JP6500810B2 - Manufacturing method of ERW welded clad steel pipe - Google Patents
Manufacturing method of ERW welded clad steel pipe Download PDFInfo
- Publication number
- JP6500810B2 JP6500810B2 JP2016038581A JP2016038581A JP6500810B2 JP 6500810 B2 JP6500810 B2 JP 6500810B2 JP 2016038581 A JP2016038581 A JP 2016038581A JP 2016038581 A JP2016038581 A JP 2016038581A JP 6500810 B2 JP6500810 B2 JP 6500810B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- welded
- steel pipe
- gas discharge
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 76
- 239000010959 steel Substances 0.000 title claims description 76
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000007789 gas Substances 0.000 claims description 123
- 238000003466 welding Methods 0.000 claims description 49
- 239000000463 material Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 16
- 239000010935 stainless steel Substances 0.000 claims description 15
- 229910001220 stainless steel Inorganic materials 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 239000002648 laminated material Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 3
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 2
- 239000010962 carbon steel Substances 0.000 claims description 2
- 238000007781 pre-processing Methods 0.000 claims description 2
- 238000005452 bending Methods 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 239000011324 bead Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000007921 spray Substances 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 229910000851 Alloy steel Inorganic materials 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Description
本発明は、電縫溶接クラッド鋼管の製造方法に関し、特に、電縫溶接ままで溶接部の特性が優れた電縫溶接クラッド鋼管の製造方法に関する。 The present invention relates to a method of manufacturing an ERW welded clad steel pipe, and more particularly, to a method of manufacturing an ERW welded clad steel pipe excellent in the characteristics of a welded portion as it is.
通常、電縫鋼管は、鋼板(鋼帯ともいう)を管状に成形し、高周波電流によって加熱・溶融された対向する鋼帯幅端部を、スクイズロールにより突き合せ加圧して溶接し製造される。電縫鋼管の場合、一般に溶接部の特性は母材より劣ると云われ、鋼管の適用に当たって、用途ごとに溶接部の靭性や強度や伸びなどの保証が常に議論されて問題となってきた。 Normally, ERW steel pipe is manufactured by forming a steel plate (also called steel strip) into a tubular shape, welding the opposite steel strip width ends heated and melted by a high frequency current with butting pressure with a squeeze roll and welding . In the case of ERW steel pipe, it is generally said that the properties of the welded part are inferior to the base metal, and in the application of the steel pipe, the guarantee of toughness, strength and elongation of the welded part has always been discussed for each application.
電縫溶接部の特性を低下させる原因としては、ペネトレータと呼ばれる酸化物主体の溶接欠陥が、電縫溶接時に被溶接部(詳しくは、帯材を丸めてなるオープン管である素管の周方向両端面を突き合せた部位である素管エッジ突合せ部)に生成して残留し、この残留したペネトレータを原因として靭性が低下したり強度不足になったりする例が多かった。 The cause of the deterioration of the properties of the ERW welds is the oxide-based weld defect called penetrator, which is the welded portion at the time of ERW welding (specifically, the circumferential direction of the base pipe which is an open pipe formed by rounding a band material) In many cases, it was generated and remained on the raw pipe edge butt portion which is a portion where the both end faces are butted, and the toughness was lowered or the strength was insufficient due to the remaining penetrator.
そこで、従来技術として電縫溶接不良の主原因であるペネトレータを溶接部から除くため、スクイズロールによるアプセット量を板厚よりも大きくして、溶接時に生じる酸化溶融物を管外面に排出する対策が取られてきた。 Therefore, in order to remove the penetrator, which is the main cause of welding resistance defects, from the welded area as prior art, the upset amount by the squeeze roll is made larger than the plate thickness, and measures are taken to discharge the oxide melt generated during welding to the pipe outer surface. It has been taken.
しかしながら、クラッド鋼板を素材として電縫溶接クラッド鋼管を製造する場合、スクイズロールによるアプセット量を肉厚(板厚)よりも大きくすると、図6(a)に示すように、母材である普通鋼の溶融鋼および熱影響部が内面側或いは外面側またはその両側の合せ材の金属シーム部に混入する現象が生じ、過度なアプセット量の場合、溶接ビード切削後、鋼管内面への母材の露出を引き起こし、結果として、合せ材の優れた特性を活かすクラッド鋼管としての性能が失われる。例えば、管内面側の合せ材がステンレス鋼、管外面側の母材が低合金鋼であるステンレスクラッド鋼板を素材とし、上記のように肉厚よりもアプセット量を大きくして電縫溶接した電縫溶接ステンレスクラッド鋼管を、管内面に耐食性が要求される環境下で使用すると、ステンレス鋼のシーム部は、母材の低合金鋼が合せ材のステンレス鋼側に混入または内面に露出しているために、耐食性が著しく低下しており、要求性能を発揮できないという問題があった。 However, when producing electric resistance welded welded steel pipe using clad steel sheet as a raw material, if the amount of upset by the squeeze roll is made larger than the thickness (plate thickness), as shown in FIG. In the case of excessive upset, the base steel is exposed to the inner surface of the steel pipe after weld bead cutting if molten steel and the heat affected zone are mixed in the metal seam of the joint material on the inner surface side or outer surface side or both sides As a result, the performance as a clad steel pipe which makes use of the superior properties of the joint material is lost. For example, a stainless steel-clad steel plate in which the joining material on the inner surface side is stainless steel and the base material on the outer surface of the pipe is a low alloy steel is used. When a welded stainless steel clad steel pipe is used in an environment where corrosion resistance is required for the inner surface of the pipe, the low alloy steel of the base material is mixed into the stainless steel side of the joining material or exposed on the inner surface. As a result, the corrosion resistance is significantly reduced and there is a problem that the required performance can not be exhibited.
このような問題に対し、特許文献1に、管状に曲成したクラッド鋼板または鋼帯の対向両縁部を突合せ溶接した溶接ビード中の少なくとも合せ材側ビードを、母材に到る深さまで切削除去し、切削除去部に合せ材と同様性質を有する肉盛溶接を施すクラッド管の製造方法が開示されている。
To address such problems,
また、特許文献2に、クラッド鋼帯を素管に成形し、継目エッジ部を電縫溶接した後、異種金属が侵入した溶接シームに沿って、クラッド界面部の深さまで溶融・凝固させて、該異種金属を希釈する、または、異種金属が侵入したシーム部を合せ材と同種の金属で肉盛溶接し、該肉盛溶接部を圧延して前記異種金属を希釈するクラッド鋼の鋼管製造方法が開示されている。
Further, according to
さらに、特許文献3に、内面側を合せ材としたクラッド鋼溶接鋼管の製造方法において、クラッド鋼の原板または原コイルを成形して内面を合せ材とした管状体の合せ材突合せの少なくとも一部分を電縫溶接し、その後突合せ未溶接部を肉盛溶接するクラッド鋼溶接鋼管の製造方法が開示されている。
Furthermore, in
しかしながら、上記の特許文献1〜3に記載の技術は、いずれも電縫溶接後に、合せ材ビード部を切削除去して肉盛溶接する(特許文献1)、溶接シームに沿ってTIGアーク熱源などで溶融・凝固または肉盛溶接する(特許文献2)、突合せ未溶接部を肉盛溶接する(特許文献3)、などの追加の溶接工程が必要なため、生産性が低下し、製造コストが増大するとともに、追加の肉盛溶接で環境面の悪影響を生じるという課題があった。
However, the techniques described in the above-mentioned
本発明の目的は、従来技術で必要とされている追加の溶接処理を施さなくても、優れた溶接部の特性を有する電縫溶接クラッド鋼管の製造方法を提供することである。 It is an object of the present invention to provide a method of making an ERW welded clad steel pipe having excellent weld properties without the additional welding process required in the prior art.
発明者らは、前記課題を解決する為に鋭意検討し、その結果、素管のエッジ部加熱起点から溶接点に至る通管範囲をシールドボックスで覆わずに、前記通管範囲内で素管の被溶接部直上から被溶接部にシールドガスを吹き付ける場合、被溶接部の上端からシールドガス吹付け用ノズルにおけるシールドガスの放出口までの高さであるノズル高さ、および吹付けるシールドガスの流速を適正に制御することに加え、前記シールドガス吹付け用ノズルの構造を素管周方向に対して3層以上に分割した構造とし、両端層のガス放出口からの吹付けガス流速と残りの層のガス放出口からの吹付けガス流速の比を適性に制御することにより、被溶接部の酸素濃度を格段に低減できることを見出した。 The present inventors diligently studied to solve the above-mentioned problems, and as a result, without covering the through-tube range from the heating start of the edge portion of the blank tube to the welding point with the shield box, When the shield gas is sprayed from directly above the weld zone to the weld zone, the nozzle height which is the height from the upper end of the weld zone to the shield gas discharge port in the shield gas spray nozzle, and the shield gas to be sprayed In addition to appropriately controlling the flow velocity, the structure of the shield gas spray nozzle is divided into three or more layers in the circumferential direction of the base pipe, and the spray gas flow velocity from the gas discharge ports of both end layers and the remainder It has been found that the oxygen concentration in the weld zone can be significantly reduced by appropriately controlling the ratio of the flow velocity of the blowing gas from the gas outlet of the layer.
さらに、図7に示すように、電縫溶接よりも前工程において、突合せ溶接部となるクラッド鋼帯幅端部に合せ材側を肉厚中央側へ押し込んだ形状のV形開先とする開先加工を施すことで、クラッド界面を肉厚中央側へ移動させ、それによって、電縫溶接中のクラッド鋼の被溶接部の溶融鋼の流れを制御でき、母材の溶融鋼および熱影響部が、鋼管内面側に位置する合せ材の金属シーム部へ混入し内面に露出することを抑制できることを見出した。また、前記V形開先を付与することにより、十分なアプセット量を付加することができるため酸化物の排出が促進される。さらには、前記V形開先を付与することで、被接合部面全体の温度分布が均一化されるため、電縫溶接部から酸化物の排出が促進され、結果的に電縫溶接部の靭性および強度の低下も防止できることを発見した。ここで、開先加工方法としてはクラッド界面を肉厚中央側へ押込む必要があり、プレス加工や圧延およびロール成形等の方法が適用できる。 Furthermore, as shown in FIG. 7, in the pre-process of ERW welding, the V-shaped groove is formed by pressing the laminated material side to the thick center side at the clad steel band width end to be a butt weld By pre-processing, the clad interface can be moved to the thick center side, thereby controlling the flow of molten steel in the weld zone of clad steel during electric resistance welding, and the molten steel and heat affected zone of the base material However, it has been found that it is possible to suppress the mixing into the metal seam portion of the laminated material located on the inner surface side of the steel pipe and the exposure to the inner surface. Further, by providing the V-shaped groove, a sufficient amount of upset can be added, thereby promoting the discharge of oxides. Furthermore, by providing the V-shaped groove, the temperature distribution of the entire surface of the joined portion is made uniform, so that the discharge of oxide from the ERW weld is promoted, and as a result, It has been found that a decrease in toughness and strength can also be prevented. Here, it is necessary to press the cladding interface to the thick center side as the groove processing method, and methods such as pressing, rolling, and roll forming can be applied.
また、溶接部の特性が優れた電縫溶接管とは、JIS G 3445の規定に準拠した偏平試験で得られる偏平高さHと管の外径Dとの比H/Dが0.3未満を達成するものであり、この条件を満たすことで破断特性に優れた溶接部を有することがこれまでの数々の評価試験により明らかとなった。即ち本発明は以下の通りである。
(1)炭素鋼の母材とステンレス鋼あるいはニッケル基合金の合せ材とからなるクラッド鋼の熱延鋼帯を管状に成形し、該熱延鋼帯の幅方向両端部を突合せ電縫溶接してなる電縫溶接クラッド鋼管の製造方法であって、前記電縫溶接前にあらかじめ前記熱延鋼帯の幅方向両端部を、クラッド界面が合せ材側から肉厚中心側へ押し込まれた形態で、ベベル角度が20〜70°、かつ、開先深さが全肉厚の10〜50%であるV形開先とする開先加工を施し、前記電縫溶接時に、被溶接部を不活性ガスからなるシールドガスでガスシールドする電縫鋼管の素管被溶接部シールド方法を用いて、前記被溶接部に対し該被溶接部上端から5〜300mm上方の位置に、素管周方向に対して3層に分割したガス放出口を配位したシールドガス吹付け用ノズルの前記ガス放出口から前記シールドガスを、前記3層のうちの中央層のガス放出口からのガス放出流速Bは、0.5〜50m/sとし、残りの両端層のガス放出口からのガス放出流速A(m/s)は式、0.01≦B/A≦10、を満たす流速として、吹付けることを特徴とする電縫溶接クラッド鋼管の製造方法。
(2)前記V形開先に加えて、前記幅方向両端部の母材側を開先加工し、X形開先とすることを特徴とする(1)に記載の電縫溶接クラッド鋼管の製造方法。
(3)前記ガス放出口の形状は、寸法の通管方向成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状であることを特徴とする(1)または(2)に記載の電縫溶接クラッド鋼管の製造方法。
(4)前記ガス放出口の全層合併した寸法の素管エッジ突合せ方向成分である幅Rは、前記ガス放出口の直下の被溶接部の端面間の最大間隔Wに対し、R/W>1.0、なる関係を満たすことを特徴とする(1)〜(3)のいずれかに記載の電縫溶接クラッド鋼管の製造方法。
(5)前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしたことを特徴とする(1)〜(4)のいずれかに記載の電縫溶接クラッド鋼管の製造方法。
In addition, with the ERW welded pipe excellent in the characteristics of the welded portion, the ratio H / D of the flat height H to the outer diameter D of the pipe obtained by the flat test in accordance with JIS G 3445 is less than 0.3 It has become apparent from the numerous evaluation tests so far that the weld portion has excellent weld fracture characteristics by satisfying this condition. That is, the present invention is as follows.
(1) A hot-rolled steel band of clad steel consisting of a base material of carbon steel and a joining material of stainless steel or nickel base alloy is formed into a tubular shape, and both ends in the width direction of the hot-rolled steel band are butt welded A method of manufacturing a welded seam welded clad steel pipe, in which both ends in the width direction of the hot-rolled steel strip are pressed in advance from the laminated material side to the thick center side before the welded seam welding. ,
(2) In addition to the V-shaped groove, the base material sides of the both widthwise end portions are grooved to form an X-shaped groove; Production method.
(3) The shape of the gas discharge port is a rectangular shape having a length of 30 mm or more, which is a passage direction component of the dimension, and a width of 5 mm or more, which is a raw tube edge abutting direction component of the dimension ((3) The manufacturing method of the electric resistance welding welded clad steel pipe as described in 1) or (2).
(4) The width R which is an element pipe edge abutting direction component having a dimension in which all layers of the gas discharge port are merged is R / W> with respect to the maximum distance W between the end faces of the welded portion immediately below the gas discharge port The method according to any one of (1) to (3), which satisfies the following relationship: 1.0.
(5) Instead of the inert gas, a gas containing 0.1 mass% or more of reducing gas is used. (1) to (4) Production method.
本発明によれば、電縫溶接部を含め全面に亘って合せ材に被覆された内面を有し、かつ溶接部の破断特性が優れた電縫溶接クラッド鋼管を製造することができる。 According to the present invention, it is possible to manufacture an electric-resistance-welded clad steel pipe having an inner surface covered with a bonding material over the entire surface including the electric-resistance-welded portion and having excellent fracture characteristics of the welded portion.
本発明者らは突合せ溶接部となるクラッド鋼帯幅方向端部の開先形状が圧接溶接工程における溶融鋼の流れや熱影響部の塑性流動に及ぼす影響について詳細に調査した。圧接溶接工程中の溶融鋼は、未溶融面に沿うようにして内面側或いは外面側へ流れ出し、その流出量は被溶接部の溶融部分の体積に比例するため、開先加工を施し溶融部分の体積を小さくすると開先を有する側への溶融鋼の流出量が減少する。そこで、クラッド鋼帯幅方向端部の合せ材側にV形開先を設け、合せ材側への溶融鋼の流出量を減らすとともに、前記V形開先を、プレス加工もしくは圧延やロール成形等の方法で合せ材側を肉厚中央側へ押し込んだ形状とすることにより、母材の溶融鋼が合せ材側の溶接シーム部の内面に露出することが防止できることを見出した。 The present inventors investigated in detail the influence of the groove shape of the clad steel band width direction end portion which becomes a butt weld portion on the flow of molten steel in the pressure welding process and the plastic flow of the heat affected zone. The molten steel in the pressure welding process flows out to the inner or outer surface along the unmelted surface, and the amount of outflow is proportional to the volume of the melted portion of the welded portion, so groove processing is applied to the melted portion When the volume is reduced, the outflow of the molten steel to the side having the groove is reduced. Therefore, a V-shaped groove is provided on the joint material side of the clad steel strip width direction end to reduce the amount of molten steel flowing to the joint material side, and the V-shaped groove is pressed, rolled or roll formed It was found that the molten steel of the base material can be prevented from being exposed to the inner surface of the weld seam on the side of the joint material by forming the joint material side into the shape of the thick center side by the method described above.
そこで、本発明では、電縫溶接部の内面ビードを切削した後、電縫溶接部を含め全面に亘って合せ材に被覆された内面を有する電縫溶接クラッド鋼管とするため、電縫溶接前にクラッド鋼帯の幅方向両端部を、クラッド界面が合せ材側から肉厚中心側へ押し込まれた形態で、ベベル角度θが20〜70°、かつ、開先深さdが、全肉厚の10〜50%であるV形開先に開先加工を施す。該V形開先として突き合せ電縫溶接することにより、母材がビード切削後の合せ材側の溶接部の表面に露出することを防止できる。 Therefore, in the present invention, after cutting the inner surface bead of the electric resistance welded portion, the electric resistance welded welded steel pipe having the inner surface covered with the bonding material over the entire surface including the electric resistance welded portion before electric resistance welding In the width direction both ends of the clad steel strip, the clad interface is pushed from the laminated material side to the thickness center side, the bevel angle θ is 20 to 70 °, and the groove depth d is the total thickness The beveling process is applied to the V-shaped groove which is 10 to 50% of the above. By performing butt welding as the V-shaped groove, it is possible to prevent the base material from being exposed on the surface of the weld on the side of the joint after bead cutting.
ベベル角度が20°未満では板厚中央部からの溶接接合界面の温度分布の均一性が保てなくなり、結果として酸化物(ペネトレータ)の排出が不十分になりやすくなる。一方、ベベル角度が70°を超えると、母材の溶融鋼および熱影響部の合せ材側への流動抑制効果が不十分となり、電縫溶接部の内面ビード切削後の鋼管内面に母材が露出する傾向が高まる。なお、電縫溶接時のアプセット量を充分に得るという観点から、ベベル角度は20°〜45°とすることがとくに好ましいことを確認した。 If the bevel angle is less than 20 °, the uniformity of the temperature distribution at the weld joint interface from the center of the plate thickness can not be maintained, and as a result, the oxide (penetrator) tends to be discharged insufficiently. On the other hand, if the bevel angle exceeds 70 °, the flow control effect of the base material to the molten steel and heat-affected zone side becomes insufficient, and the base material is on the inner surface of the steel pipe after internal bead cutting of the electric resistance welded portion. There is a tendency to be exposed. In addition, it was confirmed that it is particularly preferable to set the bevel angle to 20 ° to 45 ° from the viewpoint of obtaining a sufficient upset amount at the time of electric resistance welding.
また、開先深さが全肉厚の10%未満では母材の溶融鋼および熱影響部の鋼管内面側の合せ材の溶接部への混入抑制効果が不十分となり、酸化物(ペネトレータ)の排出に必要なアプセット量を確保すると、鋼管内面側の合せ材溶接部に母材が混入し、電縫溶接部の内面ビード切削後の鋼管内面に母材が露出する。一方、開先深さdが全肉厚の50%を超えると、溶接接合部の組成が合せ材の組成に近い高合金組成となるため、電縫溶接部の破壊特性が低下する。 In addition, if the groove depth is less than 10% of the total thickness, the effect of suppressing the mixing of the molten steel of the base material and the weld metal of the heat-affected zone inner surface of the steel pipe is insufficient. When the amount of upset necessary for discharge is secured, the base material mixes in the joint material weld portion on the inner surface side of the steel pipe, and the base material is exposed on the inner surface of the steel pipe after inner surface bead cutting of the electric resistance welded portion. On the other hand, if the groove depth d exceeds 50% of the total thickness, the composition of the weld joint has a high alloy composition close to the composition of the joint material, and the fracture characteristics of the electric resistance welded portion are degraded.
また、合せ材側の前記V形開先に加え、母材側も開先加工し、X形開先とすることが好ましい。X形開先とすることで、電縫溶接時のペネトレータの排出が促進され、溶接部の破壊特性が向上する。 Further, in addition to the V-shaped groove on the mating material side, it is preferable that the base material side is also grooved to form an X-shaped groove. By making the X-shaped groove, discharge of the penetrator at the time of ERW welding is promoted, and the fracture characteristics of the welded portion are improved.
なお、高腐食性環境で使用されるラインパイプは生産流動体が流れる鋼管内面に高い耐食性が求められ、このような環境では耐食性合金であるステンレス鋼やニッケル基合金が要求条件を満たすため、クラッド鋼の合せ材をステンレス鋼またはニッケル基合金とした。特に高い耐食性を有する点からステンレス鋼ではSUS316L、ニッケル基合金ではAlloy625、Alloy825が好ましい。 In addition, line pipes used in highly corrosive environments are required to have high corrosion resistance on the inner surface of the steel pipe through which the production fluid flows, and in such environments, the corrosion resistant alloys such as stainless steel and nickel base alloy satisfy the requirements. The joining material of steel was a stainless steel or a nickel base alloy. In particular, from the viewpoint of having high corrosion resistance, SUS316L is preferable for stainless steel and Alloy625 and Alloy825 for nickel-based alloys.
図1は、本発明の実施形態を示す概略図である。鋼帯からなる帯材を図示しないアンコイラーで連続的に払出し、図示しないレベラーで矯正し、通管方向20に送りつつ、図示しないロール成形機で帯材の幅を丸めて素管(オープン管)10となし、該丸めた幅の両端面を突合せてなる素管エッジ突合せ部である被溶接部11を電縫溶接機(図示しないエッジ部加熱用給電手段と図示しない圧接用スクイズロールとで構成されている)により、電縫溶接して、電縫鋼管15を得る。12は素管エッジ部加熱起点、13は前記圧接により被溶接部11が接合する通管方向位置を指す溶接点である。なお、素管10乃至電縫鋼管15の管内面側にはインピーダ(図示省略)を配置する場合もある。電縫溶接機を出た電縫鋼管15は図示しないサイザーで外径調整をされる。
FIG. 1 is a schematic view showing an embodiment of the present invention. Strip material consisting of steel strip is continuously dispensed by uncoiler (not shown), corrected by leveler (not shown), and fed in
本発明では、素管エッジ部加熱起点12から溶接点13までの通管方向範囲の全域、或いは当該範囲内の、被溶接部に酸化物が生成し易い区域(この区域は予備調査により特定できる)をシールド範囲とし、該シールド範囲において、被溶接部11の直上の位置にシールドガス吹付け用ノズル(略してノズル)1を配置する。
ノズル1は、其のガス放出口1Aを被溶接部11上端と正対する様に配位して、配置される。
本発明では、ノズル1は、図1(b)および図2(a)、(d)に示すように、素管周方向30に対して3層に分割したものとする。これらの層は互いに独立したガス流路をなす。またさらに、前記3層のうちの中央層1Cは、図2(b)、(c)に示すように、素管周方向30に対して2層以上に分割しても良い。なお、両端層1Eは各1層ずつとする。
In the present invention, an area in which the oxide is likely to be easily formed on the weld area in the entire area of the pipe passage direction from the raw pipe
The
In the present invention, as shown in FIG. 1 (b) and FIGS. 2 (a) and 2 (d), the
本発明では、背景技術で言及した処の、前記シールド範囲内の素管10全周を覆うシールドボックスは、設けなくてもよい。むしろ設けない方が電縫鋼管の造管能率面、製造コスト面から好ましいから、この実施形態では設けていない。
In the present invention, it is not necessary to provide a shield box covering the entire circumference of the
本発明者らはシールドガスの流れについて詳細に観察した。さらに、ガス放出口1Aの位置や寸法、ならびに中央層1C、両端層1Eそれぞれのガス放出口1Aでのシールドガスの流速などの、様々なシールドガスの吹付け条件が、電縫溶接時の被溶接部11の酸素濃度と、該被溶接部を電縫溶接してなる溶接部における酸化物の面積率とに及ぼす影響を詳細に調査した。
The inventors observed in detail the flow of the shielding gas. Furthermore, various shield gas spray conditions such as the position and size of the
その結果、シールドガスの吹付け条件を最適にする事により、被溶接部の酸素濃度が0.01質量%以下になり、溶接部の酸化物面積率が0.1%未満になることを発見した。ここで、溶接部の酸化物面積率とは、次のとおり定義される。すなわち、電縫溶接部のシャルピー衝撃試験を行うことにより得られる破面を電子顕微鏡により倍率500倍以上で少なくとも10視野観察して、その破面内に観察される酸化物を含んだディンプル破面部分を選別して、その総面積を測定し、これの視野総面積に対する割合を酸化物面積率とした。 As a result, by optimizing the spray conditions of the shield gas, it was discovered that the oxygen concentration in the weld zone was 0.01 mass% or less, and the oxide area ratio in the weld zone was less than 0.1%. did. Here, the oxide area ratio of the weld is defined as follows. That is, the fractured surface obtained by conducting the Charpy impact test of the electric resistance welded portion is observed by at least 10 fields of view at a magnification of 500 or more with an electron microscope, and the dimpled fractured surface including the oxide observed in the fractured surface The parts were selected, their total area was measured, and the ratio of this to the total area of the field of view was taken as the oxide area ratio.
前記発見した最適条件は、被溶接部11上端からガス放出口1Aまでの高さであるノズル高さが5mm以上300mm以下(図1(c)参照)であり、且つ、中央層1Cのガス放出口1Aでのシールドガス5の流速Bが、B=0.5〜50m/s以下であり、且つ、両端層1Eのガス放出口1Aでのシールドガス5の流速Aが、0.01≦B/A≦10(図3参照)を満たす流速であるという条件である。
The optimum condition found is that the nozzle height, which is the height from the upper end of the welded
前記ノズル高さが300mmを超えるとシールドガスが充分に被溶接部11に届かず、被溶接部11の酸素濃度が100質量ppm以下にならない。前記ノズル高さは小さい方が望ましいのであるが、5mmを下回ると、加熱されている被溶接部11からの輻射熱でガス放出口1Aが傷み易く、更に被溶接部11で発生したスパッタが衝突してノズル1の耐久性が劣化する。
When the nozzle height exceeds 300 mm, the shield gas does not sufficiently reach the welded
流速を前記最適条件範囲内に制御するために、本発明では、前記ガス放出口から放出される前記シールドガスの流速を、前記3層のうちの中央層1Cのガス放出口からのガス放出流速Bは、B=0.5〜50m/sに制御し、残りの両端層1Eのガス放出口からのガス放出流速Aは式、0.01≦B/A≦10、を満たす流速に制御するガス流調整器3(図1(a)、(b)参照)を有するものとした。
In order to control the flow rate within the above-mentioned optimum condition range, in the present invention, the flow rate of the shield gas released from the gas discharge port is equal to the gas release flow rate from the gas release port of the
流速Bが小さすぎると、シールドガスは周囲に拡散し、被溶接部11のガスシールドが不十分となる。流速Bが大き過ぎると、シールドガスの勢いが強くなりすぎ、被溶接部11の端面間への大気巻き込みを生じてしまう。よって、前記流速Bは0.5〜50m/sが適正範囲である。なお、中央層1Cをさらに複数の層に分割した場合(例えば図2(b)、(c)など)、該複数の層についての流速Bは必ずしも同一の値である必要はなく、前記適正範囲内である限り、層ごとに異なる値であっても構わない。
If the flow velocity B is too small, the shield gas diffuses to the surroundings, and the gas shield of the portion to be welded 11 becomes insufficient. If the flow velocity B is too high, the force of the shield gas becomes too strong, and the air may be trapped between the end faces of the portion to be welded 11. Therefore, 0.5 to 50 m / s is an appropriate range of the flow velocity B. In the case where the
しかし、流速Bを前記適正範囲に保ったとしても、流速Bと流速Aとの比であるガス流速比B/Aが不適正であると、図3に示すように、大気巻き込み6を防止するのは困難である。
すなわち、B/A<0.01の場合は、両端層1Eからのガス流(シールドガス5の流れ)が強すぎ、かつ中央層1Cからのガス流が弱すぎるため、両端層1Eからのガス流が素管10の外面で反射して上方に偏向し、その反射領域におけるガス流速が零に近くなって、素管10の外面沿いの大気巻き込み6を防止できず(図3(a)参照)、被溶接部11の酸素濃度を充分に低減することはできない。
However, even if the flow velocity B is kept in the appropriate range, if the gas flow velocity ratio B / A, which is the ratio between the flow velocity B and the flow velocity A, is inappropriate, as shown in FIG. It is difficult.
That is, in the case of B / A <0.01, the gas flow from the both
一方、B/A>10の場合は、中央層1Cからのガス流が強すぎ、かつ両端層1Eからのガス流が弱すぎるため、大気が中央層1Cからのガス流によって被溶接部11の端面間に引きずり込まれて、大気巻き込み6を招来しやすく(図3(c)参照)、被溶接部11の酸素濃度を充分に低減することはできない。
On the other hand, in the case of B / A> 10, the gas flow from the
これらに対し、B/A=0.01〜10とすることで、被溶接部11の端面間にシールドガス5が過不足なく充満し、大気巻き込みもなく、十分なガスシールドが達成できる(図3(b)参照)。なお、ガス流速比B/Aにおける流速Bには、中央層1Cを複数の層に分割して、該複数の層の少なくとも1層からのガス流速を他層と違えた場合、該違えたガス流速同士のうちの最大流速を用いる。
On the other hand, by setting B / A = 0.01 to 10, the shielding
因みに図4は、一例としてノズル高さ=50mmとし、流速B=0.5〜50m/sの適正範囲下でガス流速比B/Aを種々変えて被溶接部11にシールドガス5を吹き付け、被溶接部11の端面間の中間位置で酸素濃度を測定した結果を示す線図である。
Incidentally, FIG. 4
図4より、流速B=0.5〜50m/sの適正範囲下で、ガス流速比B/Aを、B/A=0.01〜10とすることによって、酸素濃度0.01質量%以下が大きな余裕を持って(即ち確実に)クリアできる。
また、図4より、B/A=0.03〜5とすると、更に低い酸素濃度レベルである0.001〜0.0001質量%が達成できて好ましい。
According to FIG. 4, the oxygen concentration is 0.01 mass% or less by setting the gas flow velocity ratio B / A to B / A = 0.01 to 10 under an appropriate range of the flow velocity B = 0.5 to 50 m / s. Can be cleared with a large margin (that is, surely).
Further, as shown in FIG. 4, when B / A = 0.03-5, 0.001 to 0.0001 mass% which is a still lower oxygen concentration level can be achieved, which is preferable.
ところで、ガス放出口1Aの全層合併した形状については、寸法の通管方向20成分である長さが30mm以上、寸法の素管エッジ突合せ方向成分である幅が5mm以上の矩形状にすると、被溶接部11へのガス吹付けをより均一にできて好ましい。
By the way, about the shape where all layers of the
また、図1(c)に示す様に、ガス放出口1Aの全層合併した寸法の素管エッジ突合せ方向成分である幅をRと記し、ガス放出口1Aの直下の被溶接部11の端面間の最大間隔をWと記すとして、R/W>1.0、を満たす様にすると、被溶接部11の酸素濃度をより速やかに低減させる事ができて好ましい。
Further, as shown in FIG. 1 (c), the width which is the raw pipe edge butting direction component of the combined size of all the layers of the
シールドガスとしては不活性ガスを用いる。此処に云う不活性ガスとは、窒素ガス、ヘリウムガス、アルゴンガス、ネオンガス、キセノンガス等、若しくはこれらの2種以上を混合してなる混合ガスなどを意味する。 An inert gas is used as the shield gas. The inert gas referred to here means nitrogen gas, helium gas, argon gas, neon gas, xenon gas or the like, or a mixed gas of two or more of these or the like.
更に、シールドガスとして、前記不活性ガスに代えて、還元性ガスを0.1質量%以上含有するガスとしてもよく、然も、むしろこの方が、ペネトレータの原因となる酸化物の生成を抑制する効果がより強くなり、溶接部の靭性または強度を、より大きく向上させることができて好ましい。此処に云う還元性ガスとは、水素ガス、一酸化炭素ガス、メタンガス、プロパンガス等、若しくはこれらの2種以上を混合してなる混合ガスを意味する。なお、還元性ガスを0.1質量%以上含有するガスとしては、還元性ガスのみからなる組成、または、還元性ガス:0.1質量%以上を含有し残部が不活性ガスからなる組成のものが好適である。 Furthermore, as the shielding gas, instead of the above-mentioned inert gas, a gas containing 0.1 mass% or more of a reducing gas may be used, but rather, this one rather suppresses the formation of an oxide causing a penetrator. The effect is stronger, and the toughness or strength of the welded portion can be greatly improved, which is preferable. The reducing gas referred to here means hydrogen gas, carbon monoxide gas, methane gas, propane gas or the like, or a mixed gas obtained by mixing two or more of these. In addition, as a gas containing 0.1 mass% or more of reducing gas, a composition consisting only of reducing gas, or a composition containing reducing gas: 0.1 mass% or more and the balance being an inert gas Is preferred.
また、入手容易性および廉価性の点からは、シールドガスとして次のガスを用いる事が好ましい。
(イ) 不活性ガス単独使用の場合:(G1)窒素ガス、ヘリウムガス、アルゴンガスの何れか1種若しくはこれら2種以上の混合ガス
(ロ) 還元性ガス単独使用の場合:(G2)水素ガス、一酸化炭素ガスの何れか1種若しくはこれら2種の混合ガス
(ハ) 不活性ガスと還元性ガスの混合ガス使用の場合:前記(G1)と(G2)の混合ガス
なお、特に、水素ガスおよび/または一酸化炭素ガスを含むガスを使用する場合、遺漏無き安全対策をとるべきことは云うまでも無い。
Further, in terms of availability and cost, it is preferable to use the following gas as a shielding gas.
(A) In the case of using an inert gas alone: (G1) Any one or a mixture of two or more of nitrogen gas, helium gas and argon gas (b) In the case of using a reducing gas alone: (G2) hydrogen Gas, carbon monoxide gas any one or mixed gas of these two kinds (3) In the case of using mixed gas of inert gas and reducing gas: mixed gas of the above (G1) and (G2) In particular, When using a gas containing hydrogen gas and / or carbon monoxide gas, it goes without saying that safety measures should be taken without leakage.
管内面側となる面の合せ材が厚さ2mmのステンレス鋼(SUS316L)、管外面側となる面の母材が厚さ5mmの低炭素低合金鋼であるステンレスクラッド鋼帯を素材とし、アンコイラー、レベラー、ロール成形機、開先加工機すなわちフィンパスロール成形機、電縫溶接機、サイザーをこの順に配置して構成された造管設備に通して、外径300mmの電縫溶接ステンレスクラッド鋼管を製造する工程において、電縫溶接時に被溶接部へのガスシールドを実行するにあたり、上述した実施形態の本発明範囲の内または外でガス吹付け条件の水準、およびアプセット量を変えるとともに、電縫溶接前にあらかじめクラッド鋼帯幅方向端部に図8に示すような装置でフィンパスロールを用いて圧延による開先加工を行って開先条件を変えて、表1に示すとおりの条件で造管し、被溶接部の酸素濃度の測定、溶接部の90°偏平試験、および管内面側をシュウ酸エッチングによる腐食試験を行った。腐食試験結果は、粒界腐食が観察されない場合を○、粒界腐食が観察される場合を×として評価した。なお、スクイズロールによるアプセット量は、スクイズロールより手前の管の外周長を測定した後、スクイズロールにより溶接して外面の溶接ビード部を切削された後の管の外周長を測定して、両者の差を計算することにより求めた。 The uncoiler is made of stainless steel clad steel strip which is stainless steel (SUS316L) with a thickness of 2 mm and the base material of the surface with a thickness of 5 mm is a low carbon low alloy steel. Electric seam welded stainless steel clad steel pipe with an outer diameter of 300 mm through a pipe forming equipment configured by arranging a leveler, roll forming machine, beveling machine ie fin pass roll forming machine, ERW welder, and sizer in this order In the process of manufacturing a gas shield, the level of the gas spray condition and the amount of upset are changed within or outside the range of the present invention of the embodiment described above when performing the gas shield to the welding portion at the time of Before seam welding, groove end processing by rolling is performed in advance using a fin pass roll with an apparatus as shown in FIG. And forming tube under the conditions as shown in Table 1, the measurement of the oxygen concentration in the welded portion, 90 ° flattening test of the weld, and the inner surface side was subjected to corrosion test by oxalic acid etching. The corrosion test results were evaluated as ○ when no intergranular corrosion was observed and as × when intergranular corrosion was observed. The upset amount by the squeeze roll is measured by measuring the outer peripheral length of the pipe after the welding bead portion of the outer surface is cut by welding with the squeeze roll after measuring the outer peripheral length of the pipe in front of the squeeze roll. It calculated by calculating the difference of.
表1に示されるとおり、本発明例では、比較例と比べて溶接部の偏平値H/Dが桁違いに低減し、破断特性に優れ、かつステンレス鋼としての耐食性を維持した溶接部を有することが確認された。 As shown in Table 1, in the present invention example, the flat portion H / D of the welded portion is reduced by an order of magnitude compared to the comparative example, and the welded portion has excellent fracture characteristics and maintains corrosion resistance as stainless steel. That was confirmed.
1 ノズル(シールドガス吹付け用ノズル)
1A ガス放出口
1C 中央層
1E 両端層
2 ガス配管
3 ガス流調整器
5 シールドガス
6 大気巻き込み
10 素管(オープン管)
11 被溶接部(素管エッジ突合せ部)
12 素管エッジ部加熱起点
13 溶接点
15 電縫鋼管
20 通管方向
30 素管周方向
1 nozzle (shield gas spray nozzle)
1A
11 Welded part (raw pipe edge butted part)
12 base pipe edge portion heating start
Claims (5)
前記電縫溶接前にあらかじめ前記熱延鋼帯の幅方向両端部を、フィンパスロールを用いた圧延により、母材外面側が肉厚中心側に対し外曲がり側になる円弧形状とされつつ、クラッド界面が合せ材側から肉厚中心側へ押し込まれた形態で、ベベル角度が20〜70°、かつ、開先深さが、全肉厚の10〜50%であるV形開先とする開先加工を施し、
前記電縫溶接時に、被溶接部を不活性ガスからなるシールドガスでガスシールドする電縫鋼管の素管被溶接部シールド方法を用いて、前記被溶接部に対し該被溶接部上端から5〜300mm上方の位置に、素管周方向に対して3層に分割したガス放出口を配位したシールドガス吹付け用ノズルの前記ガス放出口から前記シールドガスを、前記3層のうちの中央層のガス放出口からのガス放出流速Bは、0.5〜50m/sとし、残りの両端層のガス放出口からのガス放出流速A(m/s)は式、0.01≦B/A≦10、を満たす流速として、吹付けることを特徴とする電縫溶接クラッド鋼管の製造方法。 A hot-rolled steel band of clad steel consisting of a base material of carbon steel and a joint material of stainless steel or nickel base alloy is formed into a tubular shape, and both ends in the width direction of the hot-rolled steel band are butt welded A method of manufacturing a seam welded clad steel pipe,
Before the ERW welding, both end portions in the width direction of the hot-rolled steel strip are arc-shaped such that the outer surface side of the base material becomes the outer bending side with respect to the thickness center side by rolling using fin pass rolls. Opening with a V-shaped groove with a bevel angle of 20 to 70 ° and a groove depth of 10 to 50% of the total thickness, with the interface pressed into the thickness center side from the laminated material side Pre-processing,
At the time of the electric resistance welding, using the base tube to-be-welded part shielding method of the electric welded steel pipe in which the to-be-welded part is gas-shielded with a shielding gas consisting of inert gas, 5 to 5 from the upper end of the to-be-welded part The shield gas is supplied from the gas discharge port of the shield gas spraying nozzle in which the gas discharge port is divided into three layers with respect to the circumferential direction of the raw pipe at a position 300 mm above, and the central layer of the three layers. The gas discharge flow rate B from the gas discharge port of 0.5 to 50 m / s, and the gas discharge flow rate A (m / s) from the gas discharge ports of the remaining both end layers is a formula, 0.01 ≦ B / A A method of manufacturing an ERW welded clad steel pipe characterized by spraying as a flow velocity satisfying ≦ 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016038581A JP6500810B2 (en) | 2016-03-01 | 2016-03-01 | Manufacturing method of ERW welded clad steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016038581A JP6500810B2 (en) | 2016-03-01 | 2016-03-01 | Manufacturing method of ERW welded clad steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017154150A JP2017154150A (en) | 2017-09-07 |
JP6500810B2 true JP6500810B2 (en) | 2019-04-17 |
Family
ID=59807699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016038581A Active JP6500810B2 (en) | 2016-03-01 | 2016-03-01 | Manufacturing method of ERW welded clad steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6500810B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7279665B2 (en) * | 2020-02-21 | 2023-05-23 | 株式会社デンソー | power converter |
CN114619203B (en) * | 2021-12-24 | 2022-09-20 | 钢一控股集团有限公司 | Forming method of large-diameter stainless steel pipe |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61172684A (en) * | 1985-01-25 | 1986-08-04 | Sumitomo Metal Ind Ltd | Production of clad steel pipe |
JP2008087020A (en) * | 2006-10-02 | 2008-04-17 | Jfe Steel Kk | Method of manufacturing electric resistance welded tube excellent in weld zone characteristic |
JP5245998B2 (en) * | 2009-04-08 | 2013-07-24 | 新日鐵住金株式会社 | Method for producing thick ERW steel pipe with excellent weld properties |
JP2014004624A (en) * | 2012-06-01 | 2014-01-16 | Jfe Steel Corp | Method of shielding welded part of original pipe of electric resistance welded steel pipe, and method of manufacturing electric resistance welded steel pipe |
JP6036773B2 (en) * | 2013-11-25 | 2016-11-30 | Jfeスチール株式会社 | Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe |
-
2016
- 2016-03-01 JP JP2016038581A patent/JP6500810B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017154150A (en) | 2017-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6323626B1 (en) | Clad welded tube and manufacturing method thereof | |
JP6265311B1 (en) | ERW Welded Stainless Clad Steel Pipe and Manufacturing Method Thereof | |
JP6164368B2 (en) | Manufacturing method of ERW welded stainless clad steel pipe | |
JP6319528B1 (en) | ERW welded clad steel pipe and manufacturing method thereof | |
JP6500810B2 (en) | Manufacturing method of ERW welded clad steel pipe | |
JP7230606B2 (en) | Composite welding method for galvanized steel sheets | |
TWI703005B (en) | Method of producing tig welded stainless steel pipe,tig welded stainless steel pipe,and tig welded stainless steel member | |
JP6536518B2 (en) | Manufacturing method of ERW welded clad steel pipe | |
JP6520876B2 (en) | Manufacturing method of ERW welded clad steel pipe | |
JP2023172881A (en) | Steel pipe and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6500810 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |