JPH09237619A - Safety valve device for sealed type battery - Google Patents

Safety valve device for sealed type battery

Info

Publication number
JPH09237619A
JPH09237619A JP8041591A JP4159196A JPH09237619A JP H09237619 A JPH09237619 A JP H09237619A JP 8041591 A JP8041591 A JP 8041591A JP 4159196 A JP4159196 A JP 4159196A JP H09237619 A JPH09237619 A JP H09237619A
Authority
JP
Japan
Prior art keywords
ethylene propylene
propylene rubber
safety valve
valve device
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8041591A
Other languages
Japanese (ja)
Inventor
Yoshitaka Matsumasa
義高 松政
Jiro Onagawa
治郎 小名川
Mitsuru Namihana
満 浪花
Norio Suzuki
憲男 鈴木
Toshihisa Hiroshima
敏久 広島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8041591A priority Critical patent/JPH09237619A/en
Priority to DE69622525T priority patent/DE69622525T2/en
Priority to EP96307168A priority patent/EP0793283B1/en
Priority to US08/758,830 priority patent/US5712056A/en
Publication of JPH09237619A publication Critical patent/JPH09237619A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably maintain a valve operating pressure over a long period, ensure reliability, with following capable even to changing of an internal pressure according to a rapid temperature rise of a battery, and eliminate bursting or the like due to a rise of internal pressure of the battery, in the case of using in a various portable equipments. SOLUTION: As an elastic valve unit 7 of a safety valve device for a sealed type battery, after a component consisting of a mixture of olefin system resin and ethylene propylene rubber is mixed with ethylene propylene rubber material (EPDM), by using this EPDM crosslinkaged, relating to a rise of internal pressure according to a rapid temperature rise of the battery, a valve operating pressure is decreased, so as to obtain high safety by making exhaust ability follow up. The elastic valve unit itself displays an oxidation suppressing effect of EPDM, high reliability is obtained over a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、密閉型電池の安全
性を高めるための安全弁装置に関し、特にその高温時の
ガス排気能力の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a safety valve device for improving the safety of a sealed battery, and more particularly to improvement of its gas exhaust capability at high temperatures.

【0002】[0002]

【従来の技術】近年、各種携帯機器の普及に伴い電池、
特に再充電可能な二次電池が広い分野で利用されてい
る。これら機器に使用される電池として、従来より鉛蓄
電池、ニッケル・カドミウム蓄電池が用いられてきた
が、新たにニッケル・水素蓄電池やリチウム二次電池な
どが加わってきた。
2. Description of the Related Art In recent years, with the spread of various portable devices, batteries,
In particular, rechargeable secondary batteries are widely used. Conventionally, lead storage batteries and nickel-cadmium storage batteries have been used as batteries used in these devices, but nickel-hydrogen storage batteries and lithium secondary batteries have been newly added.

【0003】これらの再充電可能な電池の中で、鉛蓄電
池、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電
池等の水溶液系電解液を用いている電池では、いわゆる
ノイマン方式によって電池内部で発生するガスを対極で
消費することにより、電池の密閉化を可能にしている。
Among these rechargeable batteries, in batteries using an aqueous electrolyte such as a lead storage battery, a nickel-cadmium storage battery and a nickel-hydrogen storage battery, the gas generated inside the battery is produced by the so-called Neumann method. By consuming on the opposite electrode, the battery can be sealed.

【0004】一方、リチウム二次電池など非水電解液を
用いた電池では、ガスの電池内部での消失ができないた
め、過充電や過放電を避けることでその密閉化を図って
きた。
On the other hand, in a battery using a non-aqueous electrolytic solution such as a lithium secondary battery, gas cannot be lost inside the battery, and therefore, overcharging and overdischarging have been avoided to achieve hermetic sealing.

【0005】しかし、充電器の故障や、電池の誤使用、
外部短絡などに起因した異常事態に陥った時、電池の内
圧が上昇し、破裂に至ることがある。この電池の破裂を
防止するために、二次電池は、通常電池の内圧が予め設
定された値を越えた場合に、電池内部に発生したガスを
外部に放出するように安全弁装置を備えている。
However, failure of the charger, misuse of the battery,
When an abnormal situation such as an external short circuit occurs, the internal pressure of the battery rises, which may lead to rupture. In order to prevent the battery from bursting, the secondary battery is usually equipped with a safety valve device to release the gas generated inside the battery to the outside when the internal pressure of the battery exceeds a preset value. .

【0006】以下、安全弁装置を有する密閉型電池につ
いて説明する。図3は密閉型電池の代表的な安全弁装置
を示す上部縦断面図である。この図3において、電池容
器である金属製ケース1は、ケース1の上部に絶縁性と
気密性の保持の役割を果たすガスケット3を介して、中
央部にガス通気孔2aを形成した金属製の封口板2を、
カシメ加工により装着固定している。上記ケース1の内
部には、詳細な図示は行っていないが、セパレータを介
して正極板と負極板とを重ね合わせ、渦巻状に捲回した
極板群とアルカリ電解液からなる発電要素4が収納され
ている。さらに、封口板2には、安全弁装置を構成する
ためにも用いられるキャップ状の正極端子5が設けられ
ている。この正極端子5は、キャップ状をなしており、
その一部にガス排気口5aや孔が形成されている。正極
端子5と封口板2とに囲まれた空間には、弁室6が形成
されており、この弁室6に弾性弁体7を圧縮した状態で
内蔵している。この弾性弁体7の機構としては、金属バ
ネやゴムの弾性を利用したものが一般的である。
Hereinafter, a sealed battery having a safety valve device will be described. FIG. 3 is an upper vertical sectional view showing a typical safety valve device for a sealed battery. In FIG. 3, a metal case 1, which is a battery container, is made of metal and has a gas vent hole 2a formed in the center through a gasket 3 which plays a role of maintaining insulation and airtightness in the upper part of the case 1. The sealing plate 2,
It is attached and fixed by caulking. Although not shown in detail in the inside of the case 1, there is provided a power generation element 4 including a positive electrode plate and a negative electrode plate which are superposed with a separator interposed therebetween, and a spirally wound electrode plate group and an alkaline electrolyte. It is stored. Further, the sealing plate 2 is provided with a cap-shaped positive electrode terminal 5 which is also used to form a safety valve device. The positive electrode terminal 5 has a cap shape,
A gas exhaust port 5a and a hole are formed in a part thereof. A valve chamber 6 is formed in a space surrounded by the positive electrode terminal 5 and the sealing plate 2, and an elastic valve body 7 is housed in the valve chamber 6 in a compressed state. As a mechanism of the elastic valve body 7, a mechanism utilizing the elasticity of a metal spring or rubber is generally used.

【0007】以上のような構成を有する密閉型電池にお
いて、充電器の故障による過大な充電電流の流入や、転
極を伴うような過放電などに起因する電池の内圧上昇が
生じた場合、高圧状態となったガスは、弾性弁体を押し
上げ、正極端子5のガス排気口5aから排出される。
In the sealed battery having the above-mentioned structure, if the internal pressure of the battery rises due to excessive inflow of charging current due to failure of the charger or over-discharging accompanied by reversal of polarity, The gas in this state pushes up the elastic valve body and is discharged from the gas exhaust port 5a of the positive electrode terminal 5.

【0008】通常、用いられている上記安全弁装置は、
電池の内圧が10kg/cm2以上に達したときに、ガ
スが外部に放出されるように設定されている。従って、
急激なガス発生を伴わない程度の過充電が行われた場
合、負極のガス吸収能力が低下するにつれて、内圧は上
昇する。この時、電池内部のガスが外部に放出されても
問題なく、充電が停止され、電池の内圧が下がれば安全
弁装置は元の形に戻り、再び使用可能になるようにして
いる。また、急速充電を可能にするためには安全弁の定
格許容圧力を20kg/cm2程度まで高めることもあ
る。
The above-mentioned safety valve device which is usually used is
The gas is set to be released to the outside when the internal pressure of the battery reaches 10 kg / cm 2 or more. Therefore,
When overcharge is performed to the extent that gas generation does not occur rapidly, the internal pressure increases as the gas absorption capacity of the negative electrode decreases. At this time, even if the gas inside the battery is released to the outside, there is no problem, and if the charging is stopped and the internal pressure of the battery drops, the safety valve device returns to its original shape and is ready to be used again. Further, the rated allowable pressure of the safety valve may be increased to about 20 kg / cm 2 in order to enable rapid charging.

【0009】[0009]

【発明が解決しようとする課題】この対策のため、弁体
を構成する弾性体の硬度を高めたり、あるいは弁体の圧
縮率を大きくすることによって、弾性体の変形率を小さ
くし、内圧の許容値を高めているが、設定値以上の電流
が電池に流れ込み、ガスの異常発生が生じたときには、
このような弾性体を用いた安全弁装置では、ガス排気口
からの排出速度が電池内部でのガスの発生速度に追いつ
けない。そのため、電池内圧が急激に上昇して破裂に至
る。また、電池内部の温度上昇により、弾性ゴム弁体が
弁室一杯に熱膨脹して本来の弁体動作機能(排気機能)
が維持できなくなり、上記同様に電池内圧が上昇し、破
裂に至る。
To solve this problem, the deformation rate of the elastic body is reduced by increasing the hardness of the elastic body forming the valve body or increasing the compression rate of the valve body, thereby reducing the internal pressure. Although the allowable value is increased, if a current above the set value flows into the battery and an abnormal gas occurs,
In the safety valve device using such an elastic body, the discharge rate from the gas exhaust port cannot keep up with the gas generation rate inside the battery. Therefore, the internal pressure of the battery rapidly rises and the battery bursts. Also, due to the temperature rise inside the battery, the elastic rubber valve body expands thermally to fill the valve chamber, and the original valve function (exhaust function)
Can no longer be maintained, and the internal pressure of the battery rises in the same manner as above, leading to rupture.

【0010】そこで特開平5−41204号公報では、
火中に電池を投じた際の安全性を確保するために、パッ
キング材もしくは安全弁体のうちの少なくとも一方の融
点を270℃以下にすることが記載されている。しか
し、この構成では過大な電流が電池に流入し、電池温度
が100℃程度に急激に達するような場合、とくにニッ
ケル・水素蓄電池では負極に吸蔵されている水素が放出
され始め、電池の内圧は急激に上昇して破裂に至る。つ
まり上記公報に記載された構成は、このような過大な電
流の流れ込みに起因した電池の破裂に対応するためには
改良の余地を残している。さらに同公報には、弾性弁体
にオレフィン系の熱可塑性エラストマーを用いる点につ
いての開示もなされている。しかしその構成では電池温
度が上昇した場合に、熱可塑性エラストマーの軟化や溶
解により弁作動圧力が低下し過ぎ、実質的にガス通気孔
が開放状態となる。その結果、外気が電池内に流入して
負極の水素吸蔵合金の酸化反応を促進するため避けるべ
きである。
Therefore, in Japanese Unexamined Patent Publication No. 5-41204,
It is described that at least one of the packing material and the safety valve body has a melting point of 270 ° C. or lower in order to ensure safety when the battery is thrown into a fire. However, with this configuration, when an excessive current flows into the battery and the battery temperature rapidly reaches about 100 ° C., especially in the nickel-hydrogen storage battery, hydrogen stored in the negative electrode starts to be released, and the internal pressure of the battery becomes It suddenly rises and leads to a rupture. That is, the structure described in the above publication leaves room for improvement in order to cope with the rupture of the battery due to such an excessive current flow. Further, the publication also discloses that an olefin-based thermoplastic elastomer is used for the elastic valve body. However, in that structure, when the battery temperature rises, the softening or melting of the thermoplastic elastomer causes the valve operating pressure to drop too much, and the gas vent holes are substantially opened. As a result, outside air flows into the battery and accelerates the oxidation reaction of the hydrogen storage alloy of the negative electrode, and therefore it should be avoided.

【0011】弾性弁体材料としては天然ゴム,SBRゴ
ム,エチレンプロピレンゴムなどが提案されている。こ
のうちではエチレンプロピレンゴムが最も優れてはいる
が、それでも主に酸化によって次第にゴム弾性を失って
いく。このゴム弾性の経時劣化により、安全弁装置の弁
作動圧力は低下するため、電解液の漏出抑止など長期信
頼性を確保するための弁作動圧力の設定が困難であっ
た。
As the elastic valve material, natural rubber, SBR rubber, ethylene propylene rubber, etc. have been proposed. Of these, ethylene-propylene rubber is the most excellent, but it gradually loses rubber elasticity mainly due to oxidation. Due to the deterioration of rubber elasticity over time, the valve operating pressure of the safety valve device is lowered, so that it is difficult to set the valve operating pressure for ensuring long-term reliability such as prevention of electrolyte leakage.

【0012】本発明は、エチレンプロピレンゴムを改良
して弁作動圧力を長期間にわたって安定に維持して信頼
性を確保し、また電池の急激な温度上昇に伴う内圧の変
化にも追従でき、電池の内圧上昇により生じる破裂等の
危険を解消できる密閉型電池用安全弁装置を提供するこ
とを目的としている。
The present invention improves ethylene propylene rubber to maintain the valve operating pressure stable for a long period of time to ensure reliability, and to follow the change of the internal pressure due to the rapid temperature rise of the battery. It is an object of the present invention to provide a safety valve device for a sealed battery, which can eliminate the risk of rupture caused by an increase in internal pressure of the battery.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に本発明の密閉型電池用安全弁装置は、その弾性弁体と
して、オレフィン系樹脂とエチレンプロピレンゴムの混
合物(以下R−EPDMという)からなる成分と、エチ
レンプロピレンゴム原料(以下EPDMという)とを混
合後に、このエチレンプロピレンゴム原料を架橋したも
のを用いた。
In order to achieve the above object, a safety valve device for a sealed battery according to the present invention comprises, as its elastic valve element, a mixture of an olefin resin and ethylene propylene rubber (hereinafter referred to as R-EPDM). The following components were mixed with an ethylene propylene rubber raw material (hereinafter referred to as EPDM), and then the ethylene propylene rubber raw material was cross-linked.

【0014】従ってこの弾性弁体は、基本的には後で混
合したEPDMが、R−EPDMをその内部にとりこん
だ構造になっている。この場合オレフィン系樹脂として
はポリプロピレンまたはポリエチレンが良く、そのR−
EPDM中への混合量は、40〜60重量%とし、これ
にさらにEPDMが混合されるので、最終的にはオレフ
ィン系樹脂は全体のエチレンプロピレンゴムに対して5
〜30重量%が最適である。
Therefore, this elastic valve body basically has a structure in which EPDM mixed later is incorporated with R-EPDM therein. In this case, polypropylene or polyethylene is preferable as the olefin resin, and R-
The mixing amount in EPDM is 40 to 60% by weight, and EPDM is further mixed in this, so that the olefin resin is finally mixed with 5 parts by weight of the whole ethylene propylene rubber.
-30% by weight is optimal.

【0015】好ましくは、このような組成にすることで
100〜120℃における安全弁装置の弁作動圧力を、
室温下でのそれの60〜20%に低下するように設定し
たものである。
It is preferable that the valve working pressure of the safety valve device at 100 to 120.degree.
It was set so as to decrease to 60 to 20% of that at room temperature.

【0016】[0016]

【発明の実施の形態】請求項1に記載した本発明の弾性
弁体を形成するR−EPDMは、性状的には熱可塑性を
付与する硬質相(樹脂相)と、弾性を付与する軟質相
(ゴム相)とからなる。電池に設定値以上の大電流が流
れ、これにより電池温度が上昇してガスの異常発生が生
じた場合に、この硬質相が軟化することにより、弾性弁
体としての作動圧力が低下し、実質的にガス排気口から
のガス排出速度を大きくすることができる。このガス排
出速度が内部ガス発生速度に追従することで、電池内圧
の上昇を抑えて異常内圧による電池の破裂を防止するこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION The R-EPDM forming the elastic valve body of the present invention described in claim 1 is characterized by a hard phase (resin phase) imparting thermoplasticity and a soft phase imparting elasticity. (Rubber phase). When a large current of a set value or more flows in the battery, which causes the battery temperature to rise and gas abnormalities to occur, the hard phase softens, causing the operating pressure of the elastic valve element to drop, and Therefore, the gas discharge rate from the gas exhaust port can be increased. By allowing the gas discharge rate to follow the internal gas generation rate, it is possible to prevent the battery internal pressure from rising and prevent the battery from bursting due to an abnormal internal pressure.

【0017】また、EPDMはR−EPDMと混合後、
それ自身を架橋しているので高温時にR−EPDMが軟
化してもEPDMの架橋構造は維持されるため、このE
PDMの働きで弁作動圧力の過度の低下は防止され、弁
作動後はガス排気口が再び閉じられ外気が電池内に流入
することはない。これにより電池、特にニッケル・水素
蓄電池やリチウム電池などでは、外部からの空気や酸素
の電池内への流入に起因した異常事態の発生を防止でき
る。
EPDM is mixed with R-EPDM,
Since it crosslinks itself, the crosslinked structure of EPDM is maintained even if R-EPDM softens at high temperature.
The PDM works to prevent the valve operating pressure from being excessively lowered, and after the valve is operated, the gas exhaust port is closed again and the outside air does not flow into the battery. As a result, in a battery, particularly a nickel-hydrogen storage battery or a lithium battery, it is possible to prevent the occurrence of an abnormal situation caused by the inflow of air or oxygen from the outside into the battery.

【0018】さらに、弾性弁体がR−EPDMとEPD
Mとの混合物で形成されているため、酸素分子が弾性弁
体の表面から内部に浸透しにくく、酸化劣化に伴うEP
DMの架橋構造の破壊が抑制され、弁作動圧力を長期に
わたる安定に保ち、信頼性の確保が可能となる。
Further, the elastic valve body is composed of R-EPDM and EPD.
Since it is formed of a mixture with M, oxygen molecules are less likely to permeate from the surface of the elastic valve body to the inside, and EP accompanying oxidative deterioration
The destruction of the DM cross-linking structure is suppressed, the valve operating pressure is kept stable for a long time, and the reliability can be secured.

【0019】なお、オレフィン系樹脂の全エチレンプロ
ピレンゴムに対する混合比率については、それが5重量
%以上であれば、混合後EPDMを架橋して弾性弁体と
し、安全弁装置を構成したとき、電池に設定値以上の大
電流が流れ、電池温度が上昇してガスの異常発生が生じ
た場合に、この硬質相(樹脂相)が軟化することによ
り、弾性弁体としての作動圧力が低下し、実質的にガス
排気口からのガス排出速度が大きくなる。このガス排出
速度が内部ガス発生速度に追従することで電池内圧の上
昇を抑えて、電池の破裂を防止することができる。さら
にR−EPDM中のオレフィン系樹脂によるエチレンプ
ロピレンゴムの酸化抑制効果により、通常の使用温度範
囲における弁作動圧力の低下や変動を防止できる。一
方、30重量%以上になると、混合後EPDMを架橋し
て弾性弁体とし、安全弁装置を構成したとき、電池に設
定値以上の大電流が流れ、これにより電池温度が上昇し
た場合に、硬質相(樹脂相)が多いため加熱により軟化
した際、過度に弁作動圧力が低下し弁作動後にガス排気
口が開放状態となり、特にニッケル・水素蓄電池やリチ
ウム電池などでは、外部からの空気や酸素の電池内への
流入を止めることができないので避けるべきである。し
たがって、オレフィン系樹脂は全エチレンプロピレンゴ
ムに対して5〜30重量%が望ましい。
Regarding the mixing ratio of the olefin resin to the total ethylene propylene rubber, if the mixing ratio is 5% by weight or more, after mixing, EPDM is crosslinked to form an elastic valve body, and when a safety valve device is constructed, the battery is used as a battery. When a large current exceeding the set value flows, the battery temperature rises, and gas abnormalities occur, the hard phase (resin phase) softens, and the operating pressure of the elastic valve element decreases, As a result, the gas discharge rate from the gas exhaust port increases. Since the gas discharge rate follows the internal gas generation rate, it is possible to prevent the battery internal pressure from rising and prevent the battery from bursting. Furthermore, due to the effect of suppressing the oxidation of ethylene propylene rubber by the olefin resin in R-EPDM, it is possible to prevent the valve operating pressure from decreasing or fluctuating in the normal operating temperature range. On the other hand, when it is 30% by weight or more, after mixing, EPDM is cross-linked to form an elastic valve element, and when a safety valve device is configured, a large current of a set value or more flows in the battery, and when the battery temperature rises, the hard valve becomes hard. Since there are many phases (resin phases), when softened by heating, the valve operating pressure drops excessively and the gas exhaust port becomes open after valve operation. Especially, for nickel-hydrogen storage batteries and lithium batteries, air and oxygen from the outside It cannot be prevented from flowing into the battery and should be avoided. Therefore, the olefin resin is preferably 5 to 30% by weight based on the total ethylene propylene rubber.

【0020】[0020]

【実施例】以下、本発明の実施例について、図3を引用
しながら説明する。なお、図3はゴムの弾性弁体を用い
た安全弁装置であり、その構造は封口板2に安全弁装置
を構成するためにも用いられる正極端子5が設けられて
いる。この正極端子5はキャップ状をなしており、その
一部にはガス排気口5aや孔が形成されている。正極端
子5と封口板2とに囲まれた空間には、弁室6が形成さ
れており、この弁室6にゴム主体の弾性弁体7を圧縮し
た状態で内蔵している。
Embodiments of the present invention will be described below with reference to FIG. Note that FIG. 3 shows a safety valve device using a rubber elastic valve body, and the structure is such that the sealing plate 2 is provided with a positive electrode terminal 5 which is also used for constituting the safety valve device. The positive electrode terminal 5 has a cap shape, and a gas exhaust port 5a and a hole are formed in a part thereof. A valve chamber 6 is formed in a space surrounded by the positive electrode terminal 5 and the sealing plate 2, and an elastic valve body 7 mainly made of rubber is housed in the valve chamber 6 in a compressed state.

【0021】(実施例1)図3に示す安全弁装置を構成
し、その弾性弁体7を形成するオレフィン系樹脂と全エ
チレンプロピレンゴムとの混合比率についての検討を行
った。
(Example 1) The safety valve device shown in FIG. 3 was constructed, and the mixing ratio of the olefin resin forming the elastic valve body 7 and the total ethylene propylene rubber was examined.

【0022】R−EPDM中のオレフィン系樹脂を、R
−EPDM中の予め200℃の温度で加熱処理して架橋
したEPDMと混合後、約180℃の温度で6分間加熱
処理して架橋するEPDMとの全エチレンプロピレンゴ
ムに対して30重量%,15重量%,5重量%の割合で
混合し、EPDM部分を架橋処理した弾性弁体をそれぞ
れ作成し、これらの弁体を用いた本発明品の安全弁装置
A,BおよびCを構成した。
The olefinic resin in R-EPDM is
30% by weight, based on the total ethylene propylene rubber, of EPDM which is mixed with EPDM which has been previously heat treated at a temperature of 200 ° C. in EPDM and crosslinked, and then heat treated at a temperature of about 180 ° C. for 6 minutes. By mixing at a ratio of 5% by weight and 5% by weight, elastic valve bodies obtained by crosslinking the EPDM portion were prepared, and safety valve devices A, B and C of the present invention were constructed using these valve bodies.

【0023】また比較例として、オレフィン系樹脂を全
エチレンプロピレンゴムに対して、50重量%の割合で
混合しEPDM部分を架橋処理した弾性弁体を用いた安
全弁装置Dを、従来例としてEPDMのみから作成した
弾性弁体を用いた安全弁装置Eをそれぞれ構成した。
As a comparative example, a safety valve device D using an elastic valve body in which an olefin resin is mixed at a ratio of 50% by weight with respect to all ethylene propylene rubber and a EPDM portion is subjected to a crosslinking treatment, and as a conventional example, only a safety valve device D is used. Each safety valve device E using the elastic valve body prepared from the above was constructed.

【0024】上記本発明品の安全弁装置A〜Cを用いて
公称容量1600mAhのAサイズの密閉型ニッケル・
水素蓄電池を作製し、この電池をそれぞれ電池a,bお
よびcとした。また比較例の安全弁装置D、従来例の安
全弁装置Eをそれぞれ用いて上記と同様の密閉型ニッケ
ル・水素蓄電池を作製し、この電池をd,eとした。
Using the above safety valve devices A to C of the present invention, an A-size sealed nickel alloy having a nominal capacity of 1600 mAh
A hydrogen storage battery was produced and used as batteries a, b and c, respectively. Further, the same safety valve device D of the comparative example and the safety valve device E of the conventional example were used to fabricate sealed nickel-metal hydride storage batteries similar to the above, and these batteries were designated as d and e.

【0025】上記a〜eの5種類の電池を各50セルづ
つ作製して、充電器の制御不良を想定した破裂試験を8
A(5C相当)の電流で連続過充電を実施した結果を
(表1)に示す。
Fifty types of batteries of the above-mentioned a to e were produced for each 50 cells, and a burst test was carried out assuming a control failure of the charger.
The results of continuous overcharging at a current of A (corresponding to 5C) are shown in (Table 1).

【0026】[0026]

【表1】 [Table 1]

【0027】(表1)より、本発明による電池a,bお
よびcにおいては、破裂あるいは発火は認められなかっ
た。それに対して比較例の電池dでは、50セル中8セ
ルが発火した。これは過充電状態での電池温度の上昇に
より弁体中の樹脂相が軟化するため弁作動圧力が過度に
低下し、弁作動後ガス排気口が開放状態になり、外気が
電池内に流入したことによると考えられる。また従来例
の電池eでは、50セル中17セルが破裂した。これは
過充電状態での電池温度,電池内圧の上昇に対して安全
弁装置内のEPDMが熱膨脹し、弁室を塞いでガスの排
出を妨げ、電池内圧の排圧機能が低下したために破裂し
たと考えられる。以上の結果を確認するために、次に上
記電池a〜eの安全弁装置A〜Eの温度上昇に伴う弁作
動圧力の維持率(初期を100としたとき)を測定し
た。その結果を図1に示す。
From Table 1, no rupture or ignition was observed in the batteries a, b and c according to the present invention. On the other hand, in the battery d of the comparative example, 8 cells out of 50 cells ignited. This is because the resin phase in the valve body softens due to the temperature rise of the battery in the overcharged state, so the valve operating pressure drops excessively, the gas exhaust port opens after the valve operates, and the outside air flows into the battery. It is thought that it depends. In the battery e of the conventional example, 17 cells out of 50 cells burst. This is because the EPDM in the safety valve device thermally expanded against the rise of the battery temperature and the battery internal pressure in the overcharged state, blocking the valve chamber to prevent the gas discharge, and the exhaust pressure function of the battery internal pressure was lowered, causing the explosion. Conceivable. In order to confirm the above results, the maintenance rate of valve operating pressure (when the initial value is 100) accompanying the temperature rise of the safety valve devices A to E of the batteries a to e was measured next. The result is shown in FIG.

【0028】図1より、本発明による安全弁装置A,B
およびCにおける弁作動圧力は、温度上昇による弁体中
の樹脂相の軟化により100℃付近から弁体中に混合す
る樹脂量に比例して低下し始め、通常の使用温度での弁
作動圧力の60〜20%まで低下し、それ以上の温度で
は架橋されたEPDMにより弾性弁体の閉塞機能が維持
され、ほぼ一定の弁作動圧力を保持している。したがっ
て、温度上昇による弁作動圧力の維持率が低下した分、
弁体が塑性変形し排圧機能が向上する。その結果(表
1)に示したように電池とした場合高い安全性を示して
いる。
From FIG. 1, safety valve devices A and B according to the present invention are shown.
The valve operating pressure in C and C begins to decrease in proportion to the amount of resin mixed in the valve body from around 100 ° C. due to the softening of the resin phase in the valve body due to the temperature rise. The temperature decreases to 60 to 20%, and at a temperature higher than that, the closing function of the elastic valve body is maintained by the crosslinked EPDM, and the valve operating pressure is kept almost constant. Therefore, since the maintenance rate of the valve operating pressure due to the temperature rise is reduced,
The valve body is plastically deformed and the exhaust pressure function is improved. As shown in the results (Table 1), the battery is highly safe.

【0029】また比較例の安全弁装置Dでは、温度上昇
による弁体中の樹脂相の軟化により弁作動圧力が過度に
低下し弾性弁体の閉塞機能を示さないことから、表1の
電池での結果を裏付けている。また従来例の安全弁装置
Eでは、温度上昇によりEPDMが熱膨脹して排圧機能
が低下することを示す弁作動圧力の上昇を示しており、
表1の電池での結果を裏付けている。
Further, in the safety valve device D of the comparative example, the valve operating pressure is excessively lowered due to the softening of the resin phase in the valve body due to the temperature rise, and the function of closing the elastic valve body is not shown. It supports the result. Further, in the safety valve device E of the conventional example, the EPDM thermally expands due to the temperature rise, and the exhaust pressure function decreases, which shows the increase of the valve operating pressure.
The results for the batteries in Table 1 are supported.

【0030】(実施例2)上記実施例1に示した、A〜
Eの5種類の安全弁装置を用いて弾性弁体の耐熱劣化特
性についての検討を行った。雰囲気温度65℃の環境下
において一定期間保存した後、弁作動圧力を測定した。
この保存期間と弁作動圧維持率との関係を図2に示す。
なお、安全弁装置の弁作動圧力の長期信頼性の指標とし
て、弁作動圧力の維持率を85%以上とすることを目標
とした。この図2から、従来のEPDMのみを用いた安
全弁装置Eに比べ、R−EPDMとEPDMを混合し、
EPDMを架橋した弾性弁体を用いた安全弁装置A、
B、CおよびDの熱による劣化度合いは小さくなってい
る。また同時に、オレフィン系樹脂の全エチレンプロピ
レンゴムに対する混合比率を大きくすることで、長期間
耐熱性が向上することもわかる。したがって、本発明の
オレフィン系樹脂の全エチレンプロピレンゴムに対する
混合比率5重量%以上であれば、EPDMの酸化抑制効
果により、弁作動圧の低下を防止できることは明らかで
あり、長期信頼性の高い安全弁装置を提供できる。
(Embodiment 2) A to A shown in the above Embodiment 1
Using 5 kinds of safety valve devices of E, the heat deterioration resistance of the elastic valve body was examined. The valve operating pressure was measured after storing for a certain period in an environment of an ambient temperature of 65 ° C.
The relationship between the storage period and the valve operating pressure maintenance rate is shown in FIG.
As an index of the long-term reliability of the valve operating pressure of the safety valve device, the target was to maintain the valve operating pressure at a maintenance rate of 85% or more. From this FIG. 2, compared to the conventional safety valve device E using only EPDM, R-EPDM and EPDM are mixed,
Safety valve device A using an elastic valve body obtained by bridging EPDM,
The degree of deterioration of B, C and D due to heat is small. At the same time, it is also found that the heat resistance is improved for a long period of time by increasing the mixing ratio of the olefin resin to the total ethylene propylene rubber. Therefore, if the mixing ratio of the olefin resin of the present invention to the total ethylene propylene rubber is 5% by weight or more, it is clear that the reduction of the valve operating pressure can be prevented by the oxidation inhibiting effect of EPDM, and the safety valve having high long-term reliability A device can be provided.

【0031】[0031]

【発明の効果】以上のように本発明の安全弁装置によれ
ば、弁作動圧力を長期にわたって安定に維持して信頼性
を確保することができる。また電池の異常使用時などで
の急激な温度上昇に伴う電池内圧の上昇にも排気を対応
させることができ、高い安全性を有する密閉型電池用を
提供することができる。
As described above, according to the safety valve device of the present invention, the valve operating pressure can be stably maintained for a long period of time to ensure reliability. Further, exhaust can be dealt with even when the internal pressure of the battery rises due to a rapid temperature rise such as when the battery is abnormally used, and a sealed battery for high safety can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における効果を確認するため
の実験結果を示すグラフ
FIG. 1 is a graph showing experimental results for confirming the effects in Example 1 of the present invention.

【図2】本発明の実施例2における安全弁装置の弁作動
圧力の長期信頼性評価結果を示すグラフ
FIG. 2 is a graph showing a long-term reliability evaluation result of the valve operating pressure of the safety valve device according to the second embodiment of the present invention.

【図3】密閉型電池の安全弁装置の一例を示す縦断面図FIG. 3 is a vertical cross-sectional view showing an example of a safety valve device for a sealed battery.

【符号の説明】[Explanation of symbols]

1 ケ−ス 2 封口板 2a ガス通気孔 3 ガスケット 5 正極端子 5a ガス排気口 6 弁室 7 弾性弁体 1 case 2 sealing plate 2a gas vent hole 3 gasket 5 positive electrode terminal 5a gas exhaust port 6 valve chamber 7 elastic valve body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 憲男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 広島 敏久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Norio Suzuki, 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Toshihisa Hiroshima, 1006, Kadoma, Kadoma City, Osaka Matsushita Electric Industrial

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】発電要素を収納した電池容器の開口部を密
閉する安全弁装置であって、前記安全弁装置は中央部に
ガス通気孔を有する皿状封口板と、この封口板上に配置
され前記ガス通気孔を閉塞する弾性弁体と、この弁体を
弁室をなす空間内に位置させたキャップ状端子とにより
構成されており、前記弾性弁体は、オレフィン系樹脂と
架橋されたエチレンプロピレンゴムの混合物からなる成
分にエチレンプロピレンゴム原料を混合後、これを架橋
したものである密閉型電池用安全弁装置。
1. A safety valve device for sealing an opening of a battery container accommodating a power generating element, wherein the safety valve device has a dish-shaped sealing plate having a gas vent hole in a central portion, and the safety valve device is disposed on the sealing plate. The elastic valve body is configured by an elastic valve body that closes the gas vent hole and a cap-shaped terminal that locates the valve body in a space that forms a valve chamber, and the elastic valve body is ethylene propylene cross-linked with an olefin resin. A safety valve device for a sealed battery, which is obtained by mixing an ethylene propylene rubber raw material with a component composed of a rubber mixture and then crosslinking the mixture.
【請求項2】弾性弁体は、架橋したエチレンプロピレン
ゴム原料がこれよりも軟化点の低いオレフィン系樹脂と
エチレンプロピレンゴムの混合物をその内部にとりこん
でいる請求項1記載の密閉型電池用安全弁装置。
2. The safety valve for a sealed battery according to claim 1, wherein the elastic valve body has a crosslinked ethylene propylene rubber raw material in which a mixture of an olefin resin having a lower softening point and ethylene propylene rubber is incorporated. apparatus.
【請求項3】オレフィン系樹脂とエチレンプロピレンゴ
ムの混合物中のオレフィン系樹脂は、ポリプロピレンま
たはポリエチレンである請求項1または2記載の密閉型
電池用安全弁装置。
3. The safety valve device for a sealed battery according to claim 1, wherein the olefin resin in the mixture of the olefin resin and ethylene propylene rubber is polypropylene or polyethylene.
【請求項4】オレフィン系樹脂とエチレンプロピレンゴ
ムの混合物からなる成分と、エチレンプロピレンゴム原
料との混合物中におけるオレフィン系樹脂の混入量が、
全体のエチレンプロピレンゴムに対して5〜30重量%
である請求項1または2記載の密閉型電池用安全弁装
置。
4. A mixed amount of an olefin resin in a mixture of a component composed of a mixture of an olefin resin and ethylene propylene rubber and an ethylene propylene rubber raw material,
5-30% by weight based on the total ethylene propylene rubber
The safety valve device for a sealed battery according to claim 1 or 2.
【請求項5】発電要素を収納した電池容器の開口部を密
閉する安全弁装置であって、前記安全弁装置は中央部に
ガス通気孔を有する皿状封口板と、この封口板上に配置
され前記ガス通気孔を閉塞する弾性弁体と、この弁体を
弁室をなす空間内に位置させたキャップ状端子とにより
構成されていて、弾性弁体はオレフィン系樹脂とエチレ
ンプロピレンゴムの混合物からなる成分と、エチレンプ
ロピレンゴム原料との混合物からなり、前記エチレンプ
ロピレンゴム原料は架橋されたものであって、オレフィ
ン系樹脂とエチレンプロピレンゴムの混合物をその内部
にとりこんでいて、このオレフィン系樹脂とエチレンプ
ロピレンゴムの混合物は加熱により塑性変形して電池が
高温になった際に実質的に弁作動圧力を低下させるもの
である密閉型電池用安全弁装置。
5. A safety valve device for sealing an opening of a battery container accommodating a power generating element, the safety valve device having a plate-like sealing plate having a gas vent hole in a central portion thereof, and being disposed on the sealing plate. It is composed of an elastic valve body that closes the gas vent hole and a cap-shaped terminal that locates this valve body in the space that forms the valve chamber, and the elastic valve body is composed of a mixture of an olefin resin and ethylene propylene rubber. It is composed of a mixture of a component and an ethylene propylene rubber raw material, the ethylene propylene rubber raw material is a crosslinked one, and a mixture of an olefin resin and an ethylene propylene rubber is incorporated therein, and the olefin resin and the ethylene are mixed. A mixture of propylene rubber that plastically deforms by heating and substantially lowers the valve operating pressure when the battery becomes hot. Safety valve device.
【請求項6】発電要素を収納した電池容器の開口部を密
閉する安全弁装置であって、この安全弁装置は中央部に
ガス通気孔を有する皿状封口板と、この封口板上に配置
され前記ガス通気孔を閉塞する弾性弁体と、この弁体を
弁室をなす空間内に位置させたキャップ状端子により構
成されており、前記安全弁装置の弁作動圧力は100〜
120℃において、室温下での弁作動圧力の60〜20
%に低下することを特徴とする密閉型電池用安全弁装
置。
6. A safety valve device for sealing an opening of a battery container accommodating a power generating element, the safety valve device having a dish-shaped sealing plate having a gas vent hole in a central portion thereof, the safety valve device being disposed on the sealing plate. It is composed of an elastic valve body that closes the gas vent hole and a cap-shaped terminal that locates the valve body in the space that forms the valve chamber. The valve operating pressure of the safety valve device is 100 to 100.
At 120 ° C., the valve operating pressure at room temperature is 60 to 20
Safety valve device for sealed batteries, characterized in that
【請求項7】弾性弁体は、オレフィン系樹脂とエチレン
プロピレンゴムとの混合物からなる成分と、さらにエチ
レンプロピレンゴム原料との混合物からなり、前記エチ
レンプロピレンゴム原料は架橋されていてオレフィン系
樹脂とエチレンプロピレンゴムの混合物をその内部にと
りこんでいる請求項6記載の密閉型電池用安全弁装置。
7. The elastic valve body comprises a mixture of a component composed of a mixture of an olefin resin and ethylene propylene rubber, and a mixture of an ethylene propylene rubber raw material, wherein the ethylene propylene rubber raw material is crosslinked to form an olefin resin. The safety valve device for a sealed battery according to claim 6, wherein a mixture of ethylene propylene rubber is incorporated therein.
JP8041591A 1996-02-28 1996-02-28 Safety valve device for sealed type battery Pending JPH09237619A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8041591A JPH09237619A (en) 1996-02-28 1996-02-28 Safety valve device for sealed type battery
DE69622525T DE69622525T2 (en) 1996-02-28 1996-09-30 sealing battery
EP96307168A EP0793283B1 (en) 1996-02-28 1996-09-30 Sealed battery
US08/758,830 US5712056A (en) 1996-02-28 1996-12-04 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8041591A JPH09237619A (en) 1996-02-28 1996-02-28 Safety valve device for sealed type battery

Publications (1)

Publication Number Publication Date
JPH09237619A true JPH09237619A (en) 1997-09-09

Family

ID=12612667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8041591A Pending JPH09237619A (en) 1996-02-28 1996-02-28 Safety valve device for sealed type battery

Country Status (1)

Country Link
JP (1) JPH09237619A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063680A1 (en) * 2000-02-28 2001-08-30 Matsushita Electric Industrial Co., Ltd. Sealing plate, cell using the sealing plate, and method of manufacturing the cell
CN100372152C (en) * 2004-12-28 2008-02-27 北京有色金属研究总院 Temperature controlled safety device in use for batteries, and method, and batteries with safety device being installed
WO2008026854A1 (en) * 2006-08-28 2008-03-06 Lg Chem, Ltd. Secondary battery including one-way exhaust valve
JP2014120360A (en) * 2012-12-18 2014-06-30 Gs Yuasa Corp Rubber valve for sealed battery, safety valve device, and alkaline storage battery
US8956743B2 (en) 2006-08-28 2015-02-17 Lg Chem, Ltd. Secondary battery including one-way exhaust member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063680A1 (en) * 2000-02-28 2001-08-30 Matsushita Electric Industrial Co., Ltd. Sealing plate, cell using the sealing plate, and method of manufacturing the cell
US7858217B1 (en) 2000-02-28 2010-12-28 Panasonic Corporation Top sealing plate, battery using the top sealing plate, and method of manufacturing the battery
CN100372152C (en) * 2004-12-28 2008-02-27 北京有色金属研究总院 Temperature controlled safety device in use for batteries, and method, and batteries with safety device being installed
WO2008026854A1 (en) * 2006-08-28 2008-03-06 Lg Chem, Ltd. Secondary battery including one-way exhaust valve
JP2010503150A (en) * 2006-08-28 2010-01-28 エルジー・ケム・リミテッド Secondary battery including one-way exhaust valve
US8071231B2 (en) 2006-08-28 2011-12-06 Lg Chem, Ltd. Secondary battery including one-way exhaust valve
JP4927169B2 (en) * 2006-08-28 2012-05-09 エルジー・ケム・リミテッド Secondary battery including one-way exhaust valve
US8956743B2 (en) 2006-08-28 2015-02-17 Lg Chem, Ltd. Secondary battery including one-way exhaust member
JP2014120360A (en) * 2012-12-18 2014-06-30 Gs Yuasa Corp Rubber valve for sealed battery, safety valve device, and alkaline storage battery

Similar Documents

Publication Publication Date Title
JP4297892B2 (en) Lithium ion secondary battery with safety vent
JP5186514B2 (en) Secondary battery
EP0973213B1 (en) Explosion-proof nonaqueous electrolyte secondary cell and rupture pressure setting method therefor
JPH06325796A (en) Cell provided with breaker that is caused to operate by overcharge
WO2004091013A1 (en) Nonaqueous electrolytic secondary battery
JP2008530757A (en) End cap assembly and ventilation for high power batteries
JPH07254402A (en) Sealed battery
JPH07254401A (en) Sealed battery
JP4701636B2 (en) Sealed storage battery exhaust valve, sealed storage battery using the same, sealed nickel metal hydride storage battery
JPH09237619A (en) Safety valve device for sealed type battery
JP3158946B2 (en) Sealed battery
KR100416096B1 (en) Safety valve device and secondary battery applying such
KR20080030702A (en) Cylindrical secondary battery including isolating member preventing movement of jelly-roll and center pin
EP0793283B1 (en) Sealed battery
EP2136430A1 (en) Power system and method for charging battery pack
JP3027932B2 (en) Sealed battery
JP3436031B2 (en) Alkaline storage battery
JP2006504244A (en) Method and apparatus for adjusting charge of electrochemical cell
JPH11250884A (en) Battery
JP4639641B2 (en) Sealed alkaline storage battery
JP2006066175A (en) Sealed storage battery
JP3089310B2 (en) Sealed nickel / metal hydride storage battery
KR100563041B1 (en) Cap assembly of Secondary Battery
JPH06325742A (en) Safety valve device of sealed battery
JPH10289702A (en) Square sealed battery