fracture characteristics of the ERW weld are deteriorated.

また、合せ材側の前記V形開先に加え、母材側も開先加工し、X形開先とすることが好ましい。X形開先とすることで、電縫溶接時のペネトレータの排出が促進され、溶接部の破壊特性が向上する。   In addition to the V-shaped groove on the laminated material side, it is preferable that the base material side is also grooved to form an X-shaped groove. By using the X-shaped groove, the discharge of the penetrator at the time of ERW welding is promoted, and the fracture characteristics of the welded portion are improved.

なお、高腐食性環境で使用されるラインパイプは生産流動体が流れる鋼管内面に高い耐食性が求められ、このような環境では耐食性合金であるステンレス鋼やニッケル基合金が要求条件を満たすため、クラッド鋼の合せ材をステンレス鋼またはニッケル基合金とした。特に高い耐食性を有する点からステンレス鋼ではSUS316L、ニッケル基合金ではAlloy625、Alloy825が好ましい。   Note that line pipes used in highly corrosive environments require high corrosion resistance on the inner surface of the steel pipe through which the production fluid flows, and in such environments, stainless steel and nickel-based alloys, which are corrosion resistant alloys, meet the requirements, so the cladding The steel laminate was stainless steel or nickel-base alloy. In particular, SUS316L is preferable for stainless steel and Alloy625 and Alloy825 are preferable for a nickel-based alloy because of high corrosion resistance.

図1は、本発明の実施形態を示す概略図である。鋼帯からなる帯材を図示しないアンコイラーで連続的に払出し、図示しないレベラーで矯正し、通管方向20に送りつつ、図示しないロール成形機で帯材の幅を丸めて素管(オープン管)10となし、該丸めた幅の両端面を突合せてなる素管エッジ突合せ部である被溶接部11を電縫溶接機(図示しないエッジ部加熱用給電手段と図示しない圧接用スクイズロールとで構成されている)により、電縫溶接して、電縫鋼管15を得る。12は素管エッジ部加熱起点、13は前記圧接により被溶接部11が接合する通管方向位置を指す溶接点である。なお、素管10乃至電縫鋼管15の管内面側にはインピーダ(図示省略)を配置する場合もある。電縫溶接機を出た電縫鋼管15は図示しないサイザーで外径調整をされる。   FIG. 1 is a schematic view showing an embodiment of the present invention. A strip made of steel strip is continuously paid out with an uncoiler (not shown), corrected with a leveler (not shown), and sent in the pipe passing direction 20, while the width of the strip is rounded with a roll forming machine (not shown) to open a raw pipe (open pipe) The welded portion 11 which is a base tube edge butting portion formed by butting both end faces of the rounded width is composed of an electric resistance welding machine (a power supply means for heating an edge portion (not shown) and a squeeze squeeze roll (not shown). Thus, the electric resistance welding steel pipe 15 is obtained by electric resistance welding. Reference numeral 12 denotes an element pipe edge heating start point, and reference numeral 13 denotes a welding point indicating a pipe passing direction position where the welded part 11 is joined by the pressure welding. In some cases, an impeder (not shown) may be disposed on the inner surface side of the base pipe 10 to the ERW steel pipe 15. The outer diameter of the ERW steel pipe 15 exiting the ERW welder is adjusted by a sizer (not shown).

本発明では、素管エッジ部加熱起点12から溶接点13までの通管方向範囲の全域、或いは当該範囲内の、被溶接部に酸化物が生成し易い区域(この区域は予備調査により特定できる)をシールド範囲とし、該シールド範囲において、被溶接部11の直上の位置にシールドガス吹付け用ノズル(略してノズル)1を配置する。
ノズル1は、其のガス放出口1Aを被溶接部11上端と正対する様に配位して、配置される。
本発明では、ノズル1は、図1(b)および図2(a)、(d)に示すように、素管周方向30に対して3層に分割したものとする。これらの層は互いに独立したガス流路をなす。またさらに、前記3層のうちの中央層1Cは、図2(b)、(c)に示すように、素管周方向30に対して2層以上に分割しても良い。なお、両端層1Eは各1層ずつとする。
In the present invention, the entire range of the pipe passage direction from the raw tube edge heating starting point 12 to the welding point 13, or an area within the range where oxides are likely to be generated in the welded part (this area can be specified by preliminary investigation). ) As a shield range, and in this shield range, a shield gas spray nozzle (nozzle for short) 1 is arranged at a position immediately above the welded portion 11.
The nozzle 1 is disposed with its gas discharge port 1 </ b> A positioned so as to face the upper end of the welded part 11.
In this invention, the nozzle 1 shall be divided | segmented into 3 layers with respect to the raw-tube peripheral direction 30, as shown in FIG.1 (b) and FIG.2 (a), (d). These layers form gas passages independent of each other. Still further, the central layer 1C of the three layers may be divided into two or more layers with respect to the raw tube circumferential direction 30, as shown in FIGS. 2 (b) and 2 (c). The two end layers 1E are one layer each.

本発明では、背景技術で言及した処の、前記シールド範囲内の素管10全周を覆うシールドボックスは、設けなくてもよい。むしろ設けない方が電縫鋼管の造管能率面、製造コスト面から好ましいから、この実施形態では設けていない。   In the present invention, the shield box that covers the entire circumference of the element tube 10 within the shield range as described in the background art may not be provided. Rather, it is not provided in this embodiment because it is preferable not to provide it from the viewpoint of pipe making efficiency and manufacturing cost of the ERW steel pipe.

本発明者らはシールドガスの流れについて詳細に観察した。さらに、ガス放出口1Aの位置や寸法、ならびに中央層1C、両端層1Eそれぞれのガス放出口1Aでのシールドガスの流速などの、様々なシールドガスの吹付け条件が、電縫溶接時の被溶接部11の酸素濃度と、該被溶接部を電縫溶接してなる溶接部における酸化物の面積率とに及ぼす影響を詳細に調査した。   The inventors have observed in detail the flow of the shielding gas. Furthermore, various shield gas spraying conditions such as the position and size of the gas discharge port 1A and the flow velocity of the shield gas at the gas discharge port 1A of each of the center layer 1C and the both end layers 1E are affected by the coverage during the electric resistance welding. The influence on the oxygen concentration of the welded part 11 and the area ratio of the oxide in the welded part formed by electro-welding the welded part was investigated in detail.

その結果、シールドガスの吹付け条件を最適にする事により、被溶接部の酸素濃度が0.01質量%以下になり、溶接部の酸化物面積率が0.1%未満になることを発見した。ここで、溶接部の酸化物面積率とは、次のとおり定義される。すなわち、電縫溶接部のシャルピー衝撃試験を行うことにより得られる破面を電子顕微鏡により倍率500倍以上で少なくとも10視野観察して、その破面内に観察される酸化物を含んだディンプル破面部分を選別して、その総面積を測定し、これの視野総面積に対する割合を酸化物面積率とした。   As a result, it was discovered that by optimizing the spraying conditions of the shielding gas, the oxygen concentration of the welded part becomes 0.01% by mass or less, and the oxide area ratio of the welded part becomes less than 0.1%. did. Here, the oxide area ratio of the weld is defined as follows. That is, a fracture surface obtained by conducting a Charpy impact test of an electric resistance welded portion is observed with an electron microscope at a magnification of 500 times or more and at least 10 visual fields, and a dimple fracture surface containing oxide observed in the fracture surface A portion was selected and its total area was measured, and the ratio of the total area of the visual field was defined as the oxide area ratio.

前記発見した最適条件は、被溶接部11上端からガス放出口1Aまでの高さであるノズル高さが5mm以上300mm以下(図1(c)参照)であり、且つ、中央層1Cのガス放出口1Aでのシールドガス5の流速Bが、B=0.5〜50m/s以下であり、且つ、両端層1Eのガス放出口1Aでのシールドガス5の流速Aが、0.01≦B/A≦10(図3参照)を満たす流速であるという条件である。   The optimum condition found above is that the nozzle height, which is the height from the upper end of the welded portion 11 to the gas discharge port 1A, is 5 mm or more and 300 mm or less (see FIG. 1C), and the gas release of the central layer 1C is performed. The flow rate B of the shield gas 5 at the outlet 1A is B = 0.5 to 50 m / s or less, and the flow rate A of the shield gas 5 at the gas discharge ports 1A of the both end layers 1E is 0.01 ≦ B This is a condition that the flow rate satisfies / A ≦ 10 (see FIG. 3).

前記ノズル高さが300mmを超えるとシールドガスが充分に被溶接部11に届かず、被溶接部11の酸素濃度が100質量ppm以下にならない。前記ノズル高さは小さい方が望ましいのであるが、5mmを下回ると、加熱されている被溶接部11からの輻射熱でガス放出口1Aが傷み易く、更に被溶接部11で発生したスパッタが衝突してノズル1の耐久性が劣化する。   When the nozzle height exceeds 300 mm, the shield gas does not reach the welded part 11 sufficiently, and the oxygen concentration of the welded part 11 does not become 100 mass ppm or less. It is desirable that the nozzle height is small. However, if the nozzle height is less than 5 mm, the gas discharge port 1A is easily damaged by the radiant heat from the heated welded part 11, and the spatter generated in the welded part 11 collides. As a result, the durability of the nozzle 1 deteriorates.

流速を前記最適条件範囲内に制御するために、本発明では、前記ガス放出口から放出される前記シールドガスの流速を、前記3層のうちの中央層1Cのガス放出口からのガス放出流速Bは、B=0.5〜50m/sに制御し、残りの両端層1Eのガス放出口からのガス放出流速Aは式、0.01≦B/A≦10、を満たす流速に制御するガス流調整器3(図1(a)、(b)参照)を有するものとした。   In order to control the flow rate within the optimum condition range, in the present invention, the flow rate of the shield gas discharged from the gas discharge port is set to the gas discharge flow rate from the gas discharge port of the central layer 1C of the three layers. B is controlled to B = 0.5 to 50 m / s, and the gas discharge flow rate A from the gas discharge ports of the remaining both end layers 1E is controlled to a flow rate satisfying the equation, 0.01 ≦ B / A ≦ 10. The gas flow regulator 3 (see FIGS. 1A and 1B) was included.

流速Bが小さすぎると、シールドガスは周囲に拡散し、被溶接部11のガスシールドが不十分となる。流速Bが大き過ぎると、シールドガスの勢いが強くなりすぎ、被溶接部11の端面間への大気巻き込みを生じてしまう。よって、前記流速Bは0.5〜50m/sが適正範囲である。なお、中央層1Cをさらに複数の層に分割した場合(例えば図2(b)、(c)など)、該複数の層についての流速Bは必ずしも同一の値である必要はなく、前記適正範囲内である限り、層ごとに異なる値であっても構わない。   When the flow velocity B is too small, the shield gas diffuses to the surroundings, and the gas shield of the welded part 11 becomes insufficient. If the flow velocity B is too large, the momentum of the shielding gas becomes too strong, and the air is caught between the end faces of the welded part 11. Therefore, 0.5-50 m / s is an appropriate range for the flow velocity B. When the central layer 1C is further divided into a plurality of layers (for example, FIGS. 2B and 2C), the flow velocity B for the plurality of layers does not necessarily have the same value, and the appropriate range As long as it is within the range, the value may be different for each layer.

しかし、流速Bを前記適正範囲に保ったとしても、流速Bと流速Aとの比であるガス流速比B/Aが不適正であると、図3に示すように、大気巻き込み6を防止するのは困難である。
すなわち、B/A<0.01の場合は、両端層1Eからのガス流(シールドガス5の流れ)が強すぎ、かつ中央層1Cからのガス流が弱すぎるため、両端層1Eからのガス流が素管10の外面で反射して上方に偏向し、その反射領域におけるガス流速が零に近くなって、素管10の外面沿いの大気巻き込み6を防止できず(図3(a)参照)、被溶接部11の酸素濃度を充分に低減することはできない。
However, even if the flow rate B is kept in the proper range, if the gas flow rate ratio B / A, which is the ratio of the flow rate B and the flow rate A, is inappropriate, the air entrainment 6 is prevented as shown in FIG. It is difficult.
That is, when B / A <0.01, the gas flow from the both end layers 1E (the flow of the shield gas 5) is too strong, and the gas flow from the central layer 1C is too weak. The flow is reflected on the outer surface of the element tube 10 and deflected upward, and the gas flow velocity in the reflection region becomes close to zero, and the air entrainment 6 along the outer surface of the element tube 10 cannot be prevented (see FIG. 3A). ), The oxygen concentration of the welded part 11 cannot be sufficiently reduced.

一方、B/A>10の場合は、中央層1Cからのガス流が強すぎ、かつ両端層1Eからのガス流が弱すぎるため、大気が中央層1Cからのガス流によって被溶接部11の端面間に引きずり込まれて、大気巻き込み6を招来しやすく(図3(c)参照)、被溶接部11の酸素濃度を充分に低減することはできない。   On the other hand, in the case of B / A> 10, the gas flow from the central layer 1C is too strong and the gas flow from both end layers 1E is too weak. It is dragged between the end faces, and air entrainment 6 is likely to occur (see FIG. 3C), and the oxygen concentration of the welded portion 11 cannot be sufficiently reduced.

これらに対し、B/A=0.01〜10とすることで、被溶接部11の端面間にシールドガス5が過不足なく充満し、大気巻き込みもなく、十分なガスシールドが達成できる(図3(b)参照)。なお、ガス流速比B/Aにおける流速Bには、中央層1Cを複数の層に分割して、該複数の層の少なくとも1層からのガス流速を他層と違えた場合、該違えたガス流速同士のうちの最大流速を用いる。   On the other hand, by setting B / A = 0.01 to 10, the end face of the welded portion 11 is filled with the shielding gas 5 without excess or deficiency, and there is no air entrainment, thereby achieving a sufficient gas shield (see FIG. 3 (b)). Note that the flow rate B at the gas flow rate ratio B / A is such that when the central layer 1C is divided into a plurality of layers and the gas flow rate from at least one of the plurality of layers is different from that of the other layers, the different gas Use the maximum flow rate among the flow rates.

因みに図4は、一例としてノズル高さ=50mmとし、流速B=0.5〜50m/sの適正範囲下でガス流速比B/Aを種々変えて被溶接部11にシールドガス5を吹き付け、被溶接部11の端面間の中間位置で酸素濃度を測定した結果を示す線図である。   4 shows an example in which the nozzle height is 50 mm, and the gas flow rate ratio B / A is variously changed under an appropriate range of the flow velocity B = 0.5 to 50 m / s, and the shield gas 5 is sprayed on the welded portion 11. It is a diagram which shows the result of having measured oxygen concentration in the intermediate position between the end surfaces of the to-be-welded part 11. FIG.

図4より、流速B=0.5〜50m/sの適正範囲下で、ガス流速比B/Aを、B/A=0.01〜10とすることによって、酸素濃度0.01質量%以下が大きな余裕を持って(即ち確実に)クリアできる。
また、図4より、B/A=0.03〜5とすると、更に低い酸素濃度レベルである0.001〜0.0001質量%が達成できて好ましい。
From FIG. 4, the oxygen flow rate ratio B / A is set to B / A = 0.01-10 under an appropriate range of flow velocity B = 0.5-50 m / s, whereby the oxygen concentration is 0.01 mass% or less. Can be cleared with a large margin (ie, surely).
From FIG. 4, it is preferable that B / A = 0.03 to 5 because an even lower oxygen concentration level of 0.001 to 0.0001 mass% can be achieved.

ところで、ガス放出口1Aの全層合併した形状については、寸法の通管方向20成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状にすると、被溶接部11へのガス吹付けをより均一にできて好ましい。   By the way, about the shape which merged all the layers of gas discharge port 1A, if the length which is 20 components of the dimension through-tube direction is 30 mm or more, and the width which is the dimension of the element tube edge butting direction component is 5 mm or more, This is preferable because the gas spraying to the welded portion 11 can be made more uniform.

また、図1(c)に示す様に、ガス放出口1Aの全層合併した寸法の素管エッジ突合せ方向成分である幅をRと記し、ガス放出口1Aの直下の被溶接部11の端面間の最大間隔をWと記すとして、R/W>1.0、を満たす様にすると、被溶接部11の酸素濃度をより速やかに低減させる事ができて好ましい。   Further, as shown in FIG. 1 (c), the width that is the component of the tube edge butting direction of the combined dimensions of all layers of the gas discharge port 1A is denoted by R, and the end surface of the welded portion 11 directly below the gas discharge port 1A It is preferable to satisfy R / W> 1.0, where W is the maximum interval between the two because the oxygen concentration of the welded part 11 can be reduced more quickly.

シールドガスとしては不活性ガスを用いる。此処に云う不活性ガスとは、窒素ガス、ヘリウムガス、アルゴンガス、ネオンガス、キセノンガス等、若しくはこれらの2種以上を混合してなる混合ガスなどを意味する。   An inert gas is used as the shielding gas. The inert gas referred to here means nitrogen gas, helium gas, argon gas, neon gas, xenon gas, or the like, or a mixed gas formed by mixing two or more of these.

更に、シールドガスとして、前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしてもよく、然も、むしろこの方が、ペネトレータの原因となる酸化物の生成を抑制する効果がより強くなり、溶接部の靭性または強度を、より大きく向上させることができて好ましい。此処に云う還元性ガスとは、水素ガス、一酸化炭素ガス、メタンガス、プロパンガス等、若しくはこれらの2種以上を混合してなる混合ガスを意味する。なお、還元性ガスを0.1質量%以上含有するガスとしては、還元性ガスのみからなる組成、または、還元性ガス:0.1質量%以上を含有し残部が不活性ガスからなる組成のものが好適である。   Further, as the shielding gas, a gas containing 0.1% by mass or more of a reducing gas may be used instead of the inert gas. However, this rather suppresses the generation of oxides that cause the penetrator. This is preferable because the effect becomes stronger and the toughness or strength of the welded portion can be greatly improved. Here, the reducing gas means hydrogen gas, carbon monoxide gas, methane gas, propane gas, or a mixed gas obtained by mixing two or more of these. In addition, as the gas containing 0.1% by mass or more of the reducing gas, the composition consisting of only the reducing gas or the composition containing the reducing gas: 0.1% by mass or more and the balance of the inert gas. Those are preferred.

また、入手容易性および廉価性の点からは、シールドガスとして次のガスを用いる事が好ましい。
(イ) 不活性ガス単独使用の場合:(G1)窒素ガス、ヘリウムガス、アルゴンガスの何れか1種若しくはこれら2種以上の混合ガス
(ロ) 還元性ガス単独使用の場合:(G2)水素ガス、一酸化炭素ガスの何れか1種若しくはこれら2種の混合ガス
(ハ) 不活性ガスと還元性ガスの混合ガス使用の場合:前記(G1)と(G2)の混合ガス
なお、特に、水素ガスおよび/または一酸化炭素ガスを含むガスを使用する場合、遺漏無き安全対策をとるべきことは云うまでも無い。
From the viewpoint of availability and low cost, it is preferable to use the following gas as the shielding gas.
(B) When inert gas is used alone: (G1) Any one of nitrogen gas, helium gas and argon gas, or a mixed gas of two or more of these (b) When reducing gas is used alone: (G2) Hydrogen Gas, carbon monoxide gas, or a mixed gas of these two types (c) In the case of using a mixed gas of inert gas and reducing gas: mixed gas of (G1) and (G2) In particular, Needless to say, safety measures should be taken when using gas containing hydrogen gas and / or carbon monoxide gas.

管内面側となる面の合せ材が厚さ2mmのステンレス鋼(SUS316L)、管外面側となる面の母材が厚さ5mmの低炭素低合金鋼であるステンレスクラッド鋼帯を素材とし、アンコイラー、レベラー、ロール成形機、開先加工機すなわちフィンパスロール成形機、電縫溶接機、サイザーをこの順に配置して構成された造管設備に通して、外径300mmの電縫溶接ステンレスクラッド鋼管を製造する工程において、電縫溶接時に被溶接部へのガスシールドを実行するにあたり、上述した実施形態の本発明範囲の内または外でガス吹付け条件の水準、およびアプセット量を変えるとともに、電縫溶接前にあらかじめクラッド鋼帯幅方向端部に図8に示すような装置でフィンパスロールを用いて圧延による開先加工を行って開先条件を変えて、表1に示すとおりの条件で造管し、被溶接部の酸素濃度の測定、溶接部の90°偏平試験、および管内面側をシュウ酸エッチングによる腐食試験を行った。腐食試験結果は、粒界腐食が観察されない場合を○、粒界腐食が観察される場合を×として評価した。なお、スクイズロールによるアプセット量は、スクイズロールより手前の管の外周長を測定した後、スクイズロールにより溶接して外面の溶接ビード部を切削された後の管の外周長を測定して、両者の差を計算することにより求めた。   The uncoiler is made of stainless steel clad steel (SUS316L) with a 2 mm thick stainless steel (SUS316L) for the inner surface of the tube and a low carbon low alloy steel with a 5 mm thick base material for the outer surface of the tube. , Leveler, roll forming machine, groove processing machine, that is, fin pass roll forming machine, electric seam welding machine, sizer through this pipe making equipment arranged in this order, 300mm outer diameter welded stainless clad steel pipe In the process of manufacturing the gas shield, the gas spraying condition level and the upset amount are changed within and outside the scope of the present invention of the above-described embodiment when performing the gas shield to the welded part during the electric resistance welding. Prior to sewing welding, the groove condition is changed by performing groove processing by rolling using a fin pass roll with a device as shown in FIG. 8 at the end in the width direction of the clad steel strip. And forming tube under the conditions as shown in Table 1, the measurement of the oxygen concentration in the welded portion, 90 ° flattening test of the weld, and the inner surface side was subjected to corrosion test by oxalic acid etching. Corrosion test results were evaluated as ◯ when no intergranular corrosion was observed, and x when intergranular corrosion was observed. The amount of upset by the squeeze roll is determined by measuring the outer peripheral length of the pipe before the squeeze roll, and then measuring the outer peripheral length of the pipe after welding with the squeeze roll and cutting the outer weld bead. It was obtained by calculating the difference of.

表1に示されるとおり、本発明例では、比較例と比べて溶接部の偏平値H/Dが桁違いに低減し、破断特性に優れ、かつステンレス鋼としての耐食性を維持した溶接部を有することが確認された。   As shown in Table 1, the present invention example has a welded portion in which the flatness value H / D of the welded portion is reduced by orders of magnitude compared to the comparative example, the fracture property is excellent, and the corrosion resistance as stainless steel is maintained. It was confirmed.

Figure 2017154150
Figure 2017154150

1 ノズル(シールドガス吹付け用ノズル)
1A ガス放出口
1C 中央層
1E 両端層
2 ガス配管
3 ガス流調整器
5 シールドガス
6 大気巻き込み
10 素管(オープン管)
11 被溶接部(素管エッジ突合せ部)
12 素管エッジ部加熱起点
13 溶接点
15 電縫鋼管
20 通管方向
30 素管周方向
1 Nozzle (Shield gas spray nozzle)
1A Gas outlet 1C Center layer 1E Both end layers 2 Gas piping 3 Gas flow regulator 5 Shield gas 6 Atmospheric entrainment 10 Elementary tube (open tube)
11 Welded part (element tube edge butt part)
12 Element pipe edge heating start point 13 Welding point 15 ERW steel pipe 20 Through direction 30 Elemental pipe circumferential direction

Claims (5)

炭素鋼の母材とステンレス鋼あるいはニッケル基合金の合せ材とからなるクラッド鋼の熱延鋼帯を管状に成形し、該熱延鋼帯の幅方向両端部を突合せ電縫溶接してなる電縫溶接クラッド鋼管の製造方法であって、
前記電縫溶接前にあらかじめ前記熱延鋼帯の幅方向両端部を、クラッド界面が合せ材側から肉厚中心側へ押し込まれた形態で、ベベル角度が20〜70°、かつ、開先深さが、全肉厚の10〜50%であるV形開先とする開先加工を施し、
前記電縫溶接時に、被溶接部を不活性ガスからなるシールドガスでガスシールドする電縫鋼管の素管被溶接部シールド方法を用いて、前記被溶接部に対し該被溶接部上端から5〜300mm上方の位置に、素管周方向に対して3層に分割したガス放出口を配位したシールドガス吹付け用ノズルの前記ガス放出口から前記シールドガスを、前記3層のうちの中央層のガス放出口からのガス放出流速Bは、0.5〜50m/sとし、残りの両端層のガス放出口からのガス放出流速A(m/s)は式、0.01≦B/A≦10、を満たす流速として、吹付けることを特徴とする電縫溶接クラッド鋼管の製造方法。
A hot-rolled steel strip of clad steel made of a carbon steel base material and a stainless steel or nickel-base alloy laminated material is formed into a tubular shape, and both ends in the width direction of the hot-rolled steel strip are butt-welded and electro-welded. A method of manufacturing a welded clad steel pipe,
Prior to the electric-welding welding, both ends in the width direction of the hot-rolled steel strip are in a form in which the clad interface is pushed from the laminated material side to the wall thickness center side, the bevel angle is 20 to 70 °, and the groove depth is Is subjected to groove processing with a V-shaped groove that is 10 to 50% of the total wall thickness,
At the time of the electric resistance welding, the welded part is gas shielded with a shielding gas made of an inert gas. The shield gas from the gas discharge port of the shield gas blowing nozzle in which the gas discharge ports divided into three layers with respect to the circumferential direction of the raw tube are arranged at a position 300 mm above the central layer of the three layers The gas discharge flow rate B from the gas discharge port is set to 0.5 to 50 m / s, and the gas discharge flow rate A (m / s) from the gas discharge ports of the remaining both end layers is expressed by the formula: 0.01 ≦ B / A A method of manufacturing an electric resistance welded clad steel pipe, characterized by spraying at a flow rate satisfying ≦ 10.
前記V形開先に加えて、前記幅方向両端部の母材側を開先加工し、X形開先とすることを特徴とする請求項1に記載の電縫溶接クラッド鋼管の製造方法。   2. The method for producing an ERW-welded clad steel pipe according to claim 1, wherein in addition to the V-shaped groove, the base material side at both ends in the width direction is grooved to form an X-shaped groove. 前記ガス放出口の形状は、寸法の通管方向成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状であることを特徴とする請求項1または2に記載の電縫溶接クラッド鋼管の製造方法。   2. The shape of the gas discharge port is a rectangular shape having a length of 30 mm or more as a component of a dimension in a pipe direction and a width of 5 mm or more as a component of a dimension of a raw pipe edge as a butt direction. 2. A method for producing an ERW welded clad steel pipe according to 2. 前記ガス放出口の全層合併した寸法の素管エッジ突合せ方向成分である幅Rは、前記ガス放出口の直下の被溶接部の端面間の最大間隔Wに対し、R/W>1.0、なる関係を満たすことを特徴とする請求項1〜3のいずれかに記載の電縫溶接クラッド鋼管の製造方法。   The width R, which is a component of the tube edge butting direction of the combined dimensions of all the layers of the gas discharge port, is R / W> 1.0 with respect to the maximum interval W between the end faces of the welded portion immediately below the gas discharge port. The method of manufacturing an electric resistance welded clad steel pipe according to any one of claims 1 to 3, wherein the following relationship is satisfied. 前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしたことを特徴とする請求項1〜4のいずれかに記載の電縫溶接クラッド鋼管の製造方法。   The method for producing an electric resistance welded clad steel pipe according to any one of claims 1 to 4, wherein a gas containing 0.1% by mass or more of a reducing gas is used instead of the inert gas.
JP2016038581A 2016-03-01 2016-03-01 Manufacturing method of ERW welded clad steel pipe Active JP6500810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038581A JP6500810B2 (en) 2016-03-01 2016-03-01 Manufacturing method of ERW welded clad steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038581A JP6500810B2 (en) 2016-03-01 2016-03-01 Manufacturing method of ERW welded clad steel pipe

Publications (2)

Publication Number Publication Date
JP2017154150A true JP2017154150A (en) 2017-09-07
JP6500810B2 JP6500810B2 (en) 2019-04-17

Family

ID=59807699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038581A Active JP6500810B2 (en) 2016-03-01 2016-03-01 Manufacturing method of ERW welded clad steel pipe

Country Status (1)

Country Link
JP (1) JP6500810B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021136697A (en) * 2020-02-21 2021-09-13 株式会社デンソー Power conversion device
CN114619203A (en) * 2021-12-24 2022-06-14 钢一控股集团有限公司 Forming method of large-diameter stainless steel pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172684A (en) * 1985-01-25 1986-08-04 Sumitomo Metal Ind Ltd Production of clad steel pipe
JP2008087020A (en) * 2006-10-02 2008-04-17 Jfe Steel Kk Method of manufacturing electric resistance welded tube excellent in weld zone characteristic
JP2010240721A (en) * 2009-04-08 2010-10-28 Nippon Steel Corp Method of manufacturing thick-walled electric resistance welded tube excellent in property of weld zone
JP2014004624A (en) * 2012-06-01 2014-01-16 Jfe Steel Corp Method of shielding welded part of original pipe of electric resistance welded steel pipe, and method of manufacturing electric resistance welded steel pipe
JP2015120195A (en) * 2013-11-25 2015-07-02 Jfeスチール株式会社 Device for shielding pipe stock welded part of electric resistance welded steel pipe, method of shielding pipe stock welded part, electric resistance welded steel pipe manufacturing method using the shielding method, and electric resistance welded steel pipe manufactured by the steel pipe manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172684A (en) * 1985-01-25 1986-08-04 Sumitomo Metal Ind Ltd Production of clad steel pipe
JP2008087020A (en) * 2006-10-02 2008-04-17 Jfe Steel Kk Method of manufacturing electric resistance welded tube excellent in weld zone characteristic
JP2010240721A (en) * 2009-04-08 2010-10-28 Nippon Steel Corp Method of manufacturing thick-walled electric resistance welded tube excellent in property of weld zone
JP2014004624A (en) * 2012-06-01 2014-01-16 Jfe Steel Corp Method of shielding welded part of original pipe of electric resistance welded steel pipe, and method of manufacturing electric resistance welded steel pipe
JP2015120195A (en) * 2013-11-25 2015-07-02 Jfeスチール株式会社 Device for shielding pipe stock welded part of electric resistance welded steel pipe, method of shielding pipe stock welded part, electric resistance welded steel pipe manufacturing method using the shielding method, and electric resistance welded steel pipe manufactured by the steel pipe manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021136697A (en) * 2020-02-21 2021-09-13 株式会社デンソー Power conversion device
JP7279665B2 (en) 2020-02-21 2023-05-23 株式会社デンソー power converter
CN114619203A (en) * 2021-12-24 2022-06-14 钢一控股集团有限公司 Forming method of large-diameter stainless steel pipe

Also Published As

Publication number Publication date
JP6500810B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6265311B1 (en) ERW Welded Stainless Clad Steel Pipe and Manufacturing Method Thereof
JP6164368B2 (en) Manufacturing method of ERW welded stainless clad steel pipe
JP6323626B1 (en) Clad welded tube and manufacturing method thereof
JP6319528B1 (en) ERW welded clad steel pipe and manufacturing method thereof
JP5509657B2 (en) Welded steel pipe joined by high-density energy beam and manufacturing method thereof
JP2007283363A (en) Method of manufacturing uoe steel pipe
JP6500810B2 (en) Manufacturing method of ERW welded clad steel pipe
JP7243952B1 (en) Joined body of stainless steel and copper, manufacturing method thereof, and joining method of stainless steel and copper
WO2023058463A1 (en) Stainless steel and copper joint, manufacturing method therefor, and stainless steel and copper joining method
JP6036773B2 (en) Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe
JP2010125490A (en) Welding method of i-shaped joint, the i-shaped weld joint, and welding structure using the same
JP7456559B1 (en) Stainless steel and copper joined body and its manufacturing method, and stainless steel and copper joining method
JP7230606B2 (en) Composite welding method for galvanized steel sheets
JP6536518B2 (en) Manufacturing method of ERW welded clad steel pipe
JP2014004624A (en) Method of shielding welded part of original pipe of electric resistance welded steel pipe, and method of manufacturing electric resistance welded steel pipe
JP6520876B2 (en) Manufacturing method of ERW welded clad steel pipe
JP2005271056A (en) Method for welding thin steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6500810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250