JPS58181470A - Surface hardening build-up welding method - Google Patents

Surface hardening build-up welding method

Info

Publication number
JPS58181470A
JPS58181470A JP6578582A JP6578582A JPS58181470A JP S58181470 A JPS58181470 A JP S58181470A JP 6578582 A JP6578582 A JP 6578582A JP 6578582 A JP6578582 A JP 6578582A JP S58181470 A JPS58181470 A JP S58181470A
Authority
JP
Japan
Prior art keywords
powder
electrode
alloy
plasma arc
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6578582A
Other languages
Japanese (ja)
Inventor
Hiroshi Notomi
納富 啓
Shizuo Kawanami
河波 静男
Toyoaki Kusano
草野 豊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6578582A priority Critical patent/JPS58181470A/en
Publication of JPS58181470A publication Critical patent/JPS58181470A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To perform build-up welding of a Co-Cr alloy having high hardness and smoothness on the surface of a metallic base material easily, by supplying mixed powders of an alloy consisting essentially of Co-Cr and NbC, etc. into the plasma arc which is shielded with an inert gas. CONSTITUTION:A W electrode 2 of a plasma arc welding torch and a copper electrode 3 which is cooled with cooling water 4 are connected to a DC power source 10 and gaseous Ar 9 foming a plasma arc is supplied to form a pilot arc between the forward ends of the two electrodes 2, 3. Gaseous Ar 8 for shielding is supplied from a shielding gas nozzle 7, and the electrode 2 and a carbon steel base material 1 are connected to a DC welding power source 11 to generate a plasma arc between both. Mixed powders 6 of alloy powder consisting essentially of Co-Cr and >=1 kind among NbC powder, VC powder and TiC powder are supplied from between the electrode 3 and an outside cylinder 5. The weld metal wherein the NbC powder, etc. is mixed in the deposited alloy is thus formed on the surface of the material 1.

Description

【発明の詳細な説明】 合金の肉盛溶接を形成させる方法に係る。[Detailed description of the invention] The present invention relates to a method of forming an overlay weld of an alloy.

金属母材表面に耐食性又は耐摩耗性を与えるために一般
にC o 、 O r合金,通称ステライト合金が肉盛
溶接され,溶接法はTIG溶接,ガス溶接が主に用いら
れる。しかしてステライト合金は次に示すような化学成
分を有するものが一般に用いられている。
Co and Or alloys, commonly known as stellite alloys, are generally overlay welded to provide corrosion resistance or wear resistance to the surface of the metal base material, and TIG welding and gas welding are mainly used as welding methods. Stellite alloys having the following chemical components are generally used.

(ン にo  にr  W  Fc(w+%)ピノカー
ス硬ζステライトA  1.0  残 280  40
  :i0以下    400ステライトB135残 
291J  ao  25シ下   470ステライト
C25  残 3(10 120  30以下   6
00しかしこれらの合金を肉盛溶接する場合には1浴接
割れ防止のために300℃以1−の予熱を必要とし,特
にステライトCを用いる場合には最高600℃の高温予
熱を必要とする。このようにステライト合金の肉盛溶接
施工には高温の予熱を必要とするため,特に被溶接物が
大きい場合には溶接作業が極めて困難となる。さらに溶
接後の徐冷も必要であり,ステライト合金の肉盛溶接は
高コストとなり,経済的にも問題がある。
(N ni o ni r W Fc (w+%) Pinocurse Hard Zeta Stellite A 1.0 Remainder 280 40
: i0 or less 400 Stellite B135 remaining
291J ao 25 under 470 Stellite C25 remaining 3 (10 120 30 or less 6
00 However, when overlaying these alloys, preheating to 300℃ or higher is required to prevent 1-bath weld cracking, and in particular, when using Stellite C, high-temperature preheating of up to 600℃ is required. . As described above, overlay welding of stellite alloys requires high-temperature preheating, which makes welding extremely difficult, especially when the workpiece is large. Furthermore, gradual cooling is required after welding, and overlay welding of stellite alloys is expensive and economically problematic.

またこのような問題を有していながら,得られる溶接金
属の硬烙もピノカース硬さでH v 600が限度であ
る。しかし各種機械の件能,効率向上に伴い,摩耗環境
におかれる部材の性能を向上させることが強く要求され
るようになり,現在のステライト合金の肉盛溶接ではこ
れに応えられなくなっている。
In addition, despite such problems, the hardness of the weld metal obtained is limited to pinocase hardness, Hv 600. However, as the performance and efficiency of various machines improve, there is a strong demand for improved performance of parts exposed to wear environments, and current overlay welding of stellite alloys is no longer able to meet this demand.

本発明は叙上の従来方法の欠点を改良するために提案さ
れ、不活性ガスでシールドされた金属母材と非消耗電極
の間に発生するアーク中に。
The present invention is proposed to improve the drawbacks of the above-mentioned conventional methods during the arc generated between the metal base material and the non-consumable electrode shielded with an inert gas.

Co −Cr ′5c主成分とする合金粉末と、 Nb
C粉末、VC粉末、 ’I”iC粉末のうち少なくとも
1種以上との混合粉末を供給して金属母材表面に溶接金
属を形成させることを特徴とする表面硬化肉盛溶接法を
提供する。
Alloy powder mainly composed of Co-Cr '5c and Nb
Provided is a surface hardening welding method characterized by forming a weld metal on the surface of a metal base material by supplying a mixed powder with at least one of C powder, VC powder, and 'I''iC powder.

したがって本発明方法においては、 Co  Or合金
粉末と、 NbC粉末、VC粉末、 ’I’iC粉末の
うち少なくとも1種との混合粉末とから成る合金肉盛が
施工されることによって、I@接部表面は平滑で1割れ
がなく、ビッカース硬さが高い肉盛溶接t:得られ、ひ
いては各種機械部材の性能を向上することができる利点
があり、また予熱、徐冷等を不要とすることによる経済
的効果も太きい。
Therefore, in the method of the present invention, by applying an alloy overlay consisting of a CoOr alloy powder and a mixed powder of at least one of NbC powder, VC powder, and 'I'iC powder, Overlay welding has a smooth surface with no cracks and high Vickers hardness, which has the advantage of improving the performance of various mechanical parts, and also eliminates the need for preheating, slow cooling, etc. The economic impact is also significant.

本発明方法を実施例について詳細に説明する。The method of the present invention will be explained in detail with reference to Examples.

第1図は、プラズマアークにステライト合金粉末と金属
炭化物粉末の混合物を送給して表面硬化肉盛溶接を実施
するものである。
In FIG. 1, surface hardening welding is carried out by feeding a mixture of stellite alloy powder and metal carbide powder to a plasma arc.

第1図中、lは炭素鋼母材、2はプラズマアーク溶接ト
ーチのタフゲステン電極、3は冷却水4で冷却されるジ
ャケット構造の銅電極、5は銅電極3を取り巻く外筒で
ある。銅電極3と外筒5の′間には粉末6が入る間隙が
ある。6はステライト台金A粉末20%にNbC粉末8
0%を混合した合金粉末であり、それぞれの粉末の粒度
は200メツ/ユ以下とした。
In FIG. 1, 1 is a carbon steel base material, 2 is a Toughgesten electrode of a plasma arc welding torch, 3 is a copper electrode having a jacket structure cooled by cooling water 4, and 5 is an outer cylinder surrounding the copper electrode 3. There is a gap between the copper electrode 3 and the outer cylinder 5, into which the powder 6 can enter. 6 is NbC powder 8 in Stellite base metal A powder 20%
The particle size of each powder was 200 mesh/unit or less.

7はプラズマアークの外側を7−ルドする/−ルドガス
ノズル、8は/−ルドアルゴンガス。
7 is a /-rudo gas nozzle that supplies the outside of the plasma arc, and 8 is /-rudo argon gas.

9は電極2の周囲に送給されプラズマアークを形成する
アルゴンガス、10は電極2と銅電極3の間にパイロッ
トアークを発生させる直流電源、11は電極2と炭素鋼
母材1の間にプラズマアークを発生きせる直流溶接電源
である。
9 is an argon gas supplied around the electrode 2 to form a plasma arc; 10 is a DC power source that generates a pilot arc between the electrode 2 and the copper electrode 3; 11 is a gas between the electrode 2 and the carbon steel base material 1; This is a DC welding power source that generates a plasma arc.

アルゴンガス9を供給しながら直流電源10の回路を閉
じると、電&2の先端と銅1を極3の先端部の間にバイ
ロバアークが発生する。続いてノールドガス8を供給し
ながら直流溶接電源IIの回路を閉じると、電極2と母
材1の間にプラズマアークが発生する。プラズマアーク
電圧を32Vとし、プラズマアーク電流を11OAとし
て粉末6を1597mの割合で送給すると、粉末6の中
のステライト合金A粉末は溶融して母材1の表面に浴着
し、その中に溶融していないNbC粉末が混入し、溶接
金属を形成する。。
When the circuit of the DC power source 10 is closed while supplying argon gas 9, a birobar arc is generated between the tip of the electrode &2 and the tip of the copper 1 pole 3. Subsequently, when the circuit of the DC welding power source II is closed while supplying the nodal gas 8, a plasma arc is generated between the electrode 2 and the base material 1. When the plasma arc voltage is 32 V, the plasma arc current is 11 OA, and the powder 6 is fed at a rate of 1597 m, the stellite alloy A powder in the powder 6 is melted and deposited on the surface of the base material 1, and therein Unmolten NbC powder is mixed in and forms weld metal. .

第2図はこの溶接金属の断面ミクロ組織写真で、この部
分のビッカース硬さはI(v 800〜900であり、
溶接部表面は平滑であり1割ねはなか・) た 。
Figure 2 is a photograph of the cross-sectional microstructure of this weld metal, and the Vickers hardness of this part is I (v 800-900,
The surface of the welded part was smooth and 10% smooth.

次に第2実施例として2粉末にステライト合金A粉末3
0チと70%NbC粉末を用い、実施例1と同じ条件に
より、溶接金属を形成させた。
Next, as a second example, stellite alloy A powder 3 is added to the 2 powders.
Weld metal was formed under the same conditions as in Example 1 using 0% NbC powder and 70% NbC powder.

この場合も、溶接金属の表面は平滑であり9割れはなか
った。また浴接金属の断面のゝヒ均のビッカース硬さは
It v 700〜800であ−った。
In this case as well, the surface of the weld metal was smooth and there were no cracks. Further, the average Vickers hardness of the cross section of the bath-welded metal was Itv 700-800.

更に第3実施例として、粉末にステライト合金A粉末3
0%にNbに粉末20%とTiC粉末5゜チを混合させ
、実施例1と同じ溶接条件により。
Furthermore, as a third example, stellite alloy A powder 3 is added to the powder.
0% Nb powder, 20% Nb powder, and 5° TiC powder were mixed, and the same welding conditions as in Example 1 were used.

浴接金II4を形成させた。溶接金属の表向は平滑で割
ねがなく健全であ−った。また溶接金属の断面のビッカ
ース硬さはHv 700〜800であ−っだ。
A bath weld II4 was formed. The surface of the weld metal was smooth and sound with no cracks. Further, the Vickers hardness of the cross section of the weld metal was Hv 700 to 800.

なお炭化物粉末の混合率を独々変化させて得られた溶接
金属の硬さの測定結果から、炭化物粉末の混合率が体積
分率で35%より低い場合は溶接金属の硬さ向上にはほ
とんど寄与せず。
Furthermore, from the measurement results of the hardness of weld metal obtained by varying the mixing ratio of carbide powder independently, it is found that when the mixing ratio of carbide powder is lower than 35% in volume fraction, there is little improvement in the hardness of weld metal. No contribution.

実用的ではないことが判っている。また炭化物粉末の混
合率が35〜80%までは炭化物粉末の混合率に比例し
て浴接金属の硬さは向上し。
It turns out to be impractical. Further, when the carbide powder mixing ratio is 35 to 80%, the hardness of the bath-welded metal increases in proportion to the carbide powder mixing ratio.

80チを超えると炭化物粉末の溶着効率が著しく低下し
硬さの向上にはeよとんと寄与せず実用的ではない。し
たがって、実用的な炭化物粉末の混合率は体積分率で3
5〜80%である。
If it exceeds 80 inches, the welding efficiency of the carbide powder will drop significantly and it will not significantly contribute to improving hardness, making it impractical. Therefore, the practical mixing ratio of carbide powder is 3 in terms of volume fraction.
It is 5-80%.

また本発明法に用いるC o −Cr合金粉末には実施
例に示したステライト合金人以外にもステライトB、ス
テライトC及び次に示すようなステライト合金り、Eも
実用できる。
In addition to the stellite alloys shown in the examples, stellite B, stellite C, and the following stellite alloys and E can also be used as the Co--Cr alloy powder used in the method of the present invention.

W   ビッカース CCo Cr  NI  Mo Fe (、、%)  
p サステライトl)  0.28残280 30 5
4 1.4−380ステライトE  1.15残258
 227 27670 33  350
W Vickers CCo Cr NI Mo Fe (,,%)
p Sastellite l) 0.28 remaining 280 30 5
4 1.4-380 Stellite E 1.15 remaining 258
227 27670 33 350

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例の要領図、第2図は同上
における溶接金属の断面ミクa組織写真である。 1 炭素鋼母材、2.プラズマアーク溶接タノグステノ
電極、3 銅電極、5.外筒、6混合粉末
FIG. 1 is a schematic diagram of an embodiment of the method of the present invention, and FIG. 2 is a photograph of the cross-sectional micro-structure of the weld metal in the same example. 1 carbon steel base material, 2. Plasma arc welding Tanogsteno electrode, 3 Copper electrode, 5. Outer cylinder, 6 mixed powders

Claims (1)

【特許請求の範囲】[Claims] 不活性ガスで7−ルドされた金属母材と非消耗電極の間
に発生するアーク中に、Co−Crを主成分とする合金
粉末と、 Nbc粉末、VC粉末、 T”iC粉末のう
ち少なくとも1種以上の粉末との混合粉末を供給して金
属母材表面に溶接金属を形成させることを特徴とする表
面硬化肉盛浴接法。
During the arc generated between the metal base material heated with an inert gas and the non-consumable electrode, an alloy powder mainly composed of Co-Cr, and at least one of Nbc powder, VC powder, and T"iC powder are mixed. A surface hardening bath welding method characterized by supplying a mixed powder with one or more types of powder to form weld metal on the surface of a metal base material.
JP6578582A 1982-04-20 1982-04-20 Surface hardening build-up welding method Pending JPS58181470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6578582A JPS58181470A (en) 1982-04-20 1982-04-20 Surface hardening build-up welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6578582A JPS58181470A (en) 1982-04-20 1982-04-20 Surface hardening build-up welding method

Publications (1)

Publication Number Publication Date
JPS58181470A true JPS58181470A (en) 1983-10-24

Family

ID=13297031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6578582A Pending JPS58181470A (en) 1982-04-20 1982-04-20 Surface hardening build-up welding method

Country Status (1)

Country Link
JP (1) JPS58181470A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296962A (en) * 1985-06-25 1986-12-27 Daido Steel Co Ltd Surface hardening method for hot tool
WO1991009980A1 (en) * 1989-12-27 1991-07-11 Toshiba Kikai Kabushiki Kaisha Production of anticorrosive and antiwearing alloy
US5429883A (en) * 1992-05-21 1995-07-04 Toshiba Kikai Kabushiki Kaisha Alloy having excellent corrosion resistance and abrasion resistance
US5647920A (en) * 1989-12-27 1997-07-15 Toshiba Kikai Kabushiki Kaisha Process for preparation of corrosion-resistant and wear-resistant alloy
US5835842A (en) * 1993-05-20 1998-11-10 Toshiba Kikai Kabushiki Kaisha Alloy having excellent corrosion resistance and abrasion resistance, method for producing the same and material for use in production of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296962A (en) * 1985-06-25 1986-12-27 Daido Steel Co Ltd Surface hardening method for hot tool
WO1991009980A1 (en) * 1989-12-27 1991-07-11 Toshiba Kikai Kabushiki Kaisha Production of anticorrosive and antiwearing alloy
US5647920A (en) * 1989-12-27 1997-07-15 Toshiba Kikai Kabushiki Kaisha Process for preparation of corrosion-resistant and wear-resistant alloy
US5429883A (en) * 1992-05-21 1995-07-04 Toshiba Kikai Kabushiki Kaisha Alloy having excellent corrosion resistance and abrasion resistance
US5615406A (en) * 1992-05-21 1997-03-25 Toshiba Kikai Kabushiki Kaisha Alloy having excellent corrosion resistance and abrasion resistance, method for producing the same and material for use in production of the same
US5835842A (en) * 1993-05-20 1998-11-10 Toshiba Kikai Kabushiki Kaisha Alloy having excellent corrosion resistance and abrasion resistance, method for producing the same and material for use in production of the same

Similar Documents

Publication Publication Date Title
Houldcroft Welding process technology
US4833296A (en) Consumable welding electrode and method of using same
US4472619A (en) Method of welding for hard surfacing
EP3323546B1 (en) A consumable metal-cored welding wire, a method of metal arc welding and a system therefore
GB1151873A (en) Improvements in Metal Deposition.
JP4336824B2 (en) Submerged arc welding method for austenitic stainless steel
CN109570812A (en) Welding electrode containing aluminium
Houldcroft et al. Welding and cutting: A guide to fusion welding and associated cutting processes
JPH0651239B2 (en) Ni-based alloy powder for powder overlay
Shen et al. Effect of welding process parameters on hybrid GMAW-GTAW welding process of AZ31B magnesium alloy
CN109396688A (en) It is used to form the electrode of austenitic steel and double coherent correlation metal
US5441554A (en) Alloy coating for aluminum bronze parts, such as molds
JPH0825017B2 (en) Multi-layer overlay welding method for high hardness metal
JPS58181470A (en) Surface hardening build-up welding method
US3770932A (en) Short-circuit inert gas consumable electrode process using additions of 10-14% nitrogen
US4726854A (en) Cast iron welding electrodes
US5569396A (en) Method for making alloying additions to the weld overlay weld pool
JP2801161B2 (en) Solid wire for pulse MAG welding
KR100262668B1 (en) High performance cr carbide type hardfacing welding wire
JPS58179568A (en) Surface hardening build-up welding method
DE10354409A1 (en) Plasma welding method employs mixture containing argon and helium with carbon dioxide and oxygen for shielding and optionally also as plasma gas
KR100189298B1 (en) Hardfacing wire
Nefedov et al. Development of plasma welding and surfacing abroad
JPH11179590A (en) Flux-cored wire for gas shield arc welding
US2711467A (en) Method of producing hard facing welded deposits