JP3552454B2 - Prismatic sealed battery - Google Patents
Prismatic sealed battery Download PDFInfo
- Publication number
- JP3552454B2 JP3552454B2 JP09548497A JP9548497A JP3552454B2 JP 3552454 B2 JP3552454 B2 JP 3552454B2 JP 09548497 A JP09548497 A JP 09548497A JP 9548497 A JP9548497 A JP 9548497A JP 3552454 B2 JP3552454 B2 JP 3552454B2
- Authority
- JP
- Japan
- Prior art keywords
- rectangular
- battery
- battery case
- valve body
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/317—Re-sealable arrangements
- H01M50/325—Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電池としての安全性を高めた角形密閉電池の、とくに安全弁部分の改良に関するものである。
【0002】
【従来の技術】
近年、各種携帯機器の普及に伴い電池、特に再充電可能な二次電池が広い分野で利用されている。これら機器に使用される電池として、従来より鉛蓄電池、ニッケル−カドミウム蓄電池が用いられてきたが、最近ではこれにニッケル−水素蓄電池やリチウム二次電池などが加わってきた。
【0003】
これらの再充電可能な電池の中で、鉛蓄電池、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池等の水溶液系電解液を用いている電池では、いわゆるノイマン方式によって電池内部で発生するガスを対極で消費することにより、電池の密閉化を可能にしている。
【0004】
一方、リチウム二次電池など非水電解液を用いた電池ではガスの電池内部での消失ができないため、過充電や過放電をさけることでその密閉化を図ってきた。
【0005】
しかし、充電器の故障や、電池の誤使用、外部短絡などに起因した異常事態に陥った時、電池の内圧が異常に上昇し破裂に至ることがある。この電池の破裂を防止するために二次電池では、通常、電池の内圧が予め設定された値を超えた場合に、電池内部に発生したガスを外部に放出するように安全弁装置を備えている。
【0006】
以下、安全弁装置を有する密閉型電池について説明する。図1は一般的な円筒型密閉電池の上部を破断して示した図である。この図において電池ケースの内部には、詳細な図示は行っていないが、セパレータを介して正極板と負極板とを重ね合わせた極板群とアルカリ電解液からなる発電要素4が収納されている。さらにケース1の開口部には封口板2がガスケット3を介してかしめ固定されている。封口板2は皿状であり、その上側には、安全弁装置を構成するためにも用いられるキャップ状の正極端子5が一体されている。この正極端子5は、フランジ部分のあるキャップ状をなしていて、その一部にはガス排気口5aが形成されている。
【0007】
この正極端子5と皿状の封口板2とに囲まれた空間に弁室6が形成されており、この弁室6に弾性弁体7を圧縮した状態で内蔵している。この弾性弁体7としては、金属バネやゴムの弾性を利用したものが一般的である。
【0008】
以上のような構成の密閉型電池において、充電器の故障による過大な充電電流の流入や、転極を伴うような過放電などに起因して電池の内圧上昇が生じた場合、高圧状態となったガスは、封口板2の中央に設けた通気口2aから弾性弁体に作用してこれを押し上げ、正極端子5のガス排気口5aから外部へ排出される。
【0009】
通常、円筒型密閉電池に用いられる上記の安全弁装置は、電池の内圧(Kg/cm2であるが、以下、単にKgという)が10kg以上に達したときに、ガスが外部に放出されるように設定されている。従って、急激なガス発生を伴わない程度の過充電が行われた場合は、負極のガス吸収能力が低下するにつれて電池内圧は上昇する。この時、電池内部のガスが外部に放出されても問題なく、充電が停止されて電池の内圧が下がれば、安全弁装置は元の形に戻り、再び使用可能になるようにしている。また、急速充電を可能にするためには安全弁の定格許容圧力を20kg程度まで高めることもある。その定格許容圧力の設定方法としては、弁体を構成するゴム等の弾性体の硬度を高めたり、あるいは弁体の圧縮率を大きくすることによって行われる。
【0010】
【発明が解決しようとする課題】
一方、角形密閉電池ではケースの構造上、円筒型密閉電池に比べて、それよりも低い圧力で電池ケースが変形する危険性があり、安全弁の定格許容圧力の上限を10kg程度に抑制せねばならない。また、下限側は電池性能確保の点から5kg以上とする必要があり、円筒型密閉電池に比べ狭い範囲での安全弁の作動コントロールが求められる。しかし、実際の角形密閉電池では安全弁の材質、形状に起因したバラツキ、電池設計上のバラツキ等が作用して、安全弁の作動圧力を狭い圧力範囲で調整することは難しかった。
【0011】
本発明は、安全弁の作動圧力のバラツキを抑え、電池内圧上昇により生じる変形や破裂等の安全性の問題の解消と、電池特性の長期的安定が確保ができる角形密閉電池を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明では、角形密閉電池の安全弁装置の主要材料である弾性弁体をエチレンプロピレン共重合ゴムで形成し、しかも端子キャップ側に設けられる矩形の弁室に応じて上面形状を矩形とし、その対向する一対の辺の外面には位置規制用リブが外側に向けて張り出るよう一体に設けたものを用い、その当初、高さH1が、端子キャップの内部高さ寸法H2に圧縮される際、圧縮度合いが16〜24%となるよう構成したものである。
【0013】
【発明の実施の形態】
エチレンプロピレン共重合ゴムは、そのゴム弾性が安定していて弾性弁体材料としては好適である。
【0014】
矩形の端子キャップに設けられた矩形の弁室内に、このような上面形状が矩形の弾性弁体を適正位置で配置するため、弾性弁体の位置規制リブはその対向する一対の辺の外面に外側へ張り出すように設けることが望ましい。
【0015】
また、弾性弁体の端子キャップ側弁室内部での高さ方向の圧縮度合いは、16%未満では安全弁装置としての密閉性を確保できない。すなわち開弁時電池電解液の漏液を容易に生じ、電池特性の長期的な安定確保ができない。また圧縮度合いが24%を越えると弁作動圧が上昇し、電池内圧が10kg以上となり電池ケースの変形や破裂の危険性が生じる。
【0016】
したがって弾性弁体の当初の高さ寸法H1の、弁室内高さ寸法H2に対応した圧縮度合いは、H1−H2/H1×100(%)の計算式で16〜24%となることが望ましい。
【0017】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0018】
図2は安全弁装置を配置した角形密閉電池の上部断面図である。その構造は封口板2の中央に絶縁ガスケット3を介してかしめ固定した中空リベット8の上部に安全弁装置を構成するためにも用いられるキャップ状で矩形の正極端子5が溶接されている。この正極端子5はキャップ状をなしており、その一部にはガス排気口5aが形成されている。正極端子5とリベット8とに囲まれて弁室6が形成されており、この弁室6内には位置規制リブ7aを一対の辺の外面に外側へ張り出るように一体に設けた弾性弁体7が圧縮された状態で配置されている。
【0019】
この弾性弁体7の詳細は図3,図4に示すとおりであり、弁体7は矩形で、その対向する一対の辺の外面には薄肉なリブ7a(図4に示す)が一体に設けられている。この弁体7、それ自体の形状は図5のとおりであり、エチレンプロピレン共重合ゴムで形成された棹を所定寸法に切断して得られる。
【0020】
図2に示す状態で安全弁装置を構成し、その弁体7の当初の高さH1を変え、弁室6内でのH2の高さとする圧縮度合いについての検討を行った。弁体7の圧縮度合いは、A16%,B20%,C24%,D12%,E30%とした。これらの安全弁装置を用いて容量600mAhの小型の角形密閉電池を作成し、この電池をそれぞれ電池a,b,c,d,eとした。
【0021】
これらの電池は、いずれも厚みが5.6mm、幅が16.4mm、高さが48mmの角形のニッケル−水素蓄電池である。a〜eの5種類の電池を作成して0.0002kg/cm2/secで内部加圧し、安全弁の作動圧を測定した結果を図6に示す。
【0022】
図6より、本発明による電池a,b,cの範囲では、角形密閉電池に求められる弁の作動圧を5kgから10kgの範囲に制御することが可能であった。
【0023】
本実施例では弾性弁体の高さ寸法により、弁室内での圧縮度合いを規制したが、弁室内の空間高さ寸法の規制によっても同様の効果が得られる。
【0024】
【発明の効果】
以上のように本発明によれば、角形密閉電池の安全弁の作動圧の値を適正範囲に制御し、内圧上昇により生じる電池ケースの変形や破裂等の安全性低下の問題の解消と電池特性の長期的な安定確保ができる。
【図面の簡単な説明】
【図1】円筒型密閉電池の上部破断図
【図2】本発明の角形密閉電池の上部破断図
【図3】同安全弁部分の拡大断面図
【図4】同側面よりの拡大断面図
【図5】同弾性弁体の斜視図
【図6】同弾性弁体の圧縮度合いと安全弁の作動圧との関係を示す図
【符号の説明】
1 電池ケース
2 封口板
3 絶縁ガスケット
4 発電要素
5 キャップ状の正極端子
5a ガス排気口
6 弁室
7 弾性弁体
7a リブ
8 中空リベット[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a square sealed battery having improved safety as a battery, and more particularly to an improvement in a safety valve portion.
[0002]
[Prior art]
In recent years, with the spread of various portable devices, batteries, particularly rechargeable secondary batteries, have been used in a wide range of fields. Conventionally, lead storage batteries and nickel-cadmium storage batteries have been used as batteries used in these devices. Recently, nickel-hydrogen storage batteries and lithium secondary batteries have been added to these batteries.
[0003]
Among these rechargeable batteries, batteries using an aqueous electrolyte such as a lead storage battery, a nickel-cadmium storage battery, and a nickel-hydrogen storage battery consume the gas generated inside the battery at the opposite electrode by the so-called Neumann method. By doing so, the battery can be hermetically sealed.
[0004]
On the other hand, in a battery using a non-aqueous electrolyte such as a lithium secondary battery, the gas cannot be lost inside the battery, so that the hermetic sealing has been attempted by avoiding overcharge and overdischarge.
[0005]
However, when an abnormal situation occurs due to a failure of a charger, misuse of a battery, an external short circuit, or the like, the internal pressure of the battery may abnormally rise and lead to rupture. In order to prevent the rupture of the battery, the secondary battery is usually provided with a safety valve device to release gas generated inside the battery to the outside when the internal pressure of the battery exceeds a preset value. .
[0006]
Hereinafter, a sealed battery having a safety valve device will be described. FIG. 1 is a cutaway view of the upper part of a general cylindrical sealed battery. Although not shown in detail in this figure, a power generating
[0007]
A valve chamber 6 is formed in a space surrounded by the
[0008]
In the sealed battery having the above-described configuration, when the internal pressure of the battery increases due to an inflow of an excessive charging current due to a failure of a charger or an overdischarge accompanied by a reversal, a high voltage state occurs. The gas acts on the elastic valve body from the ventilation port 2 a provided at the center of the
[0009]
Usually, the above-described safety valve device used for a cylindrical sealed battery is designed so that when the internal pressure of the battery (Kg / cm 2 , hereinafter simply referred to as Kg) reaches 10 kg or more, gas is released to the outside. Is set to Therefore, when overcharging is performed to such an extent that no sudden gas generation occurs, the internal pressure of the battery increases as the gas absorbing capacity of the negative electrode decreases. At this time, there is no problem even if the gas inside the battery is released to the outside, and if charging is stopped and the internal pressure of the battery drops, the safety valve device returns to its original shape and can be used again. In order to enable quick charging, the rated allowable pressure of the safety valve may be increased to about 20 kg. The method of setting the rated allowable pressure is performed by increasing the hardness of an elastic body such as rubber constituting the valve body, or by increasing the compression ratio of the valve body.
[0010]
[Problems to be solved by the invention]
On the other hand, in the case of a rectangular sealed battery, due to the structure of the case, there is a risk that the battery case will be deformed at a pressure lower than that of the cylindrical sealed battery, and the upper limit of the rated allowable pressure of the safety valve must be suppressed to about 10 kg. . Further, the lower limit needs to be 5 kg or more from the viewpoint of securing the battery performance, and it is required to control the operation of the safety valve in a narrower range than the cylindrical sealed battery. However, in an actual rectangular sealed battery, it is difficult to adjust the operating pressure of the safety valve in a narrow pressure range due to variations due to the material and shape of the safety valve, variations in battery design, and the like.
[0011]
An object of the present invention is to provide a sealed rectangular battery capable of suppressing variations in operating pressure of a safety valve, eliminating safety problems such as deformation and rupture caused by an increase in battery internal pressure, and ensuring long-term stability of battery characteristics. And
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, an elastic valve body, which is a main material of a safety valve device for a rectangular sealed battery, is formed of ethylene propylene copolymer rubber, and the upper surface is formed according to a rectangular valve chamber provided on a terminal cap side. The shape is rectangular, and a pair of position-regulating ribs are integrally provided on the outer surfaces of a pair of opposing sides so as to protrude outward, and the height H1 is initially the internal height of the terminal cap. When compressed to H2, the degree of compression is 16 to 24%.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Ethylene propylene copolymer rubber has a stable rubber elasticity and is suitable as an elastic valve body material.
[0014]
In the rectangular valve chamber provided on the rectangular terminal cap, such an elastic valve body having a rectangular top surface is disposed at an appropriate position.Therefore, the position regulating ribs of the elastic valve body are provided on the outer surfaces of a pair of opposing sides. It is desirable to provide so as to project outward.
[0015]
Further, if the degree of compression in the height direction of the elastic valve element in the valve chamber inside the terminal cap is less than 16%, the hermeticity of the safety valve device cannot be secured. That is, leakage of the battery electrolyte easily occurs when the valve is opened, and long-term stability of battery characteristics cannot be ensured. On the other hand, if the degree of compression exceeds 24%, the valve operating pressure increases, and the internal pressure of the battery becomes 10 kg or more, which may cause a risk of deformation or rupture of the battery case.
[0016]
Therefore, it is desirable that the degree of compression of the initial height H1 of the elastic valve body corresponding to the height H2 of the valve chamber is 16 to 24% in the calculation formula of H1−H2 / H1 × 100 (%).
[0017]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 2 is a top sectional view of the prismatic sealed battery in which the safety valve device is arranged. In this structure, a cap-shaped rectangular
[0019]
The details of the
[0020]
The safety valve device was configured in the state shown in FIG. 2, the initial height H <b> 1 of the
[0021]
Each of these batteries is a nickel-metal hydride storage battery having a thickness of 5.6 mm, a width of 16.4 mm, and a height of 48 mm. Five types of batteries a to e were prepared and internally pressurized at 0.0002 kg / cm 2 / sec, and the results of measuring the operating pressure of the safety valve are shown in FIG.
[0022]
As shown in FIG. 6, in the range of the batteries a, b, and c according to the present invention, the valve operating pressure required for the rectangular sealed battery could be controlled in the range of 5 kg to 10 kg.
[0023]
In the present embodiment, the degree of compression in the valve chamber is regulated by the height of the elastic valve body. However, the same effect can be obtained by regulating the height of the space in the valve chamber.
[0024]
【The invention's effect】
As described above, according to the present invention, the value of the operating pressure of the safety valve of the rectangular sealed battery is controlled to an appropriate range, and the problem of reduced safety such as deformation and rupture of the battery case caused by an increase in the internal pressure is eliminated, and the battery characteristics are improved. Long-term stability can be ensured.
[Brief description of the drawings]
FIG. 1 is an upper cutaway view of a cylindrical sealed battery. FIG. 2 is an upper cutaway view of a prismatic sealed battery of the present invention. FIG. 3 is an enlarged sectional view of the safety valve portion. FIG. FIG. 6 is a perspective view of the elastic valve body. FIG. 6 is a view showing the relationship between the degree of compression of the elastic valve body and the operating pressure of the safety valve.
DESCRIPTION OF SYMBOLS 1
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09548497A JP3552454B2 (en) | 1997-04-14 | 1997-04-14 | Prismatic sealed battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09548497A JP3552454B2 (en) | 1997-04-14 | 1997-04-14 | Prismatic sealed battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10289702A JPH10289702A (en) | 1998-10-27 |
JP3552454B2 true JP3552454B2 (en) | 2004-08-11 |
Family
ID=14138895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09548497A Expired - Fee Related JP3552454B2 (en) | 1997-04-14 | 1997-04-14 | Prismatic sealed battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3552454B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100528897B1 (en) * | 1999-01-22 | 2005-11-16 | 삼성에스디아이 주식회사 | Cap assembly used in secondary battery |
JP4559567B2 (en) * | 1999-10-08 | 2010-10-06 | パナソニック株式会社 | Sealed storage battery |
JP6904319B2 (en) * | 2018-09-19 | 2021-07-14 | トヨタ自動車株式会社 | Secondary battery |
JP7247741B2 (en) * | 2019-05-16 | 2023-03-29 | 株式会社豊田自動織機 | Method for manufacturing pressure regulating valve, and power storage module |
CN118380718B (en) * | 2024-06-21 | 2024-08-23 | 蜂巢能源科技股份有限公司 | Single battery |
-
1997
- 1997-04-14 JP JP09548497A patent/JP3552454B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10289702A (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6579640B1 (en) | Sealed rectangular battery and manufacturing method for the same | |
KR100814778B1 (en) | Pressure-discharged venting system for rechargable battery | |
KR100807029B1 (en) | Secondary battery | |
US4822377A (en) | Method for sealing an electrochemical cell employing an improved reinforced cover assembly | |
CN209880668U (en) | Top cap assembly and secondary battery | |
KR100719728B1 (en) | Cap assembly and the secondary battery employing the same | |
JP2002124236A (en) | Sealed battery | |
EP2333870A1 (en) | Secondary battery | |
JP4243148B2 (en) | Sealed storage battery | |
JP3552454B2 (en) | Prismatic sealed battery | |
CN110100327B (en) | Alkaline secondary battery | |
JP2002289172A (en) | Sealing plug and closed type storage device using it | |
KR101146467B1 (en) | Case for lithium rechargeable battery and Lithium Rechargeable battery using the same | |
KR101453783B1 (en) | Cap assembly and secondary battery using the same | |
US6309776B1 (en) | Assembled storage battery unit of the collective type | |
KR20080032911A (en) | Rechargeable battery | |
KR20060085444A (en) | Cylindrical battery | |
JP3615322B2 (en) | Sealed battery | |
JPH08148135A (en) | Battery with explosion-proof function | |
JP2000251949A (en) | Sealed storage battery | |
JP2006066175A (en) | Sealed storage battery | |
JP3596918B2 (en) | Explosion-proof battery | |
JP3158946B2 (en) | Sealed battery | |
KR20150051516A (en) | Cap assembly and secondary battery comprising the same | |
JP3808420B2 (en) | Secondary battery and charger and secondary battery system using them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040426 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |