JP2003257440A - Alkaline primary battery - Google Patents

Alkaline primary battery

Info

Publication number
JP2003257440A
JP2003257440A JP2002061385A JP2002061385A JP2003257440A JP 2003257440 A JP2003257440 A JP 2003257440A JP 2002061385 A JP2002061385 A JP 2002061385A JP 2002061385 A JP2002061385 A JP 2002061385A JP 2003257440 A JP2003257440 A JP 2003257440A
Authority
JP
Japan
Prior art keywords
separator
positive electrode
active material
primary battery
alkaline primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002061385A
Other languages
Japanese (ja)
Other versions
JP4119657B2 (en
Inventor
Shinichi Ueki
伸一 植木
Yoshiro Harada
吉郎 原田
Mitsuhiro Nakamura
光宏 中村
Hiroto Sagisaka
博人 鷺坂
Takeshi Miyazaki
武志 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2002061385A priority Critical patent/JP4119657B2/en
Publication of JP2003257440A publication Critical patent/JP2003257440A/en
Application granted granted Critical
Publication of JP4119657B2 publication Critical patent/JP4119657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable alkaline primary battery by preventing liquid leakage which easily occurs in the case of using nickel oxyhydroxide as a positive electrode material of the alkaline primary battery in order to improve the high load property and increase the capacity. <P>SOLUTION: A positive electrode molded body 2 of the alkaline primary battery contains nickel oxyhydroxide as a positive electrode active material in a positive electrode mixture and the nickel oxyhydroxide contains cobalt and zinc. In a battery can 4, the positive electrode molded body 2 and zinc as a negative electrode active material 8 are arranged while being separated by a separator 6. The separator 6 is made of a polymer film having hydrophilicity and pores. The positive electrode molded body 2 has a hollow cylindrical shape, the center part of which the negative electrode active material 8 is arranged while being separated by the separator 6 to constitute an inside-out type battery. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極合剤中にオキ
シ水酸化ニッケルを含むアルカリ一次電池に係わり、特
に重負荷放電特性と高温保存下における自己放電特性と
の向上を図る技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline primary battery containing nickel oxyhydroxide in a positive electrode mixture, and particularly to a technique for improving heavy load discharge characteristics and self-discharge characteristics under high temperature storage. is there.

【0002】[0002]

【従来の技術】現在、高出力特性を有しているアルカリ
一次電池としては、正極活物質に二酸化マンガンを、負
極活物質に亜鉛を、電解液としてアルカリ水溶液をそれ
ぞれ用いたアルカリマンガン電池が主流となっている
が、近年にあっては、デジタルカメラや情報通信端末等
を初めとする携帯機器の高性能化に伴い、その電源とし
て用いられているアルカリ一次電池に対して、重負荷特
性の更なる向上、及び高容量化の要求が増大してきてい
る。また、アルカリ二次電池にあっては、上記のような
要求に応えて出力特性の優れた電池を供給し得る手段と
して、正極活物質にβ型やγ型のオキシ水酸化ニッケル
を適用することが古くから注目され検討されている(特
開昭53−32347号公報、特開昭55−30133
号公報等参照)。
2. Description of the Related Art At present, as an alkaline primary battery having a high output characteristic, an alkaline manganese battery using manganese dioxide as a positive electrode active material, zinc as a negative electrode active material and an alkaline aqueous solution as an electrolyte is mainly used. However, in recent years, with the increasing performance of mobile devices such as digital cameras and information communication terminals, the alkaline primary battery used as the power source has a heavy load characteristic. The demands for further improvement and higher capacity are increasing. In addition, in alkaline secondary batteries, β-type or γ-type nickel oxyhydroxide is applied to the positive electrode active material as a means capable of supplying a battery having excellent output characteristics in response to the above demands. Has been noticed and studied for a long time (Japanese Patent Laid-Open No. 53-32347 and Japanese Patent Laid-Open No. 55-30133).
No.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来から検
討されていた上記β型やγ型のオキシ水酸化ニッケルを
正極活物質として構成したアルカリ二次電池では、高温
下に長時間放置すると自己放電のために電池容量が減少
してしまうという問題があった。このため、当該β型や
γ型の従来のオキシ水酸化ニッケルは、そのままではア
ルカリ一次電池の正極材料としては採用し得ず、実用化
に至っていなかった。即ち、一次電池にとっては、自己
放電による容量減少は電池機能の消失を意味することで
あり、よって実用化のためには自己放電による容量減少
を改善することが必要不可欠となる。
By the way, in the alkaline secondary battery constituted by using the above-mentioned β-type or γ-type nickel oxyhydroxide as the positive electrode active material, which has been studied conventionally, self-discharge occurs when left at high temperature for a long time. Therefore, there is a problem that the battery capacity is reduced. Therefore, the β-type or γ-type conventional nickel oxyhydroxide cannot be used as it is as a positive electrode material of an alkaline primary battery, and has not been put into practical use. That is, for the primary battery, the capacity decrease due to self-discharge means the disappearance of the battery function, and therefore it is essential to improve the capacity decrease due to self-discharge for practical use.

【0004】そこで、本発明者等は、高温下に長時間放
置した場合に生じる自己放電の改善を目的として、オキ
シ水酸化ニッケルに対して詳細な種々の実験等を行って
研究開発を進め、検討を重ねた結果、コバルトと亜鉛と
によって同時にオキシ水酸化ニッケルの固溶置換を行う
ことで、自己放電の抑制が図れて一次電池への適用が可
能になることを知得し、当該コバルトと亜鉛とを含有す
るオキシ水酸化ニッケルを正極活物質として用いたアル
カリ一次電池の提案を既にしている。
Therefore, the inventors of the present invention conducted various kinds of detailed experiments and the like on nickel oxyhydroxide for the purpose of improving self-discharge which occurs when left at high temperature for a long time, and proceeded with research and development. As a result of repeated studies, it was found that simultaneous solid solution substitution of nickel oxyhydroxide with cobalt and zinc can suppress self-discharge and can be applied to primary batteries. We have already proposed an alkaline primary battery using nickel oxyhydroxide containing zinc as a positive electrode active material.

【0005】しかしながら、その後の研究開発におい
て、オキシ水酸化ニッケルをコバルトと亜鉛とにより固
溶置換すると、オキシ水酸化ニッケルの粉体粒子、つま
り結晶の凝集粒子径を成長させることが困難になって、
微細粒子の比率が高まってしまうことが判明した。即
ち、正極材料として用いるオキシ水酸化ニッケルの粉体
中で当該オキシ水酸化ニッケルの微細粒子の存在比率が
高まると、当該微細粒子がセパレータを透過して、負極
中に混入し易くなってしまう。そして、負極側にオキシ
水酸化ニッケルが混入すると、負極においてガス発生が
起こってしまい、電池の漏液が生じるなど、信頼性の低
下につながってしまう。
However, in the subsequent research and development, if nickel oxyhydroxide is solid-solution-substituted with cobalt and zinc, it becomes difficult to grow the powder particles of nickel oxyhydroxide, that is, the aggregate particle size of crystals. ,
It has been found that the proportion of fine particles increases. That is, when the abundance ratio of the nickel oxyhydroxide fine particles in the nickel oxyhydroxide powder used as the positive electrode material increases, the fine particles easily pass through the separator and are easily mixed in the negative electrode. When nickel oxyhydroxide is mixed in the negative electrode side, gas is generated in the negative electrode, which leads to leakage of the battery, leading to a decrease in reliability.

【0006】表1はオキシ水酸化ニッケルのセパレータ
透過性試験の結果を示すものである。なお、この透過性
試験のセパレータには、ビニヨン・レーヨン不織布(厚
さ:100μm、坪量:30g/m)を使用した。当
該セパレータは内径が8mmとなるように円筒状に2重
巻きして内部にオキシ水酸化ニッケルの粉体を2g配
し、当該円筒状セパレータの両端部を熱融着により封止
することによって内部に上記粉体を封入し、これを40
重量%水酸化カリウム電解液中に浸漬して、45℃下で
10日間保存した後、電解液中に含まれるニッケル量を
原子吸光分析により測定して、セパレータを透過したオ
キシ水酸化ニッケル量を定量している。
Table 1 shows the results of the nickel oxyhydroxide separator permeability test. A vinylon / rayon nonwoven fabric (thickness: 100 μm, basis weight: 30 g / m 2 ) was used as the separator in this permeability test. The separator is double wound into a cylindrical shape with an inner diameter of 8 mm, 2 g of nickel oxyhydroxide powder is placed inside, and both ends of the cylindrical separator are sealed by heat fusion to make the inside. Enclose the above powder in a
After dipping in a weight% potassium hydroxide electrolytic solution and storing at 45 ° C. for 10 days, the amount of nickel contained in the electrolytic solution was measured by atomic absorption spectrometry to determine the amount of nickel oxyhydroxide that had permeated through the separator. It is quantified.

【0007】表1に示すように、コバルトと亜鉛とを固
溶置換していないオキシ水酸化ニッケルの検出量を10
0として相対値で示すと、コバルトと亜鉛とを固溶置換
したオキシ水酸化ニッケルでは180にも達していて、
透過性は80%も高くなっていた。
As shown in Table 1, the detected amount of nickel oxyhydroxide in which cobalt and zinc are not solid-solution-substituted is 10
When expressed as a relative value as 0, nickel oxyhydroxide having solid solution substitution of cobalt and zinc has reached 180,
The permeability was as high as 80%.

【0008】[0008]

【表1】 [Table 1]

【0009】本発明は、上記事情に鑑みてなされたもの
であり、その目的は、高負荷特性の向上と高容量化とを
図るべくアルカリ一次電池の正極材料にオキシ水酸化ニ
ッケルを用いた場合に生じ易くなる、漏液の発生を防止
して信頼性の向上が図り得るアルカリ一次電池を提供す
ることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to use nickel oxyhydroxide as a positive electrode material of an alkaline primary battery in order to improve high load characteristics and increase capacity. Another object of the present invention is to provide an alkaline primary battery capable of preventing the occurrence of liquid leakage, which tends to occur easily, and improving reliability.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る発明のアルカリ一次電池にあって
は、正極合剤中に正極活物質としてオキシ水酸化ニッケ
ルを含み、セパレータを介して負極活物質である亜鉛を
配したアルカリ一次電池であって、該オキシ水酸化ニッ
ケルはコバルトと亜鉛とを同時に固溶置換元素として含
有し、且つ、該セパレータが微細孔を有する高分子フィ
ルムで構成されていることを特徴とする。
In order to achieve the above object, in an alkaline primary battery of the invention according to claim 1, a positive electrode mixture contains nickel oxyhydroxide as a positive electrode active material, and a separator An alkaline primary battery in which zinc, which is a negative electrode active material, is arranged through the nickel oxyhydroxide, which contains cobalt and zinc simultaneously as solid solution substitution elements, and the separator is a polymer having fine pores. It is characterized by being composed of a film.

【0011】請求項2に係る発明のアルカリ一次電池に
あっては、正極活物質にオキシ水酸化ニッケルと二酸化
マンガンとの混合物を用い、セパレータを介して負極活
物質である亜鉛を配したアルカリ一次電池であって、該
オキシ水酸化ニッケルがコバルトと亜鉛とを同時に固溶
置換元素として含有し、且つ、該セパレータが微細孔を
有する高分子フィルムで構成されていることを特徴とす
る。
In the alkaline primary battery of the invention according to claim 2, an alkaline primary battery in which a mixture of nickel oxyhydroxide and manganese dioxide is used as a positive electrode active material and zinc as a negative electrode active material is arranged through a separator. The battery is characterized in that the nickel oxyhydroxide simultaneously contains cobalt and zinc as solid solution substitution elements, and the separator is composed of a polymer film having fine pores.

【0012】請求項3に係る発明のアルカリ一次電池に
あっては、前記請求項1または2に記載のアルカリ一次
電池において、前記セパレータの高分子フィルムが親水
性を有していることを特徴とする。
The alkaline primary battery of the invention according to claim 3 is the alkaline primary battery according to claim 1 or 2, characterized in that the polymer film of the separator has hydrophilicity. To do.

【0013】請求項4に係る発明のアルカリ一次電池に
あっては、前記請求項1〜3に記載のアルカリ一次電池
において、前記セパレータが前記高分子フィルムと不織
布との積層構造を有していることを特徴とする。
In the alkaline primary battery of the invention according to claim 4, in the alkaline primary battery according to claims 1 to 3, the separator has a laminated structure of the polymer film and a nonwoven fabric. It is characterized by

【0014】請求項5に係る発明のアルカリ一次電池に
あっては、前記請求項1〜4に記載のアルカリ一次電池
において、前記セパレータが前記高分子フィルムと不織
布との積層構造を有していることを特徴とする。
In the alkaline primary battery of the invention according to claim 5, in the alkaline primary battery according to claims 1 to 4, the separator has a laminated structure of the polymer film and a nonwoven fabric. It is characterized by

【0015】即ち、上記構成の本発明に係るアルカリ一
次電池のように、コバルトと亜鉛とを含有するオキシ水
酸化ニッケルを正極活物質にして構成する場合に、イオ
ンの移動を可能となし得る程度の微細孔を有する高分子
フィルムをセパレータとして用いることで、不織布のみ
をセパレータに使用している場合に比べて、正極活物質
の負極側への混入が大幅に抑制される。
That is, when the nickel oxyhydroxide containing cobalt and zinc is used as the positive electrode active material as in the alkaline primary battery according to the present invention having the above-mentioned structure, it is possible to allow the migration of ions. By using the polymer film having the micropores as the separator, the mixture of the positive electrode active material into the negative electrode side is significantly suppressed as compared with the case where only the nonwoven fabric is used as the separator.

【0016】但し、電解液にアルカリ水溶液を利用して
いるため、セパレータとなる高分子フィルム材料は親水
性を有していることが望ましい。親水性があり、微細孔
を有する高分子フィルムとしては、分子中に親水性の官
能基(親水基)を有するセルロース系フィルムや親水性
を付加する処理を施したポリプロピレンフィルムやポリ
エチレンフィルムなどが挙げられる。親水性処理として
は、コロナ放電処理やプライマー処理などが挙げられる
が、親水性を付加させる処理であればどのような処理を
行っても良い。また、上記以外の高分子フィルム材料で
あっても、親水性の官能基を有していれば利用可能であ
る。
However, since an alkaline aqueous solution is used as the electrolytic solution, it is desirable that the polymer film material serving as the separator has hydrophilicity. Examples of the polymer film having hydrophilicity and micropores include a cellulose-based film having a hydrophilic functional group (hydrophilic group) in the molecule, a polypropylene film or a polyethylene film which has been treated to add hydrophilicity. To be Examples of the hydrophilic treatment include corona discharge treatment and primer treatment, but any treatment may be performed as long as it is a treatment for adding hydrophilicity. Also, polymer film materials other than the above can be used as long as they have a hydrophilic functional group.

【0017】上記イオン透過性を有する高分子膜や、細
孔径の小さなマイクロポーラスフィルムはそれ単独で用
いてもかまわないが、必要に応じて、不織布と積層させ
るなどして組み合わせて使用してもかまわない。不織布
として利用可能な高分子繊維としては、単一繊維とし
て、ビニロン繊維、ビニヨン繊維、ポリアミド繊維、親
水化処理ポリプロピレン、親水化処理ポリエチレン、レ
ーヨン、リンターパルプ、マーセル化パルプが挙げられ
る。また、上記単一の繊維を複合化した物も利用可能で
あり、例えば、ポリオレフィン・レーヨン不織布、ビニ
ヨン・レーヨン不織布、親水化ポリエチレン−親水化ポ
リプロピレンの複合繊維が挙げられる。その他、不織布
として芯鞘型複合繊維(芯材にポリプロピレン、鞘材に
ポリエチレン)の親水処理品なども利用可能である。
The above-mentioned polymer membrane having ion permeability and the microporous film having a small pore size may be used alone, but may be used in combination by laminating them with a non-woven fabric, if necessary. I don't care. Examples of the polymer fiber that can be used as the nonwoven fabric include vinylon fiber, vinylon fiber, polyamide fiber, hydrophilized polypropylene, hydrophilized polyethylene, rayon, linter pulp, and mercerized pulp as single fibers. Also, a composite of the above-mentioned single fibers can be used, and examples thereof include a polyolefin-rayon nonwoven fabric, a vinylon-rayon nonwoven fabric, and a composite fiber of hydrophilic polyethylene-hydrophilic polypropylene. In addition, as a non-woven fabric, a hydrophilic treated product of a core-sheath type composite fiber (polypropylene for the core material and polyethylene for the sheath material) can also be used.

【0018】上記のように、セパレータとして微細粒子
の透過を抑制する機能を有するフィルムを用いること
で、正極活物質の負極中への混入が抑制され信頼性の高
い電池を構成することが可能となる。
As described above, by using the film having the function of suppressing the permeation of fine particles as the separator, it is possible to suppress the mixing of the positive electrode active material into the negative electrode and form a highly reliable battery. Become.

【0019】また、正極合剤を中空円筒状の成型体とな
して電池缶内に挿入し、その中心部分にセパレータを介
して負極活物質を配したインサイドアウト型の電池とし
て構成することで、更なる低コスト化を図ることができ
る。
Further, by forming the positive electrode mixture into a hollow cylindrical molded body and inserting the positive electrode mixture into a battery can, the negative electrode active material is arranged in the center of the positive electrode mixture through a separator to form an inside-out type battery, Further cost reduction can be achieved.

【0020】[0020]

【発明の実施の形態】以下に、本発明に係るアルカリ一
次電池の好適な実施形態例について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the alkaline primary battery according to the present invention will be described below.

【0021】《第1実施形態》 ===正極の作製=== ニッケルとコバルトと亜鉛とのそれぞれの原子量比率が
所定の比率となるように、硫酸ニッケルと硫酸コバルト
と硫酸亜鉛とを混合した混合溶液1000mlを30℃
に保持した状態の反応槽中で、pHが11となるように
水酸化ナトリウム水溶液を加えて攪拌する。1時間程度
攪拌した後、生成した沈殿物をろ過して取り出し、水洗
により洗浄を行う。洗浄後、常温で真空乾燥させて粉体
サンプルを得る。
First Embodiment === Preparation of Positive Electrode === Nickel sulfate, cobalt sulfate, and zinc sulfate were mixed so that the atomic weight ratios of nickel, cobalt, and zinc were predetermined ratios. 1000 ml of mixed solution at 30 ° C
In the reaction tank kept in the above condition, an aqueous sodium hydroxide solution is added so that the pH becomes 11, and the mixture is stirred. After stirring for about 1 hour, the generated precipitate is filtered out and washed with water. After washing, vacuum drying is performed at room temperature to obtain a powder sample.

【0022】次いで、10モル/lの水酸化ナトリウム
水溶液に上記の粉体サンプルを100g加えて攪拌し、
溶液温度を30℃〜60℃に保つ。前記溶液を攪拌しな
がら、10重量%の次亜塩素酸ナトリウム水溶液500
mlを加えていき、1時間程度の攪拌を行った後、沈殿
物をろ過により取り出し、水洗による洗浄を行った後、
60℃以下の温度にて真空乾燥を行う。
Next, 100 g of the above powder sample was added to a 10 mol / l sodium hydroxide aqueous solution and stirred,
Keep the solution temperature between 30 ° C and 60 ° C. While stirring the solution, 500 wt% aqueous solution of sodium hypochlorite 500
After adding ml, stirring for about 1 hour, the precipitate was taken out by filtration, washed with water, and then washed.
Vacuum drying is performed at a temperature of 60 ° C. or lower.

【0023】上記手法で得たオキシ水酸化ニッケル10
0重量%と、導電剤(黒鉛粉末)10重量%と、電解液
(40重量% 水酸化カリウム水溶液)5重量%とを混
合して、混合物を作製し、加圧成型を行うことで中空円
筒状の成形体を作製して正極とした。
Nickel oxyhydroxide 10 obtained by the above method
A hollow cylinder is prepared by mixing 0% by weight, 10% by weight of a conductive agent (graphite powder), and 5% by weight of an electrolytic solution (40% by weight potassium hydroxide aqueous solution) to prepare a mixture, and performing pressure molding. A shaped body was prepared and used as a positive electrode.

【0024】===負極の作製=== 負極活物質として、亜鉛粉末60重量%と、酸化亜鉛を
飽和状態で含む水酸化カリウム水溶液40重量%と、ア
クリル酸樹脂1重量%を加えてゲル状の亜鉛を作製し負
極とした。
=== Preparation of Negative Electrode === As a negative electrode active material, 60% by weight of zinc powder, 40% by weight of aqueous potassium hydroxide solution containing zinc oxide in a saturated state, and 1% by weight of acrylic acid resin were added to form a gel. -Shaped zinc was prepared and used as a negative electrode.

【0025】===セパレータの作製=== 親水性を備えて微細孔を有する高分子フィルムに従来の
ビニヨン−レーヨン不織布(厚さ:100μm、坪量:
30g/m)を積層し、各々の底側を閉じて内径が8
mmとなるように円筒状に2重巻き加工してセパレータ
を作製した。
=== Preparation of Separator === A conventional vinyl-rayon nonwoven fabric (thickness: 100 μm, basis weight:
30 g / m 2 ) and the bottom side of each is closed and the inner diameter is 8
The separator was manufactured by double-winding into a cylindrical shape so as to have a thickness of mm.

【0026】この実施形態では、上記高分子フィルムに
は、セロハン、親水化ポリエチレンフィルムを用
い、これらセロハン及び親水化ポリエチレンフィルムの
それぞれに上記ビニヨン・レーヨン不織布を積層して2
種類のセパレータを作成した。
In this embodiment, cellophane and a hydrophilized polyethylene film are used as the polymer film, and the vinylon / rayon nonwoven fabric is laminated on each of the cellophane and the hydrophilized polyethylene film.
Created a kind of separator.

【0027】ここで、上記セロハン及び親水化ポリエチ
レンフィルム、ビニヨン・レーヨン不織布をそれぞれ単
体で構成したセパレータに対するオキシ水酸化ニッケル
の透過性試験の結果を参考として表2に示す。なお、こ
の透過性試験は、セパレータの内径を8mmとなるよう
に円筒状に2重巻きして内部に固溶置換を行っていない
オキシ水酸化ニッケルの粉体を2g配し、当該円筒状セ
パレータの両端部を熱融着により封止することによって
内部に上記粉体を封入し、これを40重量%水酸化カリ
ウム電解液中に浸漬して、45℃下で10日間保存した
後、電解液中に含まれるニッケル量をプラズマ発光分析
により測定して、セパレータを透過したオキシ水酸化ニ
ッケル量を定量したものである。
Table 2 shows, as a reference, the results of the nickel oxyhydroxide permeability test conducted on the separator composed of the cellophane, the hydrophilized polyethylene film, and the vinylon / rayon nonwoven fabric. In this permeability test, 2 g of nickel oxyhydroxide powder not subjected to solid solution substitution was placed inside the separator so that the separator had an inner diameter of 8 mm and was double wound into a cylindrical shape. The above powder was sealed inside by sealing both ends by heat fusion, and the powder was immersed in a 40 wt% potassium hydroxide electrolytic solution and stored at 45 ° C. for 10 days. The amount of nickel oxyhydroxide that has passed through the separator is quantified by measuring the amount of nickel contained therein by plasma emission analysis.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示すように、従来のビニヨン・レー
ヨン不織布を透過したオキシ水酸化ニッケルの検出量を
100として相対値で示すと、セロハンでは40、親水
化ポリエチレンでは45となっており、透過性は半減し
ている。
As shown in Table 2, when the detected amount of nickel oxyhydroxide permeated through the conventional vinylon / rayon non-woven fabric is set to 100 and shown as a relative value, it is 40 for cellophane and 45 for hydrophilized polyethylene. The sex is halved.

【0030】===電池の作製=== 図1に示すように、上記正極成形体2を有底筒体状の電
池缶4内に密着させた状態で挿入配置するとともに、そ
の正極成形体2の内側に、上記セパレータ6を挿入配置
し、次に電解液として、40重量%K0H水溶液を注液
した後、このセパレータ6の内側の中心部分に負極8を
注入充填する。充填量は、正極理論容量:負極の理論容
量が1:1.1を満たすように正極量及び負極量を調整
した。また、上記電池缶4の開口は、集電子10、ガス
ケット12、負極蓋14が一体化された負極端子16を
用いて密閉し、目的とする単三サイズのアルカリ電池を
インサイドアウト型に作製した。
=== Production of Battery === As shown in FIG. 1, the positive electrode molded body 2 is inserted and arranged in a state of being closely attached to a battery can 4 having a bottomed cylindrical shape, and the positive electrode molded body is also placed. The separator 6 is inserted and arranged inside 2, and a 40 wt% K0H aqueous solution is injected as an electrolytic solution, and then the negative electrode 8 is injected and filled in the central portion inside the separator 6. The filling amount was adjusted so that the theoretical capacity of the positive electrode: the theoretical capacity of the negative electrode would be 1: 1.1. Further, the opening of the battery can 4 was sealed by using a negative electrode terminal 16 in which a current collector 10, a gasket 12 and a negative electrode lid 14 were integrated, and an intended AA size alkaline battery was produced as an inside-out type. .

【0031】====実施例==== 《第1実施形態》実施例1として、セパレータにセロハ
ンとビニヨン・レーヨン不織布とを積層したものを用い
た電池を上記手法で20個作製した。また、実施例2と
して、セパレータに親水化ポリエチレンフィルムとビニ
ヨン・レーヨン不織布とを積層したものを用いた電池を
同じく上記手法で20個作製した。さらに、比較例1と
してセパレータに従来のビニヨン・レーヨン不織布を用
いた電池も上記手法で20個作製した。
==== Example ==== << First Embodiment >> As Example 1, 20 batteries were manufactured by the above method using a separator in which cellophane and a vinylon / rayon nonwoven fabric were laminated. Also, as Example 2, 20 batteries were manufactured by the same method as above, using a separator obtained by laminating a hydrophilic polyethylene film and a vinylon / rayon nonwoven fabric. Further, as Comparative Example 1, 20 batteries using a conventional vinylon / rayon non-woven fabric as a separator were prepared by the above method.

【0032】そして、各実施例1,2と比較例1との全
ての電池を、90℃の恒温槽内に10日間保存し、保存
後の漏液数量を確認して電池の信頼性試験を行った。そ
の結果を表3に示す。
Then, all the batteries of Examples 1 and 2 and Comparative Example 1 were stored in a constant temperature bath at 90 ° C. for 10 days, and the number of leaked liquids after storage were confirmed to conduct a battery reliability test. went. The results are shown in Table 3.

【0033】[0033]

【表3】 [Table 3]

【0034】表3に示すように、親水性と微細孔を有し
た高分子フィルムとビニヨン・レーヨン不織布とを積層
したセパレータを用いている実施例1,2では、ともに
20個の全てに漏液の発生は見られず、全品が合格して
合格率は100%であったのに対し、ビニヨン・レーヨ
ン不織布のみのセパレータを用いた比較例1では、20
個中の13個に漏液が発生して合格数は7個だけであ
り、合格率は35%にすぎなかった。
As shown in Table 3, in Examples 1 and 2 in which a separator in which a polymer film having hydrophilicity and fine pores and a vinylon / rayon nonwoven fabric were laminated was used, liquid leakage was observed in all 20 pieces. No occurrence was observed, and all products passed and the pass rate was 100%, while in Comparative Example 1 using the separator made of the vinylon / rayon nonwoven fabric,
Liquid leakage occurred in 13 of the pieces and the number of passed pieces was only 7, and the pass rate was only 35%.

【0035】《第2実施形態》この第2実施形態のアル
カリ一次電池では、前記第1実施形態のアルカリ一次電
池に対し、その正極に用いる活物質に二酸化マンガンを
更に加えて変更した点以外は、全く同様の電池構成にし
て単三サイズのアルカリ電池を作製した。ここで、当該
オキシ水酸化ニッケルと二酸化マンガンとの混合比は7
5:25とした。
<< Second Embodiment >> The alkaline primary battery of the second embodiment is different from the alkaline primary battery of the first embodiment except that manganese dioxide is further added to the active material used for the positive electrode. An AA alkaline battery was manufactured with the same battery configuration. Here, the mixing ratio of the nickel oxyhydroxide and manganese dioxide is 7
It was set to 5:25.

【0036】そして、上記各実施例3〜4と比較例2と
に対し、前記第1実施形態と同様の信頼性試験を行っ
た。その結果を表4に示す。
Then, the same reliability test as in the first embodiment was conducted on each of the above Examples 3 to 4 and Comparative Example 2. The results are shown in Table 4.

【0037】[0037]

【表4】 [Table 4]

【0038】表4に示すように、正極合剤をオキシ水酸
化ニッケルと二酸化マンガンとの混合物とした場合で
も、親水性と微細孔を有した高分子フィルムとビニヨン
・レーヨン不織布とを積層したセパレータを用いている
実施例3,4では、ともに20個の全てに漏液の発生は
見られず、全品が合格して合格率100%であったのに
対し、ビニヨン・レーヨン不織布のみのセパレータを用
いた比較例2では、20個中の10個に漏液が発生して
合格数は10個だけであり、合格率は50%に過ぎなか
った。
As shown in Table 4, even when the positive electrode mixture is a mixture of nickel oxyhydroxide and manganese dioxide, a separator obtained by laminating a polymer film having hydrophilicity and fine pores and a vinylon / rayon nonwoven fabric is laminated. In Examples 3 and 4 in which No. 20 was used, no liquid leakage was observed, and all products passed and the pass rate was 100%. In Comparative Example 2 used, the liquid leakage occurred in 10 out of 20, and the number of passes was 10, and the pass rate was only 50%.

【0039】よって、オキシ水酸化ニッケルと二酸化マ
ンガンとを混合させて正極活物質に用いる場合にも、セ
パレータに親水性と微細孔とを有する高分子フィルムを
用いることが、電池信頼性を向上させる上で極めて有効
であることが判明した。
Therefore, even when nickel oxyhydroxide and manganese dioxide are mixed and used as the positive electrode active material, it is possible to improve battery reliability by using a polymer film having hydrophilicity and fine pores as the separator. It has been found to be extremely effective above.

【0040】また、第1実施形態及び第2実施形態のア
ルカリ一次電池はいずれも正極合剤を中空円筒状の成型
体2となして電池缶4内に挿入し、その中心部分にセパ
レータ6を介して負極活物質を配したインサイドアウト
型の電池として構成しており、このようなインサイドア
ウト型にすることで、電池の低コスト化を図ることがで
きる。
In each of the alkaline primary batteries of the first and second embodiments, the positive electrode mixture is made into a hollow cylindrical molded body 2 and inserted into the battery can 4, and the separator 6 is placed at the center thereof. The battery is configured as an inside-out type battery in which the negative electrode active material is arranged via the anode active material, and by using such an inside-out type battery, the cost of the battery can be reduced.

【0041】[0041]

【発明の効果】以上に説明したように、本発明によれ
ば、コバルトと亜鉛とを含有するオキシ水酸化ニッケル
を正極活物質にしてアルカリ一次電池を構成する場合
に、イオンの移動を可能となし得る程度の微細孔を有す
る高分子フィルムをセパレータとして用いることで、不
織布のみをセパレータに使用している場合に比べて、正
極活物質の負極側への混入を大幅に抑制することができ
るようになる。このため、負極側へのオキシ水酸化ニッ
ケルの混入に起因するガス発生を可及的に防止できるよ
うになり、もって漏液の発生を抑えて、電池の信頼性の
向上が図れるようになる。
As described above, according to the present invention, when nickel oxyhydroxide containing cobalt and zinc is used as a positive electrode active material to form an alkaline primary battery, it is possible to move ions. By using a polymer film having minute pores that can be made as a separator, it is possible to significantly suppress the mixing of the positive electrode active material into the negative electrode side compared to the case where only a nonwoven fabric is used for the separator. become. For this reason, it becomes possible to prevent the generation of gas due to the mixing of nickel oxyhydroxide on the negative electrode side as much as possible, thereby suppressing the occurrence of liquid leakage and improving the reliability of the battery.

【0042】また、正極合剤を中空円筒状の成型体とな
して電池缶内に挿入し、その中心部分にセパレータを介
して負極活物質を配したインサイドアウト型の電池とし
て構成することで、低コスト化を図ることができる。
Further, by forming the positive electrode mixture into a hollow cylindrical molded body and inserting it into the battery can, and constituting the inside-out type battery in which the negative electrode active material is arranged in the center portion thereof via the separator, Cost reduction can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアルカリ一次電池の縦断面図であ
る。
FIG. 1 is a vertical sectional view of an alkaline primary battery according to the present invention.

【符号の説明】[Explanation of symbols]

2 正極成形体 4 電池缶 6 セパレータ 8 負極 10 集電子 12 ガスケット 14 負極蓋 16 負極端子 2 Positive electrode molding 4 battery cans 6 separator 8 Negative electrode 10 Collective Electronics 12 gasket 14 Negative electrode lid 16 Negative electrode terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/52 H01M 4/52 (72)発明者 中村 光宏 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 (72)発明者 鷺坂 博人 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 (72)発明者 宮崎 武志 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 Fターム(参考) 5H021 AA02 CC04 EE02 5H024 AA01 CC02 CC06 CC07 DD09 DD14 EE09 FF31 FF34 5H050 AA02 AA09 AA10 AA15 AA20 BA04 CA03 CA30 CB13 DA19 EA23 FA07 FA15 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 4/52 H01M 4/52 (72) Inventor Mitsuhiro Nakamura 5 36-11 Shinbashi, Minato-ku, Tokyo F・ D-K Co., Ltd. (72) Inventor Hiroto Sagisaka 5-36-11 Shimbashi, Minato-ku, Tokyo F-D-K Co., Ltd. (72) Inventor Takeshi Miyazaki Shimbashi, Minato-ku, Tokyo 5th 36th-11th F-D-K Co., Ltd. F-term (reference) 5H021 AA02 CC04 EE02 5H024 AA01 CC02 CC06 CC07 DD09 DD14 EE09 FF31 FF34 5H050 AA02 AA09 AA10 AA15 AA20 BA04 CA03 CA30 CB13 DA15 EA23 FA07 FA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極合剤中に正極活物質としてオキシ水
酸化ニッケルを含み、セパレータを介して負極活物質で
ある亜鉛を配したアルカリ一次電池であって、該オキシ
水酸化ニッケルはコバルトと亜鉛とを同時に固溶置換元
素として含有し、且つ、該セパレータが微細孔を有する
高分子フィルムで構成されていることを特徴とするアル
カリ一次電池。
1. An alkaline primary battery in which a positive electrode mixture contains nickel oxyhydroxide as a positive electrode active material, and zinc as a negative electrode active material is arranged through a separator, wherein the nickel oxyhydroxide is cobalt and zinc. An alkaline primary battery, which contains, as a solid solution substitution element at the same time, and the separator is composed of a polymer film having fine pores.
【請求項2】 正極活物質にオキシ水酸化ニッケルと二
酸化マンガンとの混合物を用い、セパレータを介して負
極活物質である亜鉛を配したアルカリ一次電池であっ
て、該オキシ水酸化ニッケルがコバルトと亜鉛とを同時
に固溶置換元素として含有し、且つ、該セパレータが微
細孔を有する高分子フィルムで構成されていることを特
徴とするアルカリ一次電池。
2. An alkaline primary battery in which a mixture of nickel oxyhydroxide and manganese dioxide is used as a positive electrode active material and zinc, which is a negative electrode active material, is arranged through a separator, wherein the nickel oxyhydroxide is cobalt. An alkaline primary battery comprising zinc and a solid solution substitution element at the same time, and the separator is composed of a polymer film having fine pores.
【請求項3】 前記セパレータの高分子フィルムが親水
性を有していることを特徴とする請求項1または2のい
ずれかに記載のアルカリ一次電池。
3. The alkaline primary battery according to claim 1, wherein the polymer film of the separator has hydrophilicity.
【請求項4】 前記セパレータが前記高分子フィルムと
不織布との積層構造を有していることを特徴とする請求
項1〜3のいずれかに記載のアルカリ一次電池。
4. The alkaline primary battery according to claim 1, wherein the separator has a laminated structure of the polymer film and a nonwoven fabric.
【請求項5】 前記正極活物質が中空円筒状の成形体に
形成されるとともに、該正極活物質成形体の中心にセパ
レータを介して前記負極活物質の亜鉛が配置されてイン
サイドアウト型に構成されていることを特徴とする請求
項1〜4のいずれかに記載のアルカリ一次電池。
5. The inside-out type structure in which the positive electrode active material is formed into a hollow cylindrical molded body, and the zinc of the negative electrode active material is disposed in the center of the positive electrode active material molded body via a separator. The alkaline primary battery according to any one of claims 1 to 4, wherein
JP2002061385A 2002-03-07 2002-03-07 Alkaline primary battery Expired - Lifetime JP4119657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061385A JP4119657B2 (en) 2002-03-07 2002-03-07 Alkaline primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061385A JP4119657B2 (en) 2002-03-07 2002-03-07 Alkaline primary battery

Publications (2)

Publication Number Publication Date
JP2003257440A true JP2003257440A (en) 2003-09-12
JP4119657B2 JP4119657B2 (en) 2008-07-16

Family

ID=28670307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061385A Expired - Lifetime JP4119657B2 (en) 2002-03-07 2002-03-07 Alkaline primary battery

Country Status (1)

Country Link
JP (1) JP4119657B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045958A1 (en) * 2003-11-06 2005-05-19 Matsushita Electric Industrial Co., Ltd. Alkaline battery and positive electrode material for alkaline battery
CN100383997C (en) * 2003-11-06 2008-04-23 松下电器产业株式会社 Alkaline battery and positive electrode material for alkaline battery
JP2008282660A (en) * 2007-05-10 2008-11-20 Seiko Instruments Inc Flat alkaline primary battery
JP2009064672A (en) * 2007-09-06 2009-03-26 Seiko Instruments Inc Flat type alkaline primary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045958A1 (en) * 2003-11-06 2005-05-19 Matsushita Electric Industrial Co., Ltd. Alkaline battery and positive electrode material for alkaline battery
CN100383997C (en) * 2003-11-06 2008-04-23 松下电器产业株式会社 Alkaline battery and positive electrode material for alkaline battery
US7718315B2 (en) 2003-11-06 2010-05-18 Panasonic Corporation Alkaline battery and positive electrode material for alkaline battery comprising nickel oxyhydroxide and manganese dioxide
JP2008282660A (en) * 2007-05-10 2008-11-20 Seiko Instruments Inc Flat alkaline primary battery
JP2009064672A (en) * 2007-09-06 2009-03-26 Seiko Instruments Inc Flat type alkaline primary battery

Also Published As

Publication number Publication date
JP4119657B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US6492059B1 (en) Separator for sealed lead-acid battery
CN111201661A (en) Zinc secondary battery
JP3040041B2 (en) Alkaline secondary battery and method of manufacturing the same
JP2003257440A (en) Alkaline primary battery
JPH08273653A (en) Separator for alkaline battery and alkaline battery
JP3287367B2 (en) Sealed nickel zinc battery
JP2673336B2 (en) Air-metal hydride secondary battery
US4000005A (en) Method for making a nickel positive electrode for an alkaline battery
JP4253172B2 (en) Sealed nickel zinc primary battery
JPS63500835A (en) electrodes and electrochemical cells
JP2019139986A (en) Negative electrode for zinc battery and zinc battery
JP3436058B2 (en) Alkaline storage battery
JP3708350B2 (en) Sintered nickel positive electrode for alkaline storage battery
JP2000331665A (en) Separator for alkali-manganese battery
JPH06111847A (en) Closed nickel-hydrogen battery
JPH06140018A (en) Separator for alkali battery and its manufacture
JP2000113871A (en) Alkaline secondary battery
JP2021185560A (en) Negative electrode for zinc battery and zinc battery
JP2003022792A (en) Separator for battery and secondary battery
JPH07134980A (en) Alkaline secondary battery and its manufacture
JP2003031198A (en) Separator for cell
JP2021185559A (en) Negative electrode for zinc battery and zinc battery
JPH0729559A (en) Separator for alkaline battery
JP3118803B2 (en) Nickel / zinc battery
JPH02253573A (en) Air battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Ref document number: 4119657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term