JPH0825017B2 - Multi-layer overlay welding method for high hardness metal - Google Patents

Multi-layer overlay welding method for high hardness metal

Info

Publication number
JPH0825017B2
JPH0825017B2 JP3181758A JP18175891A JPH0825017B2 JP H0825017 B2 JPH0825017 B2 JP H0825017B2 JP 3181758 A JP3181758 A JP 3181758A JP 18175891 A JP18175891 A JP 18175891A JP H0825017 B2 JPH0825017 B2 JP H0825017B2
Authority
JP
Japan
Prior art keywords
welding
hardness metal
high hardness
welding method
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3181758A
Other languages
Japanese (ja)
Other versions
JPH0550237A (en
Inventor
敏行 芦田
寿夫 吉田
繁昭 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP3181758A priority Critical patent/JPH0825017B2/en
Priority to AU87877/91A priority patent/AU649745B2/en
Priority to KR1019910020656A priority patent/KR100200394B1/en
Priority to MYPI91002162A priority patent/MY107653A/en
Priority to GB9126503A priority patent/GB2257075B/en
Priority to PH43688A priority patent/PH30821A/en
Priority to CN92100401A priority patent/CN1031384C/en
Publication of JPH0550237A publication Critical patent/JPH0550237A/en
Priority to SG22195A priority patent/SG22195G/en
Priority to HK53295A priority patent/HK53295A/en
Publication of JPH0825017B2 publication Critical patent/JPH0825017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は母材の表面上へ高硬度金
属の肉盛溶接を行ない優れた耐摩耗材を製造する技術に
係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for producing an excellent wear resistant material by overlay welding a high hardness metal on the surface of a base material.

【0002】[0002]

【従来の技術】産業上、多数の機械や装置において多数
の耐摩耗材が使用されている。ここで提供しようとする
技術は、例えば火力発電用ボイラー向けの石炭粉砕や、
セメントクリンカー,高炉スラグの粉砕用にそれぞれ使
用する竪型ミルに装着するローラ,ローラタイヤ,テー
ブルセグメント,ホッパー,シュートライナなど各原料
との接触によって自らの表面も激しく摩耗を受ける部分
に使用する全ての部材に共通するものである。これらの
部材は全ての部分で耐摩耗性が要求される訳ではなく、
原料と接触する一面だけが高い耐摩耗性を具えていれば
足りる。従って、必要な耐摩耗面だけへ高硬度金属の多
層肉盛りをすれば十分目的を達するし、使用中にこの部
分が摩耗してしまえば新しく肉盛溶接をこの上から施工
して新品同様の耐摩耗材を再生することもできる。一般
に耐摩耗性を必要とする使用面の面積は相当大きいか
ら、最初の肉盛りにしろ、摩耗後の再生肉盛りにしろ溶
接を能率的に行なうことが工業的な採算性から求められ
る。従って一般的には、 CO2溶接法、ミグ(MIG)
溶接法、サブマージドアーク溶接法、バンドアーク溶接
法など全自動溶接法が広く採用され各地において盛んに
施工されている。
2. Description of the Related Art In industry, many wear resistant materials are used in many machines and devices. The technology to be provided here is, for example, pulverization of coal for boilers for thermal power generation,
Cement clinker, rollers used for vertical mills used for crushing blast furnace slag, rollers, roller tires, table segments, hoppers, shoe liners, etc. All parts used for parts that are subject to severe wear due to contact with each raw material It is common to all members. These parts do not require wear resistance in all parts,
It suffices if only one side that comes into contact with the raw material has high wear resistance. Therefore, it is sufficient to build a multi-layer overlay of high-hardness metal only on the necessary wear-resistant surface, and if this part becomes worn during use, a new overlay weld is applied from above and a new as-new condition is applied. The wear resistant material can also be regenerated. Generally, since the area of the use surface that requires wear resistance is considerably large, it is required from the industrial profitability to perform welding efficiently whether it is the first buildup or the regenerated buildup after wear. Therefore, in general, CO 2 welding method, MIG
Full-automatic welding methods such as welding method, submerged arc welding method and band arc welding method are widely adopted and are being widely used in various places.

【0003】[0003]

【発明が解決しようとする課題】肉盛溶接によって耐摩
耗面を形成するには、硬度が高い溶着金属ほど耐摩耗性
も高くなることは当然である。ところが、周知のとおり
高硬度の溶着金属ほど靱性が乏しく、多層盛り溶接時の
収縮応力に耐えられず簡単にビード下クラックが発生し
てしまうことが最大の障害となる。この点は一般に溶接
性の好ましくないとされている材料(母材)において特
に顕著である。ビード下クラックが発生し、折角の肉盛
層が剥離脱落してしまう危険性は溶着金属の硬度が高く
なるほど増大するため、従来は耐摩耗性が多少不満足で
あっても、溶着後の肉盛層の硬度をHvで600以下に
制限せざるを得なかった。また、全肉盛層の厚さについ
ても2〜3層(6〜10mm)程度に制限せざるを得ず、
耐摩耗性を具えた範囲が薄い肉厚に留まるという課題が
あった。
In order to form a wear resistant surface by overlay welding, it is natural that a weld metal having a higher hardness has a higher wear resistance. However, as is well known, the higher the hardness of the deposited metal is, the poorer the toughness is, and the biggest obstacle is that the under-bead crack easily occurs without being able to withstand the shrinkage stress during the multi-layer welding. This point is particularly remarkable in a material (base metal) which is generally considered to have poor weldability. As the hardness of the weld metal increases, the risk of under-bead cracking and peeling off of the weld overlay will increase. The hardness of the layer had to be limited to 600 or less in Hv. In addition, the thickness of the entire buildup layer must be limited to about 2 to 3 layers (6 to 10 mm),
There was a problem that the range provided with wear resistance remained thin.

【0004】この課題を克服するために、従来から種々
の改善が加えられてきた。例えば、剥離脱落を防ぐため
に施工前に250〜600℃の予熱を行ない、なお施工
中も高温の層間温度を保って乏しい靱性を少しでもカバ
ーするとか、溶接後直ちに600〜700℃の炉内へ装
入して溶接応力を除去する焼鈍を行なったりする。しか
し、実際の作業において高温の予熱や高温下の溶接がい
かに困難であるかは言うまでもないし、高温の焼鈍によ
って応力が取り除かれても、折角の肉盛層の高硬度もま
た低下するという不都合がある。その他、この割れの問
題を解決するために、高硬度が得られる材料による溶接
と靱性に優れた材料による溶接を交互に繰り返した、い
わばサンドウィッチ方式の溶接方法(特開昭56−71
578号公報)や、溶接条件を一定時間周期で変化させ
て溶接ビード幅の大小を交互に繰り返し変化させること
によって、溶接ビード幅の小さい部分に積極的に溶接割
れを発生させる溶接方法(特開昭60−121070号
公報)、または母材の表面に多数の溝を形成しこれらの
溝と交差する方向に硬化肉盛を多層重ね、ビードが溝と
溝の凸部を横断する部分へ意図的に割れを発生させる溶
接方法(特開昭60−174266号公報)なども見出
すことができる。
In order to overcome this problem, various improvements have hitherto been made. For example, in order to prevent peeling and falling off, preheating is performed at 250 to 600 ° C before construction, and even during construction, the high interlaminar temperature is maintained to cover even the poor toughness, or immediately after welding, it is transferred to a furnace at 600 to 700 ° C. It may be charged and annealed to remove welding stress. However, it goes without saying that it is difficult to perform preheating at high temperature or welding under high temperature in actual work, and even if the stress is removed by annealing at high temperature, the high hardness of the build-up layer at the corner also decreases. is there. In addition, in order to solve the problem of this crack, a welding method of a so-called sandwich method, in which welding with a material having high hardness and welding with a material having excellent toughness are alternately repeated (JP-A-56-71)
No. 578), or a welding method in which welding cracks are positively generated in a portion having a small welding bead width by alternately changing the welding bead width in magnitude by changing the welding conditions in a constant time period (JP-A-2007-59). No. 60-12107), or a large number of grooves are formed on the surface of a base material, and a plurality of hard facings are laminated in a direction intersecting these grooves, and a bead is intentionally applied to a portion crossing the groove and the convex portion of the groove. It is possible to find out a welding method (Japanese Patent Laid-Open No. 174266/1985) which causes cracks in the wire.

【0005】何れの発明も課題解決に一応効果があるこ
とは認められるが、尚それぞれに課題が残っている。す
なわち、最初に引用した従来技術は、耐摩耗性に優れた
層と優れていない層とが交互に累積しているのであるか
ら、当然、全ての層が耐摩耗性に優れた層を累積した場
合に比べて耐摩耗性が低い。二番目に引用した技術は、
理論的には注目できる発明であるが、実際的には現在の
溶接技術では溶接ビードの幅を大きくしたり小さくした
りするピッチが問題であって、一つの割れ(ビード幅の
小さい部分)から次の割れ(次のビード幅の小さい部
分)までの距離を短くして、小さい割れを分散させるこ
とは難しい。例えば5mmピッチで割れを分散させるのが
理想としても、現実にこの理想を実行することは困難で
あり、ピッチが大きいためにそれぞれの割れの開口が大
きく、なおかつピッチ内のビードに溶接応力が残留する
危険性が高く、結局ビードの部分的剥離脱落の防止作用
が不十分となり勝ちになると考えられる。最後に引用し
た従来技術は、広い面積をもつライナなどの表面に多数
の細かい凹溝を刻設しなければならない。この事が大き
な負担となるうえ、使用後の再肉盛りに同じ手順を繰り
返して耐摩耗性を回復することは殆ど不可能と言ってよ
い。
It is recognized that any of the inventions is effective in solving the problem, but each problem still remains. That is, in the prior art cited at the beginning, since the layers excellent in abrasion resistance and the layers not excellent in abrasion are alternately accumulated, naturally, all layers accumulated the layers excellent in abrasion resistance. Wear resistance is low compared to the case. The second technique quoted is
Although it is a theoretically noteworthy invention, the pitch of increasing or decreasing the width of the weld bead is a problem in the current welding technology, and it is possible to avoid it from one crack (a portion with a small bead width). It is difficult to disperse small cracks by shortening the distance to the next crack (the next small bead width portion). For example, even if it is ideal to disperse the cracks at a pitch of 5 mm, it is difficult to actually carry out this ideal. Since the pitch is large, the opening of each crack is large, and the welding stress remains on the beads within the pitch. It is thought that there is a high risk that the beads will partly come off, and eventually the prevention action of the partial peeling and dropping of the beads becomes insufficient. The prior art cited at the end requires engraving a large number of fine grooves on the surface of a liner having a large area. This imposes a great burden, and it can be said that it is almost impossible to recover the wear resistance by repeating the same procedure for re-buildup after use.

【0006】本発明は以上に述べた課題を解決するため
に、高硬度金属の多層肉盛溶接を施工するに際し、肉盛
層の一部がビード下クラックによって剥離脱落すること
を防止するのが第一の目的である。次に、この肉盛層の
金属が従来の事実上の制限であるHv600を大きく超
える硬度の高い材料からなり、かつ従来の事実上の制限
である肉盛層の数が2〜3層であったのを無制限とし、
任意の肉厚を形成することを目的とする。さらに、この
肉盛溶接に当って高温度の予熱や溶接中の高温の層間温
度の保持や、溶接後の高温の応力除去焼鈍の何れもが不
必要であることを別の目的とする。最後に、この溶接方
法が特殊な加工や、特殊な技能や複雑な溶接制御手段を
前提とせず、一般に普及している溶接機の一部改良程度
でも十分実施できる程度の汎用性を具えたものであるこ
とを目的とする。
In order to solve the above-mentioned problems, the present invention prevents a part of the build-up layer from peeling off due to under-bead cracks when performing multilayer build-up welding of high hardness metal. It is the first purpose. Next, the metal of this overlay layer is made of a material having a high hardness that greatly exceeds Hv600, which is the conventional practical limit, and the number of the overlay layers, which is the actual practical limit, is 2 to 3. Unlimited,
The purpose is to form an arbitrary wall thickness. Further, another object of this overlay welding is that neither preheating at a high temperature, maintaining a high interlayer temperature during welding, or high temperature stress relieving annealing after welding is unnecessary. Lastly, this welding method is not predicated on special processing, special skills, or complicated welding control means, and is versatile enough to be implemented even with a partial improvement of the popular welding machine. The purpose is to be.

【0007】[0007]

【課題を解決するための手段】本発明に係る高硬度金属
の多層肉盛溶接方法は、母材の表面上へ高硬度金属の多
層肉盛溶接を施工するときに、
According to the method of multi-layer overlay welding of high hardness metal according to the present invention, when performing multi-layer overlay welding of high hardness metal on the surface of a base material,

【数2】 で算出される入熱量Jを2000〜6000J/cmの
範囲に制限し、かつ溶接中の層間温度を常に300℃以
下に制限することにより、溶着金属のビードにビード方
向と直交する微細なクラックを均等かつ多数分散して発
生させることによって前記の課題を解決した。また、具
体的な溶接型式としては使用する溶接機がオープンアー
ク全自動溶接機であること、この溶接機で使用するワイ
ヤがフラックスコアドワイヤであること、またこのとき
ワイヤの送給が最高3000cm/minまで可能な高
速ワイヤ送給装置を使用することが極めて望ましい。さ
らに、肉盛りする高硬度金属に関しては具体的に、硬度
は少なくともHvが600を超え、肉盛層の数は特に制
限なく任意の厚さまで多層盛りすることを要件とし、こ
れを実現するには高硬度金属がC:3.0〜7.0%
重量% 以下同じ),Si:0.5〜2.0%,M
n:0.5〜4.0%,Cr:20.0〜35.0%、
残りFe、またはこれにMo,W,V,Zr,Ti,
B,Nb,Cd,Co,Alの中より選ばれた1以上の
成分を最高2.0%まで添加したものや、C:3.0〜
7.0%,Si:0.5〜2.0%,Mn:0.5〜
4.0%,V:10.0〜20.0%,W:3.0〜1
0.0%、残りFe、またはこれにMo,Zr,Ti,
B,Nb,Cd,Co,Alの中より選ばれた1以上の
成分を最高2.0%まで添加したものがきわめて望まし
い態様である。
[Equation 2] By limiting the heat input amount J calculated in the range of 2000 to 6000 J / cm and always limiting the interlayer temperature during welding to 300 ° C. or less, fine cracks orthogonal to the bead direction are formed in the bead of the weld metal. The above-mentioned problems have been solved by generating the particles evenly and in large numbers. Also, as a concrete welding type, the welding machine used is an open arc fully automatic welding machine, the wire used in this welding machine is a flux cored wire, and at this time the wire feed is up to 3000 cm. It is highly desirable to use a high speed wire feeder capable of up to / min. Furthermore, regarding the high-hardness metal to be built up, specifically, the hardness is such that Hv exceeds 600, and the number of built-up layers is not particularly limited, and it is required to build up multiple layers up to an arbitrary thickness, and to realize this. High hardness metal C: 3.0-7.0%
( Same as below by weight%) , Si: 0.5 to 2.0%, M
n: 0.5 to 4.0%, Cr: 20.0 to 35.0%,
The remaining Fe , or Mo, W, V, Zr, Ti,
B, Nb, Cd, Co, Al with one or more components selected from a maximum of 2.0% or C: 3.0-
7.0%, Si: 0.5 to 2.0%, Mn: 0.5 to
4.0%, V: 10.0 to 20.0%, W: 3.0 to 1
0.0%, Fe remaining , or Mo, Zr, Ti,
It is a very desirable mode that one or more components selected from B, Nb, Cd, Co and Al are added up to a maximum of 2.0%.

【0008】[0008]

【作用】本発明の基本的な作用は、デポジットへ微細な
クラックを溶接応力と直角方向へ多数均等に分散させる
ことによって、クラック周辺の応力を解消し、全ビード
上の残留応力を事実上無視できる範囲にまで減少するこ
とにある。従来、溶接応力がなぜ大きな問題となるかと
言えば、溶接部のデポジットはその冷却凝固と共に収縮
応力が生じるが、硬化肉盛溶接ではデポジットと母材と
の材料的な性質(例えば、強度,硬度,靱性など)の差
が著しく大きいため、両者の境界部に応力が集中し剥離
脱落の原因となる大きなクラックを生じるからである。
これに対して意図的に微細なクラックを均等に分散させ
るために既に述べたような多くの試みがあったが、本発
明は溶接中の層間温度を300℃以下に抑制するという
こと、入熱量Jを2000〜6000J/cmの範囲に抑
制するという全く従来の溶接技術からは常識を逸脱した
新しい技術的着想によって、この作用を実現するのに成
功したのである。
The basic function of the present invention is to uniformly disperse a large number of fine cracks in the deposit in the direction perpendicular to the welding stress, thereby eliminating the stress around the cracks and virtually ignoring the residual stress on all beads. It is to reduce to the extent possible. Conventionally, the main reason why welding stress is a big problem is that the deposit of the welded part causes shrinkage stress as it cools and solidifies, but in the case of hardfacing welding, the material properties of the deposit and the base metal (for example, strength and hardness). , Toughness, etc.) are extremely large, and stress concentrates at the boundary between the two, resulting in large cracks that cause peeling off.
On the other hand, there have been many attempts as described above to intentionally disperse fine cracks evenly, but the present invention is to suppress the interlayer temperature during welding to 300 ° C. or less, This effect has been successfully achieved by a new technical idea of controlling J in the range of 2000 to 6000 J / cm, which is out of common sense from the completely conventional welding technology.

【0009】溶接中の層間温度に関しては従来はクラッ
クの発生を抑えるため靭性の不足を補うという意味で高
温であるほど有利であると考えるのが通則であり、その
ために高温の予熱や溶接中の高温保持のために困難な手
順を強いられてきたものであり、その点でまさに逆転の
発想と言うべきである。また、溶接中の入熱量Jについ
ても一般の常識とされる通則は
Regarding the interlayer temperature during welding, it is generally considered that higher temperature is more advantageous in the sense of compensating for the lack of toughness in order to suppress the generation of cracks. Therefore, preheating of high temperature and welding It has been a difficult procedure to maintain high temperature, and in that respect, it should be said that the idea is reversed. Regarding the heat input amount J during welding, the general rule is

【数3】 で算出される入熱量は表1に例示するように溶接方法の
違いによって相当な相違はあるが、何れにしても本発明
の要件(2000〜6000J/cm)とは著しく隔た
った数値を通常とする。
(Equation 3) Although the heat input amount calculated in step 1 has a considerable difference due to the difference in welding method as illustrated in Table 1, in any case, a numerical value significantly different from the requirement (2000 to 6000 J / cm) of the present invention is usually used. To do.

【表1】 出典は「現代溶接技術大系 第15巻67頁」(産報出
版刊行)による。
[Table 1] The source is "Modern Welding Technology Series Vol.15, p. 67" (published by Kobo Publishing).

【0010】本発明で入熱量を2000J/cm以上に限
定したのは、もし入熱量がそれ以下であるとアークによ
る金属の溶融が不十分となり実質上肉盛溶接が不可能と
なることによる。また、入熱量が6000J/cmを超え
ると肉盛りした1ビードごとの厚さが大きくなって溶接
ビード面に生じるクラックとクラック間の間隔が広がる
ので、1ヶ所のクラックは大きくて深いうえ、クラック
間のビード内に残留応力が増大しクラックが成長して剥
離脱落の原因となり易いので、この数値を上限とした。
層間温度が300℃を超えると溶着金属のプールの凝固
する速度が遅くなり溶接ビード面のクラックは大きく深
くなり、クラック数が減少するためクラック間の残留応
力は増大するので300℃を上限とした。
The reason why the heat input amount is limited to 2000 J / cm or more in the present invention is that if the heat input amount is less than that, melting of the metal by the arc is insufficient and overlay welding is practically impossible. Also, if the heat input exceeds 6000 J / cm, the thickness of each bead piled up increases and the gap between the cracks generated on the weld bead surface widens, so one crack is large and deep, and Residual stress increases in the beads between and cracks tend to grow, causing peeling and falling off, so this value was made the upper limit.
When the interlayer temperature exceeds 300 ° C, the rate of solidification of the pool of deposited metal becomes slow, the cracks on the weld bead surface become large and deep, and the number of cracks decreases, so the residual stress between cracks increases, so 300 ° C was set as the upper limit. .

【0011】従来の溶接技術の概念と基本的に異なる溶
接方法を具体的に実施するためには次の溶接機材を適用
するのが最も望ましい。まず、溶接機としてはオープン
アーク式の全自動溶接機を選択する。その理由は主とし
て施工面での簡便さであり、シールドガス,フラックス
の添加の必要がないから装置が単純化し補助治具(マニ
プレータ,ポジショナ,他)を含めた装置全体の構築が
容易で可搬性も得られる。従って、耐摩耗材の再肉盛り
による再生作業を交通不便な現地へ出張して行なう場合
には大きな利点となる。次に、オープンアーク式の全自
動溶接に使用する芯線はフラックスコードワイヤを使用
するのが好ましい。このワイヤは帯状の薄鋼板をパイプ
状に形成し、その中空内へ粉末状の合金成分および脱酸
剤,発ガス成分などを複合してワイヤ化したものでワイ
ヤの外周鋼板部の電流密度はソリッドワイヤに比べて極
めて大きく溶融速度が極めて速いという特徴がある。さ
らに、この特徴に適合するように溶接機のワイヤ送給装
置の送給速度を、従来の最高1分間当り600cm程度で
あったものを最高3000cmまで可能な四輪駆動式の高
速ワイヤ送給装置とする型式を採用するのが望ましい。
In order to specifically carry out a welding method which is basically different from the concept of conventional welding technology, it is most desirable to apply the following welding equipment. First, an open arc type fully automatic welding machine is selected as the welding machine. The reason is mainly that it is simple in terms of construction, and since there is no need to add shielding gas or flux, the device is simplified and the entire device including auxiliary jigs (manipulator, positioner, etc.) is easy to construct and is portable. Can also be obtained. Therefore, this is a great advantage when the reclamation work of the wear resistant material is carried out on a business trip to an inconvenient site. Next, it is preferable to use a flux cord wire as the core wire used in the open arc type fully automatic welding. This wire is made by forming a strip-shaped thin steel plate into a pipe, and combining powdery alloy components, deoxidizers, gas generating components, etc. into its hollow to form a wire. It is extremely large and has a very high melting rate compared to solid wires. Furthermore, in order to comply with this feature, the wire feed device of the welding machine can feed the wire at a high speed of up to 3000 cm, which was about 600 cm per minute in the past, and it is a four-wheel drive high-speed wire feeder. It is desirable to adopt the model

【0012】硬化肉盛りの成分はフラックスコアードワ
イヤを選択することによって合金元素の選択範囲が広
く、必要に応じて最も摩耗条件に適合した成分,硬度を
得ることができる。従来は硬化肉盛層の硬度は最高Hv
600、肉盛層も2〜3層で最高でも6〜10mm低度
しか施工できなかったが、本発明では前記の溶接条件を
前記の溶接機材を使って実施することにより、Hv60
0〜1000の高硬度の肉盛層を所望の厚さまで形成す
ることを可能とした。代表的な肉盛溶接部の成分として
は、C:3.0〜7.0%,Si:0.5〜2.0%,
Mn:0.5〜4.0%,Cr:20.0〜35 0
%,残りFeの高Cr炭化物系の材料、またはC:3.
0〜7.0%,Si:0.5〜2.0%,Mn:0.5
〜4.0%,V:10.0〜20.0%,W:3.0〜
10.0%、残りFeの高V炭化物系の材料が挙げられ
る。なお、これら両材料に適宜Mo,W,V,Zr,T
i,B,Nb,Cd,Co,Alなどの中から1つ以
上、最高2.0%までの添加成分を選ぶことも摩耗条件
によっては一層望ましい結果をもたらす。一般に硬化肉
盛りに供される溶接材料は炭化物をつくり易い合金元素
を中心に組立て、これら各元素によってつくられる炭化
物は何れも極めて高い硬度をもち、肉盛溶接によって得
られるデポジットの硬度はこれら炭化物の総量とほぼ比
例するとされている。また、これら合金元素を含むデポ
ジットの硬度は一般には添加される炭素量とほぼ比例す
る関係にあるから、C:3.0〜7.0%という多量の
含有炭素が高硬度の肉盛層を形成する主な作用を務める
要因である。
By selecting a flux cored wire as the hardfacing component, the selection range of alloying elements is wide, and if necessary, the component and hardness most suited to the wear conditions can be obtained. Conventionally, the hardness of the hardfacing layer is maximum Hv
Although 600 and the built-up layers were only 2 to 3 layers and could be constructed only at a low level of 6 to 10 mm, in the present invention, Hv60 was obtained by performing the above welding conditions using the above welding equipment.
It was possible to form a high hardness overlay layer of 0 to 1000 to a desired thickness. Typical build-up welded components include C: 3.0 to 7.0%, Si: 0.5 to 2.0%,
Mn: 0.5-4.0%, Cr: 20.0-350
%, Residual Cr high Cr carbide-based material, or C: 3.
0-7.0%, Si: 0.5-2.0%, Mn: 0.5
-4.0%, V: 10.0-20.0%, W: 3.0-
A high V carbide-based material having 10.0% and remaining Fe can be mentioned. It should be noted that Mo, W, V, Zr, and T are appropriately added to these materials
Selecting one or more of i, B, Nb, Cd, Co, Al, etc., up to a maximum of 2.0% of additive components also produces more desirable results depending on the wear conditions. Generally, the welding materials used for hardfacing are mainly assembled by alloying elements that easily form carbides, and the carbides produced by each of these elements have extremely high hardness, and the hardness of the deposit obtained by overlay welding is It is said that it is almost proportional to the total amount of. Further, since the hardness of the deposit containing these alloy elements is generally in proportion to the amount of added carbon, a large amount of contained carbon such as C: 3.0 to 7.0% forms a hard layer having a high hardness. It is a factor that acts as the main function of forming.

【0013】ここに述べたような高炭素,高合金の溶接
材料は割れ感受性が高く凝固速度に比例して割れ発生の
ピッチが高くなり、徐冷するに従って割れの発生数は減
少し大きな割れが少数発生する結果となる。本発明は溶
接中の入熱量Jを極端に低く制限し、低い層間温度下で
高速溶接する結果、デポジットの凝固速度が極端に速く
なり、多数のクラックが均等に分散し、肉盛層全体に内
在する残留応力を殆ど解放して一部が剥離脱落するよう
な大きなクラックを防止する作用を基本とするものであ
る。
The welding materials of high carbon and high alloy as described above have high crack susceptibility and the pitch of crack generation increases in proportion to the solidification rate, and the number of cracks decreases with slow cooling, resulting in large cracks. As a result, a small number will occur. The present invention restricts the heat input amount J during welding to an extremely low value, and as a result of high-speed welding at a low interlayer temperature, the solidification rate of the deposit becomes extremely high, and a large number of cracks are evenly dispersed, and the entire buildup layer is covered. It is based on the action of releasing a large amount of residual residual stress to prevent a large crack from peeling off.

【0014】[0014]

【実施例】本発明の実施例は、C:6.0%,Cr:2
7%,その他を含むFeをベースとする高Cr炭化物系
のフラックスコアードワイヤで直径3.2mmのものを、
次の溶接条件によるオープンアーク自動溶接機により、
高Cr炭化物系耐摩耗鋳造材で製造した直径900mmの
円筒上へ厚さ30mmの肉盛溶接を施工した。溶接条件 (1) 溶接電流 400Amp (2) 溶接電圧 28V (3) 走行速度 180cm/min (4) 層間温度 最高300℃ (5) 入熱量 3700J/cm (6) シールドガスおよび予熱,後熱なし 比較例1は前記実施例の母材に使用した高Cr炭化物系
耐摩耗鋳造材(C:2.7%,Cr:27%)であり、
比較例2は硬度がHv600程度の従来技術の一つであ
る被覆アーク溶接法によって硬化肉盛りした試験材であ
る。前記実施例と比較例1,2について同一条件でラバ
ーホイル摩耗試験法(RWAT)で試験を行なった。表
2は試験の条件を示し、表3は試験の結果を示す。
EXAMPLES Examples of the present invention are C: 6.0%, Cr: 2
Fe-based high-Cr carbide-based flux cored wire containing 7% and others with a diameter of 3.2 mm,
With the open arc automatic welding machine under the following welding conditions,
Overlay welding with a thickness of 30 mm was performed on a cylinder with a diameter of 900 mm manufactured from a high Cr carbide wear-resistant cast material. Welding conditions (1) Welding current 400Amp (2) Welding voltage 28V (3) Traveling speed 180cm / min (4) Interlayer temperature 300 ℃ max (5) Heat input 3700J / cm (6) No shield gas or preheating, afterheating Comparison Example 1 is a high Cr carbide wear-resistant cast material (C: 2.7%, Cr: 27%) used as the base material of the above-mentioned example,
Comparative Example 2 is a test material having a hardness of about Hv600 and hardened by a covered arc welding method, which is one of the conventional techniques. The rubber foil abrasion test method (RWAT) was tested under the same conditions for the above-mentioned Example and Comparative Examples 1 and 2. Table 2 shows the test conditions, and Table 3 shows the test results.

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】表3に見られるように、本発明の実施例は
従来技術における硬化肉盛層に比べほぼ2倍以上の耐摩
耗性を具えていることを例示する。図1はこの実施例の
ミクロおよびマクロの組織を示すための位置を図示した
ものであり、図2は図1におけるA−A断面のミクロ写
真で針状の炭化物が同一方向に向って成長している。ま
た図3は図1におけるB−B断面のミクロ写真で針状の
炭化物が高密度に成長している。図4は別の実施例の金
属組織のマクロ写真であり竪型ローラにおよそ30mmの
厚さで肉盛りして実用に供したもので表面に間隔約5mm
を置いて細かいクラックがほぼ均等に分散して発生して
いる。
As can be seen from Table 3, the examples of the present invention exemplify that they have approximately twice or more the abrasion resistance of the hardfacing layers of the prior art. FIG. 1 is a diagram showing the positions for showing the micro and macro structures of this embodiment, and FIG. 2 is a microphotograph of the AA cross section in FIG. 1, in which needle-shaped carbides grow in the same direction. ing. Further, FIG. 3 is a microphotograph of the BB cross section in FIG. 1, in which needle-shaped carbides are grown at a high density. FIG. 4 is a macrophotograph of the metal structure of another embodiment, which was built up on a vertical roller with a thickness of about 30 mm and put into practical use.
After that, fine cracks are distributed almost evenly.

【0018】[0018]

【発明の効果】本発明に係る高硬度金属の多層肉盛溶接
方法によって、従来、同じ目的のために施工した肉盛溶
接方法によるよりも硬度が高く、かつ厚肉の肉盛層を得
ることができ、耐摩耗性とその耐用期間が飛躍的に向上
する。しかも、施工は溶着速度が極めて大きいから作業
能率も抜群であり、溶接機も単純化されて可搬性を具
え、出張による再生工事を容易に実施できる。さらに、
この溶接方法は高硬度の溶着金属の上に更に何層もの高
硬度の溶着金属を重ねて行く方法であるから、この技術
を適用すれば肉盛りすべき母材は溶接性の良好な軟鋼材
である必要はなく、例えば、耐摩耗用材料として一般に
使用されている高炭化物系鋳造材料(例えばニハード鋳
鉄)などに対しても容易に硬化肉盛溶接による再生復元
が可能となる。
By the multi-layer overlay welding method of a high hardness metal according to the present invention, it is possible to obtain a thick overlay layer having a hardness higher than those obtained by the overlay welding methods conventionally used for the same purpose. The wear resistance and its service life are dramatically improved. Moreover, since the welding speed of the construction is extremely high, the work efficiency is excellent, the welding machine is simplified and the portability is high, and the regeneration construction can be easily carried out on a business trip. further,
Since this welding method is a method of stacking several layers of high-hardness weld metal on a high-hardness weld metal, the base metal to be built up by applying this technique is a mild steel material with good weldability. However, it is possible to easily perform regenerative restoration by hardfacing welding even for a high-carbide-based casting material (for example, hard cast iron) generally used as a wear-resistant material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における金属組織の顕微鏡写真
を撮影した位置を示す正面図である。
FIG. 1 is a front view showing a position where a micrograph of a metal structure is taken in an example of the present invention.

【図2】図1におけるA−A断面の金属組織を示す顕微
鏡写真である。
FIG. 2 is a photomicrograph showing the metal structure of the AA cross section in FIG.

【図3】図1におけるB−B断面の金属組織を示す顕微
鏡写真である。
FIG. 3 is a micrograph showing a metal structure of a BB cross section in FIG.

【図4】別の実施例の金属組織を示すマクロ写真であ
る。
FIG. 4 is a macro photograph showing a metal structure of another example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B23K 103:02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area // B23K 103: 02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 母材の表面上へ高硬度金属の多層肉盛溶
接を施工する方法において、 【数1】 で算出される入熱量Jを2000〜6000J/cmの
範囲に制限し、かつ溶接中の層間温度を常に300℃以
下に制限することにより溶着金属のビードにビ−ド方向
と直交する微細なクラックを均等かつ多数分散して発生
させることを特徴とする高硬度金属の多層肉盛溶接方
法。
1. A method of applying multi-layer overlay welding of a high hardness metal onto a surface of a base material, wherein: The heat input amount J calculated by the method is limited to the range of 2000 to 6000 J / cm, and the interlayer temperature during welding is always limited to 300 ° C. or less to form fine cracks in the bead of the weld metal at right angles to the bead direction. A method for multi-layer overlay welding of high-hardness metal, which is characterized by uniformly and dispersively generating.
【請求項2】 請求項1において、オープンアーク全自
動溶接法であることを特徴とする高硬度金属の多層肉盛
溶接方法。
2. The multilayer build-up welding method for high hardness metal according to claim 1, which is an open arc fully automatic welding method.
【請求項3】 請求項2において、使用するワイヤがフ
ラックスコアドワイヤであることを特徴とする高硬度金
属の多層肉盛溶接方法。
3. The multilayer build-up welding method for high hardness metal according to claim 2, wherein the wire used is a flux cored wire.
【請求項4】 請求項3において、ワイヤの送給が最高
3000cm/minまで可能な高速ワイヤ送給装置を
使用することを特徴とする高硬度金属の多層肉盛溶接方
法。
4. The method of multilayer build-up welding of high-hardness metal according to claim 3, wherein a high-speed wire feeder capable of feeding a wire up to 3000 cm / min is used.
【請求項5】 請求項1において、肉盛りする高硬度金
属の硬度は少なくともHvが600を超え、肉盛層の数
は特に制限なく任意の厚さまで多層盛りすることを特徴
とする高硬度金属の多層肉盛溶接方法。
5. The high hardness metal according to claim 1, wherein the hardness of the high hardness metal to be built up is at least Hv of more than 600, and the number of the built up layers is not particularly limited, and multi-layered up to an arbitrary thickness. Multilayer overlay welding method.
【請求項6】 請求項5において、肉盛りする高硬度金
属がC:3.0〜7.0%(重量% 以下同じ),S
i:0.5〜2.0%,Mn:0.5〜4.0%,C
r:20.0〜35.0%、残りFeであることを特徴
とする高硬度金属の多層肉盛溶接方法。
6. The high-hardness metal to be built up according to claim 5, wherein C: 3.0 to 7.0% ( weight% or less is the same ), S.
i: 0.5 to 2.0%, Mn: 0.5 to 4.0%, C
r: 20.0 to 35.0%, the balance being Fe .
【請求項7】 請求項5において、肉盛りする高硬度金
属がC:3.0〜7.0%(重量% 以下同じ),S
i:0.5〜2.0%,Mn:0.5〜4.0%,V:
10.0〜20.0%,W:3.0〜10.0%、残り
Feであることを特徴とする高硬度金属の多層肉盛溶接
方法。
7. The high-hardness metal to be built up according to claim 5, wherein C: 3.0 to 7.0% (the same applies in% by weight or less ) and S.
i: 0.5 to 2.0%, Mn: 0.5 to 4.0%, V:
10.0 to 20.0%, W: 3.0 to 10.0%, the rest
A multi-layer overlay welding method for a high hardness metal, which is Fe .
【請求項8】 請求項6において、前記成分へさらにM8. The method according to claim 6, further comprising adding M to the component.
o,W,V,Zr,Ti,B,Nb,Cd,Co,Alo, W, V, Zr, Ti, B, Nb, Cd, Co, Al
の中より選ばれた1以上の成分を最高2.0重量%までUp to 2.0% by weight of one or more ingredients selected from
添加したことを特徴とする高硬度金属の多層肉盛溶接方Multi-layer overlay welding method for high hardness metals characterized by addition
法。Law.
【請求項9】 請求項7において、前記成分へさらにM9. The method of claim 7, further comprising adding M to the component.
o,Zr,Ti,B,Nb,Cd,Co,Alの中よりo, Zr, Ti, B, Nb, Cd, Co, Al
選ばれた1以上の成分を最高2.0重量%まで添加するAdd up to 2.0% by weight of one or more selected ingredients
ことを特徴とする高硬度金属の多層肉盛溶接方法。A multi-layer overlay welding method for high hardness metal, which is characterized in that
JP3181758A 1991-06-25 1991-06-25 Multi-layer overlay welding method for high hardness metal Expired - Lifetime JPH0825017B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP3181758A JPH0825017B2 (en) 1991-06-25 1991-06-25 Multi-layer overlay welding method for high hardness metal
AU87877/91A AU649745B2 (en) 1991-06-25 1991-11-14 Multi-layer welding process with high hard metal
KR1019910020656A KR100200394B1 (en) 1991-06-25 1991-11-20 Multi-layer hard facing for high metal
MYPI91002162A MY107653A (en) 1991-06-25 1991-11-22 Multi-layer welding process with high hard metal
GB9126503A GB2257075B (en) 1991-06-25 1991-12-13 A welding process
PH43688A PH30821A (en) 1991-06-25 1991-12-20 Multi-layer welding process with high hard metal.
CN92100401A CN1031384C (en) 1991-06-25 1992-01-22 Multi-layer welding process with hard metal
SG22195A SG22195G (en) 1991-06-25 1995-02-10 A welding process
HK53295A HK53295A (en) 1991-06-25 1995-04-06 A welding process.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3181758A JPH0825017B2 (en) 1991-06-25 1991-06-25 Multi-layer overlay welding method for high hardness metal

Publications (2)

Publication Number Publication Date
JPH0550237A JPH0550237A (en) 1993-03-02
JPH0825017B2 true JPH0825017B2 (en) 1996-03-13

Family

ID=16106377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3181758A Expired - Lifetime JPH0825017B2 (en) 1991-06-25 1991-06-25 Multi-layer overlay welding method for high hardness metal

Country Status (9)

Country Link
JP (1) JPH0825017B2 (en)
KR (1) KR100200394B1 (en)
CN (1) CN1031384C (en)
AU (1) AU649745B2 (en)
GB (1) GB2257075B (en)
HK (1) HK53295A (en)
MY (1) MY107653A (en)
PH (1) PH30821A (en)
SG (1) SG22195G (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU661910B2 (en) * 1992-07-09 1995-08-10 Farmland Pty Ltd Improvements in and relating to hard facing of earth engaging agricultural implements
JPH11309596A (en) * 1998-04-23 1999-11-09 Kurimoto Ltd Reproducing method of consumable member vertical roll mill
SE9903726D0 (en) * 1999-10-18 1999-10-18 Steinar Gustavsen Welding with cemented carbide
KR100384625B1 (en) * 2000-12-21 2003-05-22 주식회사 포스코 Hardfacing method to remove surface crack
FR2931714B1 (en) * 2008-05-30 2010-06-25 Snecma CONSTRUCTION OF A PART OF A METAL PIECE BY THE MIG PROCESS WITH CURRENT AND PULSED WIRE
CN101804709A (en) * 2010-03-08 2010-08-18 安徽海螺川崎装备制造有限公司 Wearing resistant structure of wear resistant piece and repair machining process thereof
CN102312153B (en) * 2010-07-02 2013-02-13 北京中煤大田耐磨材料有限公司 Zirconium-containing high-chromium cast iron-type abrasion-resistant alloy
US9126287B2 (en) * 2012-03-12 2015-09-08 Siemens Energy, Inc. Advanced pass progression for build-up welding
CN102990194A (en) * 2012-11-01 2013-03-27 金钧 Construction method adopting full-automatic open-arc bead-welding in overall welding
CN105195925A (en) * 2014-06-11 2015-12-30 上海司迈尔特种合金材料有限公司 Carbon dioxide arc welding wire with small diameter of 1.6 mm and high alloy content
CN105215510A (en) * 2015-11-17 2016-01-06 攀枝花钢城集团协力有限公司 The overlaying method of repair cold-rolling flat support roller
EP3572175A1 (en) * 2018-05-23 2019-11-27 Siemens Aktiengesellschaft Production and repair welding of cast iron with spheroidal graphite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1203846A (en) * 1968-08-08 1970-09-03 Roman F Arnoldby Abrasion resistant plates

Also Published As

Publication number Publication date
GB2257075A (en) 1993-01-06
KR930000195A (en) 1993-01-15
GB9126503D0 (en) 1992-02-12
KR100200394B1 (en) 1999-06-15
JPH0550237A (en) 1993-03-02
AU8787791A (en) 1993-01-21
CN1031384C (en) 1996-03-27
HK53295A (en) 1995-04-13
SG22195G (en) 1995-06-16
MY107653A (en) 1996-05-30
AU649745B2 (en) 1994-06-02
CN1068057A (en) 1993-01-20
GB2257075B (en) 1994-08-03
PH30821A (en) 1997-10-17

Similar Documents

Publication Publication Date Title
US4472619A (en) Method of welding for hard surfacing
JPH0825017B2 (en) Multi-layer overlay welding method for high hardness metal
CN100553855C (en) A kind of sandwiched alloy powder block used for built-up welding and preparation method thereof and application
JP2018532880A (en) Non-chromium and low chromium wear resistant alloys
US2507195A (en) Composite surfacing weld rod
JP3971074B2 (en) Multi-layer overlay carbon dioxide shielded arc welding method for Nihard cast iron base metal
JP2005246479A (en) Multilayer carbon dioxide gas shielded arc welding method for steel plate
KR100249954B1 (en) Welding method of wear resistant overlaying layer and wear resistant material for use therein
JP2518126B2 (en) Multi-layer build-up welding method of high hardness metal of split type annular body
JP3548414B2 (en) Flux-cored wire for hardfacing welding
JP2002521204A (en) Low alloy steel
CN109434321B (en) Submerged arc welding flux-cored wire and preparation method thereof
JP3714815B2 (en) Hard metal multi-layer overlay welding method for cast iron base metal
JPS58181470A (en) Surface hardening build-up welding method
KR100189298B1 (en) Hardfacing wire
Dwivedi et al. Surface modification by developing coating and cladding
US7459219B2 (en) Items made of wear resistant materials
JPH04123892A (en) Flux-included wire for hardened build up welding
TW201734225A (en) Novel hardfacing material
Hazzard Surface coatings 2—Arc-welded coatings
JPS6146307A (en) Build-up roll and its manufacture
CN116571914A (en) Self-lubricating wear-resistant surfacing flux-cored wire and preparation method thereof
KR100432966B1 (en) Heat-treatment method for improving the wear-resistance of overlay-welded nickel alloy layer
JPS58179568A (en) Surface hardening build-up welding method
JPH04167973A (en) Manufacture of wear resistant plate