JPH1043859A - Method for welding steel tube having excellent defective welding resistance - Google Patents

Method for welding steel tube having excellent defective welding resistance

Info

Publication number
JPH1043859A
JPH1043859A JP21906296A JP21906296A JPH1043859A JP H1043859 A JPH1043859 A JP H1043859A JP 21906296 A JP21906296 A JP 21906296A JP 21906296 A JP21906296 A JP 21906296A JP H1043859 A JPH1043859 A JP H1043859A
Authority
JP
Japan
Prior art keywords
welding
electrode
coil
magnetic field
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21906296A
Other languages
Japanese (ja)
Inventor
Yoshio Terada
好男 寺田
Yoshinori Ogata
佳紀 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21906296A priority Critical patent/JPH1043859A/en
Publication of JPH1043859A publication Critical patent/JPH1043859A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the welding speed in multi electrode submerged arc welding of a steel tube and to improve the productivity and the welding quality by arranging a coil so that the coil height of a 1st electrode is specified. SOLUTION: An alternate current is made to flow through a coil 3 wound with many numbers of enamel copper wires between a steel sheath and a steel core from an alternate magnetic field power source 11 and a magnetic field is generated. In this magnetic field, since the copper wire is wound in the circumferential direction of weld electrodes 12 to 15, the alternate magnetic field in the axial direction is obtained against the weld electrode in the core side of the coil 3. On the other hand, the alternate current is crossed almost perpendicular to the alternate magnetic field, and based on the Fleming's left-hand rule, the rotation force is applied on a molten pool 26 and the molten metal is stirred. At this time, when the coil height of a 1st electrode part is arranged so as to be 1.1 to 2.0 times higher than the coil height of a final electrode, the strength of the magnetic field acting to the welding arc of the 1st electrode is made weak and the digging down action of a base material is not deteriorated. On one side, the molten pool is stirred with the sufficient rotation force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はUOE鋼管やSP
(スパイラル)鋼管の溶接方法に関するものである。
The present invention relates to a UOE steel pipe or SP
The present invention relates to a (spiral) steel pipe welding method.

【0002】[0002]

【従来の技術】UOE鋼管やSP鋼管は石油・天然ガス
などの輸送手段として使用されている。UOE鋼管やS
P鋼管の溶接に対しては、溶接速度の向上など生産性の
観点から、潜弧溶接(SAW)において3ないしは4〜
5電極の多電極潜弧溶接法の適用が一般的となってい
る。また、溶接速度をさらに向上させる手段として、各
溶接電極の溶接電流値を高く設定し、溶接速度を向上さ
せることが一般的であるが、溶接電流を極端に高く設定
し、溶接速度を大きくした場合、溶接欠陥の発生が顕著
になるという問題がある。
2. Description of the Related Art UOE steel pipes and SP steel pipes are used as means for transporting oil and natural gas. UOE steel pipe and S
For welding of P steel pipes, from the viewpoint of productivity such as improvement of welding speed, 3 to 4 to 4 to 4 in latent arc welding (SAW).
The application of a five-electrode multi-electrode latent arc welding method has become common. In addition, as a means for further improving the welding speed, it is general to set the welding current value of each welding electrode high and improve the welding speed.However, the welding current was set extremely high and the welding speed was increased. In this case, there is a problem that the occurrence of welding defects becomes significant.

【0003】これに対して発明者らは多電極潜弧溶接法
において、多電極の溶接チップ部を囲むコイルを配置
し、該コイルに通電して磁場を形成し、溶融金属に磁気
攪拌を与えて溶接することにより、溶接欠陥の少ない溶
接方法を試みてきた。しかしながら、各電極に強力な磁
場を付与することで溶接欠陥は減少するが、溶け込み深
さが小さくなり、内外面溶接金属のメタルタッチを確保
できないという問題点が生じてきた。
In contrast, in the multi-electrode latent arc welding method, the inventors arrange a coil surrounding a welding tip of a multi-electrode, energize the coil to form a magnetic field, and apply magnetic stirring to the molten metal. Welding methods have been attempted with less welding defects. However, when a strong magnetic field is applied to each electrode, welding defects are reduced, but the penetration depth is reduced, and a problem has arisen that the metal touch of the inner and outer surface weld metal cannot be secured.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述した従来
の問題点を解消するためになされたものであり、鋼管の
多電極潜弧溶接における溶接速度を向上し、生産性とそ
の溶接品質を改善できる鋼管の溶接方法を提供すること
を目的としたものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has been made to improve the welding speed in multi-electrode latent arc welding of steel pipes, thereby improving productivity and welding quality. It is an object of the present invention to provide a method of welding a steel pipe that can be improved.

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、2つ以上の電極を有する多電極潜弧溶接におい
て、各電極を同時に囲む通電コイルを配置して、該コイ
ルに磁場を形成し溶融金属を攪拌して鋼管を溶接する方
法において、第一電極部のコイル高さが最終電極部のコ
イル高さの1.1〜2.0倍となるように配置すること
にある。
SUMMARY OF THE INVENTION The gist of the present invention is that in a multi-electrode latent arc welding having two or more electrodes, a current-carrying coil surrounding each electrode is arranged at the same time to form a magnetic field in the coil. In a method of welding a steel pipe by stirring molten metal, the coil height of the first electrode portion is arranged to be 1.1 to 2.0 times the coil height of the final electrode portion.

【0006】溶接速度の上昇にともなって助長される溶
接欠陥には、(1)溶接金属中に発生する欠陥、および
(2)溶接金属の表面近傍に発生する外観上の欠陥、が
ある。前者の欠陥には溶融スラグの巻き込みやスラグの
生成時に生じるガスを起因とするブローホール欠陥、お
よび溶接金属割れなどがある。スラグ巻き込み欠陥とブ
ローホール欠陥は、溶融状態で生成した溶融スラグやガ
スに起因するもので、溶接速度の上昇に伴い溶融池の凝
固時間が短くなるため、溶融スラグやガスが溶接金属中
にトラップされやすい。
[0006] Welding defects promoted as the welding speed increases include (1) defects occurring in the weld metal, and (2) appearance defects occurring near the surface of the weld metal. The former defects include blowhole defects caused by entrainment of molten slag and gas generated when slag is generated, and weld metal cracks. Slag entrainment defects and blowhole defects are caused by the molten slag and gas generated in the molten state. Easy to be.

【0007】一方、外観上の欠陥には溶接速度の上昇に
よるビード表面形状の凸化とそれに伴うアンダーカット
の生成がある。一般的に4電極SAWの場合、先行の第
一、第二電極は主として母材の掘り下げに寄与し、掘り
出された溶鋼流は後方へ押し流される。つづく第三電極
では第一、二電極で掘り出された溶鋼流の勢いを抑制す
るとともに、ビード幅を広げる作用がある。さらに第四
電極目では第一〜第三電極によって後方へ押し出された
溶鋼流の勢いをさらに弱めて凝固を安定化させる。した
がって4電極SAWなどの多電極潜弧溶接において溶接
速度の高速化を達成するためには、各電極の電流、電圧
あるいは電極角度、電極間隔などのバランスが非常に重
要である。
[0007] On the other hand, defects in the appearance include projection of the bead surface shape due to an increase in welding speed and the generation of an undercut due to the projection. Generally, in the case of a four-electrode SAW, the preceding first and second electrodes mainly contribute to drilling of the base material, and the excavated molten steel flow is swept backward. The third electrode has the effect of suppressing the momentum of the molten steel flow excavated by the first and second electrodes and increasing the bead width. Further, at the fourth electrode, the momentum of the molten steel flow pushed backward by the first to third electrodes is further weakened to stabilize solidification. Therefore, in order to increase the welding speed in multi-electrode latent arc welding such as four-electrode SAW, it is very important to balance the current, voltage, electrode angle, electrode spacing, and the like of each electrode.

【0008】発明者らはすでに特願平7−245972
で、多電極潜弧溶接において電極を囲むコイルに磁場を
形成させて、溶融金属を攪拌することにより溶接欠陥の
少ない溶接方法を示した。しかしながら全電極をコイル
で囲む場合、攪拌により第一電極での掘り下げ作用が弱
まり、溶け込み深さが小さくなり、内外面溶接した場合
に内外面溶接金属がメタルタッチしにくいという問題点
が生じてきた。そこで、発明者らは鋭意検討を行い、電
極にコイルを設置する際に第一電極と最終電極のコイル
高さを変えることにより、第一電極での掘り下げ作用を
確保しつつ、第二〜最終電極において十分な溶鋼の攪拌
を行うことにより、十分な溶け込み深さが得られ、ブロ
ーホールやアンダーカットなど溶接欠陥の少ない溶接方
法を発明するに至った。
[0008] The inventors have already filed Japanese Patent Application No. 7-245972.
In the multi-electrode latent arc welding, a welding method with less welding defects by forming a magnetic field in the coil surrounding the electrodes and stirring the molten metal was shown. However, when all the electrodes are surrounded by the coil, the agitation function at the first electrode is weakened by stirring, the penetration depth is reduced, and when the inner and outer surfaces are welded, there is a problem that the inner and outer surface weld metal is difficult to metal touch. . Therefore, the inventors conducted intensive studies and changed the coil height of the first electrode and the final electrode when installing the coil on the electrode, thereby ensuring the digging action at the first electrode, and By sufficiently stirring the molten steel in the electrode, a sufficient penetration depth can be obtained, and a welding method with less welding defects such as blowholes and undercuts has been invented.

【0009】[0009]

【発明の実施の形態】以下本発明を実施例に基づいて詳
細に説明する。図1および図2は本発明による多電極
(4電極)の潜弧溶接法による鋼管溶接法を示すもので
ある。図3は図1および図2の正断面図(a)および上
部からの態様を示す平面図(b)である。これらの図に
示す符号1は磁気攪拌用コイルの鋼製外皮、2は同様に
鋼製内皮、3は鋼製内皮と鋼製外皮の間にエナメル銅線
を巻いたコイル。4はコイルの間接水冷管、5は冷却水
導水口、6は冷却水排水口、7は冷却水仕切り壁、8は
電極へのコイル固定用冶具、9は電極と鋼製外皮1の絶
縁材、10は電極へ鋼製外皮を固定するための止めネ
ジ、11はコイル3に接続する交番磁場電源、12は潜
弧溶接用の第一電極、13は第二電極、14は第三電
極、15は第四電極、16〜19は4電極用の各溶接電
源、20は鋼管の母材、21は潜弧溶接用のフラック
ス、22〜25は各電極の溶接アーク、26は溶融池、
27は潜弧溶接ビード、28は潜弧溶接スラグ、29は
最終電極(ここでは第四電極におけるコイル3直下から
溶接鋼板の表面までの高さ、30は第一電極におけるコ
イル3直下から溶接鋼板の表面までの高さである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. FIG. 1 and FIG. 2 show a steel pipe welding method by a sub-arc welding method of a multi-electrode (four electrodes) according to the present invention. FIG. 3 is a front sectional view (a) of FIGS. 1 and 2 and a plan view (b) showing an aspect from above. In these figures, reference numeral 1 denotes a steel shell of a magnetic stirring coil, 2 denotes a steel inner shell, and 3 denotes a coil in which an enameled copper wire is wound between the steel inner shell and the steel shell. 4 is an indirect water cooling pipe of a coil, 5 is a cooling water inlet, 6 is a cooling water outlet, 7 is a cooling water partition wall, 8 is a jig for fixing the coil to the electrode, 9 is an insulating material for the electrode and the steel sheath 1. , 10 is a set screw for fixing the steel sheath to the electrode, 11 is an alternating magnetic field power supply connected to the coil 3, 12 is a first electrode for latent arc welding, 13 is a second electrode, 14 is a third electrode, 15 is a fourth electrode, 16 to 19 are welding power supplies for four electrodes, 20 is a base material of a steel pipe, 21 is a flux for latent arc welding, 22 to 25 is a welding arc of each electrode, 26 is a weld pool,
27 is a latent arc welding bead, 28 is a latent arc welding slag, 29 is the final electrode (here, the height from immediately below the coil 3 at the fourth electrode to the surface of the welded steel plate, 30 is the welded steel plate from immediately below the coil 3 at the first electrode. The height up to the surface.

【0010】前記図1ないし図3において、鋼製外皮と
鋼製内皮の間に数百から数千回以上エナメル銅線を巻い
たコイル3に交番磁場電源11から交番電流を流し磁場
を発生させる。磁場はエナメル銅線が溶接電極12〜1
5の円周方向に巻き付けているため、コイルの鋼製内皮
側では溶接電極に対して軸方向の交番磁場が得られる。
一方、溶接電源16〜19から溶接電極12〜15を介
してそれぞれの中心から溶接ワイヤと母材との間で溶接
部近傍を潜弧溶接用のフラックス21で覆いながら溶接
アーク22〜25を発生させる。母材部の溶接アークの
直下には溶接池26が形成され、さらにその後方には潜
弧溶接スラグ28に覆われた溶接ビード27が形成され
る。ここで溶接電流はアーク22〜25と溶融池26を
介して母材面20に平行、かつ放射状に流れる。
In FIG. 1 to FIG. 3, an alternating current is supplied from an alternating magnetic field power supply 11 to a coil 3 having an enameled copper wire wound several hundred to several thousand times between a steel outer skin and a steel inner skin to generate a magnetic field. . The magnetic field is enameled copper wire with welding electrodes 12-1.
5, an alternating magnetic field in the axial direction with respect to the welding electrode is obtained on the steel inner side of the coil.
On the other hand, welding arcs 22 to 25 are generated from the welding power sources 16 to 19 through the welding electrodes 12 to 15 while covering the vicinity of the welding portion between the welding wire and the base metal from the respective centers with the flux 21 for latent arc welding. Let it. A welding pond 26 is formed immediately below the welding arc in the base material portion, and a welding bead 27 covered with a submerged arc welding slag 28 is formed behind the welding pool 26. Here, the welding current flows through the arcs 22 to 25 and the molten pool 26 in parallel to the base material surface 20 and radially.

【0011】これに対して前記の交番電流がほぼ垂直に
クロスし、フレミング左手の法則により、溶融池26に
回転力が作用して溶融金属が攪拌される。このとき、第
一電極部のコイル高さは最終電極部のコイル高さよりも
1.1〜2.0倍高くなるように配置すると、第一電極
の溶接アークに作用する磁場の強度が弱まり、母材の掘
り下げ作用を損なうことがない。一方、最終電極の溶接
アークでは所定の磁場強度が作用するために、十分な回
転力による溶融池の攪拌が行われる。この溶接方法によ
り、十分な溶け込み深さが得られ、溶接欠陥のない溶接
部が得られる。また、第一電極部のコイル高さを最終電
極部のコイル高さより2.0倍より大きく配置すると、
最終電極においても十分な攪拌が行われないために、ア
ンダーカットなどの溶接欠陥が発生する。
On the other hand, the alternating current crosses almost vertically, and a rotating force acts on the molten pool 26 according to Fleming's left-hand rule to agitate the molten metal. At this time, if the coil height of the first electrode portion is arranged to be 1.1 to 2.0 times higher than the coil height of the final electrode portion, the strength of the magnetic field acting on the welding arc of the first electrode is reduced, Does not impair the drilling action of the base material. On the other hand, in the welding arc of the final electrode, a predetermined magnetic field strength acts, so that the molten pool is stirred by a sufficient rotational force. By this welding method, a sufficient penetration depth can be obtained, and a weld having no welding defects can be obtained. Further, when the coil height of the first electrode portion is arranged to be greater than 2.0 times the coil height of the final electrode portion,
Since sufficient stirring is not performed even at the final electrode, welding defects such as undercuts occur.

【0012】なお、溶接時の熱からコイルを保護するた
め、コイルの間接水冷管4の冷却水導水口5から冷却水
を供給し、コイルを間接的に冷却したのち冷却水排水口
6から排水される。水冷仕切り壁7は水をコイルの周方
向に回転させて冷却能を高めるためである。
In order to protect the coil from heat during welding, cooling water is supplied from the cooling water inlet 5 of the indirect water cooling pipe 4 of the coil, and after the coil is indirectly cooled, the cooling water is drained from the cooling water outlet 6. Is done. The water-cooling partition wall 7 is for rotating water in the circumferential direction of the coil to increase the cooling capacity.

【0013】以下、前記に基づいて実施した例について
記述する。API規格X65級の20mm厚鋼板を溶接
した。表1に溶接条件を示す。溶接後、ビード部のX線
透過試験、アンダーカット発生率の測定を実施した。試
験結果を表2に示す。アンダーカット発生率は、アンダ
ーカット総長さとビード総長さの比で表した。実用性の
評価は、実用上適用可能と判断されたものを○印、ハツ
リおよび補修溶接が必要と判断されたものを×印として
示す。
Hereinafter, an example based on the above will be described. A 20 mm thick steel plate of API standard X65 grade was welded. Table 1 shows the welding conditions. After welding, an X-ray transmission test of a bead portion and a measurement of an undercut occurrence rate were performed. Table 2 shows the test results. The undercut occurrence rate was represented by the ratio of the total length of the undercut to the total length of the bead. In the evaluation of the practicality, a mark that is judged to be practically applicable is indicated by a circle, and a mark that is judged to be required to be removed and repair welding is indicated by a cross.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】本発明法による符号1は溶接欠陥のない良
好な溶接ビードが得られたが、比較法による溶接では溶
接欠陥が発生し、実用上適用不可能であった。符号2は
磁気攪拌を適用したが、最終電極と第一電極のコイル高
さを同じに配置したために、内外面溶接のメタルタッチ
がなく、溶接欠陥が生じた。符号3は磁気攪拌を適用し
たが、最終電極と第一電極のコイル高さの比が大きすぎ
るために、溶融池の攪拌が十分に行われず、アンダーカ
ットが発生した。符号4では磁気攪拌を適用しなかった
ために、アンダーカットが発生した。
[0016] With reference numeral 1 according to the method of the present invention, a good weld bead having no welding defects was obtained, but welding by the comparative method caused welding defects and was not practically applicable. Reference numeral 2 applied magnetic stirring, but because the coil height of the final electrode and the first electrode was the same, there was no metal touch of the inner and outer surface welding, and welding defects occurred. Reference numeral 3 applied magnetic stirring, but the ratio of the coil heights of the final electrode and the first electrode was too large, so that the molten pool was not sufficiently stirred and an undercut occurred. In the code 4, undercut occurred because no magnetic stirring was applied.

【0017】[0017]

【発明の効果】本発明によれば鋼管の溶接速度が向上
し、高生産性と溶接部品質を著しく改善することが可能
となる。
According to the present invention, the welding speed of a steel pipe can be increased, and high productivity and weld quality can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による鋼管の溶接方法を示す図FIG. 1 is a diagram showing a method for welding a steel pipe according to the present invention.

【図2】本発明による鋼管の溶接方法を示す図FIG. 2 is a view showing a method for welding a steel pipe according to the present invention.

【図3】図1の(a)正断面図および、(b)上部から
の態様を示す平面図
3A is a front cross-sectional view of FIG. 1 and FIG.

【符号の説明】[Explanation of symbols]

1 磁気攪拌用コイルの鋼製外皮 2 磁気攪拌用コイルの鋼製内皮 3 鋼製内皮と鋼製外皮の間に巻いたコイル 4 間接水冷管 5 冷却水導水口 6 冷却水排水口 7 冷却水仕切り壁 8 電極へのコイル固定用冶具 9 電極と鋼製外皮の絶縁材 10 止めネジ 11 交番磁場電源 12 第一電極 13 第二電極 14 第三電極 15 第四電極 16 第一電極用溶接電源 17 第二電極用溶接電源 18 第三電極用溶接電源 19 第四電極用溶接電源 20 母材 21 潜弧溶接用フラックス 22 第一電極用の溶接アーク 23 第二電極用の溶接アーク 24 第三電極用の溶接アーク 25 第四電極用の溶接アーク 26 溶融池 27 潜弧溶接ビード 28 潜弧溶接スラグ 29 最終電極におけるコイル3直下から溶接鋼板の表
面までの高さ 30 第一電極におけるコイル3直下から溶接鋼板の表
面までの高さ
DESCRIPTION OF SYMBOLS 1 Steel outer shell of magnetic stirring coil 2 Steel inner shell of magnetic stirring coil 3 Coil wound between steel inner shell and steel outer shell 4 Indirect water cooling tube 5 Cooling water inlet 6 Cooling water drain 7 Cooling water partition Wall 8 Jig for fixing coil to electrode 9 Insulating material of electrode and steel shell 10 Set screw 11 Alternating magnetic field power supply 12 First electrode 13 Second electrode 14 Third electrode 15 Fourth electrode 16 First electrode welding power supply 17th Welding power supply for two electrodes 18 Welding power supply for third electrode 19 Welding power supply for fourth electrode 20 Base material 21 Flux for latent arc welding 22 Welding arc for first electrode 23 Welding arc for second electrode 24 For third electrode Welding arc 25 Welding arc for fourth electrode 26 Weld pool 27 Latent arc welding bead 28 Latent arc welding slag 29 Height from just below coil 3 at final electrode to surface of welded steel plate 30 At first electrode Yl height 3 from just below to the surface of the welded steel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B23K 101:06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location // B23K 101: 06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2つ以上の電極を有する多電極潜弧溶接
において、各電極を同時に囲む通電コイルを配置して、
該コイルに磁場を形成し溶融金属を攪拌して鋼管を溶接
する方法において、第一電極部のコイル高さが最終電極
部のコイル高さの1.1〜2.0倍となるように配置す
ることを特徴とする耐溶接欠陥性に優れた鋼管の溶接方
法。
1. In a multi-electrode latent arc welding having two or more electrodes, an energizing coil surrounding each electrode simultaneously is arranged,
In the method of forming a magnetic field in the coil and stirring the molten metal to weld the steel pipe, the coil height of the first electrode portion is arranged to be 1.1 to 2.0 times the coil height of the final electrode portion. A method for welding steel pipes having excellent resistance to welding defects.
JP21906296A 1996-08-02 1996-08-02 Method for welding steel tube having excellent defective welding resistance Withdrawn JPH1043859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21906296A JPH1043859A (en) 1996-08-02 1996-08-02 Method for welding steel tube having excellent defective welding resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21906296A JPH1043859A (en) 1996-08-02 1996-08-02 Method for welding steel tube having excellent defective welding resistance

Publications (1)

Publication Number Publication Date
JPH1043859A true JPH1043859A (en) 1998-02-17

Family

ID=16729682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21906296A Withdrawn JPH1043859A (en) 1996-08-02 1996-08-02 Method for welding steel tube having excellent defective welding resistance

Country Status (1)

Country Link
JP (1) JPH1043859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141760A1 (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Multi-electrode submerged arc welding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141760A1 (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Multi-electrode submerged arc welding method
US11453079B2 (en) 2016-02-19 2022-09-27 Jfe Steel Corporation Multi-electrode submerged arc welding method

Similar Documents

Publication Publication Date Title
JP2006272377A (en) Submerged arc welding method of steel material
JPS5868468A (en) Electrode tandem type submerged arc welding method
JPH1043859A (en) Method for welding steel tube having excellent defective welding resistance
JPH10258364A (en) Steel tube welding method giving less welding defect
US20020179583A1 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
CN112404660A (en) Pipeline welding method
JPH10258363A (en) High-speed welding method for steel tube
JP3117287B2 (en) Consumable electrode arc welding method
Dhobale et al. Review on effect of heat input on tensile strength of butt weld joint using MIG welding
US6884963B1 (en) Apparatus and method for welding duplex stainless steel
JPH09239536A (en) Magnetic stirring welding method of steel tube
JPH09277043A (en) Magnetic agitation welding method of steel tube
WO2001014094A1 (en) Apparatus and method for welding duplex stainless steel
CN105499761B (en) Motor stator casing and magnetic pole argon arc welding technique
JP3539828B2 (en) Electrogas arc welding method for steel sheet
JPS58181470A (en) Surface hardening build-up welding method
JPH0214861Y2 (en)
JPH0985440A (en) Magnetic agitating welding method of steel tube
JP6949745B2 (en) Single-sided submerged arc welding method and single-sided submerged arc welding equipment
JP3130768B2 (en) Low hydrogen coated arc welding rod
JPH11226735A (en) Gas shield arc welding method
JP3186885B2 (en) Single-sided submerged arc welding method
JP2005052859A (en) Welding gas nozzle
JP2003311480A (en) Welding wire for titanium alloy by mig welding, welding method and weld metal
JPH079150A (en) Gas shielded arc welding method for galvanized steel sheet and galvanized steel sheet product welded by the welding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007