JP6036773B2 - Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe - Google Patents

Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe Download PDF

Info

Publication number
JP6036773B2
JP6036773B2 JP2014190169A JP2014190169A JP6036773B2 JP 6036773 B2 JP6036773 B2 JP 6036773B2 JP 2014190169 A JP2014190169 A JP 2014190169A JP 2014190169 A JP2014190169 A JP 2014190169A JP 6036773 B2 JP6036773 B2 JP 6036773B2
Authority
JP
Japan
Prior art keywords
gas
welded
shielding
gas discharge
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014190169A
Other languages
Japanese (ja)
Other versions
JP2015120195A (en
Inventor
岡部 能知
能知 岡部
聡太 後藤
聡太 後藤
橋本 裕二
裕二 橋本
加藤 康
康 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014190169A priority Critical patent/JP6036773B2/en
Publication of JP2015120195A publication Critical patent/JP2015120195A/en
Application granted granted Critical
Publication of JP6036773B2 publication Critical patent/JP6036773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電縫鋼管の素管被溶接部シールド装置および素管被溶接部シールド方法に関し、特に、油井ラインパイプ向けや自動車用の部品などの、溶接部に高い機械的特性が要求される電縫鋼管の製造に好ましく用いうる、電縫鋼管の素管被溶接部シールド装置および素管被溶接部シールド方法に関する。 The present invention relates to a base pipe welded shield apparatus and base pipe welded shield how ERW steel pipe, in particular, for parts for oil well line pipe for and automobiles has high mechanical properties in the weld requirements is the can be preferably used in the production of electric resistance welded steel pipe, about the base pipe welded shield apparatus and base pipe welded shield how the electric resistance welded steel pipe.

通常、鋼管は溶接鋼管と継目無鋼管に大別される。溶接鋼管は、電縫鋼管を例とするように、板(帯材の意、以下同じ)を丸めて端部を突き合わせて溶接して製造され、継目無鋼管は、材料の塊を高温で穿孔してマンドレルミル等で圧延して製造される。溶接鋼管の場合、一般に溶接部の特性は母材より劣ると云われ、鋼管の適用に当たって、用途ごとに溶接部の靭性や強度や伸びなどの保証が常に議論されて問題となってきた。   Usually, steel pipes are roughly divided into welded steel pipes and seamless steel pipes. Welded steel pipes are manufactured by rounding a plate (meaning of a strip, the same shall apply hereinafter) and welding the end parts, as in the case of ERW steel pipes. Seamless steel pipes are used to drill a lump of material at a high temperature. And it is manufactured by rolling with a mandrel mill or the like. In the case of a welded steel pipe, it is generally said that the properties of the welded part are inferior to the base metal, and in the application of the steel pipe, guarantees such as toughness, strength and elongation of the welded part have always been discussed for each application.

例えば、原油や天然ガスなどを輸送するラインパイプでは、管を寒冷地に敷設することが多いため低温靭性が必要とされ、管の強度が重要視される。   For example, line pipes that transport crude oil, natural gas, and the like often require low-temperature toughness because the pipes are often laid in cold regions, and the strength of the pipes is important.

又、通常、鋼管の母材となる熱延鋼板は、鋼管製造後の母材特性を考慮して成分設計され、強度等の特性が確保される。   In general, a hot-rolled steel sheet that is a base material of a steel pipe is designed in consideration of the base material characteristics after manufacturing the steel pipe, and characteristics such as strength are ensured.

しかし、溶接部の特性は、母材の成分設計や熱処理等による以上に、電縫溶接方法によって大きく左右されるため、溶接技術の開発が重要であった。電縫溶接不良の原因としては、ペネトレータと呼ばれる酸化物主体の溶接欠陥が、電縫溶接時に被溶接部(詳しくは、帯材を丸めてなるオープン管である素管の周方向両端面を突き合わせた部位である素管エッジ突合せ部)に生成して残留し、この残留したペネトレータを原因として靭性が低下したり強度不足になったりする例が多かった。   However, since the characteristics of the welded part are greatly influenced by the electric resistance welding method rather than by the base material component design, heat treatment, etc., it was important to develop a welding technique. The cause of poor ERW welding is that an oxide-based welding defect called a penetrator butts the welded parts during ERW welding (specifically, the circumferential ends of the element pipe, which is an open pipe made by rolling a band material) In many cases, the toughness is reduced or the strength is insufficient due to the residual penetrator.

そこで、従来技術として電縫溶接不良の主原因であるペネトレータを溶接部から除くため、被溶接部へのガス吹き付けにより被溶接部の酸化を防止する技術または電縫溶接直前の帯材端面の形状を適切な形状とすることでペネトレータを溶接部から取り除く技術などが提案されてきた。   Therefore, in order to remove the penetrator, which is the main cause of ERW welding failure, from the welded part as a conventional technique, the technique of preventing oxidation of the welded part by gas blowing to the welded part or the shape of the end face of the strip material immediately before ERW welding There has been proposed a technique for removing the penetrator from the welded portion by making the shape into an appropriate shape.

例えば、特許文献1には電縫管の溶接部シールド装置において被溶接部回りの密閉空間を最小容積として被溶接部回りの酸素濃度を短時間で下げる目的で、スクイズロールのロールスタンドに被溶接部回りの溶接装置と素管の局部のみを覆うシールドカバーを取着した旨記載されている。   For example, in Patent Document 1, in a welded part shielding device for an electric resistance welded tube, welding is performed on a roll stand of a squeeze roll in order to reduce the oxygen concentration around the welded part in a short time with the sealed space around the welded part as the minimum volume. It is described that a shield cover that covers only the welding device around the part and the local part of the raw pipe is attached.

又、特許文献2には、素管内に装入するインピーダケースに不活性ガスの液化ガス配管を配設して供給した液化ガスでインピーダコアを冷却した後当該液化ガスを溶接点に向けて噴出してガスシールドする旨記載されている。   Further, in Patent Document 2, an impure gas liquefied gas pipe is provided in an impeder case inserted in a raw pipe, and the impeder core is cooled with the supplied liquefied gas, and then the liquefied gas is ejected toward the welding point. And gas shielding is described.

又、特許文献3には、溶接(圧接)時に被溶接部をガスシールドして酸素濃度を低くし酸化物の発生量を低減し、且つ高周波加熱中の被溶接部位にレーザービーム又はプラズマアークを照射する事で溶接欠陥の発生を防止する旨記載されている。   Patent Document 3 discloses that a welded part is gas shielded during welding (pressure welding) to reduce the oxygen concentration and reduce the amount of oxide generated, and a laser beam or plasma arc is applied to the welded part during high-frequency heating. It is stated that the occurrence of welding defects is prevented by irradiation.

又、特許文献4には、素管のエッジ部加熱起点から溶接点に至るまでの通管経路全域を、エッジ部加熱用誘導コイル、スクイズロール共々シールドボックスで覆い、該シールドボックス内へガス供給管にて所定流量でガスを供給する旨記載されている。   In Patent Document 4, the entire pipe passage route from the edge heating starting point to the welding point of the raw pipe is covered with the edge heating coil and squeeze roll together with a shield box, and gas is supplied into the shield box. It is described that gas is supplied at a predetermined flow rate through a pipe.

特開平08-300164号公報Japanese Patent Laid-Open No. 08-300164 特開平10−249547号公報Japanese Patent Laid-Open No. 10-249547 特開平5−23867号公報JP-A-5-23867 特開2011−206813号公報JP 2011-206913 A

しかし、溶接点付近のみを外面側から(特許文献1)或いは内面側から(特許文献2)のガス吹き付けによりガスシールドする方法は、再現性が悪く、充分にシールドができずに溶接部に酸化物が残留する場合があった。   However, the method of gas shielding only by welding the vicinity of the welding point from the outer surface side (Patent Document 1) or from the inner surface side (Patent Document 2) is poor in reproducibility and cannot be shielded sufficiently, and the welded portion is oxidized. Things may remain.

又、溶接点にプラズマアーク等を照射する方法(特許文献3)は、ガスシールド装置に加えて別途プラズマアーク等の照射装置が必要となり、造管コスト面での不利を招く。   Moreover, the method of irradiating a plasma arc or the like to a welding point (Patent Document 3) requires an irradiation device such as a plasma arc in addition to the gas shield device, which causes a disadvantage in terms of pipe making cost.

又、素管のエッジ部加熱起点から溶接点に至るまでの通管経路全域をシールドボックスで覆う方式(特許文献4)は、装置構造が複雑であり、組み付けに多大な時間を要する事や、管の寸法が変わるごとにシールドボックスの取替えや調整が必要であり、能率面、造管コスト面での不利が大きいという問題がある。   In addition, the method of covering the entire pipe path from the edge heating start point of the raw pipe to the welding point with a shield box (Patent Document 4) has a complicated device structure and requires a lot of time for assembly, Each time the dimensions of the pipe change, it is necessary to replace or adjust the shield box, and there is a problem that the disadvantage in terms of efficiency and pipe making cost is great.

以上のように、従来技術では、造管コスト面さらには能率面の犠牲なしでは、電縫溶接時の被溶接部を確実にガスシールドして其処の酸素濃度を十分に低下させる事ができていないためペネトレータの生成を防止できないという問題があった。   As described above, in the conventional technology, the welded part at the time of ERW welding can be surely gas shielded and the oxygen concentration can be sufficiently reduced without sacrificing the pipe making cost and the efficiency. There was a problem that the generation of the penetrator could not be prevented.

そこで、本発明は、前記従来技術の問題に鑑み、造管コスト面さらには能率面を犠牲にすることなく、電縫溶接時の被溶接部を確実にガスシールドして其処の酸素濃度を十分に低下させてペネトレータの生成を防止しうる電縫鋼管の素管被溶接部シールド装置および素管被溶接部シールド方法を提供することを、本発明が解決しようとする課題とした。 Therefore, in view of the above-mentioned problems of the prior art, the present invention reliably gas shields the welded part at the time of ERW welding without sacrificing the pipe making cost and the efficiency, so that the oxygen concentration thereof is sufficient. providing a base pipe welded shield apparatus and base pipe welded shield how ERW steel pipe which can prevent the formation of penetrators is lowered to, and an object of the present invention is to solve.

発明者らは、前記課題を解決する為に鋭意検討し、その結果、素管のエッジ部加熱起点から溶接点に至る通管範囲をシールドボックスで覆わずに、前記通管範囲内で素管の被溶接部直上から被溶接部にシールドガスを吹き付ける場合、被溶接部の上端からシールドガス吹付け用ノズルにおけるシールドガスの放出口までの高さであるノズル高さ、及び吹付けるシールドガスの流速を適正に制御することに加え、前記シールドガス吹付け用ノズルの構造を素管周方向に対して3層以上に分割した構造とし、両端層のガス放出口からの吹付けガス流速と残りの層のガス放出口からの吹付けガス流速の比を適正に制御することにより、被溶接部の酸素濃度を格段に低減できることを見出し、本発明を成した。即ち本発明は以下の通りである。
(1) 電縫溶接時の被溶接部を不活性ガスからなるシールドガスでガスシールドする電縫鋼管の素管被溶接部シールド装置であって、前記被溶接部に対し該被溶接部上端から5〜300mm上方の位置に、素管周方向に対して3層に分割したガス放出口を配位したシールドガス吹付け用ノズルと、前記ガス放出口から放出される前記シールドガスの流速を、前記3層のうちの中央層のガス放出口からのガス放出流速Bは、B=0.5〜50m/sに制御し、残りの両端層のガス放出口からのガス放出流速Aは式、0.01≦B/A≦10、を満たす流速に制御するガス流調整器と、を有することを特徴とする電縫鋼管の素管被溶接部シールド装置。
(2) 前記中央層をさらに素管周方向に対して2層以上に分割したことを特徴とする(1)に記載の電縫鋼管の素管被溶接部シールド装置。
(3) 前記ガス放出口の全層合併した形状は、寸法の通管方向成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状であることを特徴とする(1)または(2)に記載の電縫鋼管の素管被溶接部シールド装置。
(4) 前記ガス放出口の全層合併した寸法の素管エッジ突合せ方向成分である幅Rは、前記ガス放出口の直下の被溶接部の端面間の最大間隔Wに対し、R/W>1.0、なる関係を満たすことを特徴とする(1)〜(3)の何れか1つに記載の電縫鋼管の素管被溶接部シールド装置。
(5) 前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしたことを特徴とする(1)〜(4)の何れか1つに記載の電縫鋼管の被溶接部シールド装置。
(6) 電縫溶接時の被溶接部を不活性ガスからなるシールドガスでガスシールドする電縫鋼管の素管被溶接部シールド方法であって、前記被溶接部に対し該被溶接部上端から5〜300mm上方の位置に、素管周方向に対して3層に分割したガス放出口を配位したシールドガス吹付け用ノズルの前記ガス放出口から前記シールドガスを、前記3層のうちの中央層のガス放出口からのガス放出流速Bは、B=0.5〜50m/sとし、残りの両端層のガス放出口からのガス放出流速Aは式、0.01≦B/A≦10、を満たす流速として、吹付けることを特徴とする電縫鋼管の素管被溶接部シールド方法。
(7) 前記中央層をさらに素管周方向に対して2層以上に分割したことを特徴とする(6)に記載の電縫鋼管の素管被溶接部シールド方法。
(8) 前記ガス放出口の全層合併した形状は、寸法の通管方向成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状であることを特徴とする(6)または(7)に記載の電縫鋼管の素管被溶接部シールド方法。
(9) 前記ガス放出口の全層合併した寸法の素管エッジ突合せ方向成分である幅Rは、前記ガス放出口の直下の被溶接部の端面間の最大間隔Wに対し、R/W>1.0、なる関係を満たすことを特徴とする(6)〜(8)の何れか1つに記載の電縫鋼管の素管被溶接部シールド方法。
(10) 前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしたことを特徴とする(6)〜(9)の何れか1つに記載の電縫鋼管の被溶接部シールド方法。
(11) 被溶接部をガスシールドしつつ電縫溶接する電縫鋼管の製造方法において、前記ガスシールドは、(6)〜(10)の何れか1つに記載の電縫鋼管の素管被溶接部シールド方法により行うことを特徴とする電縫鋼管の製造方法。
(12) (11)の製造方法で製造したことを特徴とする電縫鋼管。
(13) 電縫溶接による被溶接部を有し、該被溶接部の酸化物面積率が0.1%未満であることを特徴とする電縫鋼管。
The inventors have intensively studied to solve the above-mentioned problems, and as a result, the pipe tube range from the edge heating start point to the weld point of the pipe tube is not covered with a shield box, and the raw tube is within the pipe tube range. When spraying shield gas from directly above the welded part to the welded part, the nozzle height, which is the height from the upper end of the welded part to the shield gas discharge nozzle in the shield gas blowing nozzle, and the shielding gas to be blown In addition to appropriately controlling the flow rate, the shield gas blowing nozzle structure is divided into three or more layers in the circumferential direction of the raw tube, and the blowing gas flow rate from the gas discharge ports at both ends and the remaining The present inventors have found that the oxygen concentration in the welded portion can be significantly reduced by appropriately controlling the ratio of the flow velocity of the blowing gas from the gas discharge port of the layer. That is, the present invention is as follows.
(1) A shielded device for welded part of an ERW steel pipe that gas shields a welded part at the time of ERW welding with a shielding gas made of an inert gas, from the upper end of the welded part to the welded part A shield gas blowing nozzle in which a gas discharge port divided into three layers with respect to the circumferential direction of the raw tube is arranged at a position above 5 to 300 mm, and a flow rate of the shield gas discharged from the gas discharge port, The gas discharge flow rate B from the gas discharge port of the central layer of the three layers is controlled to B = 0.5 to 50 m / s, and the gas discharge flow rate A from the gas discharge ports of the remaining both end layers is an equation: And a gas flow regulator for controlling the flow rate to satisfy 0.01 ≦ B / A ≦ 10.
(2) The core welded part shielding device for an electric resistance welded steel pipe according to (1), wherein the central layer is further divided into two or more layers in the circumferential direction of the core.
(3) The combined shape of all the layers of the gas discharge port is a rectangular shape having a length of 30 mm or more as a component in the pipe passage direction of the dimension and a width of 5 mm or more as a component of the element tube edge butting direction as a dimension. (1) or (2) characterized in that the welded part shielding device for the welded part of the ERW steel pipe.
(4) The width R, which is a component of the tube edge butting direction of the combined dimensions of all layers of the gas discharge port, is R / W> with respect to the maximum interval W between the end faces of the welded portion immediately below the gas discharge port. 1.0, the raw material welded part shielding device for an electric resistance welded steel pipe according to any one of (1) to (3), wherein the relationship is satisfied.
(5) The ERW steel pipe according to any one of (1) to (4), wherein the gas contains 0.1% by mass or more of a reducing gas instead of the inert gas. Welded part shield device.
(6) A method for shielding a welded portion of an ERW steel pipe which is gas shielded with a shielding gas composed of an inert gas during ERW welding, wherein the welded portion is shielded from the upper end of the welded portion with respect to the welded portion. The shield gas from the gas discharge port of the nozzle for spraying a shield gas in which gas discharge ports divided into three layers with respect to the circumferential direction of the raw tube are arranged at a position 5 to 300 mm above, of the three layers The gas discharge flow rate B from the gas discharge port of the central layer is set to B = 0.5 to 50 m / s, and the gas discharge flow rate A from the gas discharge ports of the remaining both end layers is an equation, 0.01 ≦ B / A ≦ 10. A method for shielding a welded portion of a base pipe weld of an electric resistance welded steel pipe, characterized by spraying at a flow rate satisfying 10.
(7) The method for shielding a welded portion of an ERW steel pipe according to (6), wherein the central layer is further divided into two or more layers in the circumferential direction of the pipe.
(8) The combined shape of all the layers of the gas discharge port is a rectangular shape having a length of 30 mm or more as a component in the pipe passage direction of a dimension and a width of 5 mm or more as a component of a dimension of a raw pipe edge. (6) or (7) characterized in that the welded portion shielding method for the welded portion of the ERW steel pipe.
(9) The width R, which is a component of the tube edge butting direction of the combined dimensions of all layers of the gas discharge port, is R / W> with respect to the maximum interval W between the end faces of the welded portion immediately below the gas discharge port. 1.0. The method for shielding a welded portion of an unsealed steel pipe according to any one of (6) to (8), wherein the relationship is 1.0.
(10) The ERW steel pipe according to any one of (6) to (9), wherein the gas contains 0.1% by mass or more of a reducing gas instead of the inert gas. Welding part shielding method.
(11) In the method of manufacturing an electric resistance welded steel pipe which is welded by electric resistance welding while gas shielding the welded portion, the gas shield is a base pipe cover of the electric resistance welded steel pipe according to any one of (6) to (10). A method for producing an ERW steel pipe, characterized in that the method is performed by a welding part shielding method.
(12) An ERW steel pipe manufactured by the manufacturing method of (11).
(13) An electric resistance welded steel pipe having a welded portion by electric resistance welding, wherein an oxide area ratio of the welded portion is less than 0.1%.

本発明によれば、電縫溶接時の被溶接部の酸素濃度を十分低いレベルに維持できて、電縫鋼管の溶接部特性を確実に従来レベルよりも向上させる事ができる。   According to the present invention, the oxygen concentration of the welded part during ERW welding can be maintained at a sufficiently low level, and the welded part characteristics of the ERW steel pipe can be reliably improved from the conventional level.

本発明の実施形態の例を示す概略図である。It is the schematic which shows the example of embodiment of this invention. 複数の層に分割したノズル構造の例を示す立体模式図である。It is a three-dimensional schematic diagram which shows the example of the nozzle structure divided | segmented into the several layer. シールドガスのガス放出流速B及びガス流速比B/Aの適正範囲を示す説明図である。It is explanatory drawing which shows the appropriate range of the gas discharge | emission flow rate B of shield gas, and gas flow rate ratio B / A. シールドガスのガス流速比B/Aと被溶接部(素管エッジ突合せ部)の酸素濃度の関係の例を示す線図である。It is a diagram which shows the example of the relationship between the gas flow rate ratio B / A of shielding gas, and the oxygen concentration of a to-be-welded part (element tube edge butt | matching part).

図1は、本発明の実施形態を示す概略図である。鋼帯からなる帯材を図示しないアンコイラーで連続的に払出し、図示しないレベラーで矯正し、通管方向20に送りつつ、図示しないロール成形機で帯材の幅を丸めて素管(オープン管)10となし、該丸めた幅の両端面を突合せてなる素管エッジ突合せ部である被溶接部11を電縫溶接機(図示しないエッジ部加熱用給電手段と図示しない圧接用スクイズロールとで構成されている)により、電縫溶接して、電縫鋼管15を得る。12は素管エッジ部加熱起点、13は前記圧接により被溶接部11が接合する通管方向位置を指す溶接点である。尚、素管10乃至電縫鋼管15の管内面側にはインピーダ(図示省略)を配置する場合もある。電縫溶接機を出た電縫鋼管15は図示しないサイザーで外径調整をされる。   FIG. 1 is a schematic view showing an embodiment of the present invention. A strip made of steel strip is continuously paid out with an uncoiler (not shown), corrected with a leveler (not shown), and sent in the pipe passing direction 20, while the width of the strip is rounded with a roll forming machine (not shown) to open a raw pipe (open pipe) The welded portion 11 which is a base tube edge butting portion formed by butting both end faces of the rounded width is composed of an electric resistance welding machine (a power supply means for heating an edge portion (not shown) and a squeeze squeeze roll (not shown). Thus, the electric resistance welding steel pipe 15 is obtained by electric resistance welding. Reference numeral 12 denotes an element pipe edge heating start point, and reference numeral 13 denotes a welding point indicating a pipe passing direction position where the welded part 11 is joined by the pressure welding. In some cases, an impeder (not shown) may be disposed on the inner surface side of the base tube 10 to the ERW steel tube 15. The outer diameter of the ERW steel pipe 15 exiting the ERW welder is adjusted by a sizer (not shown).

本発明では、素管エッジ部加熱起点12から溶接点13までの通管方向範囲の全域、或いは当該範囲内の、被溶接部に酸化物が生成し易い区域(この区域は予備調査により特定できる)をシールド範囲とし、該シールド範囲において、被溶接部11の直上の位置にシールドガス吹付け用ノズル(略してノズル)1を配置する。   In the present invention, the entire range of the pipe passage direction from the raw tube edge heating starting point 12 to the welding point 13, or an area within the range where oxides are likely to be generated in the welded part (this area can be specified by preliminary investigation). ) As a shield range, and in this shield range, a shield gas spray nozzle (nozzle for short) 1 is arranged at a position immediately above the welded portion 11.

ノズル1は、其のガス放出口1Aを被溶接部11上端と正対する様に配位して、配置する。   The nozzle 1 is arranged by arranging its gas discharge port 1 </ b> A so as to face the upper end of the welded part 11.

本発明では、ノズル1は、図1(b)及び図2(a)(d)に示すように、素管周方向30に対して3層に分割したものとする。これらの層は互いに独立したガス流路をなす。またさらに、前記3層のうちの中央層1Cは、図2(b)(c)に示すように、素管周方向30に対して2層以上に分割してもよい。なお、両端層1Eは各1層ずつとする。   In this invention, the nozzle 1 shall be divided | segmented into 3 layers with respect to the raw-tube peripheral direction 30, as shown in FIG.1 (b) and FIG.2 (a) (d). These layers form gas passages independent of each other. Furthermore, the center layer 1C of the three layers may be divided into two or more layers with respect to the raw tube circumferential direction 30, as shown in FIGS. The two end layers 1E are one layer each.

本発明では、背景技術で言及した処の、前記シールド範囲内の素管10全周を覆うシールドボックスは、設けなくてもよい。むしろ設けない方が電縫鋼管の造管能率面、製造コスト面から好ましいから、この実施形態では設けていない。   In the present invention, the shield box that covers the entire circumference of the element tube 10 within the shield range as described in the background art may not be provided. Rather, it is not provided in this embodiment because it is preferable not to provide it from the viewpoint of pipe making efficiency and manufacturing cost of the ERW steel pipe.

本発明者らはシールドガスの流れについて詳細に観察した。さらに、ガス放出口1Aの位置や寸法、ならびに中央層1C、両端層1E夫々のガス放出口1Aでのシールドガスの流速などの、様々なシールドガスの吹付け条件が、電縫溶接時の被溶接部11の酸素濃度と、該被溶接部を電縫溶接してなる溶接部における酸化物の面積率とに及ぼす影響を詳細に調査した。   The inventors have observed in detail the flow of the shielding gas. Furthermore, various shield gas spraying conditions such as the position and size of the gas discharge port 1A, and the flow velocity of the shield gas at the gas discharge port 1A of each of the center layer 1C and the both end layers 1E are affected by the resistance of the electric welding. The influence on the oxygen concentration of the welded part 11 and the area ratio of the oxide in the welded part formed by electro-welding the welded part was investigated in detail.

その結果、シールドガスの吹付け条件を最適にする事により、被溶接部の酸素濃度が0.01質量%以下になり、溶接部の酸化物面積率が0.1%未満になることを発見した。ここで、溶接部の酸化物面積率とは、次のとおり定義される。すなわち、電縫溶接部のシャルピー衝撃試験を行うことにより得られる破面を電子顕微鏡により倍率500倍以上で少なくとも10視野観察して、その破面内に観察される酸化物を含んだディンプル破面部分を選別して、その総面積を測定し、これの視野総面積に対する割合を酸化物面積率とした。   As a result, it was discovered that by optimizing the spraying conditions of the shielding gas, the oxygen concentration of the welded part becomes 0.01% by mass or less, and the oxide area ratio of the welded part becomes less than 0.1%. did. Here, the oxide area ratio of the weld is defined as follows. That is, a fracture surface obtained by conducting a Charpy impact test of an electric resistance welded portion is observed with an electron microscope at a magnification of 500 times or more and at least 10 visual fields, and a dimple fracture surface containing oxide observed in the fracture surface A portion was selected and its total area was measured, and the ratio of the total area of the visual field was defined as the oxide area ratio.

前記発見した最適条件は、被溶接部11上端からガス放出口1Aまでの高さであるノズル高さが5mm以上300mm以下(図1(c)参照)であり、且つ、中央層1Cのガス放出口1Aでのシールドガス5の流速Bが、B=0.5〜50m/sであり、且つ、両端層1Eのガス放出口1Aでのシールドガス5の流速Aが、0.01≦B/A≦10(図3参照)を満たす流速であると云う条件である。   The optimum condition found above is that the nozzle height, which is the height from the upper end of the welded portion 11 to the gas discharge port 1A, is 5 mm or more and 300 mm or less (see FIG. 1C), and the gas release of the central layer 1C is performed. The flow rate B of the shield gas 5 at the outlet 1A is B = 0.5 to 50 m / s, and the flow rate A of the shield gas 5 at the gas discharge ports 1A of the both end layers 1E is 0.01 ≦ B / It is a condition that the flow rate satisfies A ≦ 10 (see FIG. 3).

前記ノズル高さが300mmを超えるとシールドガスが充分に被溶接部11に届かず、被溶接部11の酸素濃度が100ppm以下にならない。前記ノズル高さは小さい方が望ましいのであるが、5mmを下回ると、加熱されている被溶接部11からの輻射熱でガス放出口1Aが傷み易く、更に被溶接部11で発生したスパッタが衝突してノズル1の耐久性が劣化する。   When the nozzle height exceeds 300 mm, the shield gas does not sufficiently reach the welded part 11 and the oxygen concentration of the welded part 11 does not become 100 ppm or less. It is desirable that the nozzle height is small. However, if the nozzle height is less than 5 mm, the gas discharge port 1A is easily damaged by the radiant heat from the heated welded part 11, and the spatter generated in the welded part 11 collides. As a result, the durability of the nozzle 1 deteriorates.

流速を前記最適条件範囲内に制御するために、本発明では、前記ガス放出口から放出される前記シールドガスの流速を、前記3層のうちの中央層1Cのガス放出口からのガス放出流速Bは、B=0.5〜50m/sに制御し、残りの両端層1Eのガス放出口からのガス放出流速Aは式、0.01≦B/A≦10、を満たす流速に制御するガス流調整器3(図1(a)(b)参照)を有するものとした。   In order to control the flow rate within the optimum condition range, in the present invention, the flow rate of the shield gas discharged from the gas discharge port is set to the gas discharge flow rate from the gas discharge port of the central layer 1C of the three layers. B is controlled to B = 0.5 to 50 m / s, and the gas discharge flow rate A from the gas discharge ports of the remaining both end layers 1E is controlled to a flow rate satisfying the equation, 0.01 ≦ B / A ≦ 10. The gas flow regulator 3 (see FIGS. 1A and 1B) was provided.

流速Bが小さすぎると、シールドガスは周囲に拡散し、被溶接部11のガスシールドが不十分となる。流速Bが大き過ぎると、シールドガスの勢いが強くなりすぎ、被溶接部11の端面間への大気巻き込みを生じてしまう。よって、前記流速Bは0.5〜50m/sが適正範囲である。なお、中央層1Cをさらに複数の層に分割した場合(例えば図2(b)(c)など)、該複数の層についての流速Bは必ずしも同一の値である必要はなく、前記適正範囲内である限り、層ごとに異なる値であってもかまわない。   When the flow velocity B is too small, the shield gas diffuses to the surroundings, and the gas shield of the welded part 11 becomes insufficient. If the flow velocity B is too large, the momentum of the shielding gas becomes too strong, and the air is caught between the end faces of the welded part 11. Therefore, 0.5-50 m / s is an appropriate range for the flow velocity B. When the central layer 1C is further divided into a plurality of layers (for example, FIGS. 2B and 2C), the flow velocities B for the plurality of layers are not necessarily the same value, and are within the appropriate range. As long as it is, the value may be different for each layer.

しかし、流速Bを前記適正範囲に保ったとしても、流速Bと流速Aの比であるガス流速比B/Aが不適正であると、図3に示すように、大気巻き込み6を防止するのは困難である。   However, even if the flow rate B is kept in the proper range, if the gas flow rate ratio B / A, which is the ratio of the flow rate B and the flow rate A, is inappropriate, the air entrainment 6 is prevented as shown in FIG. It is difficult.

すなわち、B/A<0.01の場合は、両端層1Eからのガス流(シールドガス5の流れ)が強すぎ、かつ中央層1Cからのガス流が弱すぎるため、両端層1Eからのガス流が素管10の外面で反射して上方に偏向し、その反射領域におけるガス流速が零に近くなって、素管10外面沿いの大気巻き込み6を防止できず(図3(a)参照)、被溶接部11の酸素濃度を充分に低減することはできない。   That is, when B / A <0.01, the gas flow from the both end layers 1E (the flow of the shield gas 5) is too strong, and the gas flow from the central layer 1C is too weak. The flow is reflected on the outer surface of the element tube 10 and deflected upward, and the gas flow velocity in the reflection region becomes close to zero, and the air entrainment 6 along the outer surface of the element tube 10 cannot be prevented (see FIG. 3A). The oxygen concentration in the welded part 11 cannot be sufficiently reduced.

一方、B/A>10の場合は、中央層1Cからのガス流が強すぎ、かつ両端層1Eからのガス流が弱過ぎるため、大気が中央層1Cからのガス流によって被溶接部11の端面間に引きずり込まれて、大気巻き込み6を招来しやすく(図3(c)参照)、被溶接部11の酸素濃度を充分に低減することはできない。   On the other hand, in the case of B / A> 10, the gas flow from the central layer 1C is too strong and the gas flow from both end layers 1E is too weak. It is dragged between the end faces, and air entrainment 6 is likely to occur (see FIG. 3C), and the oxygen concentration of the welded portion 11 cannot be sufficiently reduced.

これらに対し、B/A=0.01〜10とすることで、被溶接部11の端面間にシールドガス5が過不足なく充満し、大気巻き込みも無く、充分なガスシールドが達成できる(図3(b)参照)。なお、ガス流速比B/Aにおける流速Bには、中央層1Cを複数の層に分割して、該複数の層の少なくとも1層からのガス流速を他層と違えた場合、該違えたガス流速同士のうちの最大流速を用いる。   On the other hand, by setting B / A = 0.01 to 10, the end face of the welded portion 11 is filled with the shielding gas 5 without excess or deficiency, and there is no air entrainment, and a sufficient gas shield can be achieved (FIG. 3 (b)). Note that the flow rate B at the gas flow rate ratio B / A is such that when the central layer 1C is divided into a plurality of layers and the gas flow rate from at least one of the plurality of layers is different from that of the other layers, the different gas Use the maximum flow rate among the flow rates.

因みに図4は、一例としてノズル高さ=50mmとし、流速B=0.5〜50m/sの適正範囲下でガス流速比B/Aを種々変えて被溶接部11にシールドガス5を吹き付け、被溶接部11の端面間の中間位置で酸素濃度を測定した結果をまとめた線図である。   4 shows an example in which the nozzle height is 50 mm, and the gas flow rate ratio B / A is variously changed under an appropriate range of the flow velocity B = 0.5 to 50 m / s, and the shield gas 5 is sprayed on the welded portion 11. It is the diagram which put together the result of having measured oxygen concentration in the intermediate position between the end surfaces of the to-be-welded part 11. FIG.

図4より、流速B=0.5〜50m/sの適正範囲下で、ガス流速比B/Aを、B/A=0.01〜10とすることによって、酸素濃度0.01質量%以下が大きな余裕を持って(即ち確実に)クリアできる。   From FIG. 4, the oxygen flow rate ratio B / A is set to B / A = 0.01-10 under an appropriate range of flow velocity B = 0.5-50 m / s, whereby the oxygen concentration is 0.01 mass% or less. Can be cleared with a large margin (ie, surely).

又、図4より、B/A=0.03〜5とすると、更に低い酸素濃度レベルである0.001〜0.0001質量%が達成できて好ましい。   From FIG. 4, it is preferable that B / A = 0.03 to 5 because an even lower oxygen concentration level of 0.001 to 0.0001 mass% can be achieved.

ところで、ガス放出口1Aの全層合併した形状については、寸法の通管方向20成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状にすると、被溶接部11へのガス吹付けをより均一にできて好ましい。   By the way, about the shape which merged all the layers of gas discharge port 1A, if the length which is 20 components of the dimension through-tube direction is 30 mm or more, and the width which is the dimension of the element tube edge butting direction component is 5 mm or more, This is preferable because the gas spraying to the welded portion 11 can be made more uniform.

又、図1(c)に示す様に、ガス放出口1Aの全層合併した寸法の素管エッジ突合せ方向成分である幅をRと記し、ガス放出口1Aの直下の被溶接部11の端面間の最大間隔をWと記すとして、R/W>1.0、を満たす様にすると、被溶接部11の酸素濃度をより速やかに低減させる事ができて好ましい。   Further, as shown in FIG. 1C, the width of the raw material edge butt direction component of the combined size of the gas discharge ports 1A is denoted as R, and the end surface of the welded portion 11 immediately below the gas discharge port 1A. It is preferable to satisfy R / W> 1.0, where W is the maximum interval between the two because the oxygen concentration of the welded part 11 can be reduced more quickly.

シールドガスとしては不活性ガスを用いる。此処に云う不活性ガスとは、窒素ガス、ヘリウムガス、アルゴンガス、ネオンガス、キセノンガス等、若しくはこれらの2種以上を混合してなる混合ガスなどを意味する。   An inert gas is used as the shielding gas. The inert gas referred to here means nitrogen gas, helium gas, argon gas, neon gas, xenon gas, or the like, or a mixed gas formed by mixing two or more of these.

更に、シールドガスとして、前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしてもよく、然も、むしろこの方が、ペネトレータの原因となる酸化物の生成を抑制する効果がより強くなり、溶接部の靭性又は強度を、より大きく向上させることができて好ましい。此処に云う還元性ガスとは、水素ガス、一酸化炭素ガス、メタンガス、プロパンガス等、若しくはこれらの2種以上を混合してなる混合ガスを意味する。尚、還元性ガスを0.1質量%以上含有するガスとしては、還元性ガスのみからなる組成、又は、還元性ガス:0.1質量%以上を含有し残部が不活性ガスからなる組成のものが好適である。   Further, as the shielding gas, a gas containing 0.1% by mass or more of a reducing gas may be used instead of the inert gas. However, this rather suppresses the generation of oxides that cause the penetrator. This is preferable because the effect becomes stronger and the toughness or strength of the welded portion can be greatly improved. Here, the reducing gas means hydrogen gas, carbon monoxide gas, methane gas, propane gas, or a mixed gas obtained by mixing two or more of these. In addition, as a gas containing 0.1 mass% or more of reducing gas, the composition which consists only of reducing gas, or the composition which contains reducing gas: 0.1 mass% or more and the remainder consists of an inert gas. Those are preferred.

又、入手容易性及び廉価性の点からは、シールドガスとして次のガスを用いる事が好ましい。
(イ) 不活性ガス単独使用の場合:(G1)窒素ガス、ヘリウムガス、アルゴンガスの何れか1種若しくはこれら2種以上の混合ガス
(ロ) 還元性ガス単独使用の場合:(G2)水素ガス、一酸化炭素ガスの何れか1種若しくはこれら2種の混合ガス
(ハ) 不活性ガスと還元性ガスの混合ガス使用の場合:前記(G1)と(G2)の混合ガス
尚、特に、水素ガス及び/又は一酸化炭素ガスを含むガスを使用する場合、遺漏無き安全対策をとるべきことは云うまでも無い。
Further, from the viewpoint of easy availability and low cost, it is preferable to use the following gas as the shielding gas.
(B) When using inert gas alone: (G1) Any one of nitrogen gas, helium gas and argon gas, or a mixture of two or more of these
(B) When using reducing gas alone: (G2) One of hydrogen gas and carbon monoxide gas or a mixture of these two
(C) When using a mixed gas of inert gas and reducing gas: Mixed gas of the above (G1) and (G2) In particular, if a gas containing hydrogen gas and / or carbon monoxide gas is used, it is left out Needless to say, safety measures should be taken.

鋼帯からなる帯材を、アンコイラー、レベラー、ロール成形機、電縫溶接機、サイザーをこの順に配置して構成された造管設備に通して、外径600mm、肉厚20.6mmの低炭素低合金鋼の電縫鋼管を製造する工程において、電縫溶接時に被溶接部へのガスシールドを実行するにあたり、上述した実施形態の本発明範囲の内又は外でガス吹付け条件の水準を表1に示すとおり種々変えて実行し、被溶接部の酸素濃度の測定、及び溶接部の酸化物面積率の測定を行った。ここで、ノズル1は図1(b)に示した形態のものを使用した。尚、開先形状は、I形開先形状とした。その結果を表1に示す。   The steel strip is passed through a pipe making facility composed of an uncoiler, leveler, roll forming machine, electric seam welder, and sizer in this order, and a low carbon with an outer diameter of 600 mm and a wall thickness of 20.6 mm. In the process of manufacturing the low-alloy steel electric resistance welded pipe, the gas spraying condition level is expressed within or outside the scope of the present invention of the above-described embodiment when performing the gas shield to the welded part during the electric resistance welding. As shown in FIG. 1, the measurement was performed with various changes, and the oxygen concentration of the welded part and the oxide area ratio of the welded part were measured. Here, the nozzle 1 having the form shown in FIG. 1B was used. The groove shape was an I-shaped groove shape. The results are shown in Table 1.

表1、2に示されるとおり、本発明例では、比較例と比べて被溶接部の酸素濃度が桁違いに低減し、溶接部の酸化物面積率が格段に低減した。   As shown in Tables 1 and 2, in the examples of the present invention, the oxygen concentration in the welded portion was remarkably reduced as compared with the comparative example, and the oxide area ratio in the welded portion was significantly reduced.

Figure 0006036773
Figure 0006036773

Figure 0006036773
Figure 0006036773

1 ノズル(シールドガス吹付け用ノズル)
1A ガス放出口
1C 中央層
1E 両端層
2 ガス配管
3 ガス流調整器
5 シールドガス
6 大気巻き込み
10 素管(オープン管)
11 被溶接部(素管エッジ突合せ部)
12 素管エッジ部加熱起点
13 溶接点
15 電縫鋼管
20 通管方向
30 素管周方向
1 Nozzle (Shield gas spray nozzle)
1A Gas outlet 1C Center layer 1E Both end layers 2 Gas piping 3 Gas flow regulator 5 Shield gas 6 Atmospheric entrainment 10 Elementary tube (open tube)
11 Welded part (element tube edge butt part)
12 Element pipe edge heating start point 13 Welding point 15 ERW steel pipe 20 Through direction 30 Elemental pipe circumferential direction

Claims (11)

電縫溶接時の被溶接部を不活性ガスからなるシールドガスでガスシールドする電縫鋼管の素管被溶接部シールド装置であって、前記被溶接部に対し該被溶接部上端から5〜300mm上方の位置に、素管周方向に対して3層に分割したガス放出口を配位したシールドガス吹付け用ノズルと、前記ガス放出口から放出される前記シールドガスの流速を、前記3層のうちの中央層のガス放出口からのガス放出流速Bは、B=0.5〜50m/sに制御し、残りの両端層のガス放出口からのガス放出流速Aは式、0.01≦B/A≦10、を満たす流速に制御するガス流調整器と、を有することを特徴とする電縫鋼管の素管被溶接部シールド装置。   An apparatus for shielding welded parts of an electric resistance welded steel pipe which shields a welded part at the time of ERW welding with a shielding gas made of an inert gas, and is 5 to 300 mm from the upper end of the welded part with respect to the welded part. A shield gas spray nozzle in which gas discharge ports divided into three layers with respect to the circumferential direction of the raw tube are arranged at an upper position, and the flow rate of the shield gas discharged from the gas discharge port are set to the three layers. The gas discharge flow rate B from the gas discharge port of the central layer is controlled to B = 0.5 to 50 m / s, and the gas discharge flow rate A from the gas discharge ports of the remaining both end layers is 0.01. A gas flow regulator that controls the flow rate to satisfy ≦ B / A ≦ 10. 前記中央層をさらに素管周方向に対して2層以上に分割したことを特徴とする請求項1に記載の電縫鋼管の素管被溶接部シールド装置。   The base welded portion shielding device for an electric resistance welded steel pipe according to claim 1, wherein the central layer is further divided into two or more layers in the circumferential direction of the base pipe. 前記ガス放出口の全層合併した形状は、寸法の通管方向成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状であることを特徴とする請求項1または2に記載の電縫鋼管の素管被溶接部シールド装置。   The combined shape of all the layers of the gas discharge port is a rectangular shape having a length of 30 mm or more as a component in the direction of passing through the dimension and a width of 5 mm or more as a component in the element tube edge butting direction as a dimension. The device for shielding a welded portion of an unsealed steel pipe according to claim 1 or 2. 前記ガス放出口の全層合併した寸法の素管エッジ突合せ方向成分である幅Rは、前記ガス放出口の直下の被溶接部の端面間の最大間隔Wに対し、R/W>1.0、なる関係を満たすことを特徴とする請求項1〜3の何れか1つに記載の電縫鋼管の素管被溶接部シールド装置。   The width R, which is a component of the tube edge butting direction of the combined dimensions of all the layers of the gas discharge port, is R / W> 1.0 with respect to the maximum interval W between the end faces of the welded portion immediately below the gas discharge port. The raw material welded portion shielding device for an electric resistance welded steel pipe according to any one of claims 1 to 3, wherein the following relationship is satisfied. 前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしたことを特徴とする請求項1〜4の何れか1つに記載の電縫鋼管の被溶接部シールド装置。   The welded portion shielding device for an ERW steel pipe according to any one of claims 1 to 4, wherein the gas contains 0.1% by mass or more of a reducing gas instead of the inert gas. . 電縫溶接時の被溶接部を不活性ガスからなるシールドガスでガスシールドする電縫鋼管の素管被溶接部シールド方法であって、前記被溶接部に対し該被溶接部上端から5〜300mm上方の位置に、素管周方向に対して3層に分割したガス放出口を配位したシールドガス吹付け用ノズルの前記ガス放出口から前記シールドガスを、前記3層のうちの中央層のガス放出口からのガス放出流速Bは、B=0.5〜50m/sとし、残りの両端層のガス放出口からのガス放出流速Aは式、0.01≦B/A≦10、を満たす流速として、吹付けることを特徴とする電縫鋼管の素管被溶接部シールド方法。   A method for shielding a welded portion of an ERW steel pipe by gas shielding the welded portion at the time of ERW welding with a shielding gas composed of an inert gas, wherein the welded portion is 5 to 300 mm from the upper end of the welded portion with respect to the welded portion. The shield gas from the gas discharge port of the shield gas blowing nozzle in which the gas discharge ports divided into three layers with respect to the circumferential direction of the raw tube are arranged at the upper position, and the central layer of the three layers. The gas discharge flow rate B from the gas discharge port is set to B = 0.5 to 50 m / s, and the gas discharge flow rate A from the gas discharge ports of the remaining both end layers is expressed by the formula: 0.01 ≦ B / A ≦ 10. A method for shielding a welded portion of a welded part of an ERW steel pipe, characterized by spraying as a flow rate to satisfy. 前記中央層をさらに素管周方向に対して2層以上に分割したことを特徴とする請求項6に記載の電縫鋼管の素管被溶接部シールド方法。   The said center layer is further divided | segmented into two or more layers with respect to the pipe | tube peripheral direction, The pipe | tube weld part shielding method of the electric-resistance-welded steel pipe of Claim 6 characterized by the above-mentioned. 前記ガス放出口の全層合併した形状は、寸法の通管方向成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状であることを特徴とする請求項6または7に記載の電縫鋼管の素管被溶接部シールド方法。   The combined shape of all the layers of the gas discharge port is a rectangular shape having a length of 30 mm or more as a component in the direction of passing through the dimension and a width of 5 mm or more as a component in the element tube edge butting direction as a dimension. The method for shielding a welded portion of an unsealed steel pipe according to claim 6 or 7. 前記ガス放出口の全層合併した寸法の素管エッジ突合せ方向成分である幅Rは、前記ガス放出口の直下の被溶接部の端面間の最大間隔Wに対し、R/W>1.0、なる関係を満たすことを特徴とする請求項6〜8の何れか1つに記載の電縫鋼管の素管被溶接部シールド方法。   The width R, which is a component of the tube edge butting direction of the combined dimensions of all the layers of the gas discharge port, is R / W> 1.0 with respect to the maximum interval W between the end faces of the welded portion immediately below the gas discharge port. The method for shielding a welded portion of an unsealed steel pipe according to any one of claims 6 to 8, wherein the following relationship is satisfied. 前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしたことを特徴とする請求項6〜9の何れか1つに記載の電縫鋼管の被溶接部シールド方法。   10. The method for shielding a welded portion of an ERW steel pipe according to claim 6, wherein the gas contains 0.1% by mass or more of a reducing gas instead of the inert gas. . 被溶接部をガスシールドしつつ電縫溶接する電縫鋼管の製造方法において、前記ガスシールドは、請求項6〜10の何れか1つに記載の電縫鋼管の素管被溶接部シールド方法により行うことを特徴とする電縫鋼管の製造方法 In the manufacturing method of the electric resistance welded pipe which carries out electric resistance welding while gas-shielding a to-be-welded part, the above-mentioned gas shield is carried out by the shielded part to-be-welded part of an electric resistance welded steel pipe according to any one of claims 6 to 10. method of manufacturing an electric resistance welded steel pipe, which comprises carrying out.
JP2014190169A 2013-11-25 2014-09-18 Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe Active JP6036773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190169A JP6036773B2 (en) 2013-11-25 2014-09-18 Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013242770 2013-11-25
JP2013242768 2013-11-25
JP2013242770 2013-11-25
JP2013242768 2013-11-25
JP2014190169A JP6036773B2 (en) 2013-11-25 2014-09-18 Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe

Publications (2)

Publication Number Publication Date
JP2015120195A JP2015120195A (en) 2015-07-02
JP6036773B2 true JP6036773B2 (en) 2016-11-30

Family

ID=53532349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190169A Active JP6036773B2 (en) 2013-11-25 2014-09-18 Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe

Country Status (1)

Country Link
JP (1) JP6036773B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6500810B2 (en) * 2016-03-01 2019-04-17 Jfeスチール株式会社 Manufacturing method of ERW welded clad steel pipe
WO2018003248A1 (en) * 2016-06-30 2018-01-04 Jfeスチール株式会社 Electric seam welded stainless steel clad pipe and method for manufacturing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588424A (en) * 1968-04-17 1971-06-28 Republic Steel Corp Method and apparatus for high speed welding of stainless steel tube
JPH0433475U (en) * 1990-07-03 1992-03-18
JPH04305379A (en) * 1991-03-29 1992-10-28 Nippon Steel Corp Method for preventing weld defect of electro-resistance-welded tube
FR2686820A1 (en) * 1992-01-31 1993-08-06 Lorraine Laminage Method and device for the seam (longitudinal) welding of a tube using high-frequency induction
JPH09194998A (en) * 1996-01-09 1997-07-29 Nkk Corp Welded steel tube and its production
JP2000079491A (en) * 1998-09-03 2000-03-21 Nkk Corp Manufacture of welded steel pipe by high energy beam
JP4377869B2 (en) * 1998-12-14 2009-12-02 新日本製鐵株式会社 Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
JP4051042B2 (en) * 2004-01-19 2008-02-20 新日本製鐵株式会社 ERW steel pipe containing Cr and method for producing the same
JP2008087022A (en) * 2006-10-02 2008-04-17 Jfe Steel Kk Method for manufacturing seam welded pipe having excellent characteristics of welded portion
JP2014184469A (en) * 2013-03-25 2014-10-02 Jfe Steel Corp Shield device for zone-to-be-welded of tube stock of electric resistance welded steel pipe

Also Published As

Publication number Publication date
JP2015120195A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
US10844993B2 (en) Electric-resistance-welded stainless clad steel pipe or tube
JP6164368B2 (en) Manufacturing method of ERW welded stainless clad steel pipe
US11484927B2 (en) Clad welded pipe or tube and method of producing same
WO2014156057A1 (en) Shielding device for regions of element pipe to be welded in electric resistance-welded steel pipe
US11079045B2 (en) Electric resistance welded clad steel pipe or tube and method of producing same
JP2007283363A (en) Method of manufacturing uoe steel pipe
JP6036773B2 (en) Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe
KR101435194B1 (en) flux cored wire and manufacturing method thereof and manufacturing device thereof
JP6060816B2 (en) ERW steel pipe welded shield system
JP4632428B2 (en) High frequency induction heating pipe making method of steel pipe
JP6500810B2 (en) Manufacturing method of ERW welded clad steel pipe
JP6458907B1 (en) ERW steel pipe manufacturing apparatus and ERW steel pipe manufacturing method
JP2014004624A (en) Method of shielding welded part of original pipe of electric resistance welded steel pipe, and method of manufacturing electric resistance welded steel pipe
Hamatani et al. Development of Laminar Plasma Shielded HF-ERW Process: Advanced Welding Process of HF-ERW 3
JP2013169579A (en) Seal box welding equipment of electric resistance welded tube
JP3566863B2 (en) High-speed plasma welding pipe making method for small diameter steel pipes.
JP7155816B2 (en) Manufacturing method and welding equipment for austenitic stainless steel pipe welded joint
JP2008012582A (en) Method for manufacturing electric resistance welded tube having excellent weld characteristic
JP2015085354A (en) Manufacturing method of electric resistance welded steel pipe excellent in characteristics of welded part
JP2000237875A (en) Manufacture of steel tube having small diameter by high speed plasma welding
KR20130132720A (en) Flux cored wire and manufacturing method thereof and manufacturing device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250