JP2002324538A - Separator for battery and its manufacturing method - Google Patents

Separator for battery and its manufacturing method

Info

Publication number
JP2002324538A
JP2002324538A JP2001127874A JP2001127874A JP2002324538A JP 2002324538 A JP2002324538 A JP 2002324538A JP 2001127874 A JP2001127874 A JP 2001127874A JP 2001127874 A JP2001127874 A JP 2001127874A JP 2002324538 A JP2002324538 A JP 2002324538A
Authority
JP
Japan
Prior art keywords
battery
porous film
battery separator
separator
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001127874A
Other languages
Japanese (ja)
Inventor
Yutaka Kishii
豊 岸井
Keisuke Yoshii
敬介 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2001127874A priority Critical patent/JP2002324538A/en
Publication of JP2002324538A publication Critical patent/JP2002324538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a battery, which is excellent in self discharging property. SOLUTION: Ultrahigh-molecular polyethylene(UHPE) powders and particle powders such as zirconia particle powders or silica gel particle powders or the like which have ammonia trapping function are mixed. A sintered body is prepared by heating and sintering the mixture at a higher temperature than the melting point of the UHPE. A porous film is obtained by cutting the sintered body with a cutting lathe. The porous film is used as the separator for the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池の自己放電を
抑制することが可能な電池用セパレータに関する。
The present invention relates to a battery separator capable of suppressing self-discharge of a battery.

【0002】[0002]

【従来の技術】ニッケル−カドミウム(ニッカド)電
池、ニッケル水素電池等のアルカリ二次電池は、電気・
電子機器用の小型電池として汎用されているが、電気自
動車の走行用(駆動用)電源としても期待されている。
2. Description of the Related Art Alkaline secondary batteries such as nickel-cadmium (nickel) batteries and nickel-metal hydride batteries
It is widely used as a small battery for electronic devices, but is also expected to be used as a power source for driving (driving) electric vehicles.

【0003】アルカリ二次電池に使用される電池用セパ
レータとしては、ナイロン繊維等を用いた親水性不織布
および親水化処理したポリオレフィン繊維を用いた不織
布(例えば、特開平4−167355号公報、特開平1
1−238496号公報)等が、従来から使用されてい
る。前記親水化処理としては、界面活性剤の含浸処理、
プラズマ処理、親水性モノマーのグラフト重合処理、ス
ルホン化処理等がある。
As a battery separator used for an alkaline secondary battery, a hydrophilic non-woven fabric using nylon fibers or the like and a non-woven fabric using polyolefin fibers subjected to hydrophilic treatment (for example, JP-A-4-167355, JP-A-4-167355) 1
No. 1-238496) has been conventionally used. As the hydrophilic treatment, a surfactant impregnation treatment,
Examples include plasma treatment, graft polymerization treatment of a hydrophilic monomer, and sulfonation treatment.

【0004】前記ナイロン繊維不織布は、アミド結合を
有しているため、ポリオレフィン繊維不織布に比べ、自
己放電特性等の電池特性が不良である。しかし、前記ポ
リオレフィン繊維不織布も、自己放電特性に関し、改善
の余地がある。
Since the nylon fiber nonwoven fabric has an amide bond, the battery characteristics such as self-discharge characteristics are inferior to those of the polyolefin fiber nonwoven fabric. However, the polyolefin fiber nonwoven fabric also has room for improvement in self-discharge characteristics.

【0005】自己放電現象は、電池の正極材料である水
酸化ニッケル等に微量に含まれる不純物である硝酸イオ
ンが関与するものと考えられており、そのメカニズムは
次のように推察されている(特許第2799389号公
報)。すなわち、まず、正極に存在する硝酸イオンは、
電解液中を拡散して負極に到達する。その後、この硝酸
イオンが電気化学的に還元されて亜硝酸イオンになる。
この還元ステップにより、負極に蓄えられた充電を減少
させる。その後、亜硝酸イオンが電解液を介して正極に
到達し、酸化され再び硝酸イオンになる。
It is considered that the self-discharge phenomenon is caused by nitrate ions, which are impurities contained in a trace amount in nickel hydroxide or the like, which is a positive electrode material of a battery, and its mechanism is speculated as follows ( Japanese Patent No. 2799389). That is, first, the nitrate ion present in the positive electrode is
It diffuses in the electrolyte and reaches the negative electrode. Thereafter, the nitrate ions are electrochemically reduced to nitrite ions.
This reduction step reduces the charge stored on the negative electrode. Thereafter, the nitrite ions reach the positive electrode via the electrolytic solution and are oxidized to nitrate ions again.

【0006】また、硝酸イオンおよび亜硝酸イオンが更
に還元され、アンモニウムイオンとして存在する機構も
提案されている。このアンモニウムイオンは、高濃度の
アルカリ電解液を使用するニッカド電池およびニッケル
水素電池においては、一部アンモニアガスとして電解液
中に存在していると考えられている。
A mechanism has been proposed in which nitrate ions and nitrite ions are further reduced and exist as ammonium ions. It is considered that this ammonium ion exists in the electrolyte as a part of ammonia gas in a nickel-cadmium battery and a nickel-cadmium battery using a high-concentration alkaline electrolyte.

【0007】[0007]

【発明が解決しようとする課題】本発明は、自己放電特
性に優れた電池用セパレータを提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a battery separator having excellent self-discharge characteristics.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明の電池用セパレータは、多孔質フィルムを含
む電池用セパレータであって、前記多孔質フィルムが、
アンモニア捕捉機能を有する粒子(以下「アンモニア捕
捉粒子」という)を含有するという構成である。
Means for Solving the Problems To achieve the above object, a battery separator of the present invention is a battery separator including a porous film, wherein the porous film is
It is configured to contain particles having an ammonia capturing function (hereinafter, referred to as “ammonia capturing particles”).

【0009】本発明者らは、前述の自己放電メカニズム
について鋭意検討した結果、アンモニア捕捉粒子を含有
する多孔質フィルムを電池用セパレータとして使用すれ
ば、従来の電池用セパレータより、自己放電特性が優れ
ることを見出し、本発明に到達した。本発明の電池用セ
パレータは、アルカリ電池に使用することが好ましい。
The present inventors have conducted intensive studies on the above-described self-discharge mechanism. As a result, when a porous film containing ammonia-trapping particles is used as a battery separator, the self-discharge characteristics are superior to those of a conventional battery separator. The inventors have found that the present invention has been achieved. The battery separator of the present invention is preferably used for an alkaline battery.

【0010】前記アンモニア捕捉粒子は、活性白土、シ
リカゲル、ジルコニア、活性ボーキサイト、賦活アルミ
ナ、天然ゼオライト、活性酸化マグネシウム等の無機粒
子、木炭、骨炭および活性炭等の有機粒子が好ましく、
これらは単独で使用しても良いし、2種類以上で併用し
てもよい。
The ammonia-capturing particles are preferably inorganic particles such as activated clay, silica gel, zirconia, activated bauxite, activated alumina, natural zeolite and activated magnesium oxide, and organic particles such as charcoal, bone charcoal and activated carbon.
These may be used alone or in combination of two or more.

【0011】前記多孔質フィルムは、ポリオレフィン粉
末を焼結した多孔質焼結体フィルムが好ましい。
The porous film is preferably a porous sintered body film obtained by sintering a polyolefin powder.

【0012】つぎに、本発明の電池用セパレータの製造
方法は、ポリオレフィン粉末と、アンモニア捕捉粒子粉
末とを混合し、これを前記ポリオレフィンの融点以上の
温度で焼結し、得られた焼結体を切削してフィルム化す
るという方法である。また、本発明の電池は、前記本発
明の電池用セパレータを使用したアルカリ二次電池であ
る。
Next, in the method for producing a battery separator according to the present invention, a polyolefin powder and an ammonia-trapping particle powder are mixed and sintered at a temperature equal to or higher than the melting point of the polyolefin. Is cut into a film. The battery of the present invention is an alkaline secondary battery using the battery separator of the present invention.

【0013】[0013]

【発明の実施の形態】前記多孔質フィルムの原料は、特
に制限されないが、電気化学的安定性等から、ポリオレ
フィン樹脂およびフッ素樹脂が好ましい。ポリオレフィ
ン樹脂としては、例えば、エチレン、プロピレン、1−
ブテン、4−メチル−1−ペンテン、1−ヘキセン等を
重合した結晶性の単独重合体、共重合体およびそれらの
ブレンド物等があげられる。このなかで、超高分子量ポ
リエチレン(UHPE)が好ましい。UHPEの粘度平
均分子量は、例えば、50万〜1600万の範囲であ
り、好ましくは200万〜1000万の範囲である。フ
ッ素樹脂としては、例えば、ポリテトラフルオロエチレ
ン、ポリフッ化ビニリデン等があげられる。
DETAILED DESCRIPTION OF THE INVENTION The raw material for the porous film is not particularly limited, but a polyolefin resin and a fluororesin are preferred from the viewpoint of electrochemical stability and the like. As the polyolefin resin, for example, ethylene, propylene, 1-
Crystalline homopolymers and copolymers obtained by polymerizing butene, 4-methyl-1-pentene, 1-hexene, and the like, and blends thereof, and the like can be given. Of these, ultra high molecular weight polyethylene (UHPE) is preferred. The viscosity average molecular weight of UHPE is, for example, in the range of 500,000 to 16,000,000, and preferably in the range of 2,000,000 to 10,000,000. Examples of the fluorine resin include polytetrafluoroethylene and polyvinylidene fluoride.

【0014】前記多孔質フィルムは、特に制限されな
い。しかし、本発明の電池用セパレータがアルカリ二次
電池に使用される場合、充放電時に電極で発生する酸素
ガスおよび水素ガスを対極にて消費させる必要があるた
め、これらのガスが電池用セパレータを透過できる必要
がある。この場合、多孔質フィルムの孔径は、例えば、
1〜100μm、好ましくは10〜50μmの範囲であ
る。また、多孔質フィルムの形態は、特に制限されず、
例えば、不織布の形態、多孔質焼結体フィルムの形態な
どがある。不織布は、湿式法、スパンボンド法、メルト
ブロー法等の方法により作製される不織布が好ましい。
多孔質焼結体フィルムは、例えば、UHPE等の超高分
子量ポリオレフィン粉末を、その融点以上の温度で加熱
して焼結し、得られた焼結体を切削することにより製造
できる。多孔質フィルムの厚みは、特に制限されず、例
えば、20〜250μmの範囲、好ましくは50〜20
0μmの範囲である。また、多孔質フィルムの空孔率
は、30〜70体積%の範囲、好ましくは50〜70体
積%の範囲である。空孔率は、多孔質フィルムの片面の
面積S(cm2)、厚みd(cm)および質量m(g)
と、その形成材料の比重r(g/cm3)とから、下記
の数式(数1)により算出できる。また、前記多孔質フ
ィルムの石鹸膜流量法による通気性は、例えば、1×1
-4〜1×10-2cm3・cm/cm2・Pa・secの
範囲、好ましくは5×10-4〜1×10-2cm3・cm
/cm2・Pa・secの範囲である。前記石鹸膜流量
法による通気性は、12.7mmH2Oの圧力条件下
で、多孔質膜を透過した酸素の透過量を、膜の有効面積
1.23cm2で測定したものである。
[0014] The porous film is not particularly limited. However, when the battery separator of the present invention is used for an alkaline secondary battery, it is necessary to consume oxygen gas and hydrogen gas generated at the electrode during charge and discharge at the counter electrode, and these gases serve as the battery separator. Must be able to penetrate. In this case, the pore size of the porous film is, for example,
It is in the range of 1 to 100 μm, preferably 10 to 50 μm. Further, the form of the porous film is not particularly limited,
For example, there are a nonwoven fabric form, a porous sintered body film form, and the like. As the nonwoven fabric, a nonwoven fabric produced by a method such as a wet method, a spun bond method, and a melt blow method is preferable.
The porous sintered body film can be produced, for example, by heating and sintering an ultra-high molecular weight polyolefin powder such as UHPE at a temperature not lower than its melting point and cutting the obtained sintered body. The thickness of the porous film is not particularly limited, and is, for example, in the range of 20 to 250 μm, preferably 50 to 20 μm.
The range is 0 μm. The porosity of the porous film is in the range of 30 to 70% by volume, preferably in the range of 50 to 70% by volume. The porosity is determined based on the area S (cm 2 ), thickness d (cm), and mass m (g) of one side of the porous film.
And the specific gravity r (g / cm 3 ) of the forming material, it can be calculated by the following equation (Equation 1). The permeability of the porous film by the soap film flow method is, for example, 1 × 1
0 -4 to 1 × 10 -2 cm 3 · cm / cm 2 · Pa · sec, preferably 5 × 10 -4 to 1 × 10 -2 cm 3 · cm
/ Cm 2 · Pa · sec. Breathable by the soap film flow method, under pressure conditions of 12.7mmH 2 O, the permeation amount of oxygen passed through the porous membrane, is measured by the effective area 1.23Cm 2 of film.

【0015】(数1) 空孔率(体積%)=[1−((m/r)/(S×
d))]×100
(Equation 1) Porosity (volume%) = [1-((m / r) / (S ×
d))] x 100

【0016】前記アンモニア捕捉粒子は、前述のものが
使用できる。このなかで、好ましいのは、ジルコニア粒
子、シリカゲル粒子、天然ゼオライトである。アンモニ
ア捕捉粒子の粒径は、例えば、0.01〜10μmの範
囲、好ましくは0.1〜1μmの範囲である。また、ア
ンモニア捕捉粒子の割合は、多孔質フィルム全体に対
し、例えば、0.01〜5重量%の範囲、好ましくは
0.01〜1重量%の範囲である。
As the ammonia trapping particles, those described above can be used. Among them, preferred are zirconia particles, silica gel particles, and natural zeolites. The diameter of the ammonia trapping particles is, for example, in the range of 0.01 to 10 μm, and preferably in the range of 0.1 to 1 μm. The ratio of the ammonia trapping particles is, for example, in the range of 0.01 to 5% by weight, and preferably in the range of 0.01 to 1% by weight, based on the entire porous film.

【0017】つぎに、本発明にかかる多孔質フィルム
は、例えば、以下のようにして製造できる。まず、アン
モニア捕捉粒子と、UHPE等の超高分子量ポリオレフ
ィン粉末とを混合し、この混合物を保形具(型)に入れ
る。この保形具は、水蒸気を導入できる孔を有すること
が好ましい。この保形具を、耐圧容器に入れ、空気を排
気した後、前記ポリオレフィンの融点以上に加熱した水
蒸気を導入し、加熱焼結する。その後、冷却し、焼結体
を取出し、所定厚みに切削すれば、アンモニア捕捉粒子
含有の多孔質焼結体フィルムを得ることができる。この
フィルムは、そのまま電池用セパレータとして使用でき
る。また、アルカリ電池(一次電池および二次電池)に
使用する場合、多孔質フィルムが疎水性であれば、親水
化処理することが好ましい。親水化処理の方法は、特に
制限されず、界面活性剤の含浸処理、プラズマ処理、親
水性モノマーのグラフト重合処理、スルホン化処理等が
ある。
Next, the porous film according to the present invention can be produced, for example, as follows. First, ammonia capture particles and ultra-high molecular weight polyolefin powder such as UHPE are mixed, and the mixture is put into a shape retainer (mold). The shape retainer preferably has a hole into which steam can be introduced. The shape retainer is placed in a pressure-resistant container, and after evacuating air, steam heated to a temperature equal to or higher than the melting point of the polyolefin is introduced, followed by heat sintering. Thereafter, the resultant is cooled, the sintered body is taken out, and cut to a predetermined thickness, whereby a porous sintered body film containing ammonia-trapped particles can be obtained. This film can be used as it is as a battery separator. In addition, when the porous film is used for an alkaline battery (a primary battery and a secondary battery), it is preferable to perform a hydrophilic treatment if the porous film is hydrophobic. The method of the hydrophilic treatment is not particularly limited, and examples thereof include a surfactant impregnation treatment, a plasma treatment, a graft polymerization treatment of a hydrophilic monomer, and a sulfonation treatment.

【0018】[0018]

【実施例】つぎに、本発明の実施例について、比較例と
併せて説明する。
Next, examples of the present invention will be described together with comparative examples.

【0019】(実施例1)ジルコニア粒子粉末(商品
名:ケスモン NS−10,東亜合成化学社製)10g
と、UHPE粉末(粘度平均分子量450万、融点13
5℃、平均粒径106μm、メッシュ分級品)2000
gとを混合し、この混合物を保形具に入れた。この保形
具は、円筒状金網カゴ(内径15cm)の中に、これよ
り小さな円筒状金網カゴ(外径4cm)を、中心を合わ
せた状態で配置して前記2つのカゴの間にドーナッツ状
空間を形成し、この空間を形成する面にポリテトラフル
オロエチレン多孔質フィルムを貼ったものである。この
保形具を金属製耐熱耐圧容器(水蒸気の導入管および開
閉バルブを備える)に入れ、真空ポンプで前記容器内の
雰囲気圧を1.3kPaとした。そして、ポンプを止
め、そのまま30分間放置し、その後、前記バルブを開
き、水蒸気を導入して120℃まで10分間で昇温し、
同温度の状態で30分間保持した後、水蒸気圧を0.4
MPaにまで上げて温度145℃とし、同温度の状態で
3時間保持して加熱焼結した。その後、バルブを閉じて
自然冷却させ、円筒状の多孔質体を得た。得られた多孔
質体を切削旋盤により厚み200μmに切削し、空孔率
50体積%の多孔質フィルムを得た。
Example 1 10 g of zirconia particle powder (trade name: Kesmon NS-10, manufactured by Toa Gosei Chemical Co., Ltd.)
And UHPE powder (viscosity average molecular weight 4.5 million, melting point 13
5 ° C, average particle size 106 µm, mesh classification product) 2000
g., and the mixture was placed in a shape retainer. In this shape retainer, a cylindrical wire mesh basket (outer diameter 4 cm) smaller than the cylindrical wire mesh basket (outer diameter 4 cm) is arranged in a centered state, and a donut-like shape is placed between the two baskets. A space is formed, and a polytetrafluoroethylene porous film is adhered to a surface forming the space. The shape retainer was placed in a metal heat-resistant and pressure-resistant container (provided with a steam introduction pipe and an opening / closing valve), and the atmospheric pressure in the container was set to 1.3 kPa with a vacuum pump. Then, stop the pump and leave it for 30 minutes, then open the valve, introduce steam, and raise the temperature to 120 ° C. in 10 minutes.
After maintaining at the same temperature for 30 minutes, the water vapor pressure was increased to 0.4.
Up to 145 ° C, and at the same temperature
It was heated and sintered for 3 hours. Thereafter, the valve was closed and allowed to cool naturally to obtain a cylindrical porous body. The obtained porous body was cut to a thickness of 200 μm by a cutting lathe to obtain a porous film having a porosity of 50% by volume.

【0020】(実施例2)シリカゲル粒子粉末(商品
名:アエロジル200、日本アエロジル社製)5gと前
記UHPE粉末2000gとを混合し、これを実施例1
と同じ条件および操作で加熱焼結し、得られた焼結体を
切削して厚み200μmの多孔質フィルム(空孔率50
体積%)を得た。
(Example 2) 5 g of silica gel particle powder (trade name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) and 2000 g of the UHPE powder were mixed, and this was mixed with Example 1
Under the same conditions and operation as in the above, and the obtained sintered body was cut to obtain a porous film having a thickness of 200 μm (porosity of 50 μm).
% By volume).

【0021】(比較例1)前記UHPE粉末のみを、実
施例1と同じ条件および操作で加熱焼結し、得られた焼
結体を切削して厚み200μmの多孔質フィルム(空孔
率43体積%)を得た。
(Comparative Example 1) Only the UHPE powder was heated and sintered under the same conditions and operation as in Example 1, and the obtained sintered body was cut to form a porous film having a thickness of 200 μm (porosity of 43 volumes). %).

【0022】このようにして得られた実施例1、2およ
び比較例1の各多孔質フィルムを電池用セパレータとし
て使用し、以下の方法により自己放電特性を調べた。
Each of the porous films of Examples 1 and 2 and Comparative Example 1 thus obtained was used as a battery separator, and the self-discharge characteristics were examined by the following method.

【0023】(自己放電特性の評価)多孔質フィルムを
予め電解液に浸漬して真空含浸を行い、孔内に電解液を
導入した。そして、通常の方法により、前記多孔質フィ
ルムを電池用セパレータとして使用して、2032サイ
ズ(直径20mm、高さ3.2mm)コイン型ニッケル
水素電池(正極活物質:水酸化Ni、負極活物質:水素
吸蔵合金、電解液:水酸化カリウム水溶液)を作製し
た。この電池について、化成処理を行った後、放電容量
を測定し、さらに満充電後、45℃の雰囲気下で保管
し、満充電後1週間後の自己放電を測定した。この結果
を下記表1に示す。なお、放電レートは0.2C5Aと
し、自己放電率(容量保持率)は以下の式により求め
た。
(Evaluation of Self-Discharge Characteristics) The porous film was previously immersed in an electrolytic solution to perform vacuum impregnation, and the electrolytic solution was introduced into the pores. Then, using the porous film as a battery separator, a 2032 size (diameter: 20 mm, height: 3.2 mm) coin-type nickel-metal hydride battery (positive electrode active material: Ni hydroxide, negative electrode active material: Hydrogen storage alloy, electrolytic solution: aqueous potassium hydroxide solution) were prepared. After subjecting the battery to a chemical conversion treatment, the discharge capacity was measured. After the battery was fully charged, it was stored in an atmosphere at 45 ° C., and the self-discharge was measured one week after the full charge. The results are shown in Table 1 below. The discharge rate was 0.2 C 5 A, and the self-discharge rate (capacity retention rate) was determined by the following equation.

【0024】容量保持率(%)=[a/((b+c)/
2)]×100 a:自己放電後の放電容量(Ah) b:自己放電前の放電容量(Ah) c:自己放電後再満充電後の放電容量(Ah)
Capacity retention (%) = [a / ((b + c) /
2)] × 100 a: Discharge capacity after self-discharge (Ah) b: Discharge capacity before self-discharge (Ah) c: Discharge capacity after self-discharge and full recharge (Ah)

【0025】 (表1) 自己放電率(容量保持率) 実施例1 85% 実施例2 78% 比較例1 44%(Table 1) Self-discharge rate (capacity retention rate) Example 1 85% Example 2 78% Comparative example 1 44%

【0026】上記結果から、アンモニア捕捉粒子を含有
する多孔質フィルムを使用した電池は、自己放電特性が
優れることが分かる。
From the above results, it is understood that the battery using the porous film containing the ammonia trapping particles has excellent self-discharge characteristics.

【0027】[0027]

【発明の効果】以上のように、本発明の電池用セパレー
タを使用すれば、電池の自己放電特性が向上するように
なる。
As described above, the use of the battery separator of the present invention improves the self-discharge characteristics of the battery.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 23/02 C08L 23/02 H01M 10/30 H01M 10/30 Z Fターム(参考) 4F074 AA16 AB01 AB03 AC02 AC17 AC20 AC32 AC36 AG20 CA52 CC04Y DA02 DA49 4J002 BB031 BB051 BB121 BB141 BB151 BB171 BD141 BD151 DA016 DE076 DE096 DE146 DJ006 DJ016 FD206 GD00 GQ00 5H021 BB01 BB04 CC08 EE04 EE21 EE22 EE23 HH06 5H028 AA05 BB05 EE04 EE05 EE06 EE08 HH08 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 23/02 C08L 23/02 H01M 10/30 H01M 10/30 Z F-term (Reference) 4F074 AA16 AB01 AB03 AC02 AC17 AC20 AC32.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多孔質フィルムを含む電池用セパレータ
であって、前記多孔質フィルムが、アンモニア捕捉機能
を有する粒子を含有する電池用セパレータ。
1. A battery separator including a porous film, wherein the porous film contains particles having an ammonia trapping function.
【請求項2】 アンモニア捕捉機能を有する粒子が、活
性白土、シリカゲル、ジルコニア、活性ボーキサイト、
賦活アルミナ、天然ゼオライト、活性酸化マグネシウ
ム、木炭、骨炭および活性炭からなる群から選択される
少なくとも一つである請求項1記載の電池用セパレー
タ。
2. Particles having an ammonia trapping function are activated clay, silica gel, zirconia, activated bauxite,
The battery separator according to claim 1, wherein the separator is at least one selected from the group consisting of activated alumina, natural zeolite, activated magnesium oxide, charcoal, bone charcoal and activated carbon.
【請求項3】 多孔質フィルムが、ポリオレフィン粉末
を焼結した多孔質焼結体フィルムである請求項1または
2記載の電池用セパレータ。
3. The battery separator according to claim 1, wherein the porous film is a porous sintered body film obtained by sintering a polyolefin powder.
【請求項4】 アルカリ電池に使用される請求項1から
3のいずれかに記載の電池用セパレータ。
4. The battery separator according to claim 1, which is used for an alkaline battery.
【請求項5】 ポリオレフィン粉末と、アンモニア捕捉
機能を有する粒子粉末とを混合し、これを前記ポリオレ
フィンの融点以上の温度で焼結し、得られた焼結体を切
削してフィルム化する電池用セパレータの製造方法。
5. A battery for mixing a polyolefin powder and a particle powder having an ammonia trapping function, sintering the mixed powder at a temperature equal to or higher than the melting point of the polyolefin, and cutting the obtained sintered body into a film. Manufacturing method of separator.
【請求項6】 請求項1から3のいずれか一項に記載の
電池用セパレータを使用したアルカリ二次電池。
6. An alkaline secondary battery using the battery separator according to any one of claims 1 to 3.
JP2001127874A 2001-04-25 2001-04-25 Separator for battery and its manufacturing method Pending JP2002324538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127874A JP2002324538A (en) 2001-04-25 2001-04-25 Separator for battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127874A JP2002324538A (en) 2001-04-25 2001-04-25 Separator for battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002324538A true JP2002324538A (en) 2002-11-08

Family

ID=18976668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127874A Pending JP2002324538A (en) 2001-04-25 2001-04-25 Separator for battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002324538A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658703B1 (en) 2005-12-19 2006-12-15 더블유에이블(주) A process for manufacturing fine porous polyolefine separator
JP2011520214A (en) * 2008-03-25 2011-07-14 エイ 123 システムズ,インク. High energy high power electrodes and batteries
JP2012514673A (en) * 2009-01-09 2012-06-28 テイジン・アラミド・ビー.ブイ. Ultra high molecular weight polyethylene containing refractory particles
JP2014205813A (en) * 2013-04-16 2014-10-30 カシオ電子工業株式会社 Porous flexible sheet, and production method and device thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658703B1 (en) 2005-12-19 2006-12-15 더블유에이블(주) A process for manufacturing fine porous polyolefine separator
JP2011520214A (en) * 2008-03-25 2011-07-14 エイ 123 システムズ,インク. High energy high power electrodes and batteries
US9299966B2 (en) 2008-03-25 2016-03-29 A123 Systems Llc High energy high power electrodes and batteries
JP2012514673A (en) * 2009-01-09 2012-06-28 テイジン・アラミド・ビー.ブイ. Ultra high molecular weight polyethylene containing refractory particles
JP2014205813A (en) * 2013-04-16 2014-10-30 カシオ電子工業株式会社 Porous flexible sheet, and production method and device thereof

Similar Documents

Publication Publication Date Title
US5558682A (en) Process for producing a wind-type alkaline secondary battery
JPH10172533A (en) Separator for alkaline storage battery
JP3067956B2 (en) Alkaline secondary battery separator
JP2002324538A (en) Separator for battery and its manufacturing method
JP2004031293A (en) Alkaline storage battery
JP4091294B2 (en) Alkaline storage battery
EP1205986B1 (en) Separator for battery
JP2000195490A (en) Separator for battery and its manufacture
JPH04349348A (en) Metal oxide-hydrogen storage battery
JPH07272771A (en) Air-metal hydride secondary battery
JP4627098B2 (en) Battery separator and alkaline secondary battery using the same
JP2003031198A (en) Separator for cell
JP4713702B2 (en) Alkaline battery separator and method for producing the same
JP2000113871A (en) Alkaline secondary battery
JP2000195493A (en) Separator for battery and its manufacture
JP3395996B2 (en) Battery separator and manufacturing method thereof
JP2003092097A (en) Battery separator and battery
JP2003257440A (en) Alkaline primary battery
JP2673337B2 (en) Air-metal hydride secondary battery
JP2000208127A (en) Battery separator and manufacture thereof
JPH07134980A (en) Alkaline secondary battery and its manufacture
JP2003051302A (en) Separator for alkaline secondary battery
JP2001273879A (en) Nickel - hydrogen secondary battery
JPH04286863A (en) Separator for alkaline storage battery
JP2002184383A (en) Separator for cell