JPH09237621A - Separator for zinc-bromine battery and manufacture thereof - Google Patents

Separator for zinc-bromine battery and manufacture thereof

Info

Publication number
JPH09237621A
JPH09237621A JP8042556A JP4255696A JPH09237621A JP H09237621 A JPH09237621 A JP H09237621A JP 8042556 A JP8042556 A JP 8042556A JP 4255696 A JP4255696 A JP 4255696A JP H09237621 A JPH09237621 A JP H09237621A
Authority
JP
Japan
Prior art keywords
separator
ethylene
particles
bromine
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8042556A
Other languages
Japanese (ja)
Inventor
Hajime Tsujihana
一 辻葩
Masahide Takahashi
昌秀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP8042556A priority Critical patent/JPH09237621A/en
Publication of JPH09237621A publication Critical patent/JPH09237621A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator having excellent permeability of liquid and water retentivity without worsening bromine resistance and a method of manufacturing this separator. SOLUTION: This separator has a network structure part 1 thermally fusing the fellow ethylene system resin particles of 500,000 or more average molecular weight through a hole 2, the separator is formed by a compound structure unit of 20 to 70% total unit porosity having an aggregate structure part 3 aggregating a plurality of silica particles through a void 4 in this hole 2. In a method of manufacturing this separator, a powdery mixture, consisting of 100 pts.wt. ethylene system resin particle of 200μm or less mean grain size 500,000 or more average molecular weight and 10 to 200 pts.wt. aggregate silica particle of 100μm or less mean grain size, is pressed powder-molded at a molding temperature less than 200 deg.C with volumetric ratio 40% or more relating to a cavity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は亜鉛−臭素電池用セ
パレーター(以下、セパレーターとする)とその製造方
法に関する。
TECHNICAL FIELD The present invention relates to a zinc-bromine battery separator (hereinafter referred to as a separator) and a method for producing the same.

【0002】[0002]

【従来の技術】亜鉛−臭素電池は臭素を活性物質として
使用している二次電池で、エネルギー密度の高いことか
ら古くから注目されてきた。近年改良が重ねられ、充電
の際正極に生成する臭素を第四級アンモニウム塩化合物
+ と反応させて錯化合物(Q+・Br3 -)として貯蔵す
る方法が採られている。従って、この電池は下記化1式
に示した反応により放電と蓄電がなされている。
2. Description of the Related Art A zinc-bromine battery is a secondary battery using bromine as an active substance and has been attracting attention for a long time because of its high energy density. Improvements have been made in recent years, and a method has been adopted in which bromine generated in the positive electrode during charging is reacted with a quaternary ammonium salt compound Q + and stored as a complex compound (Q + · Br 3 ). Therefore, this battery is discharged and charged by the reaction represented by the following chemical formula 1.

【化1】 充電時、この錯化合物は密度が大きいため沈殿し、底に
溜ったものから貯槽に輸送される。セパレーターは、通
常、正極と負極とが短絡するのを防止すると共に、極間
隔を一定に保持するために設けられているが、最近で
は、充電時に上記錯化合物の微粒子が負極に接近してエ
ネルギー効率を低下させるのを防止したり、両極間を液
が円滑に行き来できるようにするため、多孔質体が用い
られている。
Embedded image At the time of charging, this complex compound has a high density and therefore precipitates, and the ones accumulated at the bottom are transported to the storage tank. The separator is usually provided to prevent a short circuit between the positive electrode and the negative electrode and to keep the electrode gap constant, but recently, during charging, fine particles of the complex compound approach the negative electrode to reduce energy consumption. A porous body is used in order to prevent a decrease in efficiency and to allow a liquid to smoothly move between both electrodes.

【0003】現在、種々の多孔質体が存在するが、亜鉛
−臭素電池には酸化力の強い臭素が存在するため、セパ
レーターの素材は耐臭素性の材料とする必要がある。セ
ラミックス系材料は耐臭素性材料として代表的なもので
あるが、質量が大きく割れやすいため、安価で成形性の
よいプラスチックス系材料が望まれている。汎用の耐臭
素性のプラスチックス系材料としては、フッソ系樹脂や
エチレン系樹脂などのオレフィン系樹脂が挙げられる
が、安価なエチレン系樹脂が一般に採用されている。エ
チレン系樹脂には高密度エチレン系樹脂、低密度エチレ
ン系樹脂、直鎖エチレン系樹脂、これらの共重合体やグ
ラフト重合体の樹脂などが挙げられるが、これらの内で
は高密度エチレン系樹脂が耐臭素性に最も優れている。
とりわけ、平均分子量が50万以上の高密度エチレン系樹
脂は、汎用の高密度エチレン系樹脂よりもさらに耐臭素
性に優れているほか、融点(ビカット軟化温度)が 135
℃程度で極めて流動性が低く、粉末状をしているときは
圧粉により粉末が部分溶融してセパレーターとして好適
な網目状構造を形成する。上記高密度エチレン系樹脂
は、このような多くの利点を備えている反面、親油性物
質で親水性を欠くことから、保水性(水の透過抵抗が極
めて低い性状)を要するセパレーターへ、このまま適用
することができなかった。
Currently, there are various porous materials, but since bromine having a strong oxidizing power is present in a zinc-bromine battery, it is necessary to use a bromine-resistant material for the separator. Ceramics materials are typical as bromine resistant materials, but since they have a large mass and are easily broken, inexpensive plastics materials having good moldability are desired. Examples of general-purpose bromine-resistant plastic materials include olefin resins such as fluorine resins and ethylene resins, but inexpensive ethylene resins are generally adopted. Examples of the ethylene-based resin include high-density ethylene-based resin, low-density ethylene-based resin, straight-chain ethylene-based resin, and resins of copolymers or graft polymers thereof. Among them, the high-density ethylene-based resin is Most excellent bromine resistance.
In particular, high-density ethylene-based resins with an average molecular weight of 500,000 or more are more excellent in bromine resistance than general-purpose high-density ethylene-based resins and have a melting point (Vicat softening temperature) of 135.
The fluidity is extremely low at about 0 ° C., and when in powder form, the powder is partially melted by compaction to form a network structure suitable as a separator. While the high-density ethylene-based resin has many advantages as described above, it is a lipophilic substance and lacks hydrophilicity. Therefore, the high-density ethylene-based resin can be applied as it is to a separator that requires water retention (a property of having extremely low water permeation resistance). I couldn't.

【0004】[0004]

【発明が解決しようとする課題】そこで、親油性の上記
高密度エチレン系樹脂(以下、単にエチレン系樹脂とす
る)のマトリックスに、プラズマ照射を施して極性基を
生成させたり、親水性を有する化合物の粒子を添加・混
合したりして、親水性を付与する方法が検討された。し
かし、前者は設備費が嵩むため量産には不適当であり、
後者は予めジオクチルフタレート(DOP)や液状パラ
フィンなどのプロセスオイルなどを添加してマトリック
スを可塑化する必要があり、これらのプロセスオイルは
除去しにくく残留してセパレーターの耐臭素性を低下さ
せるおそれがあった。したがって、本発明の目的は、特
別な設備を必要とせずに、また耐臭素性を損なうことな
く、優れた液の透過性と保水性を有するセパレーター
と、その製造方法を提供するにある。
Therefore, a matrix of the above-mentioned lipophilic high-density ethylene-based resin (hereinafter simply referred to as an ethylene-based resin) is irradiated with plasma to generate polar groups, or has a hydrophilic property. A method of imparting hydrophilicity by adding and mixing particles of a compound has been studied. However, the former is not suitable for mass production because the equipment cost increases,
In the latter case, it is necessary to add process oil such as dioctyl phthalate (DOP) or liquid paraffin in advance to plasticize the matrix, and these process oils are difficult to remove and may remain to deteriorate the bromine resistance of the separator. there were. Therefore, an object of the present invention is to provide a separator having excellent liquid permeability and water retention without requiring special equipment and without impairing bromine resistance, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明のセパレーター
は、平均分子量50万以上のエチレン系樹脂粒子同士が空
孔を介して熱融合された網目状構造部を備え、この空孔
内に複数のシリカ粒子が空隙を介して凝集された集合構
造部を有する、全体の空隙率が20〜70%の複合構造体か
ら構成されている。このセパレーターは、平均粒径が 2
00μm以下で平均分子量が50万以上のエチレン系樹脂粒
子 100重量部と、平均粒径 100μm以下の凝集シリカ粒
子10〜 200重量部とからなる粉末状混合物を、キャビテ
ィに対する体積比を40%以上として200℃未満の成形温
度で圧粉成形することにより製造することができる。本
発明は、その成分を、耐臭素性を低下させるおそれのな
い超高分子量のエチレン系樹脂とシリカのみで構成し、
その構造を、エチレン系樹脂粒子同士が空孔を介して熱
融合された網目状構造部を備え、この空孔内に複数のシ
リカ粒子が空隙を介して凝集された集合構造部を有す
る、全体の空隙率が20〜70%の複合構造体としたため、
特別な設備を必要とせずに、優れた液の透過性と保水性
を有するセパレーターとなる。
Means for Solving the Problem The separator of the present invention is provided with a network structure portion in which ethylene resin particles having an average molecular weight of 500,000 or more are thermally fused with each other through pores, and a plurality of pores are formed in the pores. It is composed of a composite structure having an aggregate structure part in which silica particles are aggregated through voids and having a total porosity of 20 to 70%. This separator has an average particle size of 2
A powdery mixture consisting of 100 parts by weight of ethylene-based resin particles having an average molecular weight of 500,000 or more and having a particle size of 00 μm or less and 10 to 200 parts by weight of aggregated silica particles having an average particle size of 100 μm or less, with a volume ratio to the cavity of 40% or more. It can be produced by compacting at a molding temperature of less than 200 ° C. The present invention, the component is composed of only ultra-high molecular weight ethylene resin and silica that does not reduce the bromine resistance,
The structure is provided with a network structure part in which ethylene-based resin particles are heat-fused through pores, and a plurality of silica particles in the pores have an aggregate structure part aggregated through voids, the whole Since it is a composite structure with a porosity of 20 to 70%,
The separator has excellent liquid permeability and water retention without requiring special equipment.

【0006】[0006]

【発明の実施の形態】以下、本発明の詳細を図1に例示
した断面説明図に基づいて説明する。本発明のセパレー
ターを構成する複合構造体は、平均分子量50万以上の超
高分子量のエチレン系樹脂粒子同士が空孔(網目)2を
介して熱融合して形成された網目状構造部1と、この空
孔(網目)2内に存在する、複数のシリカの一次粒子が
電解液の通路としての空隙4を介して凝集された集合構
造部3とから構成されている、全体の空隙率が20〜70%
のものである。この集合構造部3は、シリカの一次粒子
同士が空隙を介して団塊状に凝集・形成した二次粒子
や、特には団塊状の二次粒子同士が同様の空隙を介し
て、さらに大きな団塊状に凝集・形成した三次粒子など
の集合体として存在している。この網目状構造部1は、
流動性の低い超高分子量のエチレン系樹脂が、シリカ粒
子の集合体(以下、凝集シリカ粒子とする)を抱いて圧
粉されたときに、このエチレン系樹脂粒子同士が部分的
に熱溶融して形成される。一方、シリカ粒子間の空隙4
は、原料としての凝集シリカ粒子の嵩密度と圧粉の程度
により決まり、セパレーターの特性として重要な空隙率
および孔径(遮蔽可能な浮遊物の粒径を決定する隙間の
大きさ)を決定する要因となる。従って、本発明のセパ
レーターは、エチレン系樹脂粒子と凝集シリカ粒子の
混合比、エチレン系樹脂粒子および凝集シリカ粒子の
大きさ、圧粉工程の条件などを調整することにより、
セパレーター全体としての空隙率を20〜70%にすること
ができ、電池としてのエネルギー効率を向上させること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below with reference to the sectional explanatory view illustrated in FIG. The composite structure constituting the separator of the present invention comprises a network structure portion 1 formed by thermal fusion of ultra-high molecular weight ethylene-based resin particles having an average molecular weight of 500,000 or more via pores (network) 2. , The aggregate structure portion 3 in which the primary particles of a plurality of silica existing in the pores (mesh) 2 are aggregated via the voids 4 as passages of the electrolytic solution. 20-70%
belongs to. This aggregate structure part 3 is composed of secondary particles in which primary particles of silica are aggregated and formed in a nodule shape through voids, and particularly, nodule-shaped secondary particles are in a larger nodule shape through similar voids. It exists as an aggregate of tertiary particles that are aggregated and formed in. This mesh structure 1
When an ultra-high molecular weight ethylene resin with low fluidity is pressed into powder by holding an aggregate of silica particles (hereinafter referred to as aggregated silica particles), the ethylene resin particles are partially melted by heat. Formed. On the other hand, voids 4 between silica particles
Is determined by the bulk density of aggregated silica particles as a raw material and the degree of compaction, and is a factor that determines the porosity and pore size (size of the gap that determines the particle size of suspended solids that can be shielded) that are important as separator characteristics. Becomes Therefore, the separator of the present invention, by adjusting the mixing ratio of the ethylene-based resin particles and the agglomerated silica particles, the size of the ethylene-based resin particles and the agglomerated silica particles, the conditions of the dusting step, etc.
The porosity of the entire separator can be set to 20 to 70%, and the energy efficiency of the battery can be improved.

【0007】本発明のセパレーターの製造に際し、エチ
レン系樹脂粒子の平均粒径が 200μm を超えると、微細
な空孔をもつ網目状構造が形成しにくくなり易い。平均
粒径は前述したセパレーターとしての空隙率の点から小
さい方が望ましい。しかし、1μm を下回ると粉体爆発
を起こすおそれもあり、その場合には不活性ガス下で圧
粉するとか、帯電防止対策を講ずるなどの必要性も生ず
るので、平均粒径10〜50μm 程度のものを使用するのが
よい。凝集シリカ粒子は、平均粒径数nm〜 100nm程度の
一次粒子が前述のように凝集したもので、この平均粒径
が 100μm を上回ると上記特性が不十分となり易く、ま
たエチレン系樹脂と同様、空隙率の点から平均粒径は小
さい方が望ましいが、取り扱い上から5〜30μm とする
のが好ましい。またシリカの種類としては湿式シリカ、
乾式シリカなどが挙げられる。
In the production of the separator of the present invention, if the average particle size of the ethylene resin particles exceeds 200 μm, it tends to be difficult to form a network structure having fine pores. From the viewpoint of the porosity of the separator described above, it is desirable that the average particle diameter be small. However, if it is less than 1 μm, there is a risk of powder explosion. In that case, it is necessary to perform powder compaction under an inert gas or take antistatic measures. Therefore, if the average particle size is about 10 to 50 μm, It is better to use one. Aggregated silica particles are obtained by aggregating primary particles having an average particle size of several nm to 100 nm as described above.If the average particle size exceeds 100 μm, the above properties tend to be insufficient, and like the ethylene resin, From the viewpoint of porosity, it is desirable that the average particle size is small, but from the viewpoint of handling, it is preferably 5 to 30 μm. As the type of silica, wet silica,
Examples include dry silica and the like.

【0008】本発明のセパレーターは空隙率が20〜70%
の多孔質体であることが必須で、この多孔質体を圧粉成
形で得るには、エチレン系樹脂粒子と凝集シリカ粒子と
の粉末状混合物の嵩密度を900g/l以下に調整するのが好
ましく、これにより粉末状混合物に空気などの気体を抱
かせることができる。嵩密度は小さい方が加工条件の調
整による空隙率の選定を容易にすることができるが、小
さ過ぎると型の容積が必要以上に大きくなるため、 100
〜500g/lの範囲が望ましい。なお、上記粉末状混合物の
嵩密度は凝集シリカ粒子の嵩密度の依存度が高く(エチ
レン系樹脂粒子は品種が数種類に限定されるが、シリカ
粒子の品種は多様性に富み選択の幅が広い)、この凝集
シリカ粒子の嵩密度は20〜200g/lが望ましい。エチレン
系樹脂粒子と凝集シリカ粒子との混合比は、エチレン系
樹脂粒子 100重量部に対して凝集シリカ粒子が10重量部
を下回ると、網目状構造部の空孔内に配置されるシリカ
粒子からなる集合構造部の量が少なくなり、逆に凝集シ
リカ粒子が 200重量部を上回ると、網目状構造部を形成
するエチレン系樹脂分が不足してきて、いずれの場合も
求める複合構造体が得られなくなり、セパレーターとし
ての機能が保持できなくなるので、エチレン系樹脂粒子
100重量部に対する凝集シリカ粒子の添加量は10〜 200
重量部とする必要があり、特には30〜 150重量部の範囲
が望ましい。
The separator of the present invention has a porosity of 20 to 70%.
In order to obtain this porous body by powder compaction, it is necessary to adjust the bulk density of the powdery mixture of ethylene resin particles and agglomerated silica particles to 900 g / l or less. Preferably, this allows the powdery mixture to carry a gas such as air. The smaller the bulk density, the easier it is to select the porosity by adjusting the processing conditions. However, if it is too small, the volume of the mold will be unnecessarily large.
A range of up to 500 g / l is desirable. The bulk density of the powdery mixture is highly dependent on the bulk density of the agglomerated silica particles (the ethylene-based resin particles are limited to a few kinds, but the silica particles have a wide variety and a wide selection range). ), The bulk density of the aggregated silica particles is preferably 20 to 200 g / l. The mixing ratio of the ethylene-based resin particles and the agglomerated silica particles is such that when the agglomerated silica particles are less than 10 parts by weight with respect to 100 parts by weight of the ethylene-based resin particles, the silica particles arranged in the pores of the network structure part are When the amount of the aggregated structure part becomes smaller, and conversely the aggregated silica particles exceed 200 parts by weight, the amount of the ethylene-based resin forming the network structure part becomes insufficient, and in any case, the desired composite structure can be obtained. The ethylene-based resin particles will lose its function as a separator and cannot retain its function as a separator.
Addition amount of aggregated silica particles to 100 parts by weight is 10 to 200
It is necessary to make it a weight part, and the range of 30 to 150 weight parts is particularly desirable.

【0009】この製造方法において圧粉成形とは、加熱
下において行う雄型と雌型によるプレス成形の一種であ
る。つまり、エチレン系樹脂粒子と凝集シリカ粒子とか
らなる粉末状混合物を雌型の凹部に充填した後、雌型の
凹部に雄型凸部を挿入し、加熱と同時に加圧して行う成
形方法である。例えば、上記粉末状混合物の嵩密度がC
[g/l] に調整されているとき、セパレーターとしての完
成品の体積がV[1] であれば、上記粉末状混合物は1000
/C・V[1] の体積であり、雌型の凹部の容積はこれよ
り大きく設計する必要がある。また雄型と雌型を完全に
閉じた状態でのキャビティがv[1] であるとき、セパレ
ーターとしての完成品の体積V[1] がV>vとなるよう
な加工条件であっても差し支えない。この場合セパレー
ターとしての空隙率は、より高い水準で得られ、これは
成形条件による寄与が大きい。なお、本発明のセパレー
ターは、シート状、円筒状などキャビティの形状により
自由に選択することができ、電池の仕様に対応すること
ができる。
In this manufacturing method, powder compaction is a type of press molding by a male mold and a female mold which is performed under heating. In other words, this is a molding method in which a powdery mixture of ethylene-based resin particles and agglomerated silica particles is filled into the female concave portion, and then the male convex portion is inserted into the female concave portion and heated and pressed at the same time. . For example, the bulk density of the powdery mixture is C
When the volume of the finished product as a separator is V [1] when adjusted to [g / l], the powder mixture is 1000
It is a volume of / C · V [1], and the volume of the female concave portion needs to be designed larger than this. Also, when the cavity is v [1] when the male mold and the female mold are completely closed, the processing condition may be such that the volume V [1] of the finished product as a separator is V> v. Absent. In this case, the porosity as a separator is obtained at a higher level, and this is largely contributed by the molding conditions. The separator of the present invention can be freely selected depending on the shape of the cavity such as a sheet shape or a cylindrical shape, and can meet the specifications of the battery.

【0010】この圧粉成形工程における成形上のファク
ターは、粉末状混合物のキャビティに対する体積比、成
形温度、プレス圧力、加熱時間、加圧時間であり、特
に、粉末状混合物のキャビティに対する体積比と成形温
度が重要である。粉末状混合物のキャビティに対する体
積比は40%以上とする必要があり、これ未満では得られ
るセパレーター全体の空隙率が70%を超えるものとなっ
て、求める特性が得られなくなるほか、機械的強度も低
下するようになる。成形温度は、エチレン系樹脂の融点
が 135℃程度のため、少なくとも 130℃以上にするのが
望ましい。またエチレン系樹脂は 250℃程度までであれ
ば分解することなく成形可能であるが、マトリックスの
熱履歴が高いとエチレン系樹脂の粒子同士が完全に熱溶
融して上記網目状構造の形成が不完全となり、セパレー
ター全体の空隙率を20%以上にできなくなるので、200
℃未満にとどめる必要がある。上記体積比および成形温
度は、加熱時間、加圧時間、プレス圧力、金型の材質と
質量に起因する熱容量などにも影響されるので、目標と
する品質(空隙率と孔径)に応じて、上記範囲内におい
て適性な条件を設定するのが望ましい。
The molding factors in the powder compacting step are the volume ratio of the powdery mixture to the cavity, the molding temperature, the press pressure, the heating time and the pressurizing time, and particularly, the volume ratio of the powdery mixture to the cavity. Molding temperature is important. The volume ratio of the powder mixture to the cavity must be 40% or more, and if it is less than this, the porosity of the entire separator obtained will exceed 70%, and the desired characteristics will not be obtained, and the mechanical strength Will start to decline. The molding temperature is preferably at least 130 ° C or higher because the melting point of ethylene resin is about 135 ° C. Further, the ethylene resin can be molded without decomposing up to about 250 ° C, but if the heat history of the matrix is high, the particles of the ethylene resin are completely melted by heat and the formation of the above-mentioned network structure is not possible. Since it will be perfect and the porosity of the entire separator cannot be 20% or more, 200
It must be kept below ℃. The volume ratio and the molding temperature are affected by the heating time, the pressing time, the pressing pressure, the heat capacity due to the material and the mass of the mold, and so on, depending on the target quality (porosity and pore diameter), It is desirable to set appropriate conditions within the above range.

【0011】圧粉成形によって得られたセパレーターに
おいて、表面のシリカ粒子の付着量が多いときは、水洗
や刷毛で撫でるなどして除去すればよく、内部に存在す
るシリカ粒子によってセパレーターとしての機能が十分
に確保される。また後処理として、電子線やプラズマな
どを照射するなどの方法により耐臭素性の向上、親水性
の付与などの改質を施してもさしつかえない。
In the separator obtained by powder compaction, when the amount of silica particles adhered on the surface is large, it may be removed by washing with water or brushing with a brush, and the silica particles present inside serve as a separator. Secured enough. Further, as post-treatment, modification such as irradiation with electron beam or plasma to improve bromine resistance and impart hydrophilicity may be applied.

【0012】[0012]

【実施例】以下、本発明の具体的態様を実施例により説
明するが、本発明はこの実施例の記載に限定されるもの
ではない。 (実施例1)分子量約 200万、平均粒径30μm、嵩密度
400g/lのポリエチレン粒子:ミペロンXM-220(三井石油
化学工業株式会社製、商品名)と、平均粒径16nmの一次
粒子からなる、平均粒径9μm、嵩密度 70g/lの湿式凝
集シリカ粒子:ニップシールLP(日本シリカ工業株式会
社製、商品名)とを、表1に示す配合で容器中に入れ、
100回/分で約30秒間震盪したところ、表1に示す嵩密
度、真比重の3種類の粉末状混合物が得られた。次に、
図2に示す雄型5と雌型6とからなる一組の金型(完全
に閉じた状態でのキャビティの容積は 24.4cm3で、雌型
の凹部は100cm3容量)の雌型6の凹部に、上記3種類の
粉末状混合物を表2に示す仕込み量( 24.4cm3×粉体の
真比重 [g/cm3])で充填し、雄型5を上方から閉めた
後、この金型を、あらかじめ表2に示す成形温度に調節
されたラム径 300mmのプレス機に挟み、5分間予熱して
から、そのままゲージ圧100g/cm3で5分間加圧した。加
圧後、金型を冷却し、成形物を取り出したところ、サン
プルNo.1〜6の直径 180mmの円盤状の成形物が得られ
た。これらの成形物について、下記の方法で質量と体
積から空隙率(%)の算出、セパレーターの性能試
験、耐臭素試験、電子顕微鏡による観察・評価を行
い、その結果を表2に併記した。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples, but the present invention is not limited to the description of the examples. (Example 1) Molecular weight of about 2 million, average particle diameter of 30 μm, bulk density
Polyethylene particles of 400 g / l: Weper-aggregated silica particles having an average particle size of 9 μm and a bulk density of 70 g / l, consisting of Miperon XM-220 (trade name, manufactured by Mitsui Petrochemical Co., Ltd.) and primary particles having an average particle size of 16 nm. : Nipseal LP (manufactured by Nippon Silica Industry Co., Ltd., trade name) was placed in a container with the composition shown in Table 1,
When shaken at 100 times / minute for about 30 seconds, three kinds of powdery mixtures having bulk density and true specific gravity shown in Table 1 were obtained. next,
(The volume of the cavity in a completely closed 24.4 cm 3, the female recess 100 cm 3 volume) male 5 and a set of molds consisting of a female mold 6 for 2 female 6 the recess, the above three powdery mixture was charged in the amount charged as shown in Table 2 (true specific gravity of 24.4 cm 3 × powder [g / cm 3]), after closing the male die 5 from above, the gold The mold was sandwiched in a press having a ram diameter of 300 mm, which was adjusted to the molding temperature shown in Table 2 in advance, and preheated for 5 minutes, and then, the pressure was directly applied at a gauge pressure of 100 g / cm 3 for 5 minutes. After the pressurization, the mold was cooled and the molded product was taken out to obtain a disk-shaped molded product of Sample No. 1 to 6 having a diameter of 180 mm. These molded products were subjected to calculation of porosity (%) from mass and volume, separator performance test, bromine resistance test, and observation / evaluation with an electron microscope by the following methods, and the results are also shown in Table 2.

【0013】(質量と体積から空隙率(%)の算出)得
られた成形物から切り出した、直径が49mmで表2に示す
厚さの円盤状の試験片について行った。 (セパレーターの性能試験)上記と同様にして得られた
試験片8を、図3に示す装置のホルダー7に、ろ紙9と
共に組み込んだ。他方、平均粒径3μmのシリコーン樹
脂粉末:KP590 (信越化学工業株式会社製、商品名)の
10%分散水を上記装置の上方から注ぎ、シリコーン樹脂
粉末と水の通過状況を観察して下記の基準で評価した。 A:水だけがフラスコ10に溜った(合格)。 B:水とシリコーン樹脂粉末とがフラスコ10に溜った
(不合格)。 C:水もシリコーン樹脂粉末もフラスコ10に溜らない
(不合格)。 (耐臭素試験)成形物から直径20mm、厚さ50mmの円筒状
の試験片を切り取り、密封容器中にて臭素飽和溶液(臭
素濃度は1〜2%)に浸漬し、これを60℃に温度調節さ
れた恒温器に15日間放置した後、試験片を取り出して水
洗し、試験片の状態を観察し、次の基準で評価した。…
○:劣化なし、×:劣化あり (電子顕微鏡による観察・評価)断面を拡大倍率1000倍
の写真に撮り、次の基準で評価した。 ○:図1に示したのと同様の構造をしている。 ×:図1に示したのと同様の構造をしていない。
(Calculation of Porosity (%) from Mass and Volume) A disc-shaped test piece having a diameter of 49 mm and a thickness shown in Table 2 was cut out from the obtained molded product. (Separator Performance Test) The test piece 8 obtained in the same manner as above was incorporated into the holder 7 of the apparatus shown in FIG. 3 together with the filter paper 9. On the other hand, a silicone resin powder having an average particle size of 3 μm: KP590 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.)
10% dispersed water was poured from above the device, and the passing condition of the silicone resin powder and water was observed and evaluated according to the following criteria. A: Only water accumulated in the flask 10 (pass). B: Water and silicone resin powder were collected in the flask 10 (failed). C: Neither water nor silicone resin powder was collected in the flask 10 (failed). (Bromine resistance test) A cylindrical test piece with a diameter of 20 mm and a thickness of 50 mm is cut out from the molded product, immersed in a bromine saturated solution (bromine concentration is 1 to 2%) in a sealed container, and this is heated to 60 ° C. After leaving it in the controlled thermostat for 15 days, the test piece was taken out and washed with water, and the condition of the test piece was observed and evaluated according to the following criteria. …
◯: No deterioration, X: Deterioration (observation / evaluation with an electron microscope) A cross section was taken with a magnification of 1000 times and evaluated according to the following criteria. ◯: The structure is the same as that shown in FIG. X: Does not have the same structure as shown in FIG.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】上記の結果、サンプルNo.2,4,6は、
空隙率が極めて低く、セパレーターとして機能しない。
またサンプルNo.1は空隙を持っていながら水さえ透過
しなかった。これはマトリックスに親水性が付与されて
いないためである。一方、本発明によるサンプルNo.3
および5は、空隙率も高く、シリコーン樹脂粉末がバリ
ヤーされて水のみが透過した。また各サンプルの断面を
光学顕微鏡で観察したところ、サンプルNo.3および5
だけが、図1に示したように、超高分子量ポリエチレン
粒子が網目状の骨格を形成し、その骨格の空孔中にシリ
カ粒子が凝集した状態で存在していて、セパレーターの
性能試験の結果と一致した。これより本発明による成形
物は亜鉛−臭素電池用セパレーターとして適性があると
確認された。
As a result of the above, samples Nos. 2, 4, and 6 are
It has a very low porosity and does not function as a separator.
Further, the sample No. 1 did not even permeate water even though it had voids. This is because the matrix is not rendered hydrophilic. On the other hand, sample No. 3 according to the present invention
In Nos. 5 and 5, the porosity was high, the silicone resin powder was a barrier, and only water permeated. When the cross section of each sample was observed with an optical microscope, the samples No. 3 and 5
However, as shown in FIG. 1, the ultra high molecular weight polyethylene particles form a network-like skeleton, and the silica particles exist in the pores of the skeleton in the state of being aggregated, and the result of the performance test of the separator Matched with. From this, it was confirmed that the molded product according to the present invention is suitable as a separator for a zinc-bromine battery.

【0017】(実施例2)実施例1においてポリエチレ
ン粒子 100重量部に対して湿式凝集シリカ粒子を120重
量部としたほかは、同じ材料、同じ条件で行ったとこ
ろ、嵩密度が約150g/lの粉末状混合物が得られた。この
粉末状混合物を、実施例1で使用した金型とプレス機を
用い、表3に示す仕込み量で、実施例1と同じ手順で成
形温度 160℃で圧粉成形し、サンプルNo.7〜10の成形
物を得た。これらの成形物について実施例1と同じ要領
で、質量と体積から空隙率(%)の算出、セパレー
ターの性能試験、耐臭素試験、電子顕微鏡による観
察・評価を行い、その結果を表3に併記した。
Example 2 The same material was used under the same conditions except that the wet agglomerated silica particles were 120 parts by weight with respect to 100 parts by weight of the polyethylene particles in Example 1, and the bulk density was about 150 g / l. A powdery mixture of This powdery mixture was powder compacted at a molding temperature of 160 ° C. in the same procedure as in Example 1 using the mold and press used in Example 1 and the charged amount shown in Table 3 to obtain Sample No. 7 to 10 moldings were obtained. These molded products were subjected to the same procedure as in Example 1 to calculate the porosity (%) from the mass and volume, separator performance test, bromine resistance test, and observation / evaluation using an electron microscope. The results are also shown in Table 3. did.

【0018】[0018]

【表3】 [Table 3]

【0019】サンプルNo.7〜9は、図1に示したのと
同様、本発明のセパレーターの構造を持ち、空隙率も高
く、シリコーン樹脂粉末がバリヤーされて水のみが透過
した。したがって、これらは亜鉛−臭素電池用セパレー
ターとして適性があると確認された。サンプルNo.10は
水と共に少量のシリコーン樹脂粉末がフラスコ内に溜っ
たが、上記と同様のセパレーターの構造を持ち実用上支
障ないと判断された。
Sample Nos. 7 to 9 had the structure of the separator of the present invention as in the case of FIG. 1 and had a high porosity, and the silicone resin powder was a barrier to allow only water to permeate. Therefore, it was confirmed that these are suitable as a separator for zinc-bromine batteries. Sample No. 10 had a small amount of silicone resin powder accumulated in the flask together with water, but it was judged to have no problem in practical use because it had the same separator structure as above.

【0020】[0020]

【発明の効果】本発明によれば、耐臭素性を損なうこと
なく、優れた液の透過性と保水性を有するセパレーター
を、特別な設備を必要とせずに得ることができる。
EFFECTS OF THE INVENTION According to the present invention, a separator having excellent liquid permeability and water retention without impairing bromine resistance can be obtained without requiring special equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による亜鉛−臭素電池用セパレーターの
縦断面図である。
FIG. 1 is a vertical cross-sectional view of a zinc-bromine battery separator according to the present invention.

【図2】実施例における圧粉成形用の金型の縦断面説明
図である。
FIG. 2 is a vertical cross-sectional explanatory view of a mold for powder compacting in an example.

【図3】実施例におけるセパレーターの性能試験器の縦
断面説明図である。
FIG. 3 is an explanatory longitudinal sectional view of a separator performance tester in an example.

【符号の説明】[Explanation of symbols]

1…網目状構造部、2…空孔(網目)、3…集合構造
部、4…空隙、5…雄型、6…雌型、7…ホルダー、8
…試験片、9…ろ紙、10…フラスコ。
DESCRIPTION OF SYMBOLS 1 ... Network structure part, 2 ... Hole (mesh), 3 ... Collective structure part, 4 ... Void, 5 ... Male type, 6 ... Female type, 7 ... Holder, 8
… Test piece, 9… filter paper, 10… flask.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平均分子量50万以上のエチレン系樹脂粒子
同士が空孔を介して熱融合された網目状構造部を備え、
この空孔内に複数のシリカ粒子が空隙を介して凝集され
た集合構造部を有する、全体の空隙率が20〜70%の複合
構造体からなることを特徴とする亜鉛−臭素電池用セパ
レーター。
1. A network structure part in which ethylene-based resin particles having an average molecular weight of 500,000 or more are thermally fused with each other through pores,
A separator for a zinc-bromine battery, comprising a composite structure having an aggregate structure part in which a plurality of silica particles are aggregated through voids in the pores and having an overall porosity of 20 to 70%.
【請求項2】平均粒径が 200μm以下で平均分子量が50
万以上のエチレン系樹脂粒子 100重量部と、平均粒径 1
00μm以下の凝集シリカ粒子10〜 200重量部とからなる
粉末状混合物を、キャビティに対する体積比を40%以上
として 200℃未満の成形温度で圧粉成形することを特徴
とする請求項1記載の亜鉛−臭素電池用セパレーターの
製造方法。
2. An average particle diameter of 200 μm or less and an average molecular weight of 50.
100 parts by weight of 10,000 or more ethylene-based resin particles and an average particle size of 1
2. The zinc according to claim 1, wherein a powdery mixture consisting of 10 to 200 parts by weight of agglomerated silica particles of 00 μm or less is compacted at a molding temperature of less than 200 ° C. with a volume ratio to the cavity of 40% or more. -A method for producing a separator for a bromine battery.
JP8042556A 1996-02-29 1996-02-29 Separator for zinc-bromine battery and manufacture thereof Pending JPH09237621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8042556A JPH09237621A (en) 1996-02-29 1996-02-29 Separator for zinc-bromine battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8042556A JPH09237621A (en) 1996-02-29 1996-02-29 Separator for zinc-bromine battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09237621A true JPH09237621A (en) 1997-09-09

Family

ID=12639328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8042556A Pending JPH09237621A (en) 1996-02-29 1996-02-29 Separator for zinc-bromine battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09237621A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537703B2 (en) * 1998-11-12 2003-03-25 Valence Technology, Inc. Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
JP2005536858A (en) * 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト Electrical separator with interrupting mechanism, its manufacturing method and use in lithium battery
JP4901050B2 (en) * 2000-05-30 2012-03-21 旭化成イーマテリアルズ株式会社 Metal halide battery separator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537703B2 (en) * 1998-11-12 2003-03-25 Valence Technology, Inc. Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
US6537334B1 (en) 1998-11-12 2003-03-25 Valence Technology, Inc. Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
JP4901050B2 (en) * 2000-05-30 2012-03-21 旭化成イーマテリアルズ株式会社 Metal halide battery separator
JP2005536858A (en) * 2002-08-24 2005-12-02 デグサ アクチエンゲゼルシャフト Electrical separator with interrupting mechanism, its manufacturing method and use in lithium battery

Similar Documents

Publication Publication Date Title
KR100245912B1 (en) Filter element with a dimensionally stable, permeable and porous plastic moulded body
US3048537A (en) Porous articles of polyethylene polymers and process of making the same
US3703413A (en) Flexible inorganic fibers and battery electrode containing same
US2673230A (en) Battery separator
US3625765A (en) Production of battery electrode
JPH09237621A (en) Separator for zinc-bromine battery and manufacture thereof
US3159507A (en) Separator for galvanic cells
WO1980001625A1 (en) Granular material
US2838590A (en) Composite electrode for electric batteries and method of making same
US2834825A (en) Storage batteries, more particularly storage battery plates and method of manufacture
US4153759A (en) Storage battery, separator therefor and method of formation
US3450571A (en) Method of making a coated battery separator
JPH05177619A (en) Preparation of holder made of ceramic material and holder
JP2000195490A (en) Separator for battery and its manufacture
US2687446A (en) Battery separator
US6737189B1 (en) Electrochemical cell constructions and methods of making the same
US5248462A (en) Process for making silicon carbide foam
JPH01201908A (en) Polarizable electrode and preparation thereof
JPS63500835A (en) electrodes and electrochemical cells
EP0176500B1 (en) Material and process for making liquid permeable layers
JP4812056B2 (en) Battery separator and method for producing the same
JP2000195493A (en) Separator for battery and its manufacture
JP2002324538A (en) Separator for battery and its manufacturing method
WO2022186139A1 (en) Sodium-ion-permeable plate-like partitioning wall and method for manufacturing same
JPS59169075A (en) High temperature type battery