JPH09236807A - Evaluation device for imidization rate of liquid crystal orienting film - Google Patents

Evaluation device for imidization rate of liquid crystal orienting film

Info

Publication number
JPH09236807A
JPH09236807A JP4372796A JP4372796A JPH09236807A JP H09236807 A JPH09236807 A JP H09236807A JP 4372796 A JP4372796 A JP 4372796A JP 4372796 A JP4372796 A JP 4372796A JP H09236807 A JPH09236807 A JP H09236807A
Authority
JP
Japan
Prior art keywords
light
alignment film
polyamide
wavelength
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4372796A
Other languages
Japanese (ja)
Inventor
Tadashi Rokkaku
正 六角
Koichi Kurita
耕一 栗田
Takashi Yoshiyama
隆士 吉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4372796A priority Critical patent/JPH09236807A/en
Publication of JPH09236807A publication Critical patent/JPH09236807A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an evaluating device for an imidization degree having high productivity and reliability so that the uniformity of imidization degree in orienting films can be evaluated in the production line by evaluating the luminance level and distribution of an output image from a light accepting device which accepts light passed through a specified bad pass filter. SOLUTION: IR rays 3 emitted from an IR light source 2 are made to irradiate the orienting film on the surface of a substrate 1. The device is equipped with a first band pass filter 10, and second and third bad pass filters 16, 19. The first band pass filter corresponds to a first wavelength at which polyimide has low absorptivity and polyamide has high absorptivity in the absorption spectrum of the reflected light 4. The second and third band pass filters 16, 19 correspond to second and third wavelengths shorter and longer than the first wavelength, and both of polyamide and polyimide show low absorptivity. A camera 11 accepts light passed through the first band pass filter 10. In an image processing device, the luminance level and distribution of the output image from light-accepting sensors 17, 20 which accept light from the second and third band pass filters 16, 19, respectively is evaluated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は液晶配向膜のイミ
ド化率評価装置に関し、詳しくはポリアミド膜を乾燥・
焼成してポリイミド膜とする液晶表示の配向膜のイミド
化率(ポリアミド→ポリイミド)を評価する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaluating the imidization ratio of a liquid crystal alignment film, and more particularly, it is a method for drying a polyamide film
The present invention relates to an apparatus for evaluating the imidization ratio (polyamide → polyimide) of an alignment film for liquid crystal display which is baked to form a polyimide film.

【0002】[0002]

【従来の技術】従来、液晶表示の配向膜は、ポリアミド
膜を印刷,乾燥,焼成してポリイミド膜とした上で、ラ
ビング処理して形成している。また、従来、ポリイミド
膜のイミド化率を評価する装置は存在しなかった。
2. Description of the Related Art Conventionally, an alignment film for a liquid crystal display is formed by printing, drying and baking a polyamide film to form a polyimide film and then rubbing the film. Further, conventionally, there is no apparatus for evaluating the imidization ratio of a polyimide film.

【0003】[0003]

【発明が解決しようとする課題】ところで、液晶表示市
場は急激な成長をする有望市場であるが、液晶表示のコ
ストダウンが重要となっている。そのコストダウンの阻
害要因の一つが歩留り低下である。液晶表示の歩留り低
下は最終工程の点灯検査で顕在化する色ムラ,輝度ムラ
等の画像品質不良が一つの大きな要因となっている。
By the way, although the liquid crystal display market is a promising market which is rapidly growing, cost reduction of the liquid crystal display is important. One of the factors that hinders the cost reduction is the decrease in yield. One of the major causes of the decrease in the yield of liquid crystal displays is defective image quality such as color unevenness and brightness unevenness, which become apparent in the lighting inspection in the final process.

【0004】この色ムラ,輝度ムラの原因の一つが配向
膜のイミドか率の不均一であることが判明してきてお
り、以下それを説明する。ポリアミドはポリイミドに比
して硬度が低い。そのため、ポリアミド膜を乾燥・焼成
してポリイミド膜とした際にポリアミドが不均一に残存
していると、ラビング処理時に問題が生じる。ここに、
ラビング処理は、物理的接触によってポリイミド膜に微
細溝を形成する処理であり、残存ポリアミド部は硬度が
低く、配向膜の不均一が生じる。
It has been found that one of the causes of the color unevenness and the brightness unevenness is the nonuniformity of the imide of the alignment film, which will be described below. Polyamide has a lower hardness than polyimide. Therefore, when the polyamide film remains non-uniformly when the polyamide film is dried and fired to form a polyimide film, a problem occurs during the rubbing process. here,
The rubbing treatment is a treatment for forming fine grooves in the polyimide film by physical contact, and the residual polyamide portion has a low hardness and causes non-uniformity of the alignment film.

【0005】こうしたことから、イミド化率の均一性評
価装置が望まれているが、生産現場での評価に適用でき
る速度を有する装置は存在しない。しかし、研究室レベ
ルでのイミド化率の評価は可能である。例えば、赤外光
吸収スペクトルのフーリエ解析装置(以下、IR(Inf
ra Red)分析装置と略す)を用いれば可能である。し
かしながら、IR分析装置は評価対象とする点の赤外光
の吸収又は反射スペクトルをフーリエ解析するため、1
点当りの分析時間も大きい。また、通常IR分析装置は
試料サイズに制約がある。
From the above, an apparatus for evaluating the uniformity of the imidization ratio is desired, but there is no apparatus having a speed applicable to the evaluation at the production site. However, it is possible to evaluate the imidization rate at the laboratory level. For example, a Fourier analysis device for infrared absorption spectrum (hereinafter, IR (Inf
This is possible by using a ra Red) analyzer. However, since the IR analyzer performs Fourier analysis on the absorption or reflection spectrum of infrared light at the point to be evaluated,
The analysis time per point is also long. Further, the IR analyzer is usually limited in sample size.

【0006】そのため、大面積の配向膜を施工したガラ
ス基板、例えば360×460mmの基板表面のイミド
化率不均一の分布を短時間で評価することは困難であ
り、生産ラインでのイミド化率評価装置として使用する
ことに無理がある。
Therefore, it is difficult to evaluate in a short time the uneven imidization ratio distribution on the surface of a glass substrate having a large-area alignment film, for example, a substrate of 360 × 460 mm, and it is difficult to evaluate the imidization ratio in the production line. It is impossible to use it as an evaluation device.

【0007】この発明はこうした事情を考慮してなされ
たもので、生産ラインで配向膜のイミド化率均一性の評
価を可能とする,生産性と信頼性の高い液晶配向膜のイ
ミド化率評価装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to evaluate the uniformity of the imidization ratio of the alignment film on the production line, and to evaluate the imidization ratio of the liquid crystal alignment film with high productivity and reliability. The purpose is to provide a device.

【0008】[0008]

【課題を解決するための手段】本願第1の発明は、配向
膜に赤外光を投光する装置と、前記赤外光の反射光の吸
収スペクトルにおいて、ポリイミドでは吸収率が低くポ
リアミドでは吸収率が高い波長に対する帯域通過フィル
ターと、このフィルターを通過した光を受光する受光器
と、この受光器の出力画像の輝度レベル及び分布を評価
する画像評価装置とを具備することを特徴とする液晶配
向膜のイミド化率評価装置である。
The first invention of the present application is a device for projecting infrared light on an alignment film, and an absorption spectrum of reflected light of the infrared light in which absorption coefficient is low for polyimide and absorption for polyamide. A liquid crystal comprising a bandpass filter for a wavelength having a high rate, a light receiver for receiving light passing through the filter, and an image evaluation device for evaluating the brightness level and distribution of an output image of the light receiver. It is an apparatus for evaluating the imidization ratio of an alignment film.

【0009】第1の発明において、前記受光器としては
例えばカメラが挙げられる。本願第2の発明は、配向膜
に赤外光を投光する装置と、前記赤外光の反射光の吸収
スペクトルにおいて、ポリイミドでは吸収率が低くポリ
アミドでは吸収率が高い第1波長に対する第1の帯域通
過フィルターと、前記第1波長の前後でポリアミド及び
ポリイミドの双方に対して吸収率の低い第2,第3波長
に夫々対する第2,第3の帯域通過フィルターと、前記
第1の帯域通過フィルターを通過した光を受光する第1
の受光器と、前記第2の帯域通過フィルターを通過した
光を受光する第2の受光器と、前記第3の帯域通過フィ
ルターを通過した光を受光する第3の受光器と、前記第
2,第3の受光器の出力画像の輝度レベル及び分布を評
価する画像処理装置とを具備することを特徴とする液晶
配向膜のイミド化率評価装置である。
In the first aspect of the invention, the light receiver may be a camera, for example. A second invention of the present application is a device for projecting infrared light onto an alignment film, and a first wavelength for a first wavelength having a low absorptivity of polyimide and a high absorptivity of polyamide in an absorption spectrum of reflected light of the infrared light. Band-pass filter, second and third band-pass filters respectively corresponding to second and third wavelengths having low absorptance for both polyamide and polyimide before and after the first wavelength, and the first band. The 1st which receives the light which passed the passage filter
Optical receiver, a second optical receiver that receives light that has passed through the second band-pass filter, a third optical receiver that receives light that has passed through the third band-pass filter, and the second optical receiver. , An image processing device for evaluating the brightness level and distribution of the output image of the third light receiver, and a device for evaluating the imidization ratio of a liquid crystal alignment film.

【0010】第2の発明において、前記第2,第3の受
光器としては、夫々例えばカメラ又は受光センサーが挙
げられる。以下に、この発明の作用を、(1) 配向膜の膜
厚分布が均一な場合、(2) 配向膜の膜厚分布が不均一の
場合の夫々について説明する。
In the second invention, examples of the second and third light receivers include a camera and a light receiving sensor, respectively. The operation of the present invention will be described below for each of (1) the uniform film thickness distribution of the alignment film and (2) the non-uniform film thickness distribution of the alignment film.

【0011】(1) 配向膜の膜厚分布が均一な場合 この場合、反射赤外光の光強度は、配向膜の膜質のみに
依存する。従って、ポリイミドでは吸収率が低くポリア
ミドでは吸収率の高い波長に対する帯域通過フィルター
に前記反射赤外光を通過させ、この通過光を波長域に充
分の感度を有するカメラで受光して前記配向膜表面の一
定面積の画像を得た場合、ポリイミドの部分は輝度レベ
ルが高く、ポリアミドの部分では輝度レベルが低くな
る。また、前記輝度レベルは、ポリイミドの比率即ちイ
ミド化率で決まる。
(1) When the film thickness distribution of the alignment film is uniform In this case, the light intensity of the reflected infrared light depends only on the film quality of the alignment film. Therefore, the polyimide has a low absorptance and the polyamide has a high absorptivity. The reflected infrared light is passed through a band-pass filter for wavelengths, and the passed light is received by a camera having sufficient sensitivity in the wavelength range and the alignment film surface When an image of a constant area is obtained, the brightness level is high in the polyimide part and low in the polyamide part. The brightness level is determined by the ratio of polyimide, that is, the imidization ratio.

【0012】(2) 配向膜の膜厚分布が不均一の場合 この場合、反射赤外光の光強度は、配向膜の膜質のみな
らず、膜厚の影響をも受ける。従って、ポリイミドでは
吸収率が低くポリアミドでは吸収率の高い波長の光強度
も、膜質と膜厚の両方の影響を受ける。前記第2,第3
の帯域通過フィルターと第2,第3の受光器は、膜厚不
均一の影響を除去することを目的としたものである。
(2) When the film thickness distribution of the alignment film is non-uniform In this case, the light intensity of the reflected infrared light is affected not only by the film quality of the alignment film but also by the film thickness. Therefore, the light intensity of the wavelength, which has a low absorptance with polyimide and a high absorptivity with polyamide, is affected by both the film quality and the film thickness. The second and third
The band-pass filter and the second and third photodetectors are intended to eliminate the influence of the nonuniformity of the film thickness.

【0013】即ち、イミド化率という膜質を評価するた
めの第1の波長域の光強度の評価を行う際、ポリアミ
ド,ポリイミド共に吸収率が低くかつ第1の波長域の前
後にある第2,第3の波長域の輝度レベルを基準とする
ことによって、第1の波長域の光強度を較正して、膜厚
不均一の影響をキャンセルさせる。
That is, when the light intensity in the first wavelength region for evaluating the film quality called imidization ratio is evaluated, the polyamide and the polyimide both have low absorptivity and are located before and after the first wavelength region. By using the brightness level in the third wavelength range as a reference, the light intensity in the first wavelength range is calibrated to cancel the influence of the non-uniformity of the film thickness.

【0014】[0014]

【発明の実施の形態】以下、この発明の一実施例を図1
〜4を参照して説明する。ここで、図1はこの発明に係
る液晶配向膜のイミド化率評価装置の一構成である光学
ヘッドの説明図である。図2は同イミド化率評価装置の
一構成である画像処理及び制御装置の説明図である。図
2及び図3は液晶配向膜の赤外光吸収スペクトルのデー
タ例であり、図2はイミド化率の高い場合、図3はイミ
ド化率の低い場合を示す。図4は画像処理及び制御装置
の構成説明図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
This will be described with reference to FIGS. Here, FIG. 1 is an explanatory diagram of an optical head which is one configuration of an imidization ratio evaluation device for a liquid crystal alignment film according to the present invention. FIG. 2 is an explanatory diagram of an image processing and control device which is one configuration of the imidization ratio evaluation device. 2 and 3 are data examples of infrared light absorption spectra of the liquid crystal alignment film, FIG. 2 shows a case where the imidization ratio is high, and FIG. 3 shows a case where the imidization ratio is low. FIG. 4 is an explanatory diagram of the configuration of the image processing and control device.

【0015】図1において、符番1は約0.1μmの膜
厚の配向膜が施工された基板である。この基板1は、図
示しないXYテーブル上に載置されて、矢印a,b方向
のX軸方向及び紙面に垂直なY軸方向に駆動位置決めさ
れるようになっている。赤外光光源2の投光3は、前記
基板1の配向膜表面で反射光4となり、ハーフプリズム
5により分割光6,7となる。
In FIG. 1, reference numeral 1 is a substrate on which an alignment film having a thickness of about 0.1 μm is formed. The substrate 1 is placed on an XY table (not shown), and is driven and positioned in the X-axis direction of the arrows a and b and in the Y-axis direction perpendicular to the paper surface. The projected light 3 from the infrared light source 2 becomes reflected light 4 on the surface of the alignment film of the substrate 1 and becomes divided lights 6 and 7 by the half prism 5.

【0016】このうち、一方の分割光6は、レンズ6,
絞り9,第1の帯域通過フィルター10を介して第1の受
光器としてのカメラ11に至るようになっている。他方の
分割光7は、ハーフプリズム12によって更に分割光13,
14となる。そして、前記分割光13は、レンズ15,第2の
帯域通過フィルタ16を介して第2の受光器である受光セ
ンサー17に至るようになっている。他方の分割光14は、
レンズ18,第3の帯域通過フィルタ19を介して第3の受
光器である受光センサー20に至るようになっている。
Of these, one of the split lights 6 is a lens 6,
A camera 11 as a first light receiver is arranged to pass through a diaphragm 9 and a first band pass filter 10. The other split light 7 is further split by the half prism 12,
It becomes 14. Then, the divided light 13 reaches the light receiving sensor 17, which is a second light receiving device, through the lens 15 and the second band pass filter 16. The other split light 14 is
The light is passed through the lens 18 and the third band pass filter 19 to reach the light receiving sensor 20 which is the third light receiving device.

【0017】次に、第1,第2,第3の帯域通過フィル
ターの通過波長域の設定について図3及び図4を参照し
て説明する。図3,4において、横軸は波長(cm-1
を、縦軸は反射率(%)を示す。ここで、反射率は、膜
のない(素ガラス)の反射光量を100とし、これと比
較して膜を生成したものの反射光量がいくらかになるか
を示したものである。
Next, setting of the pass wavelength bands of the first, second and third band pass filters will be described with reference to FIGS. 3 and 4. 3 and 4, the horizontal axis is wavelength (cm -1 )
And the vertical axis represents the reflectance (%). Here, the reflectivity shows how much the amount of reflected light of the film produced is compared with that of the amount of reflected light of the film (blank glass) as 100.

【0018】図3は配向膜のイミド化率の低い部分の赤
外光吸収スペクトルを示し、2950cm-1の波長の近
傍で吸収のピークが見られ、ポリアミドの特性を示して
いる。また、上記ピークの大きさは、イミド化率の低い
ほど即ちポリアミドの比率の大きいほど大きなピークと
なり、このピークの大きさからイミド化率が評価でき
る。
FIG. 3 shows an infrared absorption spectrum of a portion of the alignment film having a low imidization ratio, and an absorption peak is observed in the vicinity of a wavelength of 2950 cm -1 , which shows characteristics of polyamide. Further, the size of the peak becomes larger as the imidization ratio is lower, that is, as the polyamide ratio is higher, and the imidization ratio can be evaluated from the size of this peak.

【0019】図4は配向膜のイミド化率の高い部分の赤
外光吸収スペクトルを示し、2950cm-1の波長近傍
では吸収のピークがほとんどない。前記第1の帯域通過
フィルター10は、2950cm-1の波長を中心とした狭
波長域を設定通過波長域として設定しており、図3の領
域cである。前記第2の帯域通過フィルター16は、図3
の領域dの狭波長域を設定通過波長域としている。同様
に、第2の帯域通過フィルター19は、図3の領域eを設
定通過波長域としている。
FIG. 4 shows an infrared light absorption spectrum of a portion of the orientation film having a high imidization ratio, and there is almost no absorption peak near the wavelength of 2950 cm -1 . The first band-pass filter 10 sets a narrow wavelength band centering on a wavelength of 2950 cm -1 as a set pass wavelength band, which is a region c in FIG. The second bandpass filter 16 is shown in FIG.
The narrow wavelength band of the region d is set as the set pass wavelength band. Similarly, the second bandpass filter 19 uses the region e in FIG. 3 as the set pass wavelength region.

【0020】次に、図2の画像処理及び制御装置の構成
について説明する。図2において、前記カメラ11の出力
画像は、主制御装置21から送られる図示しない同期クロ
ックパルスでトリガーされて、33m秒間隔で、カメラ
コントロールユニット22を介して画像処理装置23に転送
されるようになっている。前記受光センサー17の出力
は、アンプ24,A/D変換器25を介して、前記同期クロ
ックパルスでトリガーされて、画像処理装置23に転送さ
れるようになっている。また、前記受光センサー20の出
力は、アンプ26,A/D変換器27を介して、前記同期ク
ロックパルスでトリガーされて、画像処理装置23に転送
されるようになっている。
Next, the configuration of the image processing and control device shown in FIG. 2 will be described. In FIG. 2, the output image of the camera 11 is triggered by a synchronous clock pulse (not shown) sent from the main control device 21 and transferred to the image processing device 23 via the camera control unit 22 at 33 msec intervals. It has become. The output of the light receiving sensor 17 is transferred to the image processing device 23 via the amplifier 24 and the A / D converter 25, triggered by the synchronous clock pulse. The output of the light receiving sensor 20 is transferred to the image processing device 23 via the amplifier 26 and the A / D converter 27, triggered by the synchronous clock pulse.

【0021】前記画像処理装置23では、前記カメラ11の
画像出力の中の輝度レベルの低い部分,即ちイミド化率
の低い部分の抽出を行う際の画像2値化しきい値の設定
を、前記A/D変換器25,27のデータ,即ち受光センサ
ー17,20の出力レベルに基づいて行うようになってい
る。前記受光センサー17,20は、予め赤外光吸収スペク
トルの分析で膜質を明らかとし、厚さ分析装置で膜厚を
明らかとした配向膜について較正を行っているものとす
る。
In the image processing device 23, the image binarization threshold value is set when extracting a portion having a low luminance level, that is, a portion having a low imidization rate in the image output of the camera 11, by setting This is performed based on the data of the D / D converters 25 and 27, that is, the output levels of the light receiving sensors 17 and 20. It is assumed that the light-receiving sensors 17 and 20 calibrate the alignment film whose film quality has been clarified in advance by analyzing the infrared light absorption spectrum and whose film thickness has been clarified by a thickness analyzer.

【0022】前記主制御装置21には、XYテーブル(図
示せず)のNC制御装置28から前記同期クロックパルス
でトリガーされて33m秒ごとに得られるXYテーブル
の座標データ(Xk ,Yk )が転送される。前記主制御
装置21では、前記座標データ(Xk ,Yk )と画像処理
装置23の出力とをリンクさせて、基板1の配向膜全面の
画像取り込みが終了した時点で、基板1のイミド化率の
低い部分をマップ表示データとして、モニターTVまた
はプリンター29に出力する。また、主制御装置21では、
イミド化率不良部のサイズや個数から、基板1の良否判
定を行うようになっている。
In the main controller 21, the coordinate data (X k , Y k ) of the XY table obtained every 33 msec by being triggered by the synchronous clock pulse from the NC controller 28 of the XY table (not shown). Is transferred. In the main controller 21, the coordinate data (X k , Y k ) and the output of the image processing device 23 are linked to each other, and when the image acquisition of the entire alignment film of the substrate 1 is completed, the imidization of the substrate 1 is completed. The portion having a low rate is output to the monitor TV or the printer 29 as map display data. Further, in the main controller 21,
The quality of the substrate 1 is determined based on the size and number of imidization ratio defective portions.

【0023】上述したように、上記実施例に係る液晶配
向膜のイミド化率評価装置は、基板1表面の配向膜に赤
外光を投光する赤外光光源2と、前記赤外光の反射光4
の吸収スペクトルにおいて、ポリイミドでは吸収率が低
くポリアミドでは吸収率が高い第1波長に対する第1の
帯域通過フィルター10と、第1波長の前後でポリアミド
及びポリイミドの双方に対して吸収率の低い第2,第3
波長に夫々対する第2,第3の帯域通過フィルター16,
19と、前記第1の帯域通過フィルター16を通過した光を
受光するカメラ11と、前記第2の帯域通過フィルター16
を通過した光を受光する受光センサー17と、前記第3の
帯域通過フィルター19を通過した光を受光する受光セン
サー20、前記第2,第3の受光器17,20の出力画像の輝
度レベル及び分布を評価する画像処理装置23とを具備し
た構成となっている。
As described above, the apparatus for evaluating the imidization ratio of the liquid crystal alignment film according to the above-described embodiment includes the infrared light source 2 for projecting infrared light onto the alignment film on the surface of the substrate 1 and the infrared light. Reflected light 4
In the absorption spectrum of 1, the first bandpass filter 10 for the first wavelength has a low absorptance in polyimide and the absorptivity in polyamide has a high absorptivity in polyamide. , Third
Second and third bandpass filters 16 for wavelengths,
19, a camera 11 that receives the light that has passed through the first band-pass filter 16, and the second band-pass filter 16
A light receiving sensor 17 for receiving the light passing through the light receiving sensor 20, a light receiving sensor 20 for receiving the light passing through the third band pass filter 19, the brightness levels of the output images of the second and third light receiving devices 17, 20, and The image processing device 23 for evaluating the distribution is provided.

【0024】従って、以下に述べる効果を有する。つま
り、本装置によれば、予め設定されたしきい値より低い
イミド化率の部分,即ちポリイミドに対する残存ポリア
ミドの比率の高い部分の2次元分布表示データを短時間
に得ることができるので、生産性の高いイミド化率評価
ができる。また、配向膜のイミド化率評価に対する膜厚
変動の影響を除去するので、信頼性の高いイミド化率評
価ができる。
Therefore, it has the following effects. That is, according to the present apparatus, it is possible to obtain, in a short time, the two-dimensional distribution display data of a portion having an imidization ratio lower than a preset threshold value, that is, a portion having a high ratio of residual polyamide to polyimide. Highly effective imidization rate can be evaluated. In addition, since the influence of the film thickness variation on the evaluation of the imidization ratio of the alignment film is removed, the reliability of the imidization ratio can be evaluated.

【0025】なお、上記実施例では、第1の帯域通過フ
ィルターの評定中心波長を2950cm-1としたが、ポ
リイミドとポリアミドの種類によってはこの波長に限定
しないものとする。
Although the rated center wavelength of the first bandpass filter is set to 2950 cm -1 in the above embodiment, it is not limited to this wavelength depending on the types of polyimide and polyamide.

【0026】また、上記実施例では、第2,第3の受光
器として受光センサーを用いた場合について述べたが、
これに限らず、カメラを用いても良い。更に、上記実施
例では、カメラ11以外に第2,第3の受光器として受光
センサーを用いた場合について述べたが、膜厚分布が均
一な場合、キャリブレーションのための受光センサー
(17,20)の少なくともいずれか一方が不要となり、カ
メラ11の明暗(輝度レベル)で評価するだけで良いこと
になる。即ち、膜厚分布が将来安定すれば、受光センサ
ー17,20は不要になり、装置のコスト低減が可能とな
る。
In the above embodiment, the case where the light receiving sensor is used as the second and third light receivers has been described.
Not limited to this, a camera may be used. Further, in the above-described embodiment, the case where the light receiving sensor is used as the second and third light receiving devices other than the camera 11 has been described, but when the film thickness distribution is uniform, the light receiving sensor (17, 20) for calibration is used. ), At least one of them is unnecessary, and it is sufficient to evaluate the brightness (luminance level) of the camera 11. That is, if the film thickness distribution becomes stable in the future, the light receiving sensors 17 and 20 will be unnecessary, and the cost of the device can be reduced.

【0027】[0027]

【発明の効果】以上詳述したようにこの発明によれば、
生産ラインで配向膜のイミド化率均一性の評価を可能と
する,生産性と信頼性の高い液晶配向膜のイミド化率評
価装置を提供できる。
As described in detail above, according to the present invention,
It is possible to provide a highly productive and highly reliable liquid crystal alignment film imidization ratio evaluation device capable of evaluating the uniformity of the imidization ratio of the alignment film on the production line.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る液晶配向膜のイミド
化率評価装置の一構成である光学ヘッドの説明図。
FIG. 1 is an explanatory diagram of an optical head that is a configuration of an imidization ratio evaluation device for a liquid crystal alignment film according to an embodiment of the present invention.

【図2】この発明の一実施例に係る液晶配向膜のイミド
化率評価装置の一構成である画像処理及び制御装置の説
明図。
FIG. 2 is an explanatory diagram of an image processing and control device which is one configuration of an imidization ratio evaluation device for a liquid crystal alignment film according to an embodiment of the present invention.

【図3】液晶配向膜の赤外光吸収スペクトルのデータ例
で、イミド化率の低い場合の特性図。
FIG. 3 is an example of data of an infrared absorption spectrum of a liquid crystal alignment film, which is a characteristic diagram when the imidization ratio is low.

【図4】液晶配向膜の赤外光吸収スペクトルのデータ例
で、イミド化率の高い場合の特性図。
FIG. 4 is an example of data of an infrared absorption spectrum of a liquid crystal alignment film, which is a characteristic diagram when the imidization ratio is high.

【符号の説明】[Explanation of symbols]

1…基板、 2…赤外光光源、 10…第1の帯域通過フィルター、 11…カメラ、 16…第2の帯域通過フィルター、 17、20…受光センサー、 19…第2の帯域通過フィルター、 23…画像処理装置。 DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Infrared light source, 10 ... 1st bandpass filter, 11 ... Camera, 16 ... 2nd bandpass filter, 17, 20 ... Photosensor, 19 ... 2nd bandpass filter, 23 ... Image processing device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 配向膜に赤外光を投光する装置と、前記
赤外光の反射光の吸収スペクトルにおいて、ポリイミド
では吸収率が低くポリアミドでは吸収率が高い波長に対
する帯域通過フィルターと、このフィルターを通過した
光を受光する受光器と、この受光器の出力画像の輝度レ
ベル及び分布を評価する画像評価装置とを具備すること
を特徴とする液晶配向膜のイミド化率評価装置。
1. An apparatus for projecting infrared light onto an alignment film, a band pass filter for a wavelength having a low absorption rate for polyimide and a high absorption rate for polyamide in an absorption spectrum of reflected light of the infrared light, An imidation ratio evaluation device for a liquid crystal alignment film, comprising: a photoreceiver for receiving light that has passed through a filter; and an image evaluation device for evaluating the brightness level and distribution of an output image of the photoreceiver.
【請求項2】 配向膜に赤外光を投光する装置と、前記
赤外光の反射光の吸収スペクトルにおいて、ポリイミド
では吸収率が低くポリアミドでは吸収率が高い第1波長
に対する第1の帯域通過フィルターと、前記第1波長の
前後でポリアミド及びポリイミドの双方に対して吸収率
の低い第2,第3波長に夫々対する第2,第3の帯域通
過フィルターと、前記第1の帯域通過フィルターを通過
した光を受光する第1の受光器と、前記第2の帯域通過
フィルターを通過した光を受光する第2の受光器と、前
記第3の帯域通過フィルターを通過した光を受光する第
3の受光器と、前記第2,第3の受光器の出力画像の輝
度レベル及び分布を評価する画像処理装置とを具備する
ことを特徴とする液晶配向膜のイミド化率評価装置。
2. A device for projecting infrared light on an alignment film, and an absorption spectrum of reflected light of the infrared light, wherein a first band for a first wavelength has a low absorptivity for polyimide and a high absorptivity for polyamide. A pass filter, second and third band pass filters respectively corresponding to second and third wavelengths having a low absorptivity for both polyamide and polyimide before and after the first wavelength, and the first band pass filter A first photoreceiver that receives light that has passed through the second band, a second photoreceiver that receives light that has passed through the second bandpass filter, and a first photoreceiver that receives light that has passed through the third bandpass filter. 3. An imidation ratio evaluation device for a liquid crystal alignment film, comprising: the third photodetector; and an image processing device for evaluating the brightness level and distribution of the output images of the second and third photodetectors.
JP4372796A 1996-02-29 1996-02-29 Evaluation device for imidization rate of liquid crystal orienting film Withdrawn JPH09236807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4372796A JPH09236807A (en) 1996-02-29 1996-02-29 Evaluation device for imidization rate of liquid crystal orienting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4372796A JPH09236807A (en) 1996-02-29 1996-02-29 Evaluation device for imidization rate of liquid crystal orienting film

Publications (1)

Publication Number Publication Date
JPH09236807A true JPH09236807A (en) 1997-09-09

Family

ID=12671828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4372796A Withdrawn JPH09236807A (en) 1996-02-29 1996-02-29 Evaluation device for imidization rate of liquid crystal orienting film

Country Status (1)

Country Link
JP (1) JPH09236807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866665B1 (en) * 2006-11-02 2008-11-04 하리손 도시바 라이팅구 가부시키가이샤 Manufacturing device for liquid crystal display panel and manufacturing method of the same
WO2010134361A1 (en) * 2009-05-18 2010-11-25 シャープ株式会社 Liquid crystal panel and method for inspecting liquid crystal panel
CN112697845A (en) * 2020-12-16 2021-04-23 上海中化科技有限公司 Method for detecting imidization rate of polyimide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866665B1 (en) * 2006-11-02 2008-11-04 하리손 도시바 라이팅구 가부시키가이샤 Manufacturing device for liquid crystal display panel and manufacturing method of the same
WO2010134361A1 (en) * 2009-05-18 2010-11-25 シャープ株式会社 Liquid crystal panel and method for inspecting liquid crystal panel
JP5285151B2 (en) * 2009-05-18 2013-09-11 シャープ株式会社 Liquid crystal panel and liquid crystal panel inspection method
CN112697845A (en) * 2020-12-16 2021-04-23 上海中化科技有限公司 Method for detecting imidization rate of polyimide

Similar Documents

Publication Publication Date Title
US7412088B2 (en) Inspection method, and inspection device, and manufacturing for display panel
CN101587081A (en) Defect detecting method and device
JP2000193814A (en) Method and device for inspecting color filter and manufacture of color filter
JP4084817B2 (en) Film thickness measuring method and film thickness measuring apparatus
JP4100330B2 (en) Thin film measuring method and thin film measuring apparatus
KR100724374B1 (en) Film thickness acquiring method
JPH09236807A (en) Evaluation device for imidization rate of liquid crystal orienting film
KR101676333B1 (en) Method and device for detecting defect
JP2003114107A (en) Film thickness measuring device
JP2001013476A (en) Display unevenness inspection device and display unevenness inspection method
JP3866933B2 (en) Film thickness measuring device
EP0749000B1 (en) Method and apparatus for color thickness testing
JP2001041720A (en) Defect detecting method and device
KR20060132081A (en) Apparatus for detecting defect of a wafer
US8755054B2 (en) Method of measuring surface structure of display device
JP2935412B2 (en) Method and apparatus for measuring thickness of thin film and method for manufacturing optical filter
JP3852556B2 (en) Film thickness measuring method and film thickness sensor using the method
JPH08136876A (en) Substrate inspecting device
JPH0943097A (en) Color filter defect inspection device
JPH10104161A (en) Method and device for evaluating conversion rate to imide
RU2820544C1 (en) Method of calibrating spatial spectral sensitivity of multispectral camera
US5671044A (en) Method of examining film quality of a membranal material and an apparatus therefor
CN107655839B (en) Detection method of ascending relaxation spectrum detection device
KR101880398B1 (en) An apparatus and method for inspecting mura of substrate
JP3084862B2 (en) Optical film thickness monitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506