JPH09237620A - Sealed battery and manufacture thereof - Google Patents

Sealed battery and manufacture thereof

Info

Publication number
JPH09237620A
JPH09237620A JP8041592A JP4159296A JPH09237620A JP H09237620 A JPH09237620 A JP H09237620A JP 8041592 A JP8041592 A JP 8041592A JP 4159296 A JP4159296 A JP 4159296A JP H09237620 A JPH09237620 A JP H09237620A
Authority
JP
Japan
Prior art keywords
battery
resin
valve body
safety valve
valve device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8041592A
Other languages
Japanese (ja)
Other versions
JP3027932B2 (en
Inventor
Yoshitaka Matsumasa
義高 松政
Jiro Onagawa
治郎 小名川
Mitsuru Namihana
満 浪花
Norio Suzuki
憲男 鈴木
Toshihisa Hiroshima
敏久 広島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12612693&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09237620(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8041592A priority Critical patent/JP3027932B2/en
Priority to EP96307168A priority patent/EP0793283B1/en
Priority to DE69622525T priority patent/DE69622525T2/en
Priority to US08/758,830 priority patent/US5712056A/en
Publication of JPH09237620A publication Critical patent/JPH09237620A/en
Application granted granted Critical
Publication of JP3027932B2 publication Critical patent/JP3027932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate hazardousness of a burst or the like of a battery due to a rise of its internal pressure, by stably maintaining a valve operating pressure over a long period even when a valve unit is thin in its thickness, so that the battery can follow up even to changing of its internal pressure according to a rapid temperature rise, in a safety valve device formed into a thin type for the sealed battery. SOLUTION: As an elastic valve unit 7 for a safety valve device, after mixing an olefin system resin or the like with an ethylene propylene rubber material (EPDM), the EPDM crosslinkaged is used simultaneously with molding in a prescribed shape, the material, setting its thickness to 1.0mm or more, is compressed 10 to 50% in a thickness direction, to be arranged in a valve chamber 6, so that forming into a thin type is made capable of the safety valve device. A valve operating pressure is decreased against a rise of internal pressure according to a rapid temperature rise of a battery, so as to make exhaust power follow up, high safety and reliability are obtained as the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池としての安全
性を高めた密閉型電池に関し、より詳しくは電池容器を
密閉する安全弁装置の薄型化と、高温時に電池内で異常
発生するガスの排気能力の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed battery having improved safety as a battery, and more specifically, a safety valve device for sealing a battery container is made thinner, and a gas which is abnormally generated in the battery at high temperature is exhausted. It is about improving abilities.

【0002】[0002]

【従来の技術】近年、各種携帯機器の普及に伴い電池、
特に再充電可能な二次電池が広い分野で利用されてい
る。これら機器に使用される電池として、従来より鉛蓄
電池、ニッケル・カドミウム蓄電池が用いられてきた
が、新たにニッケル・水素蓄電池やリチウム二次電池な
どが加わってきた。
2. Description of the Related Art In recent years, with the spread of various portable devices, batteries,
In particular, rechargeable secondary batteries are widely used. Conventionally, lead storage batteries and nickel-cadmium storage batteries have been used as batteries used in these devices, but nickel-hydrogen storage batteries and lithium secondary batteries have been newly added.

【0003】これらの再充電可能な電池の中で、鉛蓄電
池、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電
池等の水溶液系電解液を用いている電池では、いわゆる
ノイマン方式によって電池内部で発生するガスを対極で
消費することにより、電池の密閉化を可能にしている。
Among these rechargeable batteries, in batteries using an aqueous electrolyte such as a lead storage battery, a nickel-cadmium storage battery and a nickel-hydrogen storage battery, the gas generated inside the battery is produced by the so-called Neumann method. By consuming on the opposite electrode, the battery can be sealed.

【0004】一方、リチウム二次電池など非水系電解液
を用いた電池ではガスの電池内部での消失ができないた
め、過充電や過放電を避けることでその密閉化を図って
きた。
On the other hand, in a battery using a non-aqueous electrolyte such as a lithium secondary battery, gas cannot be lost inside the battery, and therefore, overcharging and overdischarging have been avoided to achieve hermetic sealing.

【0005】しかし、充電器の故障や、電池の誤使用、
外部短絡などに起因した異常事態に陥った時、電池の内
圧が異常に上昇し破裂に至ることがある。この電池の破
裂を防止するために二次電池では、通常電池の内圧が予
め設定された値を越えた場合に、電池内部に発生したガ
スを外部に放出するように安全弁装置を備えている。
However, failure of the charger, misuse of the battery,
When an abnormal situation occurs due to an external short circuit or the like, the internal pressure of the battery may rise abnormally and lead to rupture. In order to prevent the battery from bursting, the secondary battery is usually equipped with a safety valve device so that the gas generated inside the battery is released to the outside when the internal pressure of the battery exceeds a preset value.

【0006】以下、安全弁装置を有する密閉型電池につ
いて説明する。図4は一般的な密閉型電池の上部縦断面
図の一例である。この図4において、電池容器である金
属製ケース1は、ケース1の上部に電気的絶縁と気密保
持の役割を果たすガスケット3を介して、中央部にガス
通気孔2aを形成した金属製の皿状封口板2をカシメ加
工により固定している。上記ケース1の内部には、詳細
な図示は行っていないが、セパレータを介して正極板と
負極板とを重ね合わせて渦巻状に捲回した極板群とアル
カリ電解液からなる発電要素4が収納されている。さら
に、この皿状封口板2の上側には、安全弁装置を構成す
るためにも用いられるキャップ状の正極端子5が一体に
設けられている。この正極端子5は、フランジ部分のあ
るキャップ状をなしていて、その一部にはガス排気口5
aが形成されている。この正極端子5と封口板2とに囲
まれた空間に弁室6が形成されており、この弁室6に弾
性弁体7を圧縮した状態で内蔵している。この弾性弁体
7としては、金属バネやゴムの弾性を利用したものが一
般的である。
Hereinafter, a sealed battery having a safety valve device will be described. FIG. 4 is an example of a vertical cross-sectional view of an upper portion of a general sealed battery. In FIG. 4, a metal case 1 which is a battery container is a metal dish having a gas vent hole 2a formed in the center through a gasket 3 which plays a role of electrical insulation and airtightness in the upper part of the case 1. The sealing plate 2 is fixed by crimping. Although not shown in detail in the inside of the case 1, a power generating element 4 including an electrode plate group in which a positive electrode plate and a negative electrode plate are superposed on each other via a separator and spirally wound, and an alkaline electrolyte are provided. It is stored. Further, on the upper side of the dish-shaped sealing plate 2, there is integrally provided a cap-shaped positive electrode terminal 5 which is also used for constituting a safety valve device. The positive electrode terminal 5 has a cap shape having a flange portion, and a gas exhaust port 5 is provided in a part thereof.
a is formed. A valve chamber 6 is formed in a space surrounded by the positive electrode terminal 5 and the sealing plate 2, and an elastic valve body 7 is housed in the valve chamber 6 in a compressed state. The elastic valve body 7 is generally one that utilizes the elasticity of a metal spring or rubber.

【0007】以上のような構成を有する密閉型電池にお
いて、充電器の故障による過大な充電電流の流入や、転
極を伴うような過放電などに起因して電池の内圧上昇が
生じた場合、高圧状態となったガスは、ガス通気孔2a
から弾性弁体に作用してこれを押し上げ、正極端子5の
ガス排気口5aから外部へ排出される。
In the sealed battery having the above structure, when the internal pressure of the battery rises due to an excessive inflow of charging current due to a failure of the charger or an over-discharging accompanied by the reversal of polarity, The gas in the high pressure state is supplied to the gas vent 2a.
Acts on the elastic valve element and pushes it up, and the elastic valve element is discharged to the outside from the gas exhaust port 5a of the positive electrode terminal 5.

【0008】通常、用いられている上記の安全弁装置
は、電池の内圧が10kg/cm2以上に達したとき
に、ガスが外部に放出されるように設定されている。従
って、急激なガス発生を伴わない程度の過充電が行われ
た場合は、負極のガス吸収能力が低下するにつれて電池
内圧は上昇する。この時、電池内部のガスが外部に放出
されても問題なく、充電が停止され、電池の内圧が下が
れば、安全弁装置は元の形に戻り、再び使用可能になる
ようにしている。また、急速充電を可能にするためには
安全弁の定格許容圧力を20kg/cm2程度まで高め
ることもある。その定格許容圧力の設定方法としては、
弁体を構成する弾性体の硬度を高めたり、あるいは弁体
の圧縮率を大きくすることによって行われる。
Normally, the above-mentioned safety valve device used is set so that gas is released to the outside when the internal pressure of the battery reaches 10 kg / cm 2 or more. Therefore, when overcharging is performed to such an extent that abrupt gas generation does not occur, the internal pressure of the battery increases as the gas absorption capacity of the negative electrode decreases. At this time, even if the gas inside the battery is released to the outside, there is no problem, and if the charging is stopped and the internal pressure of the battery drops, the safety valve device returns to its original shape and becomes usable again. Further, the rated allowable pressure of the safety valve may be increased to about 20 kg / cm 2 in order to enable rapid charging. To set the rated allowable pressure,
This is performed by increasing the hardness of the elastic body forming the valve body or increasing the compression rate of the valve body.

【0009】[0009]

【発明が解決しようとする課題】以上のような構造およ
び機能を有する安全弁装置に対して、近年電池の使用さ
れる機器の多機能化に伴う消費電力の増加から電池の高
容量化が要望されており、その高容量化の手段の一つと
して前記安全弁装置の薄型化が要望されている。安全弁
装置の薄型化は、実質的な電池内容積を増加させ、その
分だけ図4に示す発電要素4の容積を増加することによ
り電池の高容量化が図れる。図5に安全弁装置を薄型化
した密閉型電池の上部縦断面図の一例を示す。
With respect to the safety valve device having the structure and function as described above, it has been demanded to increase the capacity of the battery due to the increase in power consumption accompanying the multifunctionalization of the equipment in which the battery is used in recent years. Therefore, the safety valve device is required to be thin as one of means for increasing the capacity. When the safety valve device is made thin, the internal volume of the battery is substantially increased, and the capacity of the power generation element 4 shown in FIG. 4 is increased by that amount, so that the capacity of the battery can be increased. FIG. 5 shows an example of an upper vertical cross-sectional view of a sealed battery in which the safety valve device is thinned.

【0010】この図5において、発電要素を収容した電
池容器である金属製ケース1の開口部は、電気的絶縁と
気密保持の役割を果たすガスケット3を介して、高さの
低い薄型の安全弁装置で密閉されている。
In FIG. 5, an opening of a metal case 1 which is a battery container accommodating a power generating element has a low height and a thin safety valve device via a gasket 3 which plays a role of electrical insulation and airtightness. It is sealed with.

【0011】薄型の安全弁装置は、浅い皿状の封口板2
と、その上面中央部に溶接された背の低いキャップ状正
極端子5と、この両者間に設けられた高さの低い弁室6
内に圧縮状態で収容された厚み的に薄い弾性弁体7から
構成されている。
The thin safety valve device has a shallow plate-like sealing plate 2.
And a short cap-shaped positive electrode terminal 5 welded to the central portion of the upper surface thereof, and a valve chamber 6 of low height provided between them.
It is composed of a thin elastic valve body 7 housed inside in a compressed state.

【0012】しかしこのように安全弁装置を薄型化する
ことにより、電池に設定値以上の電流が流れ込み、ガス
の異常発生が生じたときには、弁室内の圧縮状態の弾性
弁体がガスで加圧されて排気のために変形しようとする
が、弁室内に十分な余裕空間は無く、その変形量が小さ
いためにガス排気口からの排出速度が電池内部でのガス
の発生速度に追いつけない。そのため電池内圧は急激に
上昇して破裂に至る。また電池内部の温度上昇によって
も、弾性ゴム弁体が余裕空間の少ない弁室一杯に熱膨脹
して本来の弁体動作機能(排気機能)が維持できなくな
り、上記同様に電池内圧が上昇して破裂に至る。
However, by making the safety valve device thin in this way, when a current more than a set value flows into the battery and an abnormality occurs in the gas, the compressed elastic valve element in the valve chamber is pressurized with the gas. However, since the valve chamber does not have a sufficient margin space and the amount of deformation is small, the discharge rate from the gas exhaust port cannot keep up with the gas generation rate inside the battery. Therefore, the internal pressure of the battery rises sharply, leading to rupture. In addition, even if the temperature inside the battery rises, the elastic rubber valve body thermally expands to fill the valve chamber with less space, and the original valve body operating function (exhaust function) cannot be maintained. Leading to.

【0013】この点に関して特開平5−41204号公
報では、火中に電池を投じた際の安全性を確保するため
に、パッキング材もしくは安全弁体のうちの少なくとも
一方の融点を270℃以下にすることが記載されてい
る。しかし、この公報に記載された発明は、薄型化した
安全弁装置を意図していない。
In this regard, in Japanese Patent Laid-Open No. 41204/1993, the melting point of at least one of the packing material and the safety valve body is set to 270 ° C. or less in order to ensure safety when the battery is thrown into a fire. Is described. However, the invention described in this publication does not intend to make the safety valve device thin.

【0014】また弾性弁体材料としては天然ゴム,SB
Rゴム,エチレンプロピレンゴムなどが提案されてい
る。このうちではエチレンプロピレンゴムが最も優れて
はいるが、それでも主に酸化によって次第にゴム弾性を
失っていく。このゴム弾性の経時変化により、安全弁装
置の弁作動圧力は低下するため、電解液の漏出抑止など
長期信頼性を確保するための弁作動圧力の設定が困難で
あった。
As the elastic valve body material, natural rubber, SB
R rubber and ethylene propylene rubber have been proposed. Of these, ethylene-propylene rubber is the most excellent, but it gradually loses rubber elasticity mainly due to oxidation. Since the valve operating pressure of the safety valve device is lowered due to the change of rubber elasticity with time, it is difficult to set the valve operating pressure for ensuring long-term reliability such as prevention of leakage of electrolyte.

【0015】本発明は、弾性弁体材料を改良して弁体お
よび安全弁装置としての薄型化を可能にし、弁作動圧力
を長期間にわたって安定に維持できる信頼性を確保し、
電池の急激な温度上昇を伴う内圧の変化にも追従でき、
内圧上昇により生じる破裂等の安全性の問題を解消でき
る密閉型電池を提供することを目的としている。
According to the present invention, the elastic valve body material is improved so that the valve body and the safety valve device can be made thinner, and the reliability that the valve operating pressure can be stably maintained for a long period of time is ensured.
It can follow changes in internal pressure that accompany a sudden temperature rise in the battery,
It is an object of the present invention to provide a sealed battery that can solve safety problems such as rupture caused by an increase in internal pressure.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に本発明では安全弁装置の弾性弁体として、オレフィン
系樹脂,スチレン系樹脂,アミド系樹脂およびフッ素系
樹脂のうちから選ばれた少なくとも1種類の樹脂(以下
RESINという)とエチレンプロピレンゴム原料(以
下EPDMという)を混合後、成型するのと同時に架橋
したものを用いた。
In order to achieve the above object, in the present invention, at least one selected from an olefin resin, a styrene resin, an amide resin and a fluorine resin is used as an elastic valve body of a safety valve device. A resin (hereinafter referred to as RESIN) of a type and an ethylene propylene rubber raw material (hereinafter referred to as EPDM) were mixed, and then molded and crosslinked at the same time.

【0017】従って本発明での弾性弁体は、基本的には
EPDMがそれよりも軟化温度の低いRESINをその
内部に取り込んだ構造になっている。この場合RESI
Nの混入量はEPDMに対して5〜30重量%が好適で
ある。
Therefore, the elastic valve body of the present invention basically has a structure in which RESIN having a softening temperature lower than that of EPDM is incorporated therein. In this case RESI
The amount of N mixed in is preferably 5 to 30% by weight with respect to EPDM.

【0018】このような組成にすることで、100〜1
20℃の高温下における安全弁装置の弁作動圧力を、常
温下でのそれの60〜20%に低下するように設定した
ものである。
With such a composition, 100 to 1
The valve operating pressure of the safety valve device at a high temperature of 20 ° C. is set to be 60 to 20% of that at a normal temperature.

【0019】また薄型安全弁装置の安定した定格許容圧
力を得るため、弾性弁体は1.0mm以上の厚みとし、
その厚み方向に10〜50%圧縮して安全弁装置の弁室
空間内に配置したものである。
In order to obtain a stable rated allowable pressure of the thin safety valve device, the elastic valve element has a thickness of 1.0 mm or more,
It is arranged in the valve chamber space of the safety valve device after being compressed by 10 to 50% in the thickness direction.

【0020】[0020]

【発明の実施の形態】請求項1に記載の本発明の弾性弁
体は、熱可塑性をもった硬質相(RESIN相)と、弾
性を付与する軟質相(EPDM相)とからなる。従って
電池に設定値以上の大電流が流れ、これにより電池温度
が上昇してガスの異常発生が生じた場合に、この硬質相
が軟化することにより、弾性弁体としての作動圧力が低
下し、実質的にガス排気口からのガス排出速度が大きく
なる。このガス排出速度が内部ガス発生速度に追従する
ことで電池内圧の上昇を抑えて、電池の破裂を防止する
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The elastic valve body of the present invention as defined in claim 1 comprises a hard phase (RESIN phase) having thermoplasticity and a soft phase (EPDM phase) imparting elasticity. Therefore, when a large current of a set value or more flows in the battery, which causes the battery temperature to rise and an abnormal gas to occur, the hard phase is softened, and the operating pressure of the elastic valve body decreases. The gas discharge rate from the gas outlet is substantially increased. Since the gas discharge rate follows the internal gas generation rate, it is possible to prevent the battery internal pressure from rising and prevent the battery from bursting.

【0021】また、EPDMはRESINと混合後、弁
体としての所定形状に成型するのと同時に架橋されてい
るので高温時にRESINが軟化してもエチレンプロピ
レゴムの架橋構造は維持されるため、このエチレンプロ
ピレゴムの働きで弁作動圧力の過度の低下が防止され、
弁作動後はガス排気口が再び閉じられ外気が電池内に流
入することはない。これにより、特にニッケル・水素蓄
電池やリチウム二次電池などでは、外部からの空気や酸
素の電池内への流入に起因する発火を防止できる。
Since EPDM, after being mixed with RESIN, is molded into a predetermined shape as a valve body and simultaneously crosslinked, the crosslinked structure of ethylene propylene rubber is maintained even if RESIN is softened at high temperature. This ethylene propylene rubber prevents excessive reduction of valve operating pressure,
After the valve is actuated, the gas exhaust port is closed again and the outside air does not flow into the battery. This makes it possible to prevent ignition due to inflow of air or oxygen from the outside into the battery, particularly in nickel-hydrogen storage batteries and lithium secondary batteries.

【0022】さらに、弾性弁体がRESINとEPDM
との混合物であるため、酸素分子が弾性弁体の表面から
内部に浸透しにくく、酸化劣化に伴うエチレンプロピレ
ンゴムの架橋構造の破壊が抑制され、弁作動圧力の長期
にわたる安定化、すなわち信頼性の確保が可能となる。
Further, the elastic valve body is made of RESIN and EPDM.
Since it is a mixture with, it is difficult for oxygen molecules to permeate from the surface of the elastic valve body to the inside, and the destruction of the cross-linked structure of ethylene propylene rubber due to oxidative deterioration is suppressed, stabilizing the valve operating pressure for a long time, that is, reliability. Can be secured.

【0023】請求項3に記載の発明は、RESINのE
PDMに対する混合比率を規定したものである。RES
INの混合比率が5重量%以上であれば、混合後EPD
Mを架橋し弾性弁体として安全弁装置を構成したとき、
電池に設定値以上の大電流が流れ、電池温度が上昇して
ガスの異常発生が生じた場合にも、この硬質相が熱によ
り軟化することにより、弾性弁体としての作動圧力が低
下し、実質的にガス排気口からのガス排出速度が大きく
なる。このガス排出速度が内部ガス発生速度に追従する
ことで電池内圧の上昇を抑えて、電池の破裂を防止する
ことができる。さらにRESINによるエチレンプロピ
レゴムの酸化抑制効果により、通常の使用温度範囲にお
ける弁作動圧力の低下を防止できる。
The invention according to claim 3 is the E of RESIN
It defines the mixing ratio for PDM. RES
If the mixing ratio of IN is 5% by weight or more, EPD after mixing
When the safety valve device is configured as an elastic valve body by bridging M,
Even if a large current exceeding the set value flows in the battery and the battery temperature rises and gas abnormalities occur, the hard phase is softened by heat, and the operating pressure as the elastic valve body decreases, The gas discharge rate from the gas outlet is substantially increased. Since the gas discharge rate follows the internal gas generation rate, it is possible to prevent the battery internal pressure from rising and prevent the battery from bursting. Furthermore, due to the effect of RESIN to suppress the oxidation of ethylene propylene rubber, it is possible to prevent a decrease in valve operating pressure in a normal operating temperature range.

【0024】一方、混合比率が30重量%以上になる
と、混合後EPDMを架橋し弾性弁体として安全弁装置
を構成した際、電池に設定値以上の大電流が流れて電池
温度が上昇した場合に、多量の硬質相が熱で軟化して過
度に弁作動圧力が低下し弁作動後にガス排気口が開放状
態となる。このためニッケル・水素蓄電池などでは、空
気や酸素の外部からの電池内への流入により発火する。
したがって、RESINの混入量はEPDMに対して5
〜30重量%が望ましい。
On the other hand, when the mixing ratio is 30% by weight or more, when EPDM is crosslinked after mixing and a safety valve device is constructed as an elastic valve body, when a large current more than a set value flows into the battery and the battery temperature rises. A large amount of hard phase is softened by heat and the valve operating pressure is excessively lowered, and the gas exhaust port is opened after the valve is operated. Therefore, in nickel-hydrogen storage batteries, etc., they are ignited by the inflow of air or oxygen into the battery from the outside.
Therefore, the mixing amount of RESIN is 5 with respect to EPDM.
-30% by weight is desirable.

【0025】請求項8に記載の発明は弾性弁体を規定し
たものである。弁体の厚みは各種電池サイズに応じて変
化するが、1.0mm以上の厚みを有していれば上記弁
体組成とすることで、電池の異常使用時などでの急激な
温度上昇を伴う電池内圧の上昇にも排気を対応させるこ
とができ、安全弁装置としての薄型化を達成できる。
The invention according to claim 8 defines an elastic valve body. The thickness of the valve body varies depending on various battery sizes, but if the thickness is 1.0 mm or more, the valve body composition described above causes a rapid temperature rise when the battery is abnormally used. Exhaust gas can be handled even when the internal pressure of the battery rises, and the safety valve device can be made thin.

【0026】さらに弾性弁体の厚み方向への圧縮率につ
いては、10%未満に設定した場合には安全弁装置とし
ての密閉性(閉塞性)を確保できない。すなわち電池電
解液の漏液を生じる。また50%以上に弾性弁体の圧縮
率を上げた場合にはゴムの弾性限界を越えるため弾性体
としての機能を損ない安全弁装置としての排気能力を失
う。従って弾性弁体の圧縮率は、10〜50%が望まし
い。
Further, when the compression ratio of the elastic valve body in the thickness direction is set to less than 10%, the sealing property (closure property) of the safety valve device cannot be secured. That is, the battery electrolyte leaks. Further, when the compression rate of the elastic valve body is increased to 50% or more, the elastic limit of rubber is exceeded, so that the function as an elastic body is impaired and the exhausting ability of the safety valve device is lost. Therefore, the compression rate of the elastic valve body is preferably 10 to 50%.

【0027】[0027]

【実施例】以下、本発明の実施例について、図5を引用
しながら説明する。図5は安全弁装置を薄型化した密閉
型電池の上部縦断面図である。その構造は封口板2に安
全弁装置を構成するためにも用いられるキャップ状の正
極端子5が設けられている。この正極端子5は、キャッ
プ状をなしており、その一部にガス排気口5aが形成さ
れている。正極端子5と封口板2とに囲まれた空間に弁
室6が形成されており、この弁室6内に弾性弁体7を圧
縮された状態で配置されている。
Embodiments of the present invention will be described below with reference to FIG. FIG. 5 is a vertical cross-sectional view of an upper portion of a sealed battery in which the safety valve device is thinned. The structure is such that the sealing plate 2 is provided with a cap-shaped positive electrode terminal 5 which is also used for forming a safety valve device. The positive electrode terminal 5 has a cap shape, and a gas exhaust port 5a is formed in a part thereof. A valve chamber 6 is formed in a space surrounded by the positive electrode terminal 5 and the sealing plate 2, and an elastic valve body 7 is arranged in the valve chamber 6 in a compressed state.

【0028】(実施例1)図5に示す薄型化した安全弁
装置を構成し、その弁体7のRESINとEPDMとの
混合比率についての検討を行った。
(Example 1) A thin safety valve device shown in FIG. 5 was constructed, and the mixing ratio of RESIN and EPDM of the valve body 7 was examined.

【0029】RESINをEPDMに対して30重量
%,15重量%,5重量%の割合で混合し、これに加硫
剤を加えて弁体形状に成型するのと同時に約180℃の
温度で約5分間加熱して架橋処理した弾性弁体をそれぞ
れ作成した。そしてこれらの弁体を用いて薄型化した安
全弁装置A,BおよびCを構成した。なおRESIN成
分にはオレフィン系樹脂であるポリプロピレンを用い
た。
RESIN was mixed with EPDM at a ratio of 30% by weight, 15% by weight and 5% by weight, and a vulcanizing agent was added thereto to form a valve body, and at the same time, at a temperature of about 180 ° C. Resilient valve bodies that were crosslinked by heating for 5 minutes were prepared. Using these valve elements, safety valve devices A, B and C which are made thin are constructed. Note that polypropylene, which is an olefin resin, was used as the RESIN component.

【0030】また比較例としてRESINをEPDMに
対して50重量%の割合で混合し、弁体形状に成型する
のと同時に架橋処理した弾性弁体を用いた安全弁装置D
を、従来例としてEPDMのみから作成した弾性弁体を
用いた安全弁装置Eをそれぞれ構成した。なお上記A〜
Eの弾性弁体はすべてその厚みを2.0mmとし、安全
弁装置を構成する際に圧縮率30%とした。これは従来
の安全弁装置に用いる弾性弁体の厚みを4.0mmとす
ると、弁体厚みにして50%薄型化したものである。
As a comparative example, RESIN was mixed in a proportion of 50% by weight with respect to EPDM, molded into a valve body shape, and at the same time, a safety valve device D using a crosslinked elastic valve body was used.
As a conventional example, a safety valve device E using an elastic valve element made only from EPDM was constructed. In addition, the above A ~
The elastic valve bodies of E all had a thickness of 2.0 mm and a compression rate of 30% when the safety valve device was constructed. When the thickness of the elastic valve element used in the conventional safety valve device is 4.0 mm, the valve element thickness is reduced by 50%.

【0031】上記本発明の安全弁装置A〜Cを用いて公
称容量1600mAhのAサイズの密閉型ニッケル・水
素蓄電池を作製し、この電池をそれぞれ電池a,bおよ
びcとした。
Using the safety valve devices A to C of the present invention, A size sealed nickel-metal hydride storage batteries having a nominal capacity of 1600 mAh were produced, and these batteries were designated as batteries a, b and c, respectively.

【0032】また比較例の安全弁装置D、従来例の安全
弁装置Eを用いて上記と同様の密閉型ニッケル・水素蓄
電池を作製し、それぞれ電池d,eとした。上記a〜e
の5種類の電池を各50セルづつ作製して、充電器の制
御不良を想定した破裂試験を8A(5C相当)の電流で
連続過充電により実施した結果を(表1)に示す。
Using the safety valve device D of the comparative example and the safety valve device E of the conventional example, sealed nickel-metal hydride storage batteries similar to those described above were produced and designated as batteries d and e, respectively. Above a to e
(Table 1) shows the results of performing a burst test on the assumption that control failure of the charger was carried out by continuous overcharging at a current of 8 A (corresponding to 5 C).

【0033】[0033]

【表1】 [Table 1]

【0034】(表1)より、本発明による電池a,bお
よびcにおいては、破裂あるいは発火は認められなかっ
た。これに対して比較例の電池dでは、50セル中11
セルが発火した。これは過充電状態での電池温度の上昇
により弁体中の樹脂相が軟化し、しかもRESINであ
るポリプロピレンの混入量が多いため弁作動圧力が過度
に低下し、弁作動後もキャップのガス排気口が開放状態
になり、外気が電池内に流入したことによる考えられ
る。また従来例の電池eでは、50セル中48セルが破
裂した。これは過充電状態での電池温度,電池内圧の上
昇により弁体を形成しているEPDMが熱膨脹し、弁室
を殆ど埋める状態となって排気機能が低下したためであ
り、安全弁装置を薄型化したことで、より顕著に発生し
たと考えられる。
From Table 1, no rupture or ignition was found in the batteries a, b and c according to the present invention. On the other hand, in the battery d of the comparative example, 11 out of 50 cells
The cell ignited. This is because the resin phase in the valve body softens due to the rise of the battery temperature in the overcharged state, and since the amount of polypropylene that is RESIN is large, the valve operating pressure drops excessively, and the gas exhausted from the cap even after the valve operates. It is considered that the mouth was opened and the outside air flowed into the battery. In the battery e of the conventional example, 48 cells out of 50 cells burst. This is because the EPDM forming the valve body thermally expands due to the increase in the battery temperature and the battery internal pressure in the overcharged state and almost completely fills the valve chamber, and the exhaust function is deteriorated. Therefore, the safety valve device is made thin. Therefore, it is considered that it occurred more significantly.

【0035】以上の結果を確認するために、次に上記電
池a〜eの安全弁装置A〜Eの温度上昇に伴う弁作動圧
力の維持率(初期を100としたときの比率)を測定し
た。その結果を図1に示す。
In order to confirm the above results, the valve operating pressure maintenance rate (ratio when the initial value is 100) accompanying the temperature rise of the safety valve devices A to E of the batteries a to e was measured next. The result is shown in FIG.

【0036】図1より、本発明による安全弁装置A,B
およびCにおける弁作動圧力は、温度上昇による弁体中
の樹脂相の軟化により100℃付近から弁体中に混合す
る樹脂量に比例して低下し始め、室温下での弁作動圧力
の60〜20%まで低下し、それ以上の温度では架橋さ
れたEPDMにより弾性弁体の閉塞機能が維持され、ほ
ぼ一定の弁作動圧力を保持している。したがって、温度
上昇による弁作動圧力の維持率が低下した分、弁体が塑
性変形し易くなって排気機能が向上する。その結果、
(表1)に示したように電池での高い安全性を示してい
る。
From FIG. 1, safety valve devices A and B according to the present invention are shown.
The valve operating pressure in C and C begins to decrease in proportion to the amount of resin mixed in the valve body from around 100 ° C. due to the softening of the resin phase in the valve body due to the temperature rise, and the valve operating pressure at room temperature of 60 to The temperature decreases to 20%, and at a temperature higher than 20%, the closing function of the elastic valve body is maintained by the crosslinked EPDM, and the valve operating pressure is maintained almost constant. Therefore, the valve element is more likely to be plastically deformed and the exhaust function is improved as much as the maintenance rate of the valve operating pressure due to the temperature increase is reduced. as a result,
As shown in (Table 1), it shows high safety in batteries.

【0037】一方、比較例の安全弁装置Dでは、温度上
昇による弁体中の樹脂相の軟化により弁作動圧力が過度
に低下して弾性弁体の閉塞機能を示さなくなり、(表
1)の電池での結果を裏付けている。また従来例の安全
弁装置Eでは、温度上昇によりEPDMが熱膨脹し排気
機能が低下していることを示す弁作動圧力の上昇を示し
ており、(表1)の電池での結果を裏付けている。
On the other hand, in the safety valve device D of the comparative example, the softening of the resin phase in the valve body due to the temperature rise causes the valve operating pressure to be excessively reduced, and the elastic valve body does not exhibit the function of closing the valve. Confirms the results in. Further, in the safety valve device E of the conventional example, the valve operating pressure is increased, which indicates that the EPDM is thermally expanded and the exhaust function is decreased due to the temperature increase, which corroborates the result of the battery in (Table 1).

【0038】以上の結果より本発明は、安全弁装置の薄
型化を図れ、かつ電池での高い安全性を確保する安全弁
装置を提供することができる。
From the above results, the present invention can provide a safety valve device which can be thinned and which ensures high safety in a battery.

【0039】(実施例2)上記実施例1に示した、A〜
Eの5種類の安全弁装置を用いて弾性弁体の耐熱劣化特
性についての検討を行った。特性試験は、雰囲気温度6
5℃の環境下において一定期間保存した後、弁作動圧力
を測定した。この保存期間と弁作動圧維持率との関係を
図2に示す。なお、安全弁装置の弁作動圧力の長期信頼
性の指標として弁作動圧力の維持率は85%以上を目標
とした。この図2から、従来のEPDMのみを用いた安
全弁装置Eに比べ、RESINとEPDMを混合し弁体
形状に成型するのと同時に架橋処理した弾性弁体を用い
た安全弁装置A、B、CおよびDの熱による劣化度合い
は小さくなっている。また同時にRESINのEPDM
に対する混合比率を大きくすることで、長期耐熱性が向
上することもわかる。従って、RESINのEPDMに
対する混合比率が5重量%以上であれば、EPDMの酸
化抑制効果により、弁作動圧力の低下を防止できること
は明らかであり、長期信頼性の高い安全弁装置を提供で
きる。
(Embodiment 2) A to A shown in the above Embodiment 1
Using 5 kinds of safety valve devices of E, the heat deterioration resistance of the elastic valve body was examined. Atmosphere temperature 6
The valve working pressure was measured after storing for a certain period in an environment of 5 ° C. The relationship between the storage period and the valve operating pressure maintenance rate is shown in FIG. As a measure of the long-term reliability of the valve operating pressure of the safety valve device, the valve operating pressure maintenance rate was set at 85% or more. From FIG. 2, as compared with the conventional safety valve device E using only EPDM, the safety valve devices A, B, C and RESIN and EPDM which are mixed and molded into a valve body shape and at the same time use a crosslinked elastic valve body are provided. The degree of deterioration of D due to heat is small. At the same time, RESIN EPDM
It can also be seen that long-term heat resistance is improved by increasing the mixing ratio with respect to. Therefore, when the mixing ratio of RESIN to EPDM is 5% by weight or more, it is clear that the reduction of the valve operating pressure can be prevented by the oxidation inhibiting effect of EPDM, and a safety valve device with high long-term reliability can be provided.

【0040】(実施例3)弾性弁体をEPDMとともに
構成するRESIN成分である樹脂の種類についての検
討を行った。
Example 3 The kind of resin which is the RESIN component that constitutes the elastic valve body together with the EPDM was examined.

【0041】樹脂成分としてポリプロピレン,ポリスチ
レン,ポリアミド6を用いて、それぞれEPDMとの混
合比率を15重量%として混合し、弁体形状に成型する
のと同時に架橋処理して弾性弁体を作製し、これらの弁
体を用て薄型化した安全弁装置F,GおよびHを構成し
た。
Polypropylene, polystyrene, and polyamide 6 were used as resin components and mixed with EPDM at a mixing ratio of 15% by weight, respectively, and molded into a valve body shape, and at the same time, crosslinked to produce an elastic valve body, Safety valve devices F, G, and H that are made thin by using these valve bodies are configured.

【0042】また従来例として、EPDMのみから作製
した弾性弁体を用いた安全弁装置Eを用意した。なお上
記弾性弁体はすべてその厚みを2.0mmとし、安全弁
装置を構成する際に厚み方向への圧縮率を30%とし
た。これは従来の安全弁装置に用いる弾性弁体の厚みを
4.0mmとすると、弁体厚みを50%薄型化したもの
である。
Further, as a conventional example, a safety valve device E using an elastic valve body made only from EPDM was prepared. The elastic valve bodies all had a thickness of 2.0 mm, and the compression ratio in the thickness direction was 30% when the safety valve device was constructed. When the thickness of the elastic valve element used in the conventional safety valve device is 4.0 mm, the valve element thickness is reduced by 50%.

【0043】上記本発明の安全弁装置F〜Hを用いて公
称容量1600mAhのAサイズの密閉型ニッケル・水
素蓄電池を作製し、それぞれ電池f,gおよびhとし
た。また従来例として安全弁装置Eを用いた電池eも用
意した。上記e〜hの4種類の電池を各50セルづつ作
製して、充電器の制御不良を想定した破裂試験を8A
(5C相当)の電流で連続過充電を実施した結果を(表
2)に示す。
Using the safety valve devices F to H of the present invention, A size sealed nickel-metal hydride storage batteries having a nominal capacity of 1600 mAh were produced and designated as batteries f, g and h, respectively. A battery e using the safety valve device E was also prepared as a conventional example. Each of the four types of batteries e to h described above was manufactured in 50 cells, and a burst test assuming a control failure of the charger was conducted at 8A.
The results of carrying out continuous overcharge at a current (corresponding to 5C) are shown in (Table 2).

【0044】[0044]

【表2】 [Table 2]

【0045】(表2)より本発明による電池f,gおよ
びhにおいては、破裂あるいは発火は認められなかっ
た。これに対して従来例の電池eでは、50セル中48
セルが破裂した。これは過充電状態での電池温度,電池
内圧の上昇に対して安全弁装置内のEPDMが熱膨脹し
電池内圧の排気機能が低下したためである。
From Table 2, no rupture or ignition was found in the batteries f, g and h according to the present invention. On the other hand, in the battery e of the conventional example, 48 out of 50 cells
The cell burst. This is because the EPDM in the safety valve device thermally expands due to the rise of the battery temperature and the battery internal pressure in the overcharged state, and the exhaust function of the battery internal pressure is lowered.

【0046】以上の結果を確認するために、上記電池e
〜hの安全弁装置E〜Hの温度上昇に伴う弁作動圧力の
維持率(初期を100としたときの比率)を測定した。
その結果を図3に示す。
In order to confirm the above results, the battery e
The maintenance rate of the valve operating pressure (the ratio when the initial value is 100) with the temperature rise of the safety valve devices E to H was measured.
The result is shown in FIG.

【0047】図3より本発明による安全弁装置F,Gお
よびHにおける弁作動圧力は、温度上昇による弁体中の
樹脂相の軟化により100℃付近から低下し始め、通常
の使用温度での弁作動圧力の50〜40%まで低下し、
それ以上の温度では架橋されたEPDMにより弾性弁体
の閉塞機能が維持され、ほぼ一定の弁作動圧力を保持し
ている。従って、温度上昇による弁作動圧力の維持率が
低下した分だけ、弁体が塑性変形し易くなって排気機能
が向上する。その結果、(表2)に示したように電池で
の高い安全性を示している。また従来例の安全弁装置E
では、温度上昇によりEPDMが熱膨脹して排気機能が
低下したことを示す弁作動圧力の上昇を示しており、
(表2)の電池での結果を裏付けている。
As shown in FIG. 3, the valve operating pressure in the safety valve devices F, G and H according to the present invention starts to decrease from around 100 ° C. due to the softening of the resin phase in the valve body due to the temperature rise, and the valve operating at the normal operating temperature. The pressure drops to 50-40%,
At a temperature higher than that, the closing function of the elastic valve body is maintained by the crosslinked EPDM, and the valve operating pressure is kept almost constant. Therefore, the valve element is more likely to be plastically deformed and the exhaust function is improved as much as the maintenance factor of the valve operating pressure due to the temperature increase is reduced. As a result, as shown in (Table 2), the battery shows high safety. The safety valve device E of the conventional example
Shows that the EPDM thermally expands due to the temperature rise and the exhaust function is lowered, and thus the valve operating pressure rises.
It corroborates the results with the batteries in (Table 2).

【0048】(実施例4)安全弁装置を構成する弾性弁
体の厚みについての検討を行った。
(Example 4) The thickness of the elastic valve element constituting the safety valve device was examined.

【0049】RESIN成分としてポリプロピレンを用
いて、EPDMとの混合比率を15重量%として混合
し、所定の弁体形状に成型するのと同時に架橋処理して
弾性弁体を作製した。なお、弁体形状に成型する際に弁
体厚みは1.0mm,2.0mm,3.0mmとした。
これらの弁体を用いた本発明品の薄型化した安全弁装置
I,J,およびKを構成した。
Polypropylene was used as a RESIN component, mixed with EPDM at a mixing ratio of 15% by weight, and molded into a predetermined valve body shape, and at the same time, a cross-linking treatment was carried out to produce an elastic valve body. The thickness of the valve body was 1.0 mm, 2.0 mm, and 3.0 mm when molded into the valve body shape.
Safety valve devices I, J, and K of the present invention using these valve bodies were made thin.

【0050】また比較例として、弾性弁体組成を上記組
成と同様にし、弁体厚みを0.7mmとした弾性弁体を
用いて安全弁装置Lを構成した。
As a comparative example, the safety valve device L was constructed by using an elastic valve element having the same elastic valve element composition as described above and a valve element thickness of 0.7 mm.

【0051】なお、上記弾性弁体はすべて安全弁装置を
構成する際にその厚み方向の圧縮率を30%とした。上
記の安全弁装置I,J,K,Lを用いて公称容量160
0mAhのAサイズの密閉型ニッケル・水素蓄電池を作
製し、それぞれ電池i,j,kおよびlとした。
All the elastic valve elements had a compression ratio of 30% in the thickness direction when forming a safety valve device. Using the above safety valve devices I, J, K and L, a nominal capacity of 160
A sealed size nickel-metal hydride storage battery of 0 mAh of A size was produced and designated as batteries i, j, k and l, respectively.

【0052】上記i〜lの4種類の電池を各50セルづ
つ作製して、充電器の制御不良を想定した破裂試験を8
A(5C相当)の電流で連続過充電を実施した結果を
(表3)に示す。
Fifty cells each of the four types of batteries i to l were prepared and subjected to a burst test in which a control failure of the charger was assumed.
The results of carrying out continuous overcharge at a current of A (corresponding to 5C) are shown in (Table 3).

【0053】[0053]

【表3】 [Table 3]

【0054】(表3)より本発明による電池i,jおよ
びkにおいては、破裂あるいは発火は認められなかっ
た。一方比較例の電池lでは、50セル中21セルが破
裂した。これは過充電状態での電池温度,電池内圧の上
昇に対して安全弁装置内の弾性弁体の変形量が小さく、
電池内圧の排気機能が低下したためであると考えられ
る。
From Table 3, no rupture or ignition was observed in the batteries i, j and k according to the present invention. On the other hand, in the battery 1 of the comparative example, 21 cells out of 50 cells burst. This is because the amount of deformation of the elastic valve element in the safety valve device is small with respect to the increase in battery temperature and battery internal pressure in the overcharged state.
It is considered that this is because the exhaust function of the internal pressure of the battery deteriorated.

【0055】安全弁装置の弾性弁体の厚みは、各種電池
サイズに応じて変動するが、上記の結果より総じて1.
0mm以上の厚みを有していれば電池での高い安全性を
確保する安全弁装置を提供することができる。
The thickness of the elastic valve element of the safety valve device varies depending on various battery sizes.
If the thickness is 0 mm or more, it is possible to provide a safety valve device that ensures high safety in batteries.

【0056】(実施例5)安全弁装置を構成する弾性弁
体の弁室内への設置時の圧縮率についての検討を行っ
た。RESIN成分としてポリプロピレンを用いて、E
PDMとの混合比率を15重量%として混合し、所定の
弁体形状に成型するのと同時に架橋処理して弾性弁体を
作製した。なお弁体形状に成型する際に弁体厚みは2.
0mmとした。この弁体を用いて薄型化した安全弁装置
を構成する際の厚み方向への圧縮率を10%,30%,
50%とし、それらを安全弁装置M,NおよびOとし
た。
(Embodiment 5) The compressibility of the elastic valve element constituting the safety valve device when it was installed in the valve chamber was examined. Using polypropylene as the RESIN component, E
An elastic valve body was prepared by mixing the PDM with a mixing ratio of 15% by weight, molding the mixture into a predetermined valve body shape, and simultaneously performing a crosslinking treatment. When molding into a valve body shape, the thickness of the valve body is 2.
0 mm. When constructing a thin safety valve device using this valve body, the compression ratio in the thickness direction is 10%, 30%,
50%, and these were designated as safety valve devices M, N and O.

【0057】また比較例として、弾性弁体の組成,形状
は上記と同様にし、厚み方向への圧縮率を5%とした弾
性弁体を用いた安全弁装置P、弾性弁体の組成,形状を
上記と同様にし、厚み方向への圧縮率を55%とした弾
性弁体を用いた安全弁装置Qをそれぞれ構成した。
As a comparative example, the composition and shape of the elastic valve body are the same as those described above, and the safety valve device P using the elastic valve body whose compression rate in the thickness direction is 5% and the composition and shape of the elastic valve body are shown. In the same manner as described above, the safety valve devices Q each using an elastic valve body having a compression rate in the thickness direction of 55% were configured.

【0058】上記安全弁装置M〜Qを用いて公称容量1
600mAhのAサイズの密閉型ニッケル・水素蓄電池
を作製し、それぞれ電池m,n,o,p,qとした。
Using the safety valve devices M to Q, the nominal capacity 1
A sealed size nickel-metal hydride storage battery of A size of 600 mAh was prepared and used as batteries m, n, o, p and q, respectively.

【0059】上記m〜qの5種類の電池を各50セルづ
つ作製して、充電器の制御不良を想定した破裂試験を8
A(5C相当)の電流で連続過充電を実施した結果を
(表4)に示す。
Fifty types of batteries of the above-mentioned m to q were produced for each 50 cells, and a burst test was conducted assuming a control failure of the charger.
The results of continuous overcharging with a current of A (corresponding to 5C) are shown in (Table 4).

【0060】[0060]

【表4】 [Table 4]

【0061】(表4)より本発明による電池m,n,o
および比較例の電池pにおいては、破裂あるいは発火は
認められなかった。しかし比較例の電池qでは50セル
の全てが破裂した。これは過充電状態での電池温度,電
池内圧の上昇に対して安全弁装置内の弁体の圧縮率が弾
性限界を超えて弾性体としての機能を失ったためである
と考えられる。
From Table 4, the batteries m, n, o according to the present invention are shown.
In the battery p of Comparative Example, neither rupture nor ignition was observed. However, in the battery q of the comparative example, all 50 cells burst. It is considered that this is because the compression rate of the valve element in the safety valve device exceeded the elastic limit with the rise of the battery temperature and the battery internal pressure in the overcharged state, and the function as the elastic body was lost.

【0062】次に上記m〜qの5種類の電池を各50セ
ルづつ作製して、MIL−STD−202Fに準じた高
温多湿〜低温低湿環境下での電池の保存性について評価
した結果を(表5)に示す。
Next, the above-mentioned 5 kinds of batteries of m to q were prepared for each 50 cells, and the results of evaluating the storage stability of the battery under the high temperature and high humidity to low temperature and low humidity environment according to MIL-STD-202F were evaluated ( It shows in Table 5).

【0063】[0063]

【表5】 [Table 5]

【0064】(表5)より本発明による電池m,n,o
および比較例の電池qにおいては、異常は認められなか
った。しかし比較例の電池pは、50セル中31セルが
漏液した。これは安全弁装置に弁体を配置する際の圧縮
率を下げたために安全弁装置としての密閉性(閉塞性)
を確保できなく、漏液を生じたと考えられる。
From Table 5 the batteries m, n, o according to the present invention
No abnormality was found in the battery q of Comparative Example. However, in the battery p of the comparative example, 31 cells out of 50 cells leaked. This is because the compression rate when arranging the valve body in the safety valve device is lowered, so the safety valve device is hermetically closed (closed).
Could not be secured, and it is considered that leakage occurred.

【0065】[0065]

【発明の効果】以上のように本発明によれば、安全弁装
置の薄型化を図ることができ、かつ弁作動圧力を長期に
わたって安定に維持して信頼性を確保することができ
る。また電池の異常使用時などでの急激な温度上昇に伴
う電池内圧の上昇にも排気を対応させることができ、高
い安全性を有する密閉型電池を提供することができる。
As described above, according to the present invention, the safety valve device can be made thinner, and the valve operating pressure can be stably maintained for a long period of time to ensure reliability. Further, exhaust can be dealt with even when the internal pressure of the battery rises due to a rapid temperature rise such as when the battery is abnormally used, and a sealed battery having high safety can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における効果を確認するため
の実験結果を示すグラフ
FIG. 1 is a graph showing experimental results for confirming the effects in Example 1 of the present invention.

【図2】本発明の実施例2における安全弁装置の弁作動
圧力の長期信頼性評価結果を示すグラフ
FIG. 2 is a graph showing a long-term reliability evaluation result of the valve operating pressure of the safety valve device according to the second embodiment of the present invention.

【図3】本発明の実施例3における効果を確認するため
の実験結果を示すグラフ
FIG. 3 is a graph showing an experimental result for confirming the effect in Example 3 of the present invention.

【図4】密閉型電池の安全弁装置の一例を示す縦断面図FIG. 4 is a vertical sectional view showing an example of a safety valve device for a sealed battery.

【図5】密閉型電池の薄型化した安全弁装置の一例を示
す縦断面図
FIG. 5 is a vertical cross-sectional view showing an example of a safety valve device having a thin sealed battery.

【符号の説明】[Explanation of symbols]

1 ケ−ス 2 封口板 2a ガス通気孔 3 ガスケット 5 正極端子 5a ガス排気口 6 弁室 7 弾性弁体 1 case 2 sealing plate 2a gas vent hole 3 gasket 5 positive electrode terminal 5a gas exhaust port 6 valve chamber 7 elastic valve body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 憲男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 広島 敏久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Suzuki, 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Toshihisa Hiroshima, 1006, Kadoma, Kadoma City, Osaka Matsushita Electric Industrial

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】発電要素を収納した電池容器と、この電池
容器の開口部を密閉する安全弁装置とを備え、前記安全
弁装置は中央部にガス通気孔を有する皿状封口板と、こ
の封口板上に配置され前記ガス通気孔を閉塞する弾性弁
体と、この弁体を弁室をなす空間内に位置させたキャッ
プ状端子とにより構成されており、前記弾性弁体は、オ
レフィン系樹脂,スチレン系樹脂,アミド系樹脂および
フッ素系樹脂のうちから選ばれた少なくとも1種類の樹
脂とエチレンプロピレンゴム原料を混合後、所定形状に
成型するのと同時に架橋したものであることを特徴とす
る密閉型電池。
1. A battery container accommodating a power generating element and a safety valve device for sealing an opening of the battery container, the safety valve device having a plate-like sealing plate having a gas vent hole in a central portion thereof, and the sealing plate. The elastic valve body is disposed above and closes the gas vent hole, and a cap-shaped terminal that locates the valve body in a space forming a valve chamber. The elastic valve body is made of an olefin resin, At least one resin selected from a styrene resin, an amide resin, and a fluorine resin and an ethylene propylene rubber raw material are mixed, and then molded into a predetermined shape and simultaneously crosslinked. Type battery.
【請求項2】弾性弁体は、エチレンプロピレンゴム原料
が、これよりも軟化温度の低いオレフィン系樹脂,スチ
レン系樹脂,アミド系樹脂およびフッ素系樹脂のうちか
ら選ばれた少なくとも1種類の樹脂をその内部にとりこ
んでいる請求項1記載の密閉型電池。
2. The elastic valve body comprises an ethylene propylene rubber raw material containing at least one resin selected from an olefin resin, a styrene resin, an amide resin and a fluorine resin having a softening temperature lower than that. The sealed battery according to claim 1, which is incorporated in the inside thereof.
【請求項3】弾性弁体中のオレフィン系樹脂,スチレン
系樹脂,アミド系樹脂およびフッ素系樹脂のうちから選
ばれた少なくとも1種類の樹脂の混入量が、エチレンプ
ロピレンゴムに対して5〜30重量%である請求項1ま
たは2記載の密閉型電池。
3. The mixing amount of at least one resin selected from olefin resin, styrene resin, amide resin and fluorine resin in the elastic valve body is 5 to 30 relative to ethylene propylene rubber. The sealed battery according to claim 1 or 2, which has a weight percentage.
【請求項4】発電要素を収納した電池容器と、この電池
容器の開口部を密閉する安全弁装置とを備え、前記安全
弁装置は中央部にガス通気孔を有する皿状封口板と、こ
の封口板上に配置され前記ガス通気孔を閉塞する弾性弁
体と、この弁体を弁室をなす空間内に位置させたキャッ
プ状端子により構成されており、前記弾性弁体は、オレ
フィン系樹脂,スチレン系樹脂,アミド系樹脂およびフ
ッ素系樹脂のうちから選ばれた少なくとも1種類の樹脂
とエチレンプロピレンゴム原料を混合後、所定形状に成
型するのと同時に架橋されたものであり、前記エチレン
プロピレンゴムがオレフィン系樹脂,スチレン系樹脂,
アミド系樹脂およびフッ素系樹脂のうちから選ばれた少
なくとも1種類の樹脂をその内部にとりこんでいて、加
熱により塑性変形して電池が高温になった際に実質的に
弁作動圧力を低下させることを特徴とする密閉型電池。
4. A battery container accommodating a power generating element, and a safety valve device for sealing an opening of the battery container, the safety valve device having a plate-like sealing plate having a gas vent hole in a central portion, and the sealing plate. The elastic valve body is disposed above and closes the gas vent hole, and a cap-shaped terminal that locates the valve body in a space forming a valve chamber. At least one resin selected from the group consisting of resin series, amide series resin, and fluorine series resin and ethylene propylene rubber raw material are mixed and then molded into a predetermined shape and simultaneously cross-linked. Olefin resin, styrene resin,
At least one resin selected from amide-based resins and fluorine-based resins is incorporated therein, and the valve operating pressure is substantially reduced when the battery becomes hot due to plastic deformation due to heating. A sealed battery characterized by:
【請求項5】前記安全弁装置は、100〜120℃の温
度下における弁作動圧力が室温下での弁作動圧力の60
〜20%に低下することを特徴とする請求項4記載の密
閉型電池。
5. The safety valve device according to claim 5, wherein the valve operating pressure at a temperature of 100 to 120 ° C. is 60% of the valve operating pressure at room temperature.
The sealed battery according to claim 4, wherein the sealed battery is reduced to 20%.
【請求項6】発電要素を収納した電池容器と、この電池
容器の開口部を密閉する安全弁装置とを備え、前記安全
弁装置は中央部にガス通気孔を有する皿状封口板と、こ
の封口板上に配置され前記ガス通気孔を閉塞する弾性弁
体と、この弁体を弁室をなす空間内に位置させたキャッ
プ状端子により構成されており、前記弾性弁体は、1.
0mm以上の厚みを有するとともにその厚み方向に10
〜50%圧縮されて弁室空間内に配置されることを特徴
とする密閉型電池の製造法。
6. A battery container accommodating a power generating element, and a safety valve device for sealing an opening of the battery container, the safety valve device having a plate-like sealing plate having a gas vent hole in a central portion, and the sealing plate. The elastic valve body is disposed above and closes the gas vent hole, and a cap-shaped terminal that locates the valve body in a space forming a valve chamber.
It has a thickness of 0 mm or more and 10 in the thickness direction.
A method for manufacturing a hermetically sealed battery, characterized in that it is compressed by -50% and placed in a valve chamber space.
【請求項7】弾性弁体はエチレンプロピレンゴム原料に
ポリプロピレンを5〜30重量%混入し、所定形状に成
型するのと同時に架橋されたものである請求項6記載の
密閉型電池の製造法。
7. The method for producing a hermetically sealed battery according to claim 6, wherein the elastic valve body is obtained by mixing 5 to 30% by weight of polypropylene in a raw material of ethylene propylene rubber and molding the mixture into a predetermined shape and simultaneously crosslinking the same.
JP8041592A 1996-02-28 1996-02-28 Sealed battery Expired - Lifetime JP3027932B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8041592A JP3027932B2 (en) 1996-02-28 1996-02-28 Sealed battery
EP96307168A EP0793283B1 (en) 1996-02-28 1996-09-30 Sealed battery
DE69622525T DE69622525T2 (en) 1996-02-28 1996-09-30 sealing battery
US08/758,830 US5712056A (en) 1996-02-28 1996-12-04 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8041592A JP3027932B2 (en) 1996-02-28 1996-02-28 Sealed battery

Publications (2)

Publication Number Publication Date
JPH09237620A true JPH09237620A (en) 1997-09-09
JP3027932B2 JP3027932B2 (en) 2000-04-04

Family

ID=12612693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8041592A Expired - Lifetime JP3027932B2 (en) 1996-02-28 1996-02-28 Sealed battery

Country Status (1)

Country Link
JP (1) JP3027932B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747172A1 (en) 2012-12-18 2014-06-25 GS Yuasa International Ltd. Rubber valve body for sealed battery, safety valve device and alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747172A1 (en) 2012-12-18 2014-06-25 GS Yuasa International Ltd. Rubber valve body for sealed battery, safety valve device and alkaline storage battery
US9818997B2 (en) 2012-12-18 2017-11-14 Gs Yuasa International Ltd. Rubber valve body for sealed battery, safety valve device and alkaline storage battery

Also Published As

Publication number Publication date
JP3027932B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
CN107112473B (en) Battery with a battery cell
KR101768656B1 (en) Cap assembly and secondary battery including the same
US8871369B2 (en) Hermetic battery
US20100136388A1 (en) Cap assembly and secondary battery using the same
US10164228B2 (en) Sealed type battery
JP4701636B2 (en) Sealed storage battery exhaust valve, sealed storage battery using the same, sealed nickel metal hydride storage battery
JPH07254401A (en) Sealed battery
CN110100327B (en) Alkaline secondary battery
KR100416096B1 (en) Safety valve device and secondary battery applying such
JP3027932B2 (en) Sealed battery
EP0793283B1 (en) Sealed battery
JPH09237619A (en) Safety valve device for sealed type battery
JP3158946B2 (en) Sealed battery
JP3436031B2 (en) Alkaline storage battery
KR100696799B1 (en) Secondary Battery and Pack Battery of using the same
JP3552454B2 (en) Prismatic sealed battery
JPH065274A (en) Sealed battery
JP3225773B2 (en) Alkaline storage battery and its manufacturing method
JP2006066175A (en) Sealed storage battery
JPS59127366A (en) Safety valve for battery
JP2006019171A (en) Nickel-hydrogen storage battery
JPH01175164A (en) Sealed type cell
KR100199679B1 (en) Cylindrical battery and manufacturing method of cylindrical alkaline secondary battery
JP3089310B2 (en) Sealed nickel / metal hydride storage battery
JP3380693B2 (en) Method of manufacturing explosion-proof sealing plate for battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 14

EXPY Cancellation because of completion of term