WO2024014273A1 - Inspection system, and method for correcting angle of inclination of object surface using same - Google Patents

Inspection system, and method for correcting angle of inclination of object surface using same Download PDF

Info

Publication number
WO2024014273A1
WO2024014273A1 PCT/JP2023/023635 JP2023023635W WO2024014273A1 WO 2024014273 A1 WO2024014273 A1 WO 2024014273A1 JP 2023023635 W JP2023023635 W JP 2023023635W WO 2024014273 A1 WO2024014273 A1 WO 2024014273A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
article
inspection system
inspection
image
Prior art date
Application number
PCT/JP2023/023635
Other languages
French (fr)
Japanese (ja)
Inventor
秋希良 藤井
一馬 原口
泰資 田中
翔馬 高橋
匠 羽根田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024014273A1 publication Critical patent/WO2024014273A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present disclosure relates to an inspection system used for visual inspection of an article and a method of correcting the inclination angle of the surface of the article using the same.
  • Patent Documents 1 and 2 are known as illumination devices used for visual inspection of articles.
  • a light shielding filter is placed between the surface light source and the lens. Further, this light shielding filter is arranged at the focal position on the incident side of the lens. By configuring the lighting device in this way, the lighting conditions can be made the same at each point on the surface of the article. Further, as disclosed in Patent Document 3, by combining a light shielding filter and a color filter, the color distribution of reflected light can be changed depending on the direction (inclination) of the surface of the article. As a result, in an inspection system equipped with an illumination device, the direction of the surface of the article, surface irregularities, scratches, etc. can be detected with high precision.
  • inspection light emitted from a lighting device is reflected on the surface of an article, and the reflected light is incident on a camera to capture an image of the article.
  • images of articles are obtained as color images. In such a case, it is necessary to calibrate the color balance in the captured image.
  • the reflectance differs depending on the component of the article (gold, copper, etc.), it is necessary to calibrate the color balance according to the component of the article.
  • the color filter includes a color distribution with a gradation in which the color scheme changes continuously, it is difficult to adjust the color balance of the color image.
  • the reflectance may differ depending on the wavelength of the irradiated light. In such a case, it is also difficult to adjust the color balance of a color image.
  • An object of the present disclosure is to provide an inspection system that can adjust the color balance of an image of an article, and a method of correcting the tilt angle of the surface of an article using the same.
  • an inspection system includes at least an illumination device that irradiates an article with inspection light, and an imaging device that images the article irradiated with the inspection light.
  • the illumination device includes a light source that emits the inspection light, and a plurality of filters that are disposed between the light source and the article in the optical path of the inspection light and that transmit light having different wavelength widths.
  • a color filter is provided, and the inspection system is characterized in that the image of the article captured by the imaging device is compared with a reference image to detect the inclination of the surface of the article.
  • a method of correcting a tilt angle of a surface of an article is a method of correcting a tilt angle of a surface of an article using the inspection system, in which the article is irradiated with the inspection light and the image capturing device is used to correct the tilt angle of the article.
  • the color balance of an image of an article can be adjusted.
  • FIG. 1A is a schematic configuration diagram of an inspection system according to the first embodiment.
  • FIG. 1B is an enlarged view of the portion surrounded by the broken line in FIG. 1A.
  • FIG. 2 is a schematic diagram showing the solid angle of irradiation of the inspection light irradiated onto the article.
  • FIG. 3 is a schematic plan view of the color filter.
  • FIG. 4 is a diagram showing an example of the wavelength dependence of the reflectance of metal.
  • FIG. 5 is a schematic plan view of a color filter used during article inspection.
  • FIG. 6 is a cross-sectional view of the article used during the article inspection.
  • FIG. 7 is an image captured by a camera during an article inspection.
  • FIG. 8 is a schematic plan view of a color filter according to the second embodiment.
  • FIG. 9 is a diagram showing the color distribution within the light exit plane of the surface light source according to the second embodiment.
  • FIG. 10 is a diagram showing the rotation angle dependence of light brightness at the outermost periphery of a surface light source.
  • FIG. 11 is a schematic diagram illustrating the color distribution of inspection light according to a modification.
  • FIG. 12A is a schematic diagram showing the color distribution of blue light in the inspection light.
  • FIG. 12B is a schematic diagram showing the color distribution of red light in the inspection light.
  • FIG. 13 is a schematic configuration diagram of an inspection system according to the third embodiment.
  • FIG. 14 is a schematic diagram of an image of an article when the article is not correctly installed on the support stand.
  • FIG. 1A shows a schematic configuration diagram of an inspection system according to this embodiment
  • FIG. 1B shows an enlarged view of a portion surrounded by a broken line in FIG. 1A
  • FIG. 2 schematically shows the irradiation solid angle of the inspection light irradiated onto the article.
  • the optical axis direction of the inspection light may be referred to as the X direction
  • the direction from the support base 70 toward the camera 80 may be referred to as the Z direction.
  • the direction that intersects the X direction and the Z direction is sometimes called the Y direction.
  • the inspection system 100 includes an illumination device 50, a half mirror (optical member) 60, a support stand 70, and a camera (imaging device) 80.
  • the illumination device 50 and the half mirror 60 are arranged inside the housing 40.
  • the article 200 placed on the support stand 70 is illuminated with inspection light from the illumination device 50, and the reflected light reflected by the article 200 is imaged by the camera 80.
  • the appearance of the article 200 is inspected based on the image captured by the camera 80.
  • the illumination device 50 is composed of a surface light source 10, a color filter 20, and a lens 30, and the surface light source 10 emits white planar light as inspection light.
  • the color filter 20 is disposed between the surface light source 10 and the lens 30 at the focal position of the lens 30, in this case at the focal position on the incident side.
  • the color filter 20 has a predetermined color distribution within the plane of incidence of the inspection light. Therefore, the inspection light emitted from the surface light source 10 passes through the color filter 20 and becomes plane light having the above-mentioned color distribution in the direction intersecting the traveling direction of the inspection light. The color distribution given to the color filter 20 will be described in detail later.
  • the lens 30 focuses the inspection light emitted from the surface light source 10 and transmitted through the color filter 20 toward the article 200. Further, the inspection light is given a predetermined irradiation solid angle IS (see FIG. 2) by passing through the lens 30. I will discuss this further.
  • the irradiation solid angle IS at a point P1 which is on the optical axis of the inspection light and is the exit-side focal position of the lens 30, is is uniquely determined by the diameter of the optical path of the inspection light in the color filter 20 and the focal length f of the lens 30.
  • the "irradiation solid angle" referred to here refers to an arbitrarily shaped cone that has a predetermined point on the optical path of the inspection light as its apex and indicates the range in which light is irradiated to the predetermined point (for example, as shown in Fig. (see 2).
  • the plane half angle ⁇ of the irradiation solid angle IS satisfies the relationship shown in equation (1).
  • the irradiation solid angle IS at a position away from the center of the lens 30 by the focal position on the exit side of the lens 30 has the same shape as the irradiation solid angle IS at the point P1. will be the same size. Further, the irradiation solid angle IS at a position farther from the exit-side focal position of the lens 30 also has the same shape and the same size as the irradiation solid angle IS at the point P1.
  • the inspection light is irradiated so that each point on the surface of the article 200 has the same irradiation solid angle IS. That is, at any point on the surface of the article 200, the illumination conditions are the same regardless of the distance from the surface light source 10.
  • the half mirror (optical member) 60 is placed in the optical path of the inspection light transmitted through the lens 30 and in the optical path of the reflected light reflected by the article 200 toward the camera 80.
  • the half mirror 60 reflects the inspection light focused by the lens 30 toward the article 200, while transmitting the reflected light reflected by the article 200.
  • the half mirror 60 irradiates the inspection light onto the article 200 and causes the reflected light from the article 200 to enter the camera 80 .
  • the support stand 70 has a flat surface, and the article 200 is placed on the surface.
  • the article 200 has a region S1 that is a plane parallel to the X direction and the Y direction, a region S2 that is inclined toward the left side of the drawing in FIG. 1B, and a region S3 that is inclined toward the right side of the drawing in FIG. 1B.
  • the camera (imaging device) 80 receives the reflected light reflected by the article 200 and transmitted through the half mirror 60, and generates an image of the article 200. That is, the camera 80 captures an image of the article 200 irradiated with the inspection light. Note that the image captured by the camera 80 is a color image. Therefore, although not shown, the camera 80 has a CMOS image sensor equipped with a color filter as an image sensor having an imaging surface. The camera 80 may also include a processor (not shown) that processes the output signal of the CMOS image sensor to generate an image.
  • the inspection light is reflected by the half mirror 60 so that the optical axis points in the Z direction.
  • the reflected light reflected from the surface of the article 200 (hereinafter simply referred to as reflected light) becomes white light.
  • the reflected light from area S1 on the surface of article 200 shown in FIG. 1B is incident on camera 80 as white light.
  • the color filter 20 has a color distribution within the plane of incidence of the inspection light.
  • the color filter 20 includes a plurality of filters 20a arranged in an array in the X direction and the Y direction. Each filter 20a is arranged with an interval d between adjacent filters 20a in the X direction and the Y direction.
  • the plurality of filters 20a include a red filter (R filter) that transmits red light, a green filter (G filter) that transmits green light, and a blue filter (B filter) that transmits blue light.
  • R filter red filter
  • G filter green filter
  • B filter blue filter
  • FIG. 3 the area where the red filter is provided is shown as “R”
  • the R component red light
  • the G component green light
  • the B component blue light
  • the R component includes a wavelength of 650 nm and has a wavelength width of approximately several tens of nm to 100 nm.
  • the G component includes a wavelength of 500 nm and has a wavelength width of approximately several tens of nm to 100 nm.
  • the B component includes a wavelength of 450 nm and has a wavelength width of approximately several tens of nm to 100 nm.
  • the inspection light according to the color distribution of the color filter 20 is reflected by the surface of the article 200 and enters the imaging surface of the camera 80. Therefore, by comparing the reference image and a captured image captured with the article 200 placed, it is possible to estimate the direction (inclination) of the surface of the article 200.
  • the reference image at this time is an image of the article 200 captured using the color filter 20 in which only the R filter is arranged, the color filter 20 in which only the G filter is arranged, and the color filter 20 in which only the B filter is arranged. be. If a monochromatic filter is used as the color filter 20, even if the surface of the article 200 is tilted, the brightness value will be constant, making it possible to calibrate the equation (3) described below. .
  • images taken of the article 200 (or an article made of the same material as the article 200) from a plurality of known predetermined angles may be used as the reference image. Even in this case, calibration of equation (3) described below is possible. Furthermore, images taken of the article 200 (or an article made of the same material as the article 200) from a plurality of unknown predetermined angles may be used as the reference image. Even in this case, it is possible to calibrate equation (3) described below based on the relationship between the filters. Furthermore, if the article 200 has a plurality of surfaces having different angles on its surface, a single image of the article 200 may be used as the reference image. Even in this case, the following equation (3) can be calibrated based on the angle of the surface of the article 200 and the RGB ratio of the captured image.
  • the arrangement of the plurality of filters 20a in the color filter 20 is not limited to the example in FIG. 3 (6 ⁇ 6 filters 20a are arranged), and the arrangement of the filters 20a can be set arbitrarily.
  • the color filter 20 may include 9 ⁇ 9 or 12 ⁇ 12 filters 20a.
  • a 3 ⁇ 3 filter 20a corresponds to one pixel of the camera 80, but the number and arrangement of filters 20a corresponding to one pixel of the camera 80 can be set arbitrarily.
  • one pixel of the camera 80 may correspond to a 6 ⁇ 6 or 9 ⁇ 9 filter 20a.
  • the color distribution of the plurality of filters 20a in the color filter 20 can be arbitrarily set.
  • the color filter 20 includes a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light. included.
  • the red filter, green filter, and blue filter transmit light with different wavelength widths, so by setting the ratio of RGB incident to one pixel of the camera 80 in advance, it is possible to quantify RGB in the captured image. expression becomes possible. That is, it is possible to know from which position of the color filter 20 the light emitted corresponds to which position in the captured image. Therefore, by comparing in advance a reference image with no article 200 placed thereon and a captured image with the article 200 placed thereon, it is possible to estimate the inclination of the surface of the article 200.
  • a captured image of the article 200 (hereinafter sometimes referred to as a non-defective image) that has been previously determined to have no abnormalities in a visual inspection may be used.
  • this non-defective product image and the captured image of the product 200 to be inspected (hereinafter sometimes referred to as the product to be inspected)
  • the product to be inspected it is possible to determine the presence or absence of abnormalities on the surface of the product to be inspected. can. For example, it is possible to determine the presence or absence of scratches or stains on the surface of an item to be inspected, as well as the location of any scratches or stains, if any.
  • the position of the location and the angle of inclination can be estimated.
  • a method similar to the procedure for taking the difference between general images can be adopted.
  • the difference may be taken after matching the imaged position and orientation of the article 200 between the non-defective product image and the captured image of the inspection target.
  • the plurality of filters 20a are arranged in the color filter 20 such that adjacent filters 20a are spaced apart from each other by a predetermined distance d.
  • d a predetermined distance
  • FIG. 4 shows an example of the wavelength dependence of the reflectance of metals.
  • silver (Ag) has a constant reflectance of about 1 in the visible light region (400 nm to 700 nm).
  • gold (Au) decreases from about 1 to about 0.4.
  • the reflectance of gold (Cu) decreases from about 1 to about 0.5.
  • RGB intensity calibration is required even when the material of the article 200 to be inspected is different.
  • the color filter 20 includes an R filter, a G filter, and a B filter. Therefore, it is sufficient to configure the RGB intensity according to the components (gold, copper, etc.) of the article 200 to be inspected, and the number of RGB calibrations (three times in this case) can be suppressed.
  • the RGB components of the test light transmitted through the R filter be (Rr, Gr, Br)
  • the RGB components of the test light transmitted through the G filter be (Rg, Gg, Bg)
  • the RGB components of the test light transmitted through the B filter be (Rr, Gr, Br).
  • the RGB components be (Rb, Gb, Bb).
  • the RGB components (R, G, B) of the test light before correction and the RGB components (R', G', B') of the test light after correction are related to the following equation (2). Become.
  • FIG. 5 is a schematic plan view of a color filter used during article inspection.
  • FIG. 6 is a cross-sectional view of the article used during the article inspection.
  • FIG. 7 is an image captured by a camera during an article inspection. In this inspection result, by using the color filter 21 of FIG. 5 and placing the article 200a of FIG. 6 on the support stand 70, the camera 80 shown in each figure of FIG. Images G1 to G12 were obtained.
  • the color filter 20 has a blue area (B area) at the upper left of the drawing, a red area (R area) at the upper right of the drawing, and a green area (R area) at the bottom of the drawing. have.
  • the color filter 21 is shown divided into an R area, a G area, and a B area, but in reality, the in-plane color distribution changes continuously or stepwise. ing. That is, the plurality of filters 20a are arranged in the color filter 20 so that the color distribution gradually changes when divided into regions within a predetermined range.
  • the article 200a has a region S4 parallel to the X direction and the Y direction between the region S2 and the region S3. Therefore, in the image captured by the camera 80, the area corresponding to the area S4 becomes white.
  • FIG. 7 shows captured images when the inclinations of regions S2 and S3 of the article 200a are changed. More specifically, captured images in which the inclinations of regions S2 and S3 of the article 200a with respect to the X direction are 1° to 12° are shown as captured images G1 to G12, respectively.
  • captured images G1 to G12 are shown as captured images G1 to G12, respectively.
  • the ratio of RGB reflected by the regions S2 and S3 to the half mirror 60 changes. According to this change in the ratio of RGB, it is possible to estimate the inclination of the surface of the article to be inspected.
  • the camera 80 may be a monochrome camera, and the color filter 20 may include a monochrome filter 20a. Even in this case, it is possible to estimate the inclination of the surface of the article 200 by comparing the luminance values of the reference image and the captured image. That is, the same effects as the above embodiment can be obtained.
  • the surface of the article 200 can be inspected by correcting the camera image of the article 200 captured by the camera 80 using the inclination of the surface of the article 200 estimated by this inspection system. For example, when inspecting the surface of the article 200 (such as a coin), if there is a foreign object under the article 200 and the article 200 is tilted as a whole, the tilt of the article 200 is corrected and the article 200 is tilted. It becomes possible to create a camera image of the item 200 in a state where it is not covered and inspect the surface of the item 200.
  • FIG. 8 is a schematic plan view of a color filter according to the second embodiment.
  • FIG. 9 is a diagram showing the color distribution within the light exit plane of the color filter.
  • FIG. 10 is a diagram showing the rotation angle dependence of light brightness at the outermost periphery of the color filter.
  • the plurality of filters 20a in the color filter 20 are arranged so that the color distribution gradually changes when the filters 20a are divided into regions within a predetermined range. Furthermore, it was shown that the inclination of the surface of the article 200 can be estimated by comparing the brightness values of a captured image of the article 200 captured by irradiating the inspection light transmitted through the color filter 20 with a reference image acquired in advance. Ta.
  • the color filter 20 includes a red filter 20R, a green filter 20G, and a blue filter 20B, which are each arranged periodically on a transparent plate 22.
  • the transparent plate 22 is made of a glass substrate and is provided with a drive transistor (not shown).
  • the filters are arranged at intervals d. This is similar to that shown in the first embodiment.
  • the red filter 20R transmits red light of the incident white light
  • the green filter 20G transmits the green light of the incident white light
  • the blue filter 20B transmits the blue light of the incident white light.
  • the arrangement shown in FIG. 8 is just an example, and the arrangement is not particularly limited thereto. Further, the wavelength ranges of red light, green light, and blue light are the same as shown in the first embodiment.
  • the color distribution on the light exit surface of the color filter 20 is changed continuously or stepwise in a clockwise direction around the center O of the color filter 20. Further, a color distribution is provided such that the saturation of the test light decreases continuously or stepwise from the outer periphery toward the center O. In other words, a color distribution is provided such that the saturation of the test light changes continuously or stepwise with respect to the distance r from the center O.
  • I R + ⁇ I G + ⁇ I B S...(4)
  • I R , I G , and I B are the brightness of red light, green light, and blue light, respectively.
  • S is a constant.
  • the inspection light is set so that the sum of the brightness of the red light, green light, and blue light is constant regardless of the position within the light exit plane.
  • the inspection light is set so that when the angle ⁇ rotated clockwise from a predetermined position around the center O changes, the brightness ratio of each of the red light, green light, and blue light changes. There is.
  • the brightness of the red light, green light, and blue light at the outermost periphery of the color filter 20 changes depending on the angle ⁇ .
  • the brightness of each of the red light, green light, and blue light also changes depending on the distance r.
  • the distance r becomes smaller, that is, closer to the center O, the saturation of the test light decreases.
  • the brightness I R and I B of red light and blue light are respectively zero.
  • the distance r becomes smaller and in a region closer to the center O, the brightness of the red light and the blue light each increase from zero.
  • the distance r is normalized. Further, the normalized amplitude m of the inspection light at the distance r is set as shown in equation (5).
  • R, G, and B are the standardized brightness I R , I G , and I B of red light, green light, and blue light, respectively.
  • the color distribution of the color filter 20 is set so that the relationship shown in equation (6) is established between the distance r and the amplitude m.
  • the number of red filters 20R, green filters 20G, and blue filters 20B arranged at each position of the color filter 20 is changed.
  • the transmittance of each of the red filter 20R, green filter 20G, and blue filter 20B is changed.
  • the inclination of the surface of the article 200 can be quantitatively evaluated.
  • This inclination is expressed as an inclination angle based on an image of the article 200 captured by the camera 80 with reference to the case where the surface of the article 200 is a flat surface perpendicular to the optical axis of the inspection light.
  • the angle of inclination of the surface of the article 200 (hereinafter sometimes simply referred to as the angle of inclination) is calculated by a control device (not shown).
  • the inclination of the surface of the article 200 can be quantitatively evaluated in the same manner in the first embodiment.
  • the color filter 20 is given a color distribution as shown in FIGS. 9 and 10.
  • the color balance of the image captured by the camera 80 can be appropriately adjusted even when the surface of the article 200 has multiple directions or when the article 200 is made of different materials. Further, it becomes possible to quantitatively and accurately calculate the direction of the surface of the article 200, specifically, the angle of inclination of the surface.
  • the saturation of the test light preferably changes such that the saturation decreases from the outer periphery of the color filter 20 toward the center O.
  • the brightness I R , I G , and I B of the red light, green light, and blue light preferably vary depending on the rotation angle ⁇ along the outer periphery of the surface light source 10 .
  • the sum of the luminances of the red light, green light, and blue light is S
  • the standardized distance from the center O of the color filter 20 is r
  • the standardized amplitude of the inspection light at the distance r is m.
  • the ratio of the number of arranged red filters 20R, green filters 20G and blue filters 20B (arranged number ratio) or transmittance ratio is determined so as to satisfy the relationships shown in equations (4) and (11), respectively. preferable.
  • the color balance of the image captured by the camera 80 can be appropriately adjusted even when the surface of the article 200 has multiple directions or when the article 200 is made of different materials. Furthermore, the color distribution of the test light, specifically the RGB brightness ratio, can be continuously changed within the light exit plane of the test light.
  • FIG. 11 is a schematic diagram illustrating the color distribution of inspection light according to a modification.
  • FIG. 12A is a schematic diagram showing the color distribution of blue light in the inspection light.
  • FIG. 12B is a schematic diagram showing the color distribution of red light in the inspection light.
  • the shape of the color filter 20 is not limited to that shown in FIGS. 5 and 9, but may be, for example, as shown in FIG. Additionally, it may be rectangular in plan view.
  • the brightness IB of blue light increases continuously or stepwise along the Y direction
  • the brightness IR of red light increases continuously or stepwise along the X direction. ing.
  • the brightness distributions of blue light and red light are respectively set.
  • the brightness IG of the green light is changed within the plane of the surface light source 10 so as to satisfy equation (2A).
  • I R :I G :I B 0.5:0.5:0.5
  • one color is selected as the first color from red light, green light, and blue light.
  • the brightness of the first color changes continuously or stepwise along one side of the color filter 20.
  • the brightness of the second color excluding the first color changes continuously or stepwise along the other side that intersects one side.
  • the same effects as the configuration shown in the second embodiment can be achieved. That is, even when the surface of the article 200 has a plurality of directions or the article 200 is made of different materials, the color balance of the image captured by the camera 80 can be appropriately adjusted. Further, it becomes possible to quantitatively and accurately calculate the direction of the surface of the article 200, specifically, the angle of inclination of the surface.
  • FIG. 13 is a schematic configuration diagram of an inspection system according to the third embodiment.
  • FIG. 14 is a schematic diagram of an image of an article when the article is not correctly installed on the support stand.
  • the inspection system 100 shown in FIG. 13 differs from the inspection system 100 shown in FIG. 1A only in that the article 200 is not correctly installed on the support stand 70.
  • the inclination angle can be calculated accurately by removing the offset using the procedure shown below.
  • the image of the article 200 is , is colored in a color corresponding to the inclination with respect to the support stand 70.
  • the image of the article 200 shown in FIG. 14 is bluish.
  • a point on the surface of the article 200 that will serve as a reference (hereinafter referred to as a reference surface) is set.
  • the plane including the cross mark 210 is set as the reference plane.
  • This reference surface is preferably a location that is known in advance to be flat.
  • the reference plane includes a characteristic shape, as shown in FIG. It goes without saying that the characteristic shape is not limited to the cross mark 210.
  • an offset is calculated based on the image of the reference plane, specifically, the color of the image, the intensity of its brightness, etc.
  • the previously determined offset is uniformly subtracted from the inclination angle of each part of the article 200, which is calculated based on the image of the article 200.
  • the offset superimposed on the calculated inclination angle can be appropriately removed, and the inclination angle of the surface of the article 200 can be accurately determined.
  • the offset described using FIGS. 13 and 14 corresponds to the inclination of the article 200 with respect to the support base 70. Including the inclination of the article 200 itself, the offset in this specification is defined as the inclination of the article 200 with respect to the inspection system 100. Note that when the surface of the article 200 has a plurality of directions, the inclination of the article 200 itself includes the inclination of any arbitrary location within the article 200, the average of the inclinations of multiple locations within the article 200, etc. .
  • the method for correcting the inclination angle of the surface of the article 200 according to the present embodiment includes the following first to fourth steps.
  • the inspection light is irradiated onto the article 200, and an image of the article 200 is acquired by the camera 80.
  • a reference plane is set on the surface of the article 200.
  • the offset is calculated based on the image of the reference plane. This offset corresponds to the tilt of article 200 with respect to inspection system 100.
  • the above-mentioned inclination angle is corrected by subtracting the offset calculated in the third step from the inclination angle at each part of the surface of the article 200 obtained in the first step.
  • the article 200 may not be correctly installed on the support stand 70 due to reasons such as the adjustment of the transportation system being slightly off, or vibrations being applied to the article 200 during transportation and installation. be.
  • the direction of the surface of the article 200 is correctly estimated, and the inclination angle is accurately determined. It can be calculated. Furthermore, the surface of the article 200 can be easily observed by removing the inclination that the article 200 itself has. For example, when the surface of the article 200 has multiple directions, the appearance of the article 200 can be easily inspected by removing inclinations at desired locations within the article 200. Alternatively, as the inclination of the article 200 itself, the average value of the inclinations at multiple locations within the article 200 may be selected, and the average value may be subtracted from the inclination angle at each part of the surface of the article 200.
  • the method for correcting the inclination angle of the surface of the article 200 is not particularly limited to this.
  • the inspection light is made monochromatic and irradiated onto the article 200, and an image thereof is acquired.
  • the color distribution of the inspection light is changed to, for example, the pattern shown in FIG. 9, and the article 200 is irradiated to obtain an image thereof. Color correction is performed on the latter image using the former image obtained by irradiating monochromatic inspection light.
  • the inclination angle of the surface of the article 200 is calculated based on the image after color correction.
  • the test light that is monochromatic light may be referred to as a first test light
  • the test light provided with a color distribution may be referred to as a second test light.
  • the second inspection light includes at least light in the same wavelength band as the monochromatic light and light in a different wavelength band from the monochromatic light. By doing so, the inclination angle of the surface of the article 200 can be accurately calculated.
  • the inspection system 100 shown in this specification determines the angle and/or direction of the surface of the article 200 with respect to the image of the article 200 captured by the camera 80, depending on the components of the inspection light that has passed through the plurality of filters. Calculate quantitatively. In other words, the inspection system 100 quantitatively determines at least one of the angle and direction of the surface of the article 200 with respect to the image of the article 200 captured by the camera 80 according to the components of the inspection light that has passed through the plurality of filters. calculate.
  • the inspection system of the present disclosure is capable of estimating the direction of the surface of the article and adjusting the color balance of the captured image, so it is useful for use in inspecting the appearance of the article.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

This inspection system 100 comprises at least an irradiation device 50 that irradiates an object 200 with inspection light, and a camera (imaging device) 80 that captures an image of the object 200 irradiated with the inspection light. The irradiation device 50 is provided with: a planar light source 10 that emits the inspection light; and a color filter 20 that is disposed between the planar light source 10 and the object 200 in the optical path of the inspection light, the color filter 20 including a plurality of filters that transmit light in mutually different wavelength bands. The inspection device detects inclination of the surface of the object on the basis of a reference image and the image of the object 200 that was captured by the camera 80.

Description

検査システム及びこれを用いた物品の表面の傾斜角補正方法Inspection system and method for correcting the tilt angle of the surface of an article using the same
 本開示は、物品の外観検査に用いられる検査システム及びこれを用いた物品の表面の傾斜角補正方法に関する。 The present disclosure relates to an inspection system used for visual inspection of an article and a method of correcting the inclination angle of the surface of the article using the same.
 従来、物品の外観検査に用いられる照明装置として、特許文献1,2に開示される構成が知られている。 Conventionally, configurations disclosed in Patent Documents 1 and 2 are known as illumination devices used for visual inspection of articles.
 特許文献1~3に開示される従来の構成では、面光源とレンズとの間に遮光フィルターが配置される。また、この遮光フィルターは、レンズの入射側の焦点位置に配置される。照明装置をこのような構成とすることで、物品の表面の各点において照明条件を同じにすることができる。また、特許文献3に開示されるように、遮光フィルターとカラーフィルターとを組み合わせることで、物品の表面の方向(傾き)に応じて反射光の色分布を変更させることができる。このことにより、照明装置を備えた検査システムにおいて、物品の表面の方向や表面凹凸や傷等を高精度に検出できる。 In the conventional configurations disclosed in Patent Documents 1 to 3, a light shielding filter is placed between the surface light source and the lens. Further, this light shielding filter is arranged at the focal position on the incident side of the lens. By configuring the lighting device in this way, the lighting conditions can be made the same at each point on the surface of the article. Further, as disclosed in Patent Document 3, by combining a light shielding filter and a color filter, the color distribution of reflected light can be changed depending on the direction (inclination) of the surface of the article. As a result, in an inspection system equipped with an illumination device, the direction of the surface of the article, surface irregularities, scratches, etc. can be detected with high precision.
特許第5866573号公報Patent No. 5866573 特許第5866586号公報Patent No. 5866586 特許第6451821号公報Patent No. 6451821
 ところで、検査システムにおいて、照明装置から出射された検査光は、物品の表面で反射され、反射光がカメラに入射されて、物品の画像が撮像される。一般的に、物品の画像はカラー画像として取得される。このような場合、撮像された画像におけるカラーバランスを校正する必要がある。 By the way, in an inspection system, inspection light emitted from a lighting device is reflected on the surface of an article, and the reflected light is incident on a camera to capture an image of the article. Generally, images of articles are obtained as color images. In such a case, it is necessary to calibrate the color balance in the captured image.
 ここで、物品の成分(金や銅など)ごとに反射率が異なるため、物品の成分に合わせてカラーバランスを校正する必要がある。特に、カラーフィルターが、配色が連続的に変化するグラデーションを有する色分布を含む場合、カラー画像に対するカラーバランスの調整が困難である。また、同一の物品であっても、照射する光の波長によって反射率が異なることがある。このような場合も、カラー画像に対するカラーバランスの調整が困難である。 Here, since the reflectance differs depending on the component of the article (gold, copper, etc.), it is necessary to calibrate the color balance according to the component of the article. In particular, when the color filter includes a color distribution with a gradation in which the color scheme changes continuously, it is difficult to adjust the color balance of the color image. Further, even for the same article, the reflectance may differ depending on the wavelength of the irradiated light. In such a case, it is also difficult to adjust the color balance of a color image.
 本開示は、物品の画像のカラーバランスの調整が可能な検査システム及びこれを用いた物品の表面の傾斜角補正方法を提供することにある。 An object of the present disclosure is to provide an inspection system that can adjust the color balance of an image of an article, and a method of correcting the tilt angle of the surface of an article using the same.
 上記目的を達成するため、本開示に係る検査システムは、物品に検査光を照射する照明装置と、前記検査光が照射された前記物品を撮像する撮像装置と、を少なくとも備えた検査システムであって、前記照明装置は、前記検査光を出射する光源と、前記検査光の光路において前記光源と前記物品との間に配置されており、互いに異なる波長幅の光を透過させる複数のフィルターを含むカラーフィルターとを備え、当該検査システムは、前記撮像装置が撮像した前記物品の画像と基準画像とを比較して、前記物品の表面の傾きを検出することを特徴とする。 In order to achieve the above object, an inspection system according to the present disclosure includes at least an illumination device that irradiates an article with inspection light, and an imaging device that images the article irradiated with the inspection light. The illumination device includes a light source that emits the inspection light, and a plurality of filters that are disposed between the light source and the article in the optical path of the inspection light and that transmit light having different wavelength widths. A color filter is provided, and the inspection system is characterized in that the image of the article captured by the imaging device is compared with a reference image to detect the inclination of the surface of the article.
 本開示に係る物品の表面の傾斜角補正方法は、前記検査システムを用いた物品の表面の傾斜角補正方法であって、前記物品に前記検査光を照射して、前記撮像装置で前記物品の画像を取得する第1ステップと、前記物品の表面において、基準面を設定する第2ステップと、前記基準面の画像に基づいて、オフセットを算出する第3ステップと、前記第1ステップで得られた前記物品の表面の各部における傾斜角から前記第3ステップで算出された前記オフセットを差し引くことで、前記傾斜角を補正する第4ステップと、を少なくとも備え、前記オフセットは、前記検査システムに対する前記物品の傾きに相当することを特徴とする。 A method of correcting a tilt angle of a surface of an article according to the present disclosure is a method of correcting a tilt angle of a surface of an article using the inspection system, in which the article is irradiated with the inspection light and the image capturing device is used to correct the tilt angle of the article. a first step of acquiring an image; a second step of setting a reference plane on the surface of the article; a third step of calculating an offset based on the image of the reference plane; a fourth step of correcting the inclination angle by subtracting the offset calculated in the third step from the inclination angle at each part of the surface of the article; It is characterized by corresponding to the inclination of the article.
 本開示によれば、物品の画像のカラーバランスを調整することができる。 According to the present disclosure, the color balance of an image of an article can be adjusted.
図1Aは、実施形態1に係る検査システムの概略構成図である。FIG. 1A is a schematic configuration diagram of an inspection system according to the first embodiment. 図1Bは、図1Aの破線で囲まれた部分の拡大図である。FIG. 1B is an enlarged view of the portion surrounded by the broken line in FIG. 1A. 図2は、物品に照射される検査光の照射立体角を示す模式図である。FIG. 2 is a schematic diagram showing the solid angle of irradiation of the inspection light irradiated onto the article. 図3は、カラーフィルターの平面模式図である。FIG. 3 is a schematic plan view of the color filter. 図4は、金属の反射率の波長依存性の一例を示す図である。FIG. 4 is a diagram showing an example of the wavelength dependence of the reflectance of metal. 図5は、物品検査時に用いたカラーフィルターの平面模式図である。FIG. 5 is a schematic plan view of a color filter used during article inspection. 図6は、物品検査時に用いた物品の断面図である。FIG. 6 is a cross-sectional view of the article used during the article inspection. 図7は、物品検査時におけるカメラの撮像画像である。FIG. 7 is an image captured by a camera during an article inspection. 図8は、実施形態2に係るカラーフィルターの平面模式図である。FIG. 8 is a schematic plan view of a color filter according to the second embodiment. 図9は、実施形態2に係る面光源の光出射面内での色分布を示す図である。FIG. 9 is a diagram showing the color distribution within the light exit plane of the surface light source according to the second embodiment. 図10は、面光源の最外周における光輝度の回転角度依存性を示す図である。FIG. 10 is a diagram showing the rotation angle dependence of light brightness at the outermost periphery of a surface light source. 図11は、変形例に係る検査光の色分布を説明する模式図である。FIG. 11 is a schematic diagram illustrating the color distribution of inspection light according to a modification. 図12Aは、検査光における青色光の色分布を示す模式図である。FIG. 12A is a schematic diagram showing the color distribution of blue light in the inspection light. 図12Bは、検査光における赤色光の色分布を示す模式図である。FIG. 12B is a schematic diagram showing the color distribution of red light in the inspection light. 図13は、実施形態3に係る検査システムの概略構成図である。FIG. 13 is a schematic configuration diagram of an inspection system according to the third embodiment. 図14は、物品が支持台に正しく設置されていない場合の物品の画像の模式図である。FIG. 14 is a schematic diagram of an image of an article when the article is not correctly installed on the support stand.
 以下、本開示の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. Note that the following description of preferred embodiments is essentially just an example, and is not intended to limit the present disclosure, its applications, or its uses.
 (実施形態1)
 [検査システムの構成及び動作]
 図1Aは、本実施形態に係る検査システムの概略構成図を示し、図1Bは、図1Aの破線で囲まれた部分の拡大図を示す。図2は、物品に照射される検査光の照射立体角を模式的に示す。なお、以降の説明において、検査光の光軸方向をX方向と呼び、支持台70からカメラ80に向かう方向をZ方向と呼ぶことがある。X方向及びZ方向とそれぞれ交差する方向をY方向と呼ぶことがある。
(Embodiment 1)
[Configuration and operation of inspection system]
FIG. 1A shows a schematic configuration diagram of an inspection system according to this embodiment, and FIG. 1B shows an enlarged view of a portion surrounded by a broken line in FIG. 1A. FIG. 2 schematically shows the irradiation solid angle of the inspection light irradiated onto the article. In the following description, the optical axis direction of the inspection light may be referred to as the X direction, and the direction from the support base 70 toward the camera 80 may be referred to as the Z direction. The direction that intersects the X direction and the Z direction is sometimes called the Y direction.
 図1に示すように、検査システム100は、照明装置50とハーフミラー(光学部材)60と支持台70とカメラ(撮像装置)80とを備えている。照明装置50とハーフミラー60は、筐体40の内部に配置されている。 As shown in FIG. 1, the inspection system 100 includes an illumination device 50, a half mirror (optical member) 60, a support stand 70, and a camera (imaging device) 80. The illumination device 50 and the half mirror 60 are arranged inside the housing 40.
 後で詳述するように、検査システム100では、支持台70に載置された物品200に照明装置50から検査光を照査し、物品200で反射された反射光をカメラ80で撮像する。カメラ80で撮像された画像に基づいて、物品200の外観が検査される。 As will be described in detail later, in the inspection system 100, the article 200 placed on the support stand 70 is illuminated with inspection light from the illumination device 50, and the reflected light reflected by the article 200 is imaged by the camera 80. The appearance of the article 200 is inspected based on the image captured by the camera 80.
 照明装置50は、面光源10とカラーフィルター20とレンズ30とで構成され、面光源10は、白色の平面光を検査光として出射する。 The illumination device 50 is composed of a surface light source 10, a color filter 20, and a lens 30, and the surface light source 10 emits white planar light as inspection light.
 カラーフィルター20は、面光源10とレンズ30との間であって、レンズ30の焦点位置、この場合は、入射側の焦点位置に配置されている。カラーフィルター20は、検査光の入射面内で所定の色分布を有している。このため、面光源10から出射された検査光は、カラーフィルター20を透過することで、検査光の進行方向と交差する方向に前述の色分布を有する平面光となる。カラーフィルター20に付与された色分布については後で詳述する。 The color filter 20 is disposed between the surface light source 10 and the lens 30 at the focal position of the lens 30, in this case at the focal position on the incident side. The color filter 20 has a predetermined color distribution within the plane of incidence of the inspection light. Therefore, the inspection light emitted from the surface light source 10 passes through the color filter 20 and becomes plane light having the above-mentioned color distribution in the direction intersecting the traveling direction of the inspection light. The color distribution given to the color filter 20 will be described in detail later.
 レンズ30は、面光源10から出射され、カラーフィルター20を透過した検査光を物品200に向けて集光する。また、検査光は、レンズ30を透過することで所定の照射立体角IS(図2参照)が付与される。このことについてさらに述べる。 The lens 30 focuses the inspection light emitted from the surface light source 10 and transmitted through the color filter 20 toward the article 200. Further, the inspection light is given a predetermined irradiation solid angle IS (see FIG. 2) by passing through the lens 30. I will discuss this further.
 図1に示すように、面光源10とカラーフィルター20とレンズ30とを配置した場合、検査光の光軸上であって、かつレンズ30の出射側焦点位置である点P1における照射立体角ISは、カラーフィルター20における検査光の光路の直径とレンズ30の焦点距離fにより一義的に決まる。なお、ここで言う「照射立体角」とは、検査光の光路上の所定の点を頂点とし、当該所定の点に光が照射される範囲を示す任意形状の錐体を言う(例えば、図2参照)。前述の光路の直径をrとすると、照射立体角ISの平面半角θは式(1)に示す関係を満たす。 As shown in FIG. 1, when a surface light source 10, a color filter 20, and a lens 30 are arranged, the irradiation solid angle IS at a point P1, which is on the optical axis of the inspection light and is the exit-side focal position of the lens 30, is is uniquely determined by the diameter of the optical path of the inspection light in the color filter 20 and the focal length f of the lens 30. Note that the "irradiation solid angle" referred to here refers to an arbitrarily shaped cone that has a predetermined point on the optical path of the inspection light as its apex and indicates the range in which light is irradiated to the predetermined point (for example, as shown in Fig. (see 2). When the diameter of the above-mentioned optical path is r, the plane half angle θ of the irradiation solid angle IS satisfies the relationship shown in equation (1).
 また、検査光の光軸から離れた位置であっても、レンズ30の中心からレンズ30の出射側焦点位置だけ離れた位置における照射立体角ISも、点P1における照射立体角ISと同じ形状で同じ大きさとなる。また、レンズ30の出射側焦点位置よりも遠い位置における照射立体角ISも、点P1における照射立体角ISと同じ形状で同じ大きさとなる。 Furthermore, even if the position is away from the optical axis of the inspection light, the irradiation solid angle IS at a position away from the center of the lens 30 by the focal position on the exit side of the lens 30 has the same shape as the irradiation solid angle IS at the point P1. will be the same size. Further, the irradiation solid angle IS at a position farther from the exit-side focal position of the lens 30 also has the same shape and the same size as the irradiation solid angle IS at the point P1.
 また、検査光がハーフミラー60により反射された場合にも、これらの照射立体角ISは維持される。したがって、図2に示すように、検査光は、物品200の表面の各点において同じ照射立体角ISを有するように照射される。つまり、物品200の表面の任意の点において、面光源10からの距離に依存せず、照明条件が同じとなる。 Further, even when the inspection light is reflected by the half mirror 60, these irradiation solid angles IS are maintained. Therefore, as shown in FIG. 2, the inspection light is irradiated so that each point on the surface of the article 200 has the same irradiation solid angle IS. That is, at any point on the surface of the article 200, the illumination conditions are the same regardless of the distance from the surface light source 10.
 ハーフミラー(光学部材)60は、レンズ30を透過した検査光の光路中であって、物品200で反射された反射光がカメラ80に向かう光路中に配置されている。ハーフミラー60は、レンズ30で集光された検査光を物品200に向けて反射する一方、物品200で反射された反射光を透過する。つまり、ハーフミラー60は、検査光を物品200に照射させるとともに、物品200からの反射光をカメラ80に入射させる。 The half mirror (optical member) 60 is placed in the optical path of the inspection light transmitted through the lens 30 and in the optical path of the reflected light reflected by the article 200 toward the camera 80. The half mirror 60 reflects the inspection light focused by the lens 30 toward the article 200, while transmitting the reflected light reflected by the article 200. In other words, the half mirror 60 irradiates the inspection light onto the article 200 and causes the reflected light from the article 200 to enter the camera 80 .
 支持台70は、平坦な表面を有しており、当該表面に物品200が載置される。物品200は、X方向及びY方向に平行な面である領域S1と、図1Bの図面左側に傾きを有する領域S2と、図1Bの図面右側に傾きを有する領域S3とを有する。 The support stand 70 has a flat surface, and the article 200 is placed on the surface. The article 200 has a region S1 that is a plane parallel to the X direction and the Y direction, a region S2 that is inclined toward the left side of the drawing in FIG. 1B, and a region S3 that is inclined toward the right side of the drawing in FIG. 1B.
 カメラ(撮像装置)80は、物品200で反射され、ハーフミラー60を透過した反射光を受光し、物品200の画像を生成する。つまり、カメラ80は、検査光が照射された物品200の画像を撮像する。なお、カメラ80で撮像される画像はカラー画像である。よって、図示しないが、カメラ80は、撮像面を有する撮像素子として、カラーフィルターが搭載されたCMOSイメージセンサを有している。また、カメラ80は、CMOSイメージセンサの出力信号を処理して画像を生成するプロセッサ(図示せず)を備えていてもよい。 The camera (imaging device) 80 receives the reflected light reflected by the article 200 and transmitted through the half mirror 60, and generates an image of the article 200. That is, the camera 80 captures an image of the article 200 irradiated with the inspection light. Note that the image captured by the camera 80 is a color image. Therefore, although not shown, the camera 80 has a CMOS image sensor equipped with a color filter as an image sensor having an imaging surface. The camera 80 may also include a processor (not shown) that processes the output signal of the CMOS image sensor to generate an image.
 次に、検査システム100の動作原理について説明する。 Next, the operating principle of the inspection system 100 will be explained.
 図1に示すように、検査光は、ハーフミラー60により、光軸がZ方向に向くように反射される。物品200の表面が平坦でかつ支持台70の表面と平行である場合、物品200の表面で反射される反射光(以下、単に反射光という)は、白色光となる。例えば、図1Bに示す物品200の表面の領域S1での反射光は白色光としてカメラ80に入射される。 As shown in FIG. 1, the inspection light is reflected by the half mirror 60 so that the optical axis points in the Z direction. When the surface of the article 200 is flat and parallel to the surface of the support base 70, the reflected light reflected from the surface of the article 200 (hereinafter simply referred to as reflected light) becomes white light. For example, the reflected light from area S1 on the surface of article 200 shown in FIG. 1B is incident on camera 80 as white light.
 一方、カラーフィルター20は検査光の入射面内で色分布を有している。図3に示すように、カラーフィルター20は、複数のフィルター20aが、X方向及びY方向にアレイ状に配置されている。各フィルター20aは、X方向及びY方向に隣接するフィルター20aと間隔dを空けて配置されている。 On the other hand, the color filter 20 has a color distribution within the plane of incidence of the inspection light. As shown in FIG. 3, the color filter 20 includes a plurality of filters 20a arranged in an array in the X direction and the Y direction. Each filter 20a is arranged with an interval d between adjacent filters 20a in the X direction and the Y direction.
 また、複数のフィルター20aは、赤色光を透過する赤色フィルター(Rフィルター)と、緑色光を透過する緑色フィルター(Gフィルター)と、青色光を透過する青色フィルター(Bフィルター)とを含む。なお、図3では、赤色フィルターが設けられている領域を「R」、緑色フィルターが設けられている領域を「G」、青色フィルターが設けられている領域を「B」として図示している。具体的には、カラーフィルター20の、領域201(図面左上端部の領域)では色分布がR:G:B=7:1:1となり、領域202(図面右上端部の領域)では色分布がR:G:B=2:7:0となり、領域203(図面左下端部の領域)では色分布がR:G:B=2:0:7となり、領域204(図面右下端部の領域)では色分布がR:G:B=3:3:3となるように配置されている。 Further, the plurality of filters 20a include a red filter (R filter) that transmits red light, a green filter (G filter) that transmits green light, and a blue filter (B filter) that transmits blue light. In FIG. 3, the area where the red filter is provided is shown as "R", the area where the green filter is provided as "G", and the area where the blue filter is provided as "B". Specifically, in the color filter 20, the color distribution is R:G:B=7:1:1 in area 201 (the area at the upper left end of the drawing), and the color distribution is R:G:B=7:1:1 in the area 202 (the area at the upper right end of the drawing). is R:G:B=2:7:0, and in area 203 (the area at the bottom left edge of the drawing), the color distribution is R:G:B=2:0:7, and in area 204 (the area at the bottom right edge of the drawing), the color distribution is R:G:B=2:0:7. ), the color distribution is R:G:B=3:3:3.
 なお、R成分(赤色光)、G成分(緑色光)及びB成分(青色光)は、それぞれ所定の波長幅を有している。例えば、R成分は、650nmの波長を含み、数十nm~100nm程度の波長幅を有している。G成分は、500nmの波長を含み、数十nm~100nm程度の波長幅を有している。B成分は、450nmの波長を含み、数十nm~100nm程度の波長幅を有している。 Note that the R component (red light), the G component (green light), and the B component (blue light) each have a predetermined wavelength width. For example, the R component includes a wavelength of 650 nm and has a wavelength width of approximately several tens of nm to 100 nm. The G component includes a wavelength of 500 nm and has a wavelength width of approximately several tens of nm to 100 nm. The B component includes a wavelength of 450 nm and has a wavelength width of approximately several tens of nm to 100 nm.
 その結果、カラーフィルター20の色分布に応じた検査光は、物品200の表面によって反射され、カメラ80の撮像面に入射することとなる。このため、基準画像と、物品200を配置した状態で撮像された撮像画像とを比較することにより、物品200の表面の方向(傾き)を推定することが可能となる。このときの基準画像は、Rフィルターのみが配置されたカラーフィルター20、Gフィルターのみが配置されたカラーフィルター20およびBフィルターのみが配置されたカラーフィルター20をそれぞれ用いて撮像した物品200の画像である。カラーフィルター20に単色のフィルターを用いた場合、物品200の表面に傾きがあったとしても、一定の輝度値となるため、以下に説明する式(3)のキャリブレーション(校正)が可能となる。なお、基準画像に、物品200(もしくは物品200と同一の素材の物品)を既知の複数の所定角度から撮像した画像を用いてもよい。この場合であっても、以下に説明する式(3)のキャリブレーション(校正)が可能となる。また、基準画像に、物品200(もしくは物品200と同一の素材の物品)を未知の複数の所定角度から撮像した画像を用いてもよい。この場合であっても、フィルター同士の関係に基づいて、以下に説明する式(3)のキャリブレーション(校正)が可能となる。また、物品200が表面に異なる角度の面を複数有している場合、基準画像として物品200を撮像した一枚の画像を用いてもよい。この場合であっても、物品200の表面の角度と、撮像画像のRGBの割合とに基づいて、以下に説明する式(3)のキャリブレーション(校正)が可能となる。 As a result, the inspection light according to the color distribution of the color filter 20 is reflected by the surface of the article 200 and enters the imaging surface of the camera 80. Therefore, by comparing the reference image and a captured image captured with the article 200 placed, it is possible to estimate the direction (inclination) of the surface of the article 200. The reference image at this time is an image of the article 200 captured using the color filter 20 in which only the R filter is arranged, the color filter 20 in which only the G filter is arranged, and the color filter 20 in which only the B filter is arranged. be. If a monochromatic filter is used as the color filter 20, even if the surface of the article 200 is tilted, the brightness value will be constant, making it possible to calibrate the equation (3) described below. . Note that images taken of the article 200 (or an article made of the same material as the article 200) from a plurality of known predetermined angles may be used as the reference image. Even in this case, calibration of equation (3) described below is possible. Furthermore, images taken of the article 200 (or an article made of the same material as the article 200) from a plurality of unknown predetermined angles may be used as the reference image. Even in this case, it is possible to calibrate equation (3) described below based on the relationship between the filters. Furthermore, if the article 200 has a plurality of surfaces having different angles on its surface, a single image of the article 200 may be used as the reference image. Even in this case, the following equation (3) can be calibrated based on the angle of the surface of the article 200 and the RGB ratio of the captured image.
 例えば、図3のカラーフィルター20を用いた場合、領域201から照射された光が、カメラ80の1画素に集光される。このため、カメラ80が生成する撮像画像において、R:G:B=7:1:1となる領域を検出することにより、撮像画像において領域201に対応する領域を検出することが可能となる。なお、図3では、領域201~204からそれぞれ照射された光が、カメラ80において対応する1つの画素に集光されるが、カラーフィルター20における任意の領域(例えば、領域205など)から照射された光が、カメラ80において1つの画素に集光されてもよい。 For example, when the color filter 20 in FIG. 3 is used, light emitted from the area 201 is focused on one pixel of the camera 80. Therefore, by detecting an area where R:G:B=7:1:1 in the captured image generated by the camera 80, it is possible to detect an area corresponding to the area 201 in the captured image. Note that in FIG. 3, the light emitted from each of the regions 201 to 204 is focused on a corresponding one pixel in the camera 80, but the light emitted from each of the regions 201 to 204 is focused on a corresponding pixel in the camera 80; The light may be focused on one pixel in the camera 80.
 なお、カラーフィルター20における複数のフィルター20aの配置は、図3の例(6×6のフィルター20aが配置されている)に限られず、フィルター20aの配置は任意に設定可能である。例えば、カラーフィルター20には、9×9や12×12などのフィルター20aが配置されてもよい。また、図3の例では、カメラ80の1画素に3×3のフィルター20aが対応しているが、カメラ80の1画素に対応するフィルター20aの数や配置は任意に設定可能である。例えば、カメラ80の1画素に、6×6や9×9のフィルター20aが対応していてもよい。また、カラーフィルター20における複数のフィルター20aの色分布は、任意に設定することができる。 Note that the arrangement of the plurality of filters 20a in the color filter 20 is not limited to the example in FIG. 3 (6×6 filters 20a are arranged), and the arrangement of the filters 20a can be set arbitrarily. For example, the color filter 20 may include 9×9 or 12×12 filters 20a. Further, in the example of FIG. 3, a 3×3 filter 20a corresponds to one pixel of the camera 80, but the number and arrangement of filters 20a corresponding to one pixel of the camera 80 can be set arbitrarily. For example, one pixel of the camera 80 may correspond to a 6×6 or 9×9 filter 20a. Further, the color distribution of the plurality of filters 20a in the color filter 20 can be arbitrarily set.
 以上説明したように、図1Aに示す検査システム100によれば、カラーフィルター20には、赤色光を透過する赤色フィルターと、緑色光を透過する緑色フィルターと、青色光を透過する青色フィルターとが含まれる。赤色フィルター、緑色フィルター及び青色フィルターは、互いに異なる波長幅の光を透過させるため、カメラ80の1画素に対して入光するRGBの比率を予め設定しておくことにより、撮像画像におけるRGBの定量的表現が可能となる。すなわち、カラーフィルター20のどの位置から照射された光が、撮像画像のどの位置に対応しているかを把握することができる。したがって、予め物品200が置かれていない状態の基準画像と物品200が置かれている状態の撮像画像とを比較することにより、物品200の表面の傾きを推定することが可能となる。 As explained above, according to the inspection system 100 shown in FIG. 1A, the color filter 20 includes a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light. included. The red filter, green filter, and blue filter transmit light with different wavelength widths, so by setting the ratio of RGB incident to one pixel of the camera 80 in advance, it is possible to quantify RGB in the captured image. expression becomes possible. That is, it is possible to know from which position of the color filter 20 the light emitted corresponds to which position in the captured image. Therefore, by comparing in advance a reference image with no article 200 placed thereon and a captured image with the article 200 placed thereon, it is possible to estimate the inclination of the surface of the article 200.
 なお、基準画像として、予め外観検査で異常が無いと判定された物品200の撮像画像(以下、良品画像と呼ぶことがある。)を用いてもよい。この良品画像と、検査対象となる物品200(以下、検査対象品と呼ぶことがある。)の撮像画像との差分を取ることで、検査対象品の表面における異常の有無等を判定することができる。例えば、検査対象品の表面における傷や汚れの有無、また、これらがあった場合の位置を判定できる。また、検査対象品の表面に、その傾斜角が許容範囲から外れている箇所があれば、当該箇所の位置を推定でき、また、傾斜角を推定できる。なお、良品画像と検査対象品の撮像画像との差分を取るにあたっては、一般的な画像同士の差分を取る手順と同様の手法を採用することができる。例えば、良品画像と検査対象の撮像画像とにおいて、物品200が撮像された位置や向きを合わせてから、差分を取ってもよい。 Note that as the reference image, a captured image of the article 200 (hereinafter sometimes referred to as a non-defective image) that has been previously determined to have no abnormalities in a visual inspection may be used. By taking the difference between this non-defective product image and the captured image of the product 200 to be inspected (hereinafter sometimes referred to as the product to be inspected), it is possible to determine the presence or absence of abnormalities on the surface of the product to be inspected. can. For example, it is possible to determine the presence or absence of scratches or stains on the surface of an item to be inspected, as well as the location of any scratches or stains, if any. Furthermore, if there is a location on the surface of the item to be inspected whose angle of inclination is out of the allowable range, the position of the location and the angle of inclination can be estimated. In addition, in taking the difference between the non-defective product image and the captured image of the product to be inspected, a method similar to the procedure for taking the difference between general images can be adopted. For example, the difference may be taken after matching the imaged position and orientation of the article 200 between the non-defective product image and the captured image of the inspection target.
 また、複数のフィルター20aは、隣接するフィルター20a同士が、互いに所定の間隔dを空けて、カラーフィルター20に配置されている。これにより、隣接するフィルター20a同士が離間して配置されるため、隣接するフィルター20a同士の境界において混色が生じない。したがって、撮像画像におけるRGBの定量的表現をより確実に行うことができる。 Further, the plurality of filters 20a are arranged in the color filter 20 such that adjacent filters 20a are spaced apart from each other by a predetermined distance d. As a result, since the adjacent filters 20a are arranged apart from each other, color mixing does not occur at the boundaries between the adjacent filters 20a. Therefore, quantitative expression of RGB in a captured image can be performed more reliably.
 [カラーフィルターの構成及びキャリブレーションについて]
 前述した物品200の表面の方向推定を行う場合、撮像画像におけるカラーバランスが構成されていることが必要である。言い換えると、撮像画像におけるRGBの強度が校正されていることが必要である。一般には、白色の物品200を照明環境毎に撮像し、RGBの強度を調整する。
[About color filter configuration and calibration]
When estimating the direction of the surface of the article 200 described above, it is necessary that the captured image has a color balance. In other words, it is necessary that the RGB intensities in the captured image be calibrated. Generally, a white article 200 is imaged for each lighting environment, and the RGB intensities are adjusted.
 また、物品200の材質が異なる場合、反射率の波長依存性も異なる。図4は、金属の反射率の波長依存性の一例を示し、例えば、銀(Ag)は、可視光領域(400nm~700nm)で反射率が1程度と一定である。一方、波長が650nmから500nmにかけて、金(Au)の反射率は、1から0.4程度まで低下する。また、500nm以下の波長域では、反射率が0.4程度と略一定となる。波長が650nmから400nmにかけて、銅(Cu)は、の反射率は、1から0.5程度まで低下する。このことに鑑みれば、検査対象となる物品200の材質が異なる場合も、RGBの強度校正が必要となる。 Further, when the material of the article 200 is different, the wavelength dependence of the reflectance is also different. FIG. 4 shows an example of the wavelength dependence of the reflectance of metals. For example, silver (Ag) has a constant reflectance of about 1 in the visible light region (400 nm to 700 nm). On the other hand, as the wavelength ranges from 650 nm to 500 nm, the reflectance of gold (Au) decreases from about 1 to about 0.4. Further, in the wavelength range of 500 nm or less, the reflectance is approximately constant at about 0.4. As the wavelength ranges from 650 nm to 400 nm, the reflectance of copper (Cu) decreases from about 1 to about 0.5. In view of this, RGB intensity calibration is required even when the material of the article 200 to be inspected is different.
 これに対して、図1Aに示す検査システム100では、カラーフィルター20は、Rフィルター、Gフィルター及びBフィルターをからなる。このため、検査対象となる物品200の成分(金や銅など)に応じて、RGBの強度構成を行えばよく、RGB校正の回数(ここでは3回)を抑えることができる。 In contrast, in the inspection system 100 shown in FIG. 1A, the color filter 20 includes an R filter, a G filter, and a B filter. Therefore, it is sufficient to configure the RGB intensity according to the components (gold, copper, etc.) of the article 200 to be inspected, and the number of RGB calibrations (three times in this case) can be suppressed.
 例えば、Rフィルターを透過した検査光のRGB成分を(Rr,Gr,Br)とし、Gフィルターを透過した検査光のRGB成分を(Rg,Gg,Bg)とし、Bフィルターを透過した検査光のRGB成分を(Rb,Gb,Bb)とする。このとき、補正前の検査光のRGB成分(R,G,B)と、補正後の検査光のRGB成分(R’,G’,B’)とは、以下の式(2)の関係となる。 For example, let the RGB components of the test light transmitted through the R filter be (Rr, Gr, Br), let the RGB components of the test light transmitted through the G filter be (Rg, Gg, Bg), and let the RGB components of the test light transmitted through the B filter be (Rr, Gr, Br). Let the RGB components be (Rb, Gb, Bb). At this time, the RGB components (R, G, B) of the test light before correction and the RGB components (R', G', B') of the test light after correction are related to the following equation (2). Become.
 なお、Aは、以下の式(3)を満たす。 Note that A satisfies the following formula (3).
 以上のように、撮像画像におけるRGBの強度を校正することで、より正確な物品200の画像を取得することができる。 As described above, by calibrating the RGB intensities in the captured image, a more accurate image of the article 200 can be obtained.
 [物品の検査結果について]
 次に、物品200の検査結果について説明する。
[About inspection results of goods]
Next, the inspection results of article 200 will be explained.
 図5は、物品検査時に用いたカラーフィルターの平面模式図である。図6は、物品検査時に用いた物品の断面図である。図7は、物品検査時におけるカメラの撮像画像である。本検査結果では、図1Aの検査装置に対して、図5のカラーフィルター21を用い、支持台70に図6の物品200aを載置することによって、図7の各図に示すカメラ80の撮像画像G1~G12を得た。 FIG. 5 is a schematic plan view of a color filter used during article inspection. FIG. 6 is a cross-sectional view of the article used during the article inspection. FIG. 7 is an image captured by a camera during an article inspection. In this inspection result, by using the color filter 21 of FIG. 5 and placing the article 200a of FIG. 6 on the support stand 70, the camera 80 shown in each figure of FIG. Images G1 to G12 were obtained.
 図5に示すように、カラーフィルター20は、図面左上部に青色領域(B領域)を有し、図面右上部に赤色領域(R領域)を有し、図面下部に緑色領域(R領域)を有している。なお、図5では、カラーフィルター21は、R領域、G領域及びB領域をそれぞれ区分して図示しているが、実際には、面内の色分布は連続的に、あるいは段階的に変化している。すなわち、複数のフィルター20aは、所定範囲の領域ごとに区分した場合、色分布が徐々に変化するように、カラーフィルター20に配置されている。 As shown in FIG. 5, the color filter 20 has a blue area (B area) at the upper left of the drawing, a red area (R area) at the upper right of the drawing, and a green area (R area) at the bottom of the drawing. have. In FIG. 5, the color filter 21 is shown divided into an R area, a G area, and a B area, but in reality, the in-plane color distribution changes continuously or stepwise. ing. That is, the plurality of filters 20a are arranged in the color filter 20 so that the color distribution gradually changes when divided into regions within a predetermined range.
 図6に示すように、物品200aは、領域S2と領域S3との間に、X方向及びY方向に平行な領域S4を有する。このため、カメラ80の撮像画像において、領域S4に対応する領域は白色となる。 As shown in FIG. 6, the article 200a has a region S4 parallel to the X direction and the Y direction between the region S2 and the region S3. Therefore, in the image captured by the camera 80, the area corresponding to the area S4 becomes white.
 図7の各図は、物品200aの領域S2,S3の傾きを変化させたときの撮像画像を示している。より具体的には、物品200aの領域S2,S3のX方向に対する傾きが、1°~12°である場合の撮像画像を、撮像画像G1~G12としてそれぞれ示している。図7の各図に示すように、領域S2,S3のX方向に対する傾きが大きくなるにつれて、領域S2,S3がハーフミラー60に対して反射するRGBの割合が変化する。このRGBの割合の変化に応じて、検査対象である物品の表面の傾きを推定することが可能となる。 Each figure in FIG. 7 shows captured images when the inclinations of regions S2 and S3 of the article 200a are changed. More specifically, captured images in which the inclinations of regions S2 and S3 of the article 200a with respect to the X direction are 1° to 12° are shown as captured images G1 to G12, respectively. As shown in each figure in FIG. 7, as the inclination of the regions S2 and S3 with respect to the X direction increases, the ratio of RGB reflected by the regions S2 and S3 to the half mirror 60 changes. According to this change in the ratio of RGB, it is possible to estimate the inclination of the surface of the article to be inspected.
 なお、上記実施形態において、カメラ80をモノクロカメラとし、カラーフィルター20にモノトーンで構成されたフィルター20aを配置してもよい。この場合であっても、基準画像と撮像画像との輝度値を比較することによって、物品200の表面の傾きを推定することが可能となる。すなわち、上記実施形態と同様の効果を得ることができる。 Note that in the above embodiment, the camera 80 may be a monochrome camera, and the color filter 20 may include a monochrome filter 20a. Even in this case, it is possible to estimate the inclination of the surface of the article 200 by comparing the luminance values of the reference image and the captured image. That is, the same effects as the above embodiment can be obtained.
 また、本検査システムによって推定した物品200の表面の傾きを用いて、カメラ80が撮像した物品200のカメラ画像に補正を加えることで、物品200の表面の検査が可能となる。例えば、物品200(コインなど)の表面を検査する際に、物品200の下に異物があり、物品200が全体的に傾いてしまった場合、物品200の傾きを補正して、物品200が傾いていない状態のカメラ画像を作成し、物品200の表面を検査することが可能となる。 In addition, the surface of the article 200 can be inspected by correcting the camera image of the article 200 captured by the camera 80 using the inclination of the surface of the article 200 estimated by this inspection system. For example, when inspecting the surface of the article 200 (such as a coin), if there is a foreign object under the article 200 and the article 200 is tilted as a whole, the tilt of the article 200 is corrected and the article 200 is tilted. It becomes possible to create a camera image of the item 200 in a state where it is not covered and inspect the surface of the item 200.
 (実施形態2)
 図8は、実施形態2に係るカラーフィルターの平面模式図である。図9は、カラーフィルターの光出射面内での色分布を示す図である。図10は、カラーフィルターの最外周における光輝度の回転角度依存性を示す図である。なお、説明の便宜上、図8~10及び以降に示す各図面において、実施形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
(Embodiment 2)
FIG. 8 is a schematic plan view of a color filter according to the second embodiment. FIG. 9 is a diagram showing the color distribution within the light exit plane of the color filter. FIG. 10 is a diagram showing the rotation angle dependence of light brightness at the outermost periphery of the color filter. For convenience of explanation, in FIGS. 8 to 10 and the subsequent drawings, the same reference numerals are given to the same parts as in the first embodiment, and detailed explanations are omitted.
 実施形態1では、カラーフィルター20において、複数のフィルター20aが、所定範囲の領域ごとに区分した場合、色分布が徐々に変化するように配置されている例を示した。また、このカラーフィルター20を透過した検査光を照射して撮像した物品200の撮像画像と、予め取得した基準画像との輝度値を比較することによって、物品200の表面の傾きを推定できることを示した。 In the first embodiment, an example was shown in which the plurality of filters 20a in the color filter 20 are arranged so that the color distribution gradually changes when the filters 20a are divided into regions within a predetermined range. Furthermore, it was shown that the inclination of the surface of the article 200 can be estimated by comparing the brightness values of a captured image of the article 200 captured by irradiating the inspection light transmitted through the color filter 20 with a reference image acquired in advance. Ta.
 本実施形態では、既に校正済のカラーフィルター20における具体的は色分布付与手法について説明する。 In this embodiment, a specific color distribution imparting method for the already calibrated color filter 20 will be described.
 まず、カラーフィルター20における各色のフィルターの配置について説明する。 First, the arrangement of each color filter in the color filter 20 will be explained.
 図8に示すように、カラーフィルター20は、赤色フィルター20Rと緑色フィルター20Gと青色フィルター20Bとが、それぞれ透明板22上に周期的に配置されてなる。この場合、透明板22はガラス基板からなり、図示しない駆動トランジスタが設けられている。各フィルターは間隔dをあけて配置されている。これは、実施形態1に示したのと同様である。 As shown in FIG. 8, the color filter 20 includes a red filter 20R, a green filter 20G, and a blue filter 20B, which are each arranged periodically on a transparent plate 22. In this case, the transparent plate 22 is made of a glass substrate and is provided with a drive transistor (not shown). The filters are arranged at intervals d. This is similar to that shown in the first embodiment.
 赤色フィルター20Rは、入射した白色光のうち赤色光を透過させ、緑色フィルター20Gは、入射した白色光のうち緑色光を透過させ、青色フィルター20Bは、入射した白色光のうち青色光を透過させる。なお、図8に示した配列はあくまでも一例であり、特にこれに限定されない。また、赤色光、緑色光及び青色光の波長域は、実施形態1に示したのと同じである。 The red filter 20R transmits red light of the incident white light, the green filter 20G transmits the green light of the incident white light, and the blue filter 20B transmits the blue light of the incident white light. . Note that the arrangement shown in FIG. 8 is just an example, and the arrangement is not particularly limited thereto. Further, the wavelength ranges of red light, green light, and blue light are the same as shown in the first embodiment.
 本実施形態では、98に示すように、カラーフィルター20の光出射面における色分布をカラーフィルター20の中心Oを中心として時計回り方向に連続的または段階的に変化させる。また、外周から中心Oに向かうにつれて、検査光の彩度が連続的または段階的に低下するように色分布が付与される。言い換えると、中心Oからの距離rに対して、検査光の彩度が連続的または段階的に変化するように色分布が付与される。 In this embodiment, as shown at 98, the color distribution on the light exit surface of the color filter 20 is changed continuously or stepwise in a clockwise direction around the center O of the color filter 20. Further, a color distribution is provided such that the saturation of the test light decreases continuously or stepwise from the outer periphery toward the center O. In other words, a color distribution is provided such that the saturation of the test light changes continuously or stepwise with respect to the distance r from the center O.
 その一方で、光出射面における異なる位置から出射される検査光は式(4)に示す関係を満たしている。 On the other hand, the inspection lights emitted from different positions on the light emitting surface satisfy the relationship shown in equation (4).
 I+αI+βI=S ・・・(4)
 ここで、I、I、Iは、それぞれ赤色光、緑色光及び青色光の輝度である。また、α、βは、それぞれゼロよりも大きい係数であり、本実施形態に示す例では、α=β=1である。また、Sは定数である。
I R +αI G +βI B =S...(4)
Here, I R , I G , and I B are the brightness of red light, green light, and blue light, respectively. Further, α and β are each coefficients larger than zero, and in the example shown in this embodiment, α=β=1. Further, S is a constant.
 つまり、検査光は、光出射面内での位置に関わらず、赤色光、緑色光及び青色光の輝度の和が一定になるように設定される。 In other words, the inspection light is set so that the sum of the brightness of the red light, green light, and blue light is constant regardless of the position within the light exit plane.
 また、検査光は、中心Oを中心として所定の位置から時計回り方向に回転した角度θが変化した場合、赤色光、緑色光及び青色光のそれぞれの輝度の比が変化するように設定されている。 In addition, the inspection light is set so that when the angle θ rotated clockwise from a predetermined position around the center O changes, the brightness ratio of each of the red light, green light, and blue light changes. There is.
 例えば、図9,10に示すように、カラーフィルター20の最外周における赤色光、緑色光及び青色光の輝度は、角度θに応じて変化している。同時に、赤色光、緑色光及び青色光のそれぞれの輝度は、距離rに応じても変化している。距離rが小さくなる、つまり、中心Oに近くなる程、検査光の彩度が低下する。例えば、θが120°の場合、緑色光の輝度Iが最大(=S)である一方、赤色光及び青色光の輝度I、Iは、それぞれゼロである。しかし、距離rが小さくなり、中心Oに近い領域では、赤色光及び青色光の輝度は、それぞれゼロよりも増加する。 For example, as shown in FIGS. 9 and 10, the brightness of the red light, green light, and blue light at the outermost periphery of the color filter 20 changes depending on the angle θ. At the same time, the brightness of each of the red light, green light, and blue light also changes depending on the distance r. As the distance r becomes smaller, that is, closer to the center O, the saturation of the test light decreases. For example, when θ is 120°, the brightness I G of green light is maximum (=S), while the brightness I R and I B of red light and blue light are respectively zero. However, as the distance r becomes smaller and in a region closer to the center O, the brightness of the red light and the blue light each increase from zero.
 これらのことは、以下の式(5)~(11)に示す関係として記述される。 These matters are described as the relationships shown in equations (5) to (11) below.
 まず、距離rを規格化する。また、距離rでの検査光の規格化された振幅mを式(5)に示すように設定する。 First, the distance r is normalized. Further, the normalized amplitude m of the inspection light at the distance r is set as shown in equation (5).
 m=min(R,G,B) ・・・(5)
 ここで、R,G,Bは、それぞれ赤色光、緑色光、青色光の輝度I、I、Iを規格化したものである。
m=min(R,G,B)...(5)
Here, R, G, and B are the standardized brightness I R , I G , and I B of red light, green light, and blue light, respectively.
 このとき、距離rと振幅mとの間に、式(6)に示す関係が成立するように、カラーフィルター20の色分布を設定する。 At this time, the color distribution of the color filter 20 is set so that the relationship shown in equation (6) is established between the distance r and the amplitude m.
 r=VR/(VR+m)=(S-3m)/(S-2m) ・・・(6)
 ここで、変動範囲VRは式(7)に示す関係を満たす。
r=VR/(VR+m)=(S-3m)/(S-2m)...(6)
Here, the variation range VR satisfies the relationship shown in equation (7).
 VR=S-3m ・・・(7)
 また、S、r、mは、式(8)~(10)に示す関係をそれぞれ満たす。
VR=S-3m...(7)
Further, S, r, and m satisfy the relationships shown in equations (8) to (10), respectively.
 S≧3m ・・・(8)
 0≦r≦1 ・・・(9)
 0≦m≦1 ・・・(10)
 また、式(6)、(7)から、振幅mに関して、式(11)に示す関係が成立する。
S≧3m...(8)
0≦r≦1...(9)
0≦m≦1...(10)
Furthermore, from equations (6) and (7), the relationship shown in equation (11) holds true regarding the amplitude m.
 m=S×((1-r)/(3-2r)) ・・・(11)
 図10に示す例では、つまり、検査光の光出射面の任意の位置において、赤色光の輝度と緑色光の輝度と青色光の輝度との比率は、距離rと角度θとに応じてそれぞれ決定される。ただし、前述したように、角度θや距離rが変化した場合にも、赤色光、緑色光及び青色光のそれぞれの輝度の和は一定に保たれる。
m=S×((1-r)/(3-2r))...(11)
In the example shown in FIG. 10, in other words, at any position on the light exit surface of the inspection light, the ratio of the brightness of the red light, the brightness of the green light, and the brightness of the blue light varies depending on the distance r and the angle θ. It is determined. However, as described above, even if the angle θ or the distance r changes, the sum of the brightness of each of the red light, green light, and blue light remains constant.
 なお、図9,10に示すように検査光に色分布を付与する場合、カラーフィルター20の各位置において、赤色フィルター20Rと緑色フィルター20Gと青色フィルター20Bとの配置個数を変化させる。または、各位置において、赤色フィルター20R、緑色フィルター20G及び青色フィルター20Bのそれぞれの透過率を変化させる。 Note that when providing a color distribution to the inspection light as shown in FIGS. 9 and 10, the number of red filters 20R, green filters 20G, and blue filters 20B arranged at each position of the color filter 20 is changed. Alternatively, at each position, the transmittance of each of the red filter 20R, green filter 20G, and blue filter 20B is changed.
 なお、カラーフィルター20として液晶カラーフィルターを用いる場合、前述した配置比率や透過率比率を動的に変更することができる。 Note that when a liquid crystal color filter is used as the color filter 20, the above-mentioned arrangement ratio and transmittance ratio can be dynamically changed.
 また、図9,10に示すように検査光に色分布を付与することで、物品200の表面の傾きを定量的に評価することができる。この傾きは、カメラ80で撮像した物品200の画像に基づいて、物品200の表面が検査光の光軸に垂直に交わる平坦面である場合を基準とした傾斜角で表現される。なお、物品200の表面の傾斜角(以下、単に傾斜角と呼ぶことがある。)は、制御装置(図示せず)で算出される。また、基準画像と撮像画像との輝度差を比較することにより、実施形態1においても同様に物品200の表面の傾きを定量的に評価することができる。 Furthermore, by imparting a color distribution to the inspection light as shown in FIGS. 9 and 10, the inclination of the surface of the article 200 can be quantitatively evaluated. This inclination is expressed as an inclination angle based on an image of the article 200 captured by the camera 80 with reference to the case where the surface of the article 200 is a flat surface perpendicular to the optical axis of the inspection light. Note that the angle of inclination of the surface of the article 200 (hereinafter sometimes simply referred to as the angle of inclination) is calculated by a control device (not shown). Further, by comparing the brightness difference between the reference image and the captured image, the inclination of the surface of the article 200 can be quantitatively evaluated in the same manner in the first embodiment.
 以上説明したように、本実施形態において、カラーフィルター20に図9、図10に示すように色分布が付与される。 As explained above, in this embodiment, the color filter 20 is given a color distribution as shown in FIGS. 9 and 10.
 この場合、検査光の光照射面内の任意の位置において、赤色光と緑色光と青色光のそれぞれの輝度をI、I、Iとするとき、
 I+αI+βI=S ・・・(4)
に示す関係を満たしている。ここで、α、βは、それぞれゼロよりも大きい係数であり、Sは定数である。
In this case, when the respective brightnesses of the red light, green light, and blue light are I R , I G , and I B at any position within the light irradiation surface of the inspection light,
I R +αI G +βI B =S...(4)
The relationship shown in is satisfied. Here, α and β are each coefficients larger than zero, and S is a constant.
 このようにすることで、物品200の表面が複数の方向を有する場合や、異なる材質の物品200に対しても、カメラ80で撮像した画像のカラーバランスを適切に調整できる。また、物品200の表面の方向、具体的には表面の傾斜角を定量的にかつ精度良く算出することが可能となる。 By doing so, the color balance of the image captured by the camera 80 can be appropriately adjusted even when the surface of the article 200 has multiple directions or when the article 200 is made of different materials. Further, it becomes possible to quantitatively and accurately calculate the direction of the surface of the article 200, specifically, the angle of inclination of the surface.
 カラーフィルター20が平面視で円形である場合、検査光の彩度は、カラーフィルター20の外周から中心Oに向かうにつれて彩度が低下するように変化することが好ましい。 When the color filter 20 is circular in plan view, the saturation of the test light preferably changes such that the saturation decreases from the outer periphery of the color filter 20 toward the center O.
 また、赤色光と緑色光と青色光のそれぞれの輝度I、I、Iは、面光源10の外周に沿った回転角度θに応じて変化しているが好ましい。 Furthermore, the brightness I R , I G , and I B of the red light, green light, and blue light preferably vary depending on the rotation angle θ along the outer periphery of the surface light source 10 .
 さらに、赤色光と緑色光と青色光のそれぞれの輝度の和をSとし、カラーフィルター20の中心Oからの規格化された距離をrとし、距離rにおける検査光の規格化された振幅をmとする。このとき、
 m=S×((1-r)/(3-2r)) ・・・(11)
に示す関係を満たすことが好ましい。ここで、S≧3m、0≦r≦1、0≦m≦1である。
Furthermore, the sum of the luminances of the red light, green light, and blue light is S, the standardized distance from the center O of the color filter 20 is r, and the standardized amplitude of the inspection light at the distance r is m. shall be. At this time,
m=S×((1-r)/(3-2r))...(11)
It is preferable that the following relationship is satisfied. Here, S≧3m, 0≦r≦1, and 0≦m≦1.
 このようにすることで、検査光の光照射面内の任意の位置において、検査光に式(4)に示す関係を満たす色分布を付与することができる。 By doing so, it is possible to give the inspection light a color distribution that satisfies the relationship shown in equation (4) at any position within the light irradiation surface of the inspection light.
 赤色フィルター20Rと緑色フィルター20Gと青色フィルター20Bとの配置個数の比率(配置個数比率)または透過率比率は、式(4)及び式(11)に示す関係をそれぞれ満たすように決定されるのが好ましい。 The ratio of the number of arranged red filters 20R, green filters 20G and blue filters 20B (arranged number ratio) or transmittance ratio is determined so as to satisfy the relationships shown in equations (4) and (11), respectively. preferable.
 このようにすることで、物品200の表面が複数の方向を有する場合や、異なる材質の物品200に対しても、カメラ80で撮像した画像のカラーバランスを適切に調整できる。また、検査光の色分布、具体的にはRGB輝度比を検査光の光出射面内で連続的に変化させることができる。 By doing so, the color balance of the image captured by the camera 80 can be appropriately adjusted even when the surface of the article 200 has multiple directions or when the article 200 is made of different materials. Furthermore, the color distribution of the test light, specifically the RGB brightness ratio, can be continuously changed within the light exit plane of the test light.
 また、物品200の表面の方向、具体的には表面の傾斜角を定量的にかつ精度良く算出することが可能となる。 Furthermore, it is possible to quantitatively and accurately calculate the direction of the surface of the article 200, specifically, the inclination angle of the surface.
 <変形例>
 図11は、変形例に係る検査光の色分布を説明する模式図である。図12Aは、検査光における青色光の色分布を示す模式図である。図12Bは、検査光における赤色光の色分布を示す模式図である。
<Modified example>
FIG. 11 is a schematic diagram illustrating the color distribution of inspection light according to a modification. FIG. 12A is a schematic diagram showing the color distribution of blue light in the inspection light. FIG. 12B is a schematic diagram showing the color distribution of red light in the inspection light.
 式(4)に示す関係を満たすように、検査光に色分布を付与するにあたって、カラーフィルター20の形状は、図5や図9に示したものに限定されず、例えば、図11に示すように、平面視で四角形であってもよい。 In imparting a color distribution to the inspection light so as to satisfy the relationship shown in equation (4), the shape of the color filter 20 is not limited to that shown in FIGS. 5 and 9, but may be, for example, as shown in FIG. Additionally, it may be rectangular in plan view.
 この場合も、検査光には、式(4)に示す関係を満たすように色分布が付与される。ただし、本変形例では、α=2、β=1、S=2と設定されている。 In this case as well, a color distribution is given to the inspection light so as to satisfy the relationship shown in equation (4). However, in this modification, α=2, β=1, and S=2 are set.
 I+2I+I=2 ・・・(4A)
 また、カラーフィルター20の一の辺に沿って、青色光の輝度Iが連続的または段階的に変化し、当該一の辺と直交する他の辺に沿って、赤色光の輝度Iが連続的または段階的に変化するように、検査光に色分布が付与されている。
I R +2I G +I B =2...(4A)
Further, along one side of the color filter 20, the brightness IB of the blue light changes continuously or stepwise, and along the other side orthogonal to the one side, the brightness IR of the red light changes. A color distribution is given to the inspection light so that it changes continuously or stepwise.
 図11に示す例では、Y方向に沿って、青色光の輝度Iが連続的または段階的に増加し、X方向に沿って、赤色光の輝度Iが連続的または段階的に増加している。具体的には、図12A及び図12Bにそれぞれ示すように、青色光及び赤色光の輝度分布がそれぞれ設定される。 In the example shown in FIG. 11, the brightness IB of blue light increases continuously or stepwise along the Y direction, and the brightness IR of red light increases continuously or stepwise along the X direction. ing. Specifically, as shown in FIGS. 12A and 12B, the brightness distributions of blue light and red light are respectively set.
 なお、緑色光の輝度Iは、式(2A)を満たすように、面光源10の面内で変化させる。例えば、カラーフィルター20の中心では、I:I:I=0.5:0.5:0.5となり、破線で示す仮想線の先端(矢印部分)では、I:I:I=1:0:1となり、基端部分では、I:I:I=0:1:0となるように、緑色光の輝度Iを設定する。 Note that the brightness IG of the green light is changed within the plane of the surface light source 10 so as to satisfy equation (2A). For example, at the center of the color filter 20, I R :I G :I B =0.5:0.5:0.5, and at the tip of the virtual line shown by the broken line (arrow portion), I R :I G : The brightness I G of the green light is set so that I B =1:0:1, and I R :I G :I B =0:1:0 at the proximal end.
 つまり、本変形例に示すカラーフィルター20では、赤色光と緑色光と青色光のうち、一つの色を第1の色として選択する。赤色光と緑色光と青色光のそれぞれの輝度のうち、第1の色の輝度は、カラーフィルター20の一の辺に沿って連続的または段階的に変化する。 That is, in the color filter 20 shown in this modification, one color is selected as the first color from red light, green light, and blue light. Among the respective brightnesses of the red light, green light, and blue light, the brightness of the first color changes continuously or stepwise along one side of the color filter 20.
 赤色光と緑色光と青色光のうち、第1の色を除く第2の色の輝度は、一の辺と交差する他の辺に沿って連続的または段階的に変化する。 Among the red light, green light, and blue light, the brightness of the second color excluding the first color changes continuously or stepwise along the other side that intersects one side.
 本変形例によれば、カラーフィルター20の形状が、実施形態2と異なり四角形であっても、実施形態2に示す構成が奏するのと同様の効果を奏することができる。すなわち、物品200の表面が複数の方向を有する場合や、異なる材質の物品200に対しても、カメラ80で撮像した画像のカラーバランスを適切に調整できる。また、物品200の表面の方向、具体的には表面の傾斜角を定量的にかつ精度良く算出することが可能となる。 According to this modification, even if the color filter 20 has a rectangular shape unlike the second embodiment, the same effects as the configuration shown in the second embodiment can be achieved. That is, even when the surface of the article 200 has a plurality of directions or the article 200 is made of different materials, the color balance of the image captured by the camera 80 can be appropriately adjusted. Further, it becomes possible to quantitatively and accurately calculate the direction of the surface of the article 200, specifically, the angle of inclination of the surface.
 図13は、実施形態3に係る検査システムの概略構成図である。図14は、物品が支持台に正しく設置されていない場合の物品の画像の模式図である。図13に示す検査システム100では、支持台70に対して物品200が正しく設置されていない点のみ、図1Aに示す検査システム100と異なる。 FIG. 13 is a schematic configuration diagram of an inspection system according to the third embodiment. FIG. 14 is a schematic diagram of an image of an article when the article is not correctly installed on the support stand. The inspection system 100 shown in FIG. 13 differs from the inspection system 100 shown in FIG. 1A only in that the article 200 is not correctly installed on the support stand 70.
 物品200が支持台70に正しく設置されていない場合、算出された傾斜角にオフセットが加わり、正しい値を得られないことがある。また、物品200が有している傾きをオフセットとして除去したい場合もある。 If the article 200 is not correctly installed on the support stand 70, an offset is added to the calculated inclination angle, and the correct value may not be obtained. Further, there may be cases where it is desired to remove the inclination of the article 200 as an offset.
 このような場合、以下に示す手順でオフセットを除去することで、傾斜角を正確に算出することができる。 In such a case, the inclination angle can be calculated accurately by removing the offset using the procedure shown below.
 図13に示すように、支持台70に対して物品200が傾いて設置されていると、物品200の表面が平坦面または多少の凹凸がある程度の平坦度であっても、物品200の画像は、支持台70に対する傾きに応じた色に着色される。図13に示す設置状態で物品200の画像を取得した場合、図14に示す物品200の画像は青みを帯びている。 As shown in FIG. 13, when the article 200 is installed at an angle with respect to the support stand 70, even if the surface of the article 200 is flat or has a certain degree of flatness with some unevenness, the image of the article 200 is , is colored in a color corresponding to the inclination with respect to the support stand 70. When an image of the article 200 is acquired in the installed state shown in FIG. 13, the image of the article 200 shown in FIG. 14 is bluish.
 ここで、物品200の表面で基準となる箇所(以下、基準面と言う。)を設定する。図14に示す例では、十字マーク210を含む面を基準面とする。この基準面は、平坦であることが予め分かっている箇所であることが好ましい。また、物品200の画像から基準面を抽出するために、図14に示すように、基準面が特徴的な形状を含んでいることが好ましい。なお、特徴的な形状が十字マーク210に限られないことは言うまでもない。 Here, a point on the surface of the article 200 that will serve as a reference (hereinafter referred to as a reference surface) is set. In the example shown in FIG. 14, the plane including the cross mark 210 is set as the reference plane. This reference surface is preferably a location that is known in advance to be flat. Furthermore, in order to extract the reference plane from the image of the article 200, it is preferable that the reference plane includes a characteristic shape, as shown in FIG. It goes without saying that the characteristic shape is not limited to the cross mark 210.
 次に、基準面の画像、具体的には、当該画像の色やその輝度の強弱等に基づいてオフセットを算出する。 Next, an offset is calculated based on the image of the reference plane, specifically, the color of the image, the intensity of its brightness, etc.
 さらに、物品200の画像に基づいて算出された、物品200の各部における傾斜角から、先に求めたオフセットを一様に差し引く。 Further, the previously determined offset is uniformly subtracted from the inclination angle of each part of the article 200, which is calculated based on the image of the article 200.
 このようにすることで、算出された傾斜角に重畳されたオフセットを適切に除去して、物品200の表面の傾斜角を正確に求めることができる。なお、図13、14を用いて説明したオフセットは、支持台70に対する物品200の傾きに相当する。これに物品200自体が有している傾きを含めて、本願明細書におけるオフセットを検査システム100に対する物品200の傾きと定義する。なお、物品200の表面が複数の方向を有する場合、物品200自体が有している傾きには、物品200内の任意の場所の傾きや、物品200内の複数個所傾きの平均等が含まれる。 By doing so, the offset superimposed on the calculated inclination angle can be appropriately removed, and the inclination angle of the surface of the article 200 can be accurately determined. Note that the offset described using FIGS. 13 and 14 corresponds to the inclination of the article 200 with respect to the support base 70. Including the inclination of the article 200 itself, the offset in this specification is defined as the inclination of the article 200 with respect to the inspection system 100. Note that when the surface of the article 200 has a plurality of directions, the inclination of the article 200 itself includes the inclination of any arbitrary location within the article 200, the average of the inclinations of multiple locations within the article 200, etc. .
 以上説明したように、本実施形態に係る物品200の表面の傾斜角補正方法は、以下の第1~第4ステップを備えている。 As explained above, the method for correcting the inclination angle of the surface of the article 200 according to the present embodiment includes the following first to fourth steps.
 第1ステップでは、物品200に検査光を照射して、カメラ80で物品200の画像を取得する。 In the first step, the inspection light is irradiated onto the article 200, and an image of the article 200 is acquired by the camera 80.
 第2ステップでは、物品200の表面において、基準面を設定する。 In the second step, a reference plane is set on the surface of the article 200.
 第3ステップでは、基準面の画像に基づいて、オフセットを算出する。このオフセットは、検査システム100に対する物品200の傾きに相当する。 In the third step, the offset is calculated based on the image of the reference plane. This offset corresponds to the tilt of article 200 with respect to inspection system 100.
 第4ステップでは、第1ステップで得られた物品200の表面の各部における傾斜角から第3ステップで算出されたオフセットを差し引くことで、前述の傾斜角を補正する。 In the fourth step, the above-mentioned inclination angle is corrected by subtracting the offset calculated in the third step from the inclination angle at each part of the surface of the article 200 obtained in the first step.
 実際の物品200の外観検査では、搬送系の調整が少しずれていたり、搬送・設置時に物品200に振動が加わったりする等の理由により、支持台70に対して物品200が正しく設置されない場合がある。 In the actual appearance inspection of the article 200, the article 200 may not be correctly installed on the support stand 70 due to reasons such as the adjustment of the transportation system being slightly off, or vibrations being applied to the article 200 during transportation and installation. be.
 本実施形態によれば、支持台70に対して物品200が正しく設置されていない場合であっても、その影響を除去して、物品200の表面の方向を正しく推定し、傾斜角を正確に算出することができる。また、物品200自体が有している傾きを除去して、物品200の表面を観察しやすくすることもできる。例えば、物品200の表面が複数の方向を有する場合、物品200内の所望の場所の傾きを除去することで、物品200の外観を検査しやすくすることもできる。また、物品200自体が有している傾きとして、物品200内の複数個所傾きの平均値を選択し、物品200の表面の各部における傾斜角から当該平均値を差し引いてもよい。 According to the present embodiment, even if the article 200 is not correctly installed on the support stand 70, the influence of this is removed, the direction of the surface of the article 200 is correctly estimated, and the inclination angle is accurately determined. It can be calculated. Furthermore, the surface of the article 200 can be easily observed by removing the inclination that the article 200 itself has. For example, when the surface of the article 200 has multiple directions, the appearance of the article 200 can be easily inspected by removing inclinations at desired locations within the article 200. Alternatively, as the inclination of the article 200 itself, the average value of the inclinations at multiple locations within the article 200 may be selected, and the average value may be subtracted from the inclination angle at each part of the surface of the article 200.
 なお、物品200の表面の傾斜角を補正する方法は、特にこれに限定されない。例えば、検査光を単色光にして物品200に照射し、その画像を取得する。さらに、検査光の色分布を、例えば、図9に示すパターンに変更して物品200に照射し、その画像を取得する。単色の検査光を照射して取得した前者の画像を用いて、後者の画像における色校正を行う。色校正後の画像に基づいて、物品200の表面の傾斜角を算出する。なお、以降の説明において、単色光である検査光を第1検査光と呼び、色分布が付与された検査光を第2検査光と呼ぶことがある。第2検査光には、単色光と同じ波長帯の光と当該単色光とは異なる波長帯の光とが少なくとも含まれる。このようにすることで、物品200の表面の傾斜角を正確に算出することができる。 Note that the method for correcting the inclination angle of the surface of the article 200 is not particularly limited to this. For example, the inspection light is made monochromatic and irradiated onto the article 200, and an image thereof is acquired. Furthermore, the color distribution of the inspection light is changed to, for example, the pattern shown in FIG. 9, and the article 200 is irradiated to obtain an image thereof. Color correction is performed on the latter image using the former image obtained by irradiating monochromatic inspection light. The inclination angle of the surface of the article 200 is calculated based on the image after color correction. In the following description, the test light that is monochromatic light may be referred to as a first test light, and the test light provided with a color distribution may be referred to as a second test light. The second inspection light includes at least light in the same wavelength band as the monochromatic light and light in a different wavelength band from the monochromatic light. By doing so, the inclination angle of the surface of the article 200 can be accurately calculated.
 なお、検査光を色校正するにあたって、赤色光、緑色光及び青色光の3種類の単色の検査光を照射して得られた画像をそれぞれ用いるのが好ましい。 Note that in color-calibrating the inspection light, it is preferable to use images obtained by irradiating three types of monochromatic inspection light: red light, green light, and blue light.
 (その他の実施形態)
 実施形態2に示すカラーフィルター20を用いた場合でも、基準画像と撮像画像との比較に基づいて、物品200の表面の方向を推定し、傾斜角を算出することは実施形態1に示したのと同様である。よって、本願明細書に示す検査システム100は、複数のフィルターを透過した検査光の成分に応じて、カメラ80が撮像した物品200の画像に対して、物品200の表面の角度または方向あるいはその両方を定量的に算出する。言い換えると、検査システム100は、複数のフィルターを透過した検査光の成分に応じて、カメラ80が撮像した物品200の画像に対して、物品200の表面の角度及び方向の少なくとも一方を定量的に算出する。
(Other embodiments)
Even when the color filter 20 shown in the second embodiment is used, estimating the direction of the surface of the article 200 and calculating the inclination angle based on the comparison between the reference image and the captured image is different from the one shown in the first embodiment. It is similar to Therefore, the inspection system 100 shown in this specification determines the angle and/or direction of the surface of the article 200 with respect to the image of the article 200 captured by the camera 80, depending on the components of the inspection light that has passed through the plurality of filters. Calculate quantitatively. In other words, the inspection system 100 quantitatively determines at least one of the angle and direction of the surface of the article 200 with respect to the image of the article 200 captured by the camera 80 according to the components of the inspection light that has passed through the plurality of filters. calculate.
 本開示の検査システムは、物品の表面の方向推定が可能であるとともに撮像された画像のカラーバランスの調整が可能なため、物品の外観検査に用いる上で有用である。 The inspection system of the present disclosure is capable of estimating the direction of the surface of the article and adjusting the color balance of the captured image, so it is useful for use in inspecting the appearance of the article.
10  面光源
20,21 カラーフィルター
20a フィルター
20R 赤色フィルター
20G 緑色フィルター
20B 青色フィルター
30  レンズ
40  筐体
50  照明装置
60  ハーフミラー
70  支持台
80  カメラ(撮像装置)
100 検査システム
200,200a 物品
210 十字マーク
10 Surface light sources 20, 21 Color filter 20a Filter 20R Red filter 20G Green filter 20B Blue filter 30 Lens 40 Housing 50 Illumination device 60 Half mirror 70 Support stand 80 Camera (imaging device)
100 Inspection system 200, 200a Article 210 Cross mark

Claims (11)

  1.  物品に検査光を照射する照明装置と、前記検査光が照射された前記物品を撮像する撮像装置と、を少なくとも備えた検査システムであって、
     前記照明装置は、
     前記検査光を出射する光源と、
     前記検査光の光路において前記光源と前記物品との間に配置されており、互いに異なる波長幅の光を透過させる複数のフィルターを含むカラーフィルターとを備え、
     当該検査システムは、前記撮像装置が撮像した前記物品の画像と基準画像とに基づいて、前記物品の表面の傾きを検出することを特徴とする検査システム。
    An inspection system comprising at least an illumination device that irradiates an article with inspection light, and an imaging device that images the article irradiated with the inspection light,
    The lighting device includes:
    a light source that emits the inspection light;
    a color filter that is disposed between the light source and the article in the optical path of the inspection light and includes a plurality of filters that transmit light of mutually different wavelength widths;
    The inspection system is characterized in that the inclination of the surface of the article is detected based on an image of the article captured by the imaging device and a reference image.
  2.  請求項1に記載の検査システムにおいて、
     前記基準画像は、予め異常が無いと判定された前記物品の撮像画像であり、
     前記検査システムは、前記撮像装置が新たに撮像した前記物品の画像と前記基準画像との差分に基づいて、前記物品の表面の傾き、または前記物品の表面における異常の有無を検出することを特徴とする検査システム。
    The inspection system according to claim 1,
    The reference image is a captured image of the article that has been determined in advance to have no abnormality,
    The inspection system is characterized in that the inspection system detects the inclination of the surface of the article or the presence or absence of an abnormality on the surface of the article based on the difference between the image of the article newly captured by the imaging device and the reference image. inspection system.
  3.  請求項1に記載の検査システムにおいて、
     前記複数のフィルターは、隣接する前記フィルター同士が、互いに所定の間隔を空けて、前記カラーフィルターに配置されていることを特徴とする検査システム。
    The inspection system according to claim 1,
    The inspection system is characterized in that the plurality of filters are arranged on the color filter such that adjacent filters are spaced apart from each other by a predetermined distance.
  4.  請求項1に記載の検査システムにおいて、
     前記複数のフィルターは、前記カラーフィルターにアレイ状に配置されており、所定範囲の領域ごとに区分した場合、色分布が徐々に変化することを特徴とする検査システム。
    The inspection system according to claim 1,
    The inspection system is characterized in that the plurality of filters are arranged in an array on the color filter, and when divided into regions within a predetermined range, the color distribution gradually changes.
  5.  請求項1に記載の検査システムにおいて、
     前記複数のフィルターを透過した前記検査光の成分に応じて、前記撮像装置が撮像した前記物品の画像に対して補正を行うことを特徴とする検査システム。
    The inspection system according to claim 1,
    An inspection system characterized in that an image of the article captured by the imaging device is corrected according to components of the inspection light that has passed through the plurality of filters.
  6.  請求項3に記載の検査システムにおいて、
     前記カラーフィルターは、赤色光を透過する赤色フィルターと、緑色光を透過する緑色フィルターと、青色光を透過する青色フィルターとが、平面的に配置されて構成され、
     前記検査光の光照射面内の任意の位置において、前記赤色光と前記緑色光と前記青色光のそれぞれの輝度をI、I、Iとするとき、
     I+αI+βI=S ・・・(4)
    に示す関係を満たすことを特徴とする検査システム。
     ここで、α、βは、それぞれゼロよりも大きい係数であり、Sは定数である。
    The inspection system according to claim 3,
    The color filter includes a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light that are arranged in a plane,
    When the respective brightnesses of the red light, the green light, and the blue light are I R , I G , and I B at any position within the light irradiation surface of the inspection light,
    I R +αI G +βI B =S...(4)
    An inspection system characterized by satisfying the relationship shown in .
    Here, α and β are each coefficients larger than zero, and S is a constant.
  7.  請求項6に記載の検査システムにおいて、
     前記カラーフィルターが平面視で円形である場合、
     前記検査光の彩度は、前記カラーフィルターの外周から中心に向かうにつれて彩度が低下するように変化し、
     前記赤色光と前記緑色光と前記青色光のそれぞれの輝度は、前記カラーフィルターの外周に沿った回転角度に応じて変化していることを特徴とする検査システム。
    The inspection system according to claim 6,
    When the color filter is circular in plan view,
    The chroma of the test light changes such that the chroma decreases from the outer periphery toward the center of the color filter,
    An inspection system characterized in that the brightness of each of the red light, the green light, and the blue light changes according to a rotation angle along the outer periphery of the color filter.
  8.  請求項7に記載の検査システムにおいて、
     前記赤色光と前記緑色光と前記青色光のそれぞれの輝度の和をSとし、
     前記カラーフィルターの中心からの規格化された距離をrとし、
     前記距離rにおける前記検査光の規格化された振幅をmとするとき、
     m=S×((1-r)/(3-2r)) ・・・(11)
    に示す関係を満たすことを特徴とする検査システム。
     ここで、S≧3m、0≦r≦1、0≦m≦1である。
    The inspection system according to claim 7,
    Let S be the sum of the respective luminances of the red light, the green light, and the blue light,
    Let r be the normalized distance from the center of the color filter,
    When the normalized amplitude of the inspection light at the distance r is defined as m,
    m=S×((1-r)/(3-2r))...(11)
    An inspection system characterized by satisfying the relationship shown in .
    Here, S≧3m, 0≦r≦1, and 0≦m≦1.
  9.  請求項6に記載の検査システムにおいて、
     前記カラーフィルターが平面視で四角形である場合、
     前記赤色光と前記緑色光と前記青色光のそれぞれの輝度のうち、第1の色の輝度は、前記カラーフィルターの一の辺に沿って連続的または段階的に変化し、
     前記赤色光と前記緑色光と前記青色光のうち、前記第1の色を除く第2の色の輝度は、前記一の辺と交差する他の辺に沿って連続的または段階的に変化することを特徴とする検査システム。
    The inspection system according to claim 6,
    When the color filter is rectangular in plan view,
    Among the respective brightnesses of the red light, the green light, and the blue light, the brightness of the first color changes continuously or stepwise along one side of the color filter,
    Among the red light, the green light, and the blue light, the brightness of a second color other than the first color changes continuously or stepwise along another side that intersects the one side. An inspection system characterized by:
  10.  請求項1に記載の検査システムにおいて、
     前記複数のフィルターを透過した前記検査光の成分に応じて、前記撮像装置が撮像した前記物品の画像に対して前記物品の表面の角度及び方向の少なくとも一方を定量的に算出することを特徴とする検査システム。
    The inspection system according to claim 1,
    At least one of an angle and a direction of a surface of the article is quantitatively calculated with respect to an image of the article captured by the imaging device, according to components of the inspection light transmitted through the plurality of filters. inspection system.
  11.  請求項1に記載の検査システムを用いた物品の表面の傾斜角補正方法であって、
     前記物品に前記検査光を照射して、前記撮像装置で前記物品の画像を取得する第1ステップと、
     前記物品の表面において、基準面を設定する第2ステップと、
     前記基準面の画像に基づいて、オフセットを算出する第3ステップと、
     前記第1ステップで得られた前記物品の表面の各部における傾斜角から前記第3ステップで算出された前記オフセットを差し引くことで、前記傾斜角を補正する第4ステップと、を少なくとも備え、
     前記オフセットは、前記検査システムに対する前記物品の傾きに相当することを特徴とする物品の表面の傾斜角補正方法。
    A method for correcting the tilt angle of the surface of an article using the inspection system according to claim 1, comprising:
    a first step of irradiating the article with the inspection light and acquiring an image of the article with the imaging device;
    a second step of setting a reference plane on the surface of the article;
    a third step of calculating an offset based on the image of the reference plane;
    At least a fourth step of correcting the inclination angle by subtracting the offset calculated in the third step from the inclination angle at each part of the surface of the article obtained in the first step,
    A method for correcting an inclination angle of a surface of an article, wherein the offset corresponds to an inclination of the article with respect to the inspection system.
PCT/JP2023/023635 2022-07-13 2023-06-26 Inspection system, and method for correcting angle of inclination of object surface using same WO2024014273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112423 2022-07-13
JP2022112423 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014273A1 true WO2024014273A1 (en) 2024-01-18

Family

ID=89536494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023635 WO2024014273A1 (en) 2022-07-13 2023-06-26 Inspection system, and method for correcting angle of inclination of object surface using same

Country Status (2)

Country Link
TW (1) TW202407332A (en)
WO (1) WO2024014273A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058091A (en) * 2010-09-09 2012-03-22 Ipro Llc Surface inspection device
JP6451821B1 (en) * 2017-12-05 2019-01-16 マシンビジョンライティング株式会社 Inspection system and inspection method
JP2021196256A (en) * 2020-06-14 2021-12-27 マシンビジョンライティング株式会社 Inspection measurement system and inspection measurement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058091A (en) * 2010-09-09 2012-03-22 Ipro Llc Surface inspection device
JP6451821B1 (en) * 2017-12-05 2019-01-16 マシンビジョンライティング株式会社 Inspection system and inspection method
JP2021196256A (en) * 2020-06-14 2021-12-27 マシンビジョンライティング株式会社 Inspection measurement system and inspection measurement method

Also Published As

Publication number Publication date
TW202407332A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP4719284B2 (en) Surface inspection device
US11195045B2 (en) Method for regulating position of object
TWI426261B (en) End inspection device
TWI819202B (en) Inspection equipment and inspection methods
US11112368B2 (en) System and method for evaluating and determining color in gemstones
US7224446B2 (en) Apparatus, method, and computer program for wafer inspection
WO2021161986A1 (en) Film thickness measuring device and film thickness measuring method
JP2004219108A (en) Method and apparatus for inspecting irregularities in film thickness of colored film
TWI545314B (en) Method and method for checking unevenness of film thickness
WO2020195137A1 (en) Inspection device and inspection method
WO2024014273A1 (en) Inspection system, and method for correcting angle of inclination of object surface using same
JP4248364B2 (en) Film thickness inspection system for three primary color layers
JP2001041720A (en) Defect detecting method and device
JP2008026147A (en) Inspection device for color filter, and inspection method for the color filter
JP7136064B2 (en) Apparatus for inspecting surface of object to be inspected and method for inspecting surface of object to be inspected
JP4743395B2 (en) Pitch unevenness inspection method and pitch unevenness inspection apparatus
JP2009276108A (en) Image sensor surface inspection method
JP2013044635A (en) Defect detecting device
JP2023019494A (en) inspection system
JP3676987B2 (en) Appearance inspection apparatus and appearance inspection method
JP2012150079A (en) Defect detection device for transparent member and defect detection method
KR20240060654A (en) Inspection systems and methods for defect analysis
JP2005221458A (en) Method and device for inspecting film thickness distribution
JP2024533869A (en) Inspection systems and failure analysis methods
JP2018096892A (en) Inclination detection method, optical axis adjustment method, optical axis adjustment method for measurement device, optical axis adjustment method for manufacturing apparatus, optical axis adjustment method for exposure device, and optical axis adjustment method for inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839447

Country of ref document: EP

Kind code of ref document: A1