JPH09234811A - Film-like or sheet-like deoxidizing multilayer body and its manufacture - Google Patents

Film-like or sheet-like deoxidizing multilayer body and its manufacture

Info

Publication number
JPH09234811A
JPH09234811A JP34778696A JP34778696A JPH09234811A JP H09234811 A JPH09234811 A JP H09234811A JP 34778696 A JP34778696 A JP 34778696A JP 34778696 A JP34778696 A JP 34778696A JP H09234811 A JPH09234811 A JP H09234811A
Authority
JP
Japan
Prior art keywords
layer
deoxidizing
oxygen
resin
deoxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34778696A
Other languages
Japanese (ja)
Inventor
Masukazu Hirata
益一 平田
Yoshinori Mabuchi
義則 馬渕
Hiroshi Hasegawa
浩 長谷川
Chiharu Nishizawa
千春 西沢
Hideyuki Takahashi
秀之 高橋
Haruaki Eto
晴明 江藤
Noriyuki Kimura
紀之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP34778696A priority Critical patent/JPH09234811A/en
Publication of JPH09234811A publication Critical patent/JPH09234811A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an excellent deoxidizing speed by providing a barrier film obtained by combining and layering a resin layer of a non-porous film and a protective layer formed of a finely porous resin composition having a granular water solution retarding filler dispersed therein, on an absorbing face of a finely porous deoxidizing resin layer having excellent deoxidizing performance. SOLUTION: A deoxidizing multilayer body comprises at least a deoxidizing layer 3 formed of a continuously and finely porous resin composition having a deoxidizing component dispersed therein, an oxygen permeating layer 1 formed of a thermoplastic resin of non-porous thin film, and an oxygen permeating layer 2 formed of a continuously and finely porous resin composition having a granular water solution retarding filler dispersed therein. Also, at least on one face of the deoxidizing layer 3, one or more of layers of the oxygen permeating layers 1 and 2 are combined and layered so as to form a barrier layer, wherein adjacent layers are fused with each other so as to form an oxygen absorbing face. When the oxygen permeating layers are to be provided on both faces, a barrier layer 4 is layered on other face of the deoxidizing layer 3 having the oxygen permeating layer on one face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は酸素吸収機能を有す
るフィルム状又はシート状の脱酸素多層体とその製造方
法に関する。詳しくは、基材の樹脂積層体を延伸するこ
とにより同時に形成された微多孔質の脱酸素層の吸収面
に無孔薄膜の酸素透過性層と微多孔質の酸素透過性層と
を備え、脱酸素性能に優れ、かつ耐水・耐油性を備えた
フィルム状又はシート状の脱酸素多層体とその製造方法
に関する。本発明の脱酸素多層体は、食品や医薬品、金
属製品などに代表される酸素の影響を受けて変質し易い
各種製品の変質を防止する目的でこれらを収納するため
の容器および包装体として使用される。
TECHNICAL FIELD The present invention relates to a film-like or sheet-like deoxidizing multilayer body having an oxygen absorbing function and a method for producing the same. Specifically, an oxygen-permeable layer of a non-porous thin film and a microporous oxygen-permeable layer are provided on the absorption surface of the microporous deoxygenation layer formed at the same time by stretching the resin laminate of the base material, The present invention relates to a film-like or sheet-like deoxidizing multilayer body having excellent deoxidizing performance and having water resistance and oil resistance, and a method for producing the same. The deoxidized multilayer body of the present invention is used as a container and a package for accommodating various products which are easily deteriorated under the influence of oxygen represented by food, medicine, metal products, etc. Is done.

【0002】[0002]

【従来の技術】酸化、腐敗、かび・細菌の繁殖などによ
る食品や医薬品をはじめ、金属製品などの変質を防止す
る目的で、これらを収納した包装容器や包装袋内の酸素
を除去するために脱酸素剤が従来より使用されている。
開発以来現在も多く使用されている脱酸素剤は粒状また
は粉状の脱酸素成分を小袋に詰めた形態のものである。
これに対して、より取扱いが容易で適用範囲が広く、誤
食などの問題のない脱酸素体として、フィルム状やシー
ト状の脱酸素体が知られている。このフィルム又はシー
ト状の脱酸素体(以下、単に「脱酸素体」という。)を
容器や袋に用いることにより、包装容器や包装袋自体に
脱酸素性能を持たせることができる。
2. Description of the Related Art For the purpose of preventing deterioration of foods and medicines, metal products, etc. due to oxidation, decay, propagation of mold and bacteria, etc., to remove oxygen in packaging containers and packaging bags containing these products. Oxygen absorbers have been used in the past.
Oxygen absorbers that have been frequently used since their development are in the form of granular or powdered oxygen-absorbing components packed in small bags.
On the other hand, a film-shaped or sheet-shaped oxygen absorber is known as an oxygen absorber that is easier to handle, has a wider application range, and has no problems such as erroneous eating. By using this film or sheet oxygen absorber (hereinafter, simply referred to as “oxygen absorber”) for a container or a bag, the packaging container or the packaging bag itself can have oxygen absorbing performance.

【0003】このような脱酸素体には、熱可塑性樹脂を
マトリックス成分として粒状または粉状の脱酸素成分を
分散、固定化した脱酸素樹脂組成物が用いられ、また脱
酸素成分には公知の脱酸素剤、特に脱酸素性能に優れた
鉄粉系脱酸素剤が利用されることが多いが、脱酸素体自
体がが食品などの被包装物に直接接触することは好まし
くなく、脱酸素体となる脱酸素樹脂組成物からなる脱酸
素層を設け、これを通気性の遮蔽層で覆った脱酸素多層
体とすることが知られている。一般に脱酸素多層体は、
一面を酸素の吸収面として通気性材料で覆い、他面をガ
スバリア材料で覆った多層構成がとられる。この吸収面
の遮蔽層に多孔性の通気材料を用いた場合、多水分系の
被包装物に対して脱酸素成分の溶出による汚染がしばし
ば経験され、遮蔽層には脱酸素成分の溶出の心配がない
ものが望ましく、この点では樹脂層が好ましく、また脱
酸素層を被覆する層が樹脂層で構成された積層体は、製
造や成形加工が容易で好都合でもある。
For such a deoxidized body, a deoxidized resin composition in which a granular or powdered deoxidized component is dispersed and fixed using a thermoplastic resin as a matrix component is used, and a known deoxidized component is known. An oxygen scavenger, especially an iron powder-based oxygen scavenger with excellent oxygen scavenging performance, is often used, but it is not preferable that the oxygen scavenger itself is in direct contact with an object to be packaged such as food, and the oxygen scavenger It is known that a deoxidizing layer made of a deoxidizing resin composition is provided and the deoxidizing multilayer body is covered with a breathable shielding layer. Generally, the deoxidized multilayer body is
A multi-layer structure may be used in which one surface is covered with a breathable material as an oxygen absorbing surface and the other surface is covered with a gas barrier material. When a porous ventilation material is used for the shielding layer of the absorbing surface, contamination of the moisture-containing packaged article by the elution of the deoxidized component is often experienced, and the elution of the deoxidized component is likely to occur in the shielding layer. In this respect, a resin layer is preferable, and a laminate in which a layer covering the deoxidation layer is formed of a resin layer is easy and convenient to manufacture and mold.

【0004】例えば、特公昭62−1824、特公昭6
3−2648等には脱酸素層の両面を樹脂層で覆った多
層体が知られていた。しかし、従来の脱酸素層を樹脂層
で覆った脱酸素多層体の脱酸素速度は著しく低いものに
留まっていた。これは、脱酸素成分が配合される樹脂と
して用いられたポリオレフィン系樹脂の酸素透過性が比
較的低いために、脱酸素樹脂層自体の脱酸素性能が高い
ものにならないことと、同様に脱酸素層を吸収面を被覆
する樹脂の遮蔽層の酸素透過度が低いこととに因る。換
言すれば、脱酸素層の脱酸素成分がマトリックス成分の
樹脂と遮蔽層の樹脂に隔てられているためである。
For example, Japanese Patent Publication No. 62-1824 and Japanese Patent Publication No. 6
For example, a multilayer body in which both surfaces of a deoxygenation layer are covered with a resin layer has been known in 3-2-2648 and the like. However, the deoxidation rate of a conventional deoxidized multilayer in which a deoxidized layer is covered with a resin layer has been extremely low. This is because the oxygen permeability of the polyolefin resin used as the resin to which the deoxidizing component is blended is relatively low, so that the deoxidizing performance of the deoxidizing resin layer itself does not become high, and similarly the deoxidizing property is This is due to the low oxygen permeability of the shielding layer of the resin that coats the layer with the absorbing surface. In other words, this is because the deoxidizing component of the deoxidizing layer is separated between the resin of the matrix component and the resin of the shielding layer.

【0005】また特開平2−72851には、脱酸素樹
脂層自体の脱酸素性能の向上を図る技術として、熱可塑
性樹脂に鉄粉主剤の脱酸素成分を混練した樹脂組成物の
シートを延伸し微多孔質化することによって脱酸素層を
形成する方法が示されている。さらに同じ特開平2−7
2851及び特開平5−162251には、脱酸素成分
を含有する樹脂組成物の層に熱可塑性樹脂に難水溶性フ
ィラーを配合した樹脂組成物の層を積層した多層体を延
伸して、この二つの層を同時に微多孔質化して脱酸素層
と隔離層を形成する技術が記載されている。
Japanese Patent Application Laid-Open No. 2-72851 discloses a technique for improving the deoxidizing performance of a deoxidized resin layer itself by stretching a sheet of a resin composition obtained by kneading a deoxidizing component of a main component of iron powder into a thermoplastic resin. A method for forming a deoxygenated layer by making it microporous is described. Japanese Patent Laid-Open No. 2-7
No. 2851 and JP-A-5-162251 disclose a multi-layered body in which a layer of a resin composition containing a deoxidizing component and a layer of a resin composition in which a poorly water-soluble filler is blended with a thermoplastic resin are stretched. A technique is described in which two layers are simultaneously made microporous to form a deoxygenation layer and an isolation layer.

【0006】この場合、脱酸素成分及びフィラーのごと
き粒状異物をそれぞれ含む樹脂組成物からなる二つの層
は、延伸することにより、粒状異物と樹脂との界面が剥
離して多くの細孔ができ、できた細孔が相互に結ばれて
全体が連続微多孔質体となる。これによって樹脂部分の
酸素透過性が著しく改善されるために、二つの層は、そ
れぞれ、脱酸素速度及び通気性が著しく向上する。また
この微多孔質体は、多孔体ではあるが、非極性または低
極性の高分子を用いられているために、その撥水性によ
り水が通り難いものとなっている。このように、連続微
多孔質の脱酸素層が連続微多孔質の遮蔽層で覆われた形
態の脱酸素多層体は、脱酸素速度が早く、被包装物が多
水分系のものでも短期間なら脱酸素成分の溶出汚染の問
題はなく、優れた脱酸素多層体であると考えられる。
In this case, the two layers made of the resin composition each containing a particulate debris such as a deoxygenating component and a filler are stretched, whereby the interface between the particulate debris and the resin is peeled off to form many pores. The formed pores are mutually connected to form a continuous microporous body as a whole. This significantly improves the oxygen permeability of the resin portion, so that the two layers each have a significantly improved deoxygenation rate and air permeability. Although the microporous body is a porous body, non-polar or low-polarity polymers are used, so that water repellency makes it difficult for water to pass through. As described above, the deoxidized multilayer body in which the continuous microporous oxygen scavenging layer is covered with the continuous microporous shielding layer has a high deoxygenation rate, and can be used for a short period even when the packaged object has a high moisture content. If so, there is no problem of elution and contamination of the deoxygenated component, and it is considered that this is an excellent deoxygenated multilayer.

【0007】しかし、食品などの被包装物中に、相対的
に極性の低い液体(例えば、水単独でなく各種の油脂や
アルコールなどが加わる場合)が存在する場合には、連
続微多孔質部分の細孔中に液体が浸透し、その液相を経
路として脱酸素成分が脱酸素多層体の外部に溶出して、
被包装物を汚染するという問題があった。また、水の場
合でも長期間になると、細孔中の気体が散逸(液体中に
溶解など)した場合には水が浸透し、同様に脱酸素成分
が溶出することがある。これを防ぐために隔離層に撥油
性を与える目的で、例えば、フッ素系処理剤などで撥油
処理をすることも可能であるが、新たな汚染の危険性が
生じるために、処理剤はできるだけ使用しないことが望
ましい。
However, when a relatively low-polarity liquid (for example, when various oils and fats or alcohols are added in addition to water alone) is present in a package such as food, the continuous microporous portion The liquid penetrates into the pores of the deoxygenation, and the deoxygenated component elutes out of the deoxygenated multilayer body through the liquid phase,
There is a problem that the packaged material is contaminated. Further, even in the case of water, if the gas in the pores is dissipated (dissolved in a liquid or the like) over a long period of time, the water penetrates and the deoxygenated component may be eluted similarly. To prevent this, it is possible to apply oil-repellent treatment with a fluorine-based treatment agent, for example, in order to impart oil repellency to the separation layer.However, the treatment agent should be used as much as possible due to the risk of new contamination. Desirably not.

【0008】また脱酸素成分の溶出防止という観点から
は、脱酸素層の遮蔽層は無孔の樹脂層であることが好ま
しいが、この樹脂層が厚くなると酸素の透過性が十分で
ないことになる。このため、遮蔽層として、厚みの薄い
プラスチック層を遮蔽層として用いた例は多く知られて
いる。例えば、特開平5−318675には、延伸して
微多孔質化した脱酸素樹脂層に樹脂の皮膜を形成した酸
素吸収多層シートが提案されている。しかしながら、脱
酸素樹脂層に直接無孔の薄い皮膜を形成した酸素吸収シ
ートは、製造中や取扱い中に脱酸素樹脂中の脱酸素成
分、特に鉄の粉や粒子がシート表面の遮蔽層の厚みの薄
い皮膜に突出するという強度的な問題があり、依然とし
て脱酸素成分による汚染の恐れが存在する。勢い遮蔽層
の皮膜の厚さを大きくすると通気性を損なうことにな
り、結果として脱酸素速度の低いものとならざるを得な
かった。
Further, from the viewpoint of preventing the elution of deoxidized components, the shielding layer of the deoxidized layer is preferably a non-porous resin layer, but if this resin layer becomes thick, oxygen permeability will not be sufficient. . For this reason, many examples are known in which a thin plastic layer is used as a shielding layer. For example, Japanese Patent Application Laid-Open No. 5-318675 proposes an oxygen-absorbing multilayer sheet in which a resin film is formed on a deoxidized resin layer which has been rendered microporous by stretching. However, the oxygen-absorbing sheet in which a nonporous thin film is formed directly on the oxygen-absorbing resin layer, the oxygen-absorbing component in the oxygen-absorbing resin, especially iron powder and particles during the production and handling is affected by the thickness of the shielding layer on the sheet surface. However, there is a problem of strength in that the film is protruded into a thin film having a small thickness, and there is still a risk of contamination by a deoxidizing component. Increasing the thickness of the film of the momentum-shielding layer impairs air permeability, resulting in a low deoxidation rate.

【0009】このために、実質的に十分な酸素透過性を
備えた無孔の樹脂薄膜を脱酸素樹脂層に積層して脱酸素
多層体を形成することは実際は容易ではない。特に厚み
の薄いフィルム状の脱酸素多層体を商用生産することは
ほぼ不可能に近い。例えば、脱酸素樹脂層にフィルムを
貼り合わせるにしても、酸素透過性に優れた接着剤がな
く、貼り合わせ法で遮蔽層として無孔の薄膜を積層して
脱酸素多層体を製造することは難しい。また押出し積層
法や共押出し積層法などの公知の積層法で脱酸素多層体
を製造しようとすると、脱酸素樹脂層が鉄粉などの異物
を含むために、鉄粉が薄膜を破りピンホールが生じたり
多層体の表面に凹凸が生じたりするなど、フィルム加工
上に問題がある。このように、脱酸素多層体を包装材料
として、液体物質に使用しても脱酸素成分の溶出汚染の
懸念が全くなく、かつ脱酸素性能に優れた、実用性のあ
るフィルム状又はシート状の脱酸素多層体及びその製造
方法はないというのが実情である。
For this reason, it is actually not easy to form a deoxidized multilayer body by laminating a nonporous resin thin film having substantially sufficient oxygen permeability on a deoxidized resin layer. In particular, it is almost impossible to commercially produce a thin oxygen-containing multilayer film. For example, even if a film is bonded to a deoxygenated resin layer, there is no adhesive having excellent oxygen permeability, and a non-porous thin film is laminated as a shielding layer by a bonding method to produce a deoxygenated multilayer body. difficult. Also, when attempting to produce a deoxidized multilayer body by a known lamination method such as an extrusion lamination method or a co-extrusion lamination method, since the deoxidized resin layer contains foreign matter such as iron powder, the iron powder breaks the thin film and pinholes are formed. There is a problem in film processing, for example, the occurrence of irregularities or irregularities on the surface of the multilayer body. As described above, even when the deoxidized multilayer body is used as a packaging material, there is no concern about elution and contamination of the deoxygenated component even when used for a liquid substance, and the deoxygenation performance is excellent, and a practical film or sheet is used. The fact is that there is no deoxygenated multilayer body and its manufacturing method.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、前記
従来技術の問題点を解決して、脱酸素層として脱酸素性
能に優れた微多孔質脱酸素樹脂層と脱酸素層の吸収面側
の隔離層として無孔薄膜の酸素透過性層を備え、脱酸素
成分が表面に突出するようなことがなく、液体物質に使
用しても脱酸素成分の溶出による汚染がなく安全衛生性
に問題がなく、製造加工が容易であり、脱酸素性能に優
れかつ耐水・耐油性に優れたフィルム状又はシート状の
脱酸素多層体とその製造方法を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a microporous deoxygenating resin layer having excellent deoxidizing performance as a deoxidizing layer and an absorbing surface of the deoxidizing layer. With a non-porous thin film oxygen permeable layer as the side isolation layer, the deoxygenated component does not project to the surface, and even when used as a liquid substance, there is no contamination due to the elution of the deoxidized component, which is safe and hygienic. It is an object of the present invention to provide a film-like or sheet-like deoxidizing multilayer body which has no problems, is easy in manufacturing and processing, is excellent in deoxidizing performance, and is excellent in water resistance and oil resistance, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明者らが鋭意研究を
重ねた結果、脱酸素多層体の脱酸素層として脱酸素性能
に優れた微多孔質の脱酸素樹脂層を用い、この脱酸素層
の吸収面側に、無孔薄膜の樹脂層とこれに保護層として
粒状難水溶性フィラーを分散した樹脂組成物を微多孔質
化させた層とを組み合わせて積層した構成の遮蔽層を設
けることにより、上記課題を解決して、脱酸素速度に優
れ、かつ、脱酸素成分が表面に突出するようなことがな
く、液体物質に使用しても脱酸素成分の溶出の恐れのな
い、フィルム状又はシート状の脱酸素多層体とすること
ができることを見い出した。しかも、脱酸素成分を分散
した樹脂組成物の層の吸収面側に、酸素透過性を有する
熱可塑性樹脂の層と粒状難水溶性フィラーを分散した樹
脂組成物の層を組み合わせ積層した樹脂積層体を延伸す
ることにより、連続微多孔質の脱酸素層に無孔薄膜の酸
素透過性層と連続微多孔質の酸素透過性層とを組み合わ
せた遮蔽層を一挙に形成して、前記フィルム状又はシー
ト状の脱酸素多層体が容易に製造できることを見い出
し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies by the present inventors, as a deoxidizing layer of a deoxidizing multilayer body, a microporous deoxygenating resin layer excellent in deoxidizing performance was used. On the absorption surface side of the layer, a shielding layer having a structure in which a resin layer of a non-porous thin film and a layer in which a resin composition in which a granular poorly water-soluble filler is dispersed as a protective layer are made microporous By solving the above problems, the deoxidizing rate is excellent, and the deoxidizing component does not protrude to the surface, and there is no fear of elution of the deoxidizing component even when used as a liquid substance, a film. It has been found that a sheet-shaped or sheet-shaped deoxidized multilayer body can be obtained. Moreover, a resin laminate in which a layer of a thermoplastic resin having oxygen permeability and a layer of a resin composition in which granular poorly water-soluble filler are dispersed are combined and laminated on the absorption surface side of the layer of the resin composition in which the deoxidizing component is dispersed. By stretching the continuous microporous deoxidation layer to form a non-porous thin film oxygen permeable layer and a continuous microporous oxygen permeable layer in a shielding layer at once, the film-like or The present invention has been completed by finding that a sheet-shaped deoxidized multilayer body can be easily produced.

【0012】まず、本発明は、複数の樹脂の層が互いに
積層され脱酸素機能を有するように構成されたフィルム
状又はシート状の脱酸素多層体において、少なくとも脱
酸素成分を分散させた樹脂組成物が連続微多孔質化され
てなる脱酸素層Aと、無孔薄膜の熱可塑性樹脂からなる
酸素透過性層Cと、粒状の難水溶性フィラーを分散させ
た樹脂組成物が連続微多孔質化されてなる酸素透過性層
Bとを備え、前記脱酸素層Aの少なくとも一面に前記酸
素透過性層Cと前記酸素透過性層Bとがそれぞれ1層以
上組み合わされて積層され、かつ、隣接する各層が互い
に熱融着され、酸素吸収面が形成されていることを特徴
とする脱酸素多層体に関する。
First, according to the present invention, in a film- or sheet-shaped deoxidizing multilayer body in which a plurality of resin layers are laminated on each other to have a deoxidizing function, at least a deoxidizing component is dispersed in the resin composition. The deoxidized layer A obtained by continuously microporous the material, the oxygen permeable layer C made of a non-porous thin film thermoplastic resin, and the resin composition in which granular poorly water-soluble filler is dispersed are continuously microporous. And an oxygen permeable layer B formed by converting the oxygen permeable layer B to at least one surface of the deoxygenation layer A, and the oxygen permeable layer C and the oxygen permeable layer B are laminated in combination of one or more layers, respectively, and adjacent to each other. The oxygen-absorbing surface is formed by heat-sealing each layer to form an oxygen-absorbing surface.

【0013】ここで、本発明の脱酸素多層体は脱酸素成
分を分散させた樹脂組成物が微多孔質化された脱酸素層
Aを備えるが、脱酸素成分としては、鉄粉を主剤とする
ものが最も好ましい。
Here, the deoxidizing multilayer body of the present invention comprises a deoxidizing layer A in which a resin composition in which a deoxidizing component is dispersed is made microporous, and as the deoxidizing component, iron powder is used as a main component. Those that do are most preferable.

【0014】また前記脱酸素層Aの吸収面側には、無孔
薄膜の熱可塑性樹脂からなる酸素透過性層Cと粒状の難
水溶性フィラーを分散させた樹脂組成物が微多孔質化さ
れてなる酸素透過性層Bとがそれぞれ1層以上組み合わ
せ積層された遮蔽層(酸素透過性層)が形成されている
が、前記酸素透過性層Cの酸素透過率は、1×10-1 1
〜6×10-9[cm3 /cm2 ・sec ・Pa]であることが好
ましい。
On the absorption surface side of the deoxidizing layer A, a resin composition in which an oxygen permeable layer C made of a non-porous thin film of a thermoplastic resin and a granular poorly water-soluble filler are dispersed is microporous. An oxygen permeable layer B is formed by combining one or more layers each to form a shielding layer (oxygen permeable layer). The oxygen permeable layer C has an oxygen permeability of 1 × 10 −1 1.
It is preferably -6 × 10 -9 [cm 3 / cm 2 · sec · Pa].

【0015】さらに、本発明の脱酸素多層体は、その酸
素透過性層Cが存在する側をn−ヘプタンに浸漬した際
に、脱酸素多層体からの溶出量が表面積1cm2 当たり
0.3mg以下であることが好ましく、これにより、脱酸
素多層体は耐油性に優れたものとなり、包装材料とした
場合に被包装物への影響を避けることができる。
Furthermore, when the oxygen-permeable multilayer C of the present invention is immersed in n-heptane on the side where the oxygen-permeable layer C is present, the amount of elution from the oxygen-desorbing multilayer is 0.3 mg / cm 2 of surface area. It is preferable that the content is not more than the above, whereby the deoxidized multilayer body has excellent oil resistance, and when it is used as a packaging material, it is possible to avoid the influence on the article to be packaged.

【0016】本発明に係る脱酸素多層体は、脱酸素層A
の少なくとも一面に前記無孔薄膜の酸素透過性層Cと前
記微多孔質の酸素透過性層Bとを組み合わせ積層した遮
蔽層(酸素透過性層)を備えたものであり、これらの酸
素透過性層を片面に備える場合は、片側吸収型の脱酸素
体であり、また両面に酸素透過性層を備える場合は、両
側吸収型の脱酸素体である。片側吸収型の場合、片面に
酸素透過性層を備えた脱酸素層Aの他面に、バリア層D
の積層された多層体である。ここでは、バリア層Dは、
脱酸素層Aと間に複数の層を介して積層されていてもよ
い。
The deoxidizing multilayer body according to the present invention comprises a deoxidizing layer A.
A non-porous thin film oxygen permeable layer C and the microporous oxygen permeable layer B are combined and laminated on at least one surface of the shielding layer (oxygen permeable layer). When the layer is provided on one side, it is a single-sided absorption type oxygen absorber, and when it is provided on both sides with an oxygen-permeable layer, it is a double-sided absorption type oxygen absorber. In the case of the one-sided absorption type, the barrier layer D is provided on the other surface of the deoxidizing layer A having the oxygen permeable layer on one surface.
Is a laminated multi-layer body. Here, the barrier layer D is
It may be laminated with the deoxidizing layer A via a plurality of layers.

【0017】また前記脱酸素層Aの吸収面側の遮蔽層の
構成は簡便な構成が好ましく、その構成は脱酸素層Aか
ら順に酸素透過性層Bと酸素透過性層Cが積層された構
成、あるいは脱酸素層Aから順に酸素透過性層Cと酸素
透過性層Bが積層された構成とすることができる。
The structure of the shielding layer on the absorbing surface side of the deoxidizing layer A is preferably a simple structure, and the deoxidizing layer A and the oxygen permeable layer B and the oxygen permeable layer C are laminated in this order. Alternatively, the oxygen permeable layer C and the oxygen permeable layer B may be laminated in this order from the deoxidizing layer A.

【0018】また本発明は、複数の樹脂の層が互いに積
層され脱酸素機能を有するように構成されたフィルム状
又はシート状の脱酸素多層体の製造方法において、少な
くとも脱酸素成分を分散させた脱酸素樹脂組成物の層a
と、酸素透過性を有する熱可塑性樹脂の層cと、粒状の
難水溶性フィラーを分散させた樹脂組成物の層bとを備
え、前記層aの少なくとも一面に前記層cと前記層bと
がそれぞれ1層以上組み合わせ積層され、かつ、隣接す
る各層が互いに熱融着されてなる樹脂積層体の基材を延
伸する工程を備え、この延伸工程により、樹脂積層体の
基材を薄膜状にするとともに、前記層cを無孔な状態で
薄膜化して酸素透過性層Cを形成しながら、前記層aを
微多孔質化して脱酸素層Aと前記層bを微多孔質化して
酸素透過性層Bを同時に形成することを特徴とする脱酸
素多層体の製造方法を提供する。
Further, according to the present invention, at least a deoxidizing component is dispersed in a method for producing a film-like or sheet-like deoxidizing multilayer body in which a plurality of resin layers are laminated on each other so as to have a deoxidizing function. Layer a of the oxygen absorbing resin composition
A layer c of a thermoplastic resin having oxygen permeability and a layer b of a resin composition in which a granular poorly water-soluble filler is dispersed, and the layer c and the layer b are provided on at least one surface of the layer a. Is provided in combination with one or more layers, and each of the adjacent layers is heat-sealed to each other, and a step of stretching the base material of the resin laminate is provided, and the base material of the resin laminate is formed into a thin film by the stretching step. At the same time, while thinning the layer c in a non-porous state to form the oxygen permeable layer C, the layer a is made microporous to make the deoxidized layer A and the layer b microporous to allow oxygen permeation. Provided is a method for producing a deoxidized multilayer body, which comprises simultaneously forming a functional layer B.

【0019】ここで本発明の製造方法においては、前記
樹脂積層体の基材を1軸方向又は2軸方向に面積換算で
2〜20倍に延伸することが好ましい。基材の樹脂積層
体の延伸は、1軸延伸、2軸同時延伸又は2軸逐次延伸
のいずれの方法であってもよい。
Here, in the manufacturing method of the present invention, it is preferable that the base material of the resin laminate is stretched 2 to 20 times in uniaxial direction or biaxial direction in terms of area. The stretching of the resin laminate of the substrate may be any of uniaxial stretching, biaxial simultaneous stretching or biaxial sequential stretching.

【0020】本発明においては、前記脱酸素層Aを中間
層として、片面又は両面に無孔薄膜の酸素透過性層Cと
微多孔質の酸素透過性層Bとを組み合わせ積層した酸素
透過性層を備えた片側吸収型又は両側吸収型脱酸素多層
体を製造することができる。片側吸収型の場合、前記層
aの一面に前記層cと前記層bとがそれぞれ1層以上組
み合わされて積層され、かつ、前記層aの他面に延伸後
にバリア層Dとなる熱可塑性樹脂の層が積層された基材
の樹脂積層体を延伸することにより、片側吸収型の脱酸
素多層体を製造することができる。この場合、ガスバリ
ア層Dは、脱酸素層Aとの間に複数の層を介して積層さ
れていてもよい。また片側吸収型の脱酸素多層体の別の
製造方法として、前記層aの一面に前記層cと前記層b
とがそれぞれ1層以上組み合わせ積層された樹脂積層体
の基材を延伸したのち、さらにこの基材の前記層aが微
多孔質化されて形成された脱酸素層Aの他面にバリア層
Dを積層することにより、片側吸収型の脱酸素多層体を
製造することができる。
In the present invention, the deoxidizing layer A is used as an intermediate layer, and an oxygen permeable layer in which a non-porous thin film oxygen permeable layer C and a microporous oxygen permeable layer B are combined and laminated on one side or both sides. It is possible to produce a single-sided absorption type or double-sided absorption type deoxidized multilayer body having In the case of a one-sided absorption type, a thermoplastic resin in which one or more layers c and b are combined and laminated on one surface of the layer a, and becomes a barrier layer D after stretching on the other surface of the layer a. A single-sided absorption type deoxidized multilayer body can be manufactured by stretching the resin laminated body of the base material on which the above layers are laminated. In this case, the gas barrier layer D may be laminated with the deoxidizing layer A via a plurality of layers. As another method for producing a one-side absorption type deoxidizing multilayer body, the layer c and the layer b are provided on one surface of the layer a.
And (1) and (2) each extend a base material of a resin laminate in which the barrier layer D is formed on the other surface of the deoxidizing layer A formed by microporousizing the layer a of the base material. By laminating, a one-sided absorption type deoxidized multilayer body can be manufactured.

【0021】両側吸収型の場合には、前記樹脂積層体が
前記層aの両面に前記層cと前記層bとがそれぞれ1層
以上組み合わされて積層され、かつ、前記層aの他面に
延伸後にバリア層Dとなる熱可塑性樹脂の層が積層され
た基材の樹脂積層体を延伸することにより、片側吸収型
の脱酸素多層体を製造することができる。
In the case of the double-sided absorption type, the resin laminate is laminated on both surfaces of the layer a by combining one or more layers c and b, and on the other surface of the layer a. A one-sided absorption type deoxidized multilayer body can be manufactured by stretching the resin laminated body of the base material on which the thermoplastic resin layer serving as the barrier layer D is laminated after the stretching.

【0022】[0022]

【実施の態様】本発明の片側吸収型又は両側吸収型のフ
ィルム状又はシート状脱酸素多層体の態様が図面に例示
される。なお、ここでは、酸素透過層Cを無孔質層C、
酸素透過層Bを多孔質層Bと言い換える。また、脱酸素
多層体の脱酸素層Aとバリヤ層Dの間には、必要に応じ
て、樹脂層(緩衝層Fという)及び接着層Eが設けられ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the single-sided absorption type or double-sided absorption type film-like or sheet-like deoxidizing multilayer body of the present invention are illustrated in the drawings. In addition, here, the oxygen permeable layer C is a non-porous layer C,
The oxygen permeable layer B is paraphrased as the porous layer B. Further, a resin layer (referred to as a buffer layer F) and an adhesive layer E are provided between the deoxidizing layer A and the barrier layer D of the deoxidizing multilayer body, if necessary.

【0023】片側吸収型の脱酸素多層体としては、図
1;無孔質層C/多孔質層B/脱酸素層A/バリヤ層
D、図2;多孔質層B/無孔質層C/脱酸素層A/バリ
ヤ層D、及び図3;無孔質層C/多孔質層B/脱酸素層
A/緩衝層F/接着層E/バリヤ層Dが例示される。そ
の他、多孔質層B/無孔質層C/多孔質層B/脱酸素層
A/バリヤ層D、無孔質層C/多孔質層B/脱酸素層A
/接着層E/バリヤ層Dでも良い。
As the one-side absorption type deoxidizing multilayer body, FIG. 1; non-porous layer C / porous layer B / deoxidizing layer A / barrier layer D, FIG. 2; porous layer B / non-porous layer C / Deoxidation layer A / barrier layer D, and FIG. 3; non-porous layer C / porous layer B / deoxidation layer A / buffer layer F / adhesive layer E / barrier layer D are illustrated. In addition, porous layer B / non-porous layer C / porous layer B / deoxidizing layer A / barrier layer D, non-porous layer C / porous layer B / deoxidizing layer A
/ Adhesive layer E / barrier layer D may be used.

【0024】両側吸収型の脱酸素フィルムとして、図
4;無孔質層C/多孔質層B/脱酸素層A/多孔質層B
/無孔質層Cが例示される。その他、多孔質層B/無孔
質層C/脱酸素層A/無孔質層C/多孔質層B、多孔質
層B/無孔質層C/多孔質層B/脱酸素層A/多孔質層
B/無孔質層C/多孔質層Bでも良い。
As a double-sided absorption type deoxidizing film, FIG. 4; non-porous layer C / porous layer B / deoxidizing layer A / porous layer B
/ The non-porous layer C is illustrated. In addition, porous layer B / nonporous layer C / deoxidized layer A / nonporous layer C / porous layer B, porous layer B / nonporous layer C / porous layer B / deoxidized layer A / It may be porous layer B / non-porous layer C / porous layer B.

【0025】本発明の脱酸素多層体は、脱酸素性能を備
えた包装材料として、包装袋や包装容器の一部又は全部
に様々の形で使用することができる。例えば、図5は、
片側吸収型の脱酸素体10を包装用容器20のトップシ
ールフィルムに用いた例であり、図6は、片側吸収型の
脱酸素体10を包装袋の片面に利用した例である。図7
は、ガスバリヤ性の外装袋の内袋として両側吸収型の脱
酸素体20を用いた例であり、図8は、両側吸収型の脱
酸素体を中仕切りとして容器50内に収容させた例であ
る。なお、図8の例では、脱酸素フィルムに部分的な成
形と端面の熱融着を加えている。なお、ここでは、内容
物は固体に制限することなく、液体、または固体、液体
の両方を含むものであってもよい。
The deoxidizing multilayer body of the present invention can be used in various forms as a packaging material having deoxidizing performance for a part or all of a packaging bag or a packaging container. For example, FIG.
This is an example in which the one-sided absorption type oxygen absorber 10 is used for the top seal film of the packaging container 20, and FIG. 6 is an example in which the one-sided absorption type oxygen absorber 10 is used on one side of the packaging bag. Figure 7
Is an example in which the double-sided absorption type oxygen absorber 20 is used as the inner bag of the gas barrier outer bag, and FIG. 8 is an example in which the double-sided absorption type oxygen absorber is housed in the container 50 as a partition. is there. In addition, in the example of FIG. 8, partial molding and heat fusion of the end surface are added to the deoxidized film. Here, the contents are not limited to solids, and may be liquids or both solids and liquids.

【0026】次に、本発明の脱酸素多層体を構成する各
層について詳しく説明する。本発明の脱酸素多層体にお
いて重要な機能を果たす無孔薄膜の酸素透過性層Cにつ
いては、その酸素透過率が、1×10-11 〜6×10-9
[cm3 /cm2 ・sec・Pa]であることが望まれる。その
必要性は、次の計算によって理解される。
Next, each layer constituting the deoxidized multilayer body of the present invention will be described in detail. The oxygen permeability of the non-porous thin film oxygen permeable layer C which plays an important role in the deoxidized multilayer body of the present invention is 1 × 10 -11 to 6 × 10 -9.
[Cm 3 / cm 2 · sec · Pa] is desired. The need is understood by the following calculation.

【0027】面積Aの膜の両面の圧力差p(圧力差は一
定)、体積Vの気体を透過させるのに要する時間tの場
合、その定義より、気体透過率(P/X、Pは気体透過
係数、Xは膜の厚さ)は、次式で示される。 P/X=
V/(A・p・t)
When the pressure difference p on both sides of the membrane having the area A (the pressure difference is constant) and the time t required for permeating a gas having a volume V are defined by the definition, the gas permeability (P / X, P is a gas The permeation coefficient, X is the thickness of the film) is given by the following equation. P / X =
V / (A ・ p ・ t)

【0028】ここで取り扱う脱酸素多層体を用いた脱酸
素を対象とする有限系では、酸素の圧力が脱酸素に伴っ
て低下するので、圧力差が低下していくことを考慮する
と、酸素濃度の変化は直線的な減少ではなく、ほぼ指数
関数的な減少となる。そのため、例えば、酸素濃度20.6
容積%の空気を含む対象系から、酸素濃度 0.1容積%の
状態に酸素濃度が低下するとすると、この場合の気体透
過率は前式で計算される値の loge (20.6 /0.1 )=5
倍程度あればよいことになる。さらに、空気の体積Va
(V=0.206 Va )、空気の圧力pa (p= 0.206
a )より、係数0.206 は相殺されて、前記の気体透過
率の式は、P/X=5Va /(A・pa ・t)となる。
In a finite system for deoxidation using the deoxidation multilayer body dealt with here, the oxygen pressure decreases with deoxidation. The change of is not a linear decrease but an almost exponential decrease. Therefore, for example, an oxygen concentration of 20.6
Assuming that the oxygen concentration is reduced from a target system containing air at a volume of 0.1% by volume to an oxygen concentration of 0.1% by volume, the gas permeability in this case is log e (20.6 / 0.1) = 5 of the value calculated by the above equation.
It should be about twice as much. Furthermore, the volume of air V a
(V = 0.206 V a ), air pressure p a (p = 0.206
From p a ), the coefficient of 0.206 is canceled out, and the above equation for gas permeability is P / X = 5V a / (A · p a · t).

【0029】ここで、上記の気体透過率の式より、本発
明に係わる脱酸素多層体の無孔の酸素透過性層Cに要求
される酸素透過率を計算すると、pa =1.013 ×105Pa
(常圧)において、Va /A=0.1 〜5cm3/cm2 (脱酸
素多層体の吸収面側の単位表面当たり被包装物側に存在
する空気量で、本発明に係る脱酸素対象系はほとんどこ
の範囲に含まれる)、脱酸素所要時間t=0.5 〜5dayと
すると、Va /(A・t)=0.02〜10cm3 /cm2 ・day
となり、結局、P/X=1.1 ×10-11 〜 5.7×10-9[cm
3 /cm2 ・sec ・Pa]となる。なお、両側から脱酸素さ
せる場合には、上記の面積を片側分の2倍とすればよ
い。
Here, the oxygen permeability required for the non-porous oxygen permeable layer C of the deoxidizing multilayer body according to the present invention is calculated from the above gas permeability formula, p a = 1.013 × 10 5 Pa
At (normal pressure), V a /A=0.1 to 5 cm 3 / cm 2 (the amount of air present on the side of the object to be packaged per unit surface of the absorbent surface side of the deoxidizing multilayer body, which is the deoxidizing target system according to the present invention) Is included in this range), and assuming that the time required for deoxidation t = 0.5 to 5 days, V a /(At)=0.02 to 10 cm 3 / cm 2 · day
After all, P / X = 1.1 × 10 -11 to 5.7 × 10 -9 [cm
3 / cm 2 · sec · Pa]. When deoxidizing from both sides, the above area may be doubled for one side.

【0030】したがって、酸素透過性層Cを構成する樹
脂及び厚さは、前記の酸素透過率P/Xで表される要求
性能に応じて、適宜、選択することができる。樹脂とし
ては、非極性または低極性高分子で、その酸素透過係数
Pは、前記の酸素透過率に対する要求が低い場合には特
に制限がないが、より広い要求範囲に対応するために
は、Pが1×10-13 [cm3 ・cm/cm2 ・sec ・Pa]以
上、さらにできれば1×10-12 [cm3 ・cm/cm2 ・se
c ・Pa]以上の熱可塑性樹脂が好ましい。また無孔質体
であれば、単独のモノマー種から重合された高分子のみ
でなく、各種の共重合体、樹脂の混合体でもあってもよ
い。さらに酸素透過性層Cは、層全体での酸素透過率が
前記の範囲を満たしていれば、複数の層で構成してもよ
い。
Therefore, the resin and the thickness of the oxygen permeable layer C can be appropriately selected according to the required performance represented by the oxygen permeability P / X. The resin is a non-polar or low-polarity polymer, and its oxygen permeability coefficient P is not particularly limited when the requirement for the oxygen permeability is low. Is 1 × 10 -13 [cm 3 · cm / cm 2 · sec · Pa] or more, and preferably 1 × 10 -12 [cm 3 · cm / cm 2 · se]
c · Pa] or higher. In addition, as long as it is nonporous, it may be not only a polymer polymerized from a single monomer species, but also a mixture of various copolymers and resins. Further, the oxygen-permeable layer C may be composed of a plurality of layers as long as the oxygen permeability of the entire layer satisfies the above range.

【0031】酸素透過性層Cを構成する樹脂の具体的な
例としては、エチレン、プロピレン、1−ブテン、4−
メチル−1−ペンテンなどのオレフィン類の単独重合体
および共重合体、エチレン−酢酸ビニル共重合体、ポリ
ブタジエン、ポリイソプレン、スチレン−ブタジエン共
重合体とその水素添加物、各種シリコン樹脂、などがあ
り、さらにこれらの変成物、グラフト体、混合物などで
あってもよい。
Specific examples of the resin constituting the oxygen permeable layer C include ethylene, propylene, 1-butene, 4-
There are homopolymers and copolymers of olefins such as methyl-1-pentene, ethylene-vinyl acetate copolymer, polybutadiene, polyisoprene, styrene-butadiene copolymer and hydrogenated products thereof, various silicone resins, and the like. And modified products, grafts, and mixtures thereof.

【0032】また、他の脱酸素層Aや酸素透過性層Bの
マトリックス成分となる樹脂にこの層Cと同じ樹脂を用
いる場合には特に制限はないが、異なる樹脂を用いる場
合には、その樹脂と層Cを構成する樹脂との親和性が重
要である。すなわち、積層に際し特に接着剤などを用い
ない場合には、層Cの樹脂と他の層に用いる樹脂とが互
いに相溶性を持っていることが望まれる。なお、ここで
の「相溶性」の証明は熱力学的に厳密である必要はな
く、例えば、両者のヒートシールが可能な程度であれば
それを肯定してよい。
Further, when the same resin as the layer C is used as the resin serving as the matrix component of the other deoxidizing layer A and the oxygen permeable layer B, there is no particular limitation, but when a different resin is used, The affinity between the resin and the resin forming the layer C is important. That is, when an adhesive is not particularly used for lamination, it is desired that the resin of the layer C and the resin used for the other layers have compatibility with each other. The proof of the “compatibility” here does not need to be thermodynamically strict. For example, if the heat sealing of both can be performed, it may be affirmed.

【0033】ここで、典型的な非極性高分子であるポリ
プロピレンと酸素透過性の比較的高いポリメチルペンテ
ンを用いて無孔質の酸素透過性層Cを構成したケースに
ついて試算してみる。 1)ポリプロピレン:酸素透過係数P= 1.7×10
-13 [cm3 ・cm/cm2 ・sec ・Pa](30℃)(Polymer
Handbook, 2nd Ed. III-235. J.Brandrup and E.H.Imme
rgut, John Willy & Sons(1975) 、単位は変換) 厚さX>10μm においては、P/X<1.7 ×10-17 [cm
3 /cm2 ・sec ・Pa]の範囲であれば適用可能である。
典型的な対象として、Va /A=1cm3/cm2 、t=1da
y の場合には、同様の計算より、厚さX=3μm の薄さ
が必要となる。この厚さの無孔質層は、強度面からはほ
ぼ限界にあるが、所要脱酸素時間を考慮すれば、層厚を
厚くできるので、ポリプロピレンが使用できることが判
る。
Here, a trial calculation will be made on the case where the non-porous oxygen permeable layer C is formed by using polypropylene which is a typical non-polar polymer and polymethylpentene having a relatively high oxygen permeability. 1) Polypropylene: oxygen permeability coefficient P = 1.7 × 10
-13 [cm 3 · cm / cm 2 · sec · Pa] (30 ° C) (Polymer
Handbook, 2nd Ed. III-235. J. Brandrup and EHImme
rgut, John Willy & Sons (1975), unit is converted) When thickness X> 10 μm, P / X <1.7 × 10 −17 [cm
3 / cm 2 · sec · Pa].
Typical subjects, V a / A = 1cm 3 / cm 2, t = 1da
In the case of y, the same calculation requires a thickness of X = 3 μm. Although the thickness of the nonporous layer having this thickness is almost at its limit in terms of strength, it can be understood that polypropylene can be used because the layer thickness can be increased in consideration of the required deoxidation time.

【0034】2)ポリメチルペンテン:酸素透過係数P
=2.4 ×10-12 [cm3 ・cm/cm2 ・sec ・Pa](25℃)
(Polymer Handbook, 2nd Ed. III-235 ) 厚さX>10μm においては、P/X<2.4 ×10-9[cm3
/cm2 ・sec ・Pa]の範囲であれば適用可能である。こ
の場合には、Va /A=1cm3/cm2 、t=1dayの場合で
も厚さX=42μm となるので実用的な層となる。以上の
ように、遮蔽用の無孔質層における酸素透過性について
は、適当な樹脂を正しく選択すれば、ほぼ要求性能を満
たすことが可能である。
2) Polymethylpentene: Oxygen permeability coefficient P
= 2.4 × 10 -12 [cm 3 · cm / cm 2 · sec · Pa] (25 ° C)
(Polymer Handbook, 2nd Ed. III-235) For a thickness X> 10 μm, P / X <2.4 × 10 −9 [cm 3
/ Cm 2 · sec · Pa]. In this case, the practical layer since a V a / A = 1cm 3 / cm 2, t = even for 1day thickness X = 42 .mu.m. As described above, with respect to the oxygen permeability of the nonporous layer for shielding, it is possible to substantially satisfy the required performance by properly selecting an appropriate resin.

【0035】無孔質の酸素透過性層Cの厚さの最大値
は、酸素透過率で表される脱酸素対象物の要求性能と樹
脂の酸素透過係数とにより決定される。ただし、ピンホ
ールなどが発生しないように安定して製造可能で、か
つ、通常の使用において内容物との接触などでもピンホ
ールや破れが生じないことが確実であれば、最大値より
もできるだけ薄いことが望ましい。層Cの厚さは、製造
上少なくとも3μm 程度は必要であり、一般的には厚さ
5〜20μm 程度が望ましい。
The maximum value of the thickness of the non-porous oxygen permeable layer C is determined by the required performance of the deoxidizing target represented by the oxygen permeability and the oxygen permeability coefficient of the resin. However, if it can be manufactured stably so that pinholes do not occur, and if it is certain that pinholes and tears will not occur even in contact with the contents in normal use, it is as thin as possible than the maximum value It is desirable. The thickness of the layer C is required to be at least about 3 .mu.m in production, and generally, the thickness is preferably about 5 to 20 .mu.m.

【0036】次に、酸素透過性層Bは、熱可塑性樹脂に
粒状の難水溶性フィラーを分散させた樹脂組成物が延伸
によって連続微多孔質化された樹脂組成物の層よりな
る。この層Bに用いられるフィラーとしては、水に不溶
または難溶の無機または有機物であれば特に制限はない
が、被包装物が酸性などの液体の場合にも使用できる脱
酸素多層体とする場合で、特にこの層Bが最外層に位置
する場合には、それらの条件下でも溶出しないことが必
要となる。また、燃焼の危険性が低い酸化物などのフィ
ラーが望ましい。
Next, the oxygen permeable layer B is a layer of a resin composition in which a resin composition in which a granular poorly water-soluble filler is dispersed in a thermoplastic resin is continuously microporous by stretching. The filler used in the layer B is not particularly limited as long as it is an inorganic or organic substance that is insoluble or hardly soluble in water. In particular, when the layer B is located at the outermost layer, it is necessary that the layer B does not elute under these conditions. Further, fillers such as oxides, which have a low risk of burning, are desirable.

【0037】酸素透過性層Bに用いる無機フィラーの例
としては、シリカ、珪藻土、タルク、チタニア、硫酸バ
リウムなどが適当である。また有機フィラーの例として
は、マトリックスの樹脂よりも高融点を有する粒状樹
脂、セルロース粉末などが適当である。フィラーの粒径
としては、樹脂への添加などを含めて扱い易い範囲であ
れば特に制限はないが、他の層を傷つけず、さらに連続
多孔質層として前記酸素透過性層Cを保護する点から、
層Cの厚さ未満で、より細かい方が望ましく、最大粒径
で10μm 以下が好ましい。
Suitable examples of the inorganic filler used in the oxygen permeable layer B include silica, diatomaceous earth, talc, titania, barium sulfate and the like. Suitable examples of the organic filler include a granular resin having a higher melting point than that of the matrix resin, and cellulose powder. The particle size of the filler is not particularly limited as long as it is in a range that is easy to handle, including addition to the resin, but it does not damage other layers and further protects the oxygen-permeable layer C as a continuous porous layer. From
It is desirable that the thickness be smaller than the thickness of the layer C, and it is desirable that the maximum particle size be 10 μm or less.

【0038】酸素透過性層Bに用いる熱可塑性樹脂とし
ては、樹脂そのものの酸素透過性は、微多孔質化される
ためにあまり問題とならず、難水溶性フィラーを容易に
混合、分散させられるものであれば、特に制限はない。
むしろ、無孔質層Cとの相溶性のよさ、延伸の容易さ、
脱酸素多層体の使用温度範囲、などを考慮して選択すれ
ばよく、一般的には前述の無孔質層Cの樹脂の例に準ず
る。
As the thermoplastic resin used for the oxygen permeable layer B, the oxygen permeability of the resin itself does not matter so much because it is made microporous, and the poorly water-soluble filler can be easily mixed and dispersed. There is no particular limitation as long as it is one.
Rather, good compatibility with the non-porous layer C, ease of stretching,
The selection may be made in consideration of the operating temperature range of the deoxidized multilayer body, and the like, and generally follows the examples of the resin of the nonporous layer C described above.

【0039】難水溶性フィラーのマトリックス樹脂に対
する添加比率は、一般に体積分率で10〜60容積%、
より好ましくは20〜40容積%の範囲である。難水溶
性フィラーの添加比率が低すぎると微多孔質化が難し
く、高すぎるとフィルム化又はシート化が困難となるこ
とから、これらを考慮して前記範囲で適正に設定すれば
よい。
The addition ratio of the poorly water-soluble filler to the matrix resin is generally 10 to 60% by volume in terms of volume fraction,
More preferably, it is in the range of 20 to 40% by volume. If the addition ratio of the poorly water-soluble filler is too low, it is difficult to make the porous material microporous, and if it is too high, it becomes difficult to form a film or a sheet.

【0040】また、酸素透過性層Bの通気性は、粒状の
難水溶性フィラーを分散させた樹脂組成物に形成された
連続微多孔質構造によって十分に確保される。この層B
における微多孔の体積分率は 0.1以上が望ましく、層の
強度の観点から、上限は 0.9以下、好ましくは 0.5以下
である。
Further, the air permeability of the oxygen permeable layer B is sufficiently ensured by the continuous microporous structure formed in the resin composition in which the granular poorly water-soluble filler is dispersed. This layer B
Is preferably 0.1 or more, and from the viewpoint of the strength of the layer, the upper limit is 0.9 or less, preferably 0.5 or less.

【0041】酸素透過性層Bの厚さは、外部の力からの
酸素透過性層Cの保護や補強、また脱酸素成分粒子によ
る層Cの損傷(例えば大きな鉄粉による破れなど)の防
止、ができる程度の厚さが必要で、少なくとも脱酸素成
分の最大粒子径以上が望ましい。他方、必要以上に厚い
と脱酸素多層体を厚くすることになるので、層Bの厚さ
は、厚くとも脱酸素成分粒子の最大粒径の10倍以下で
ある。通常は、20〜200μmの範囲が好ましい。
The thickness of the oxygen permeable layer B is to protect or reinforce the oxygen permeable layer C from an external force, and to prevent the layer C from being damaged by deoxidized component particles (eg, broken by a large iron powder). It is necessary to have a thickness such that the maximum particle diameter of the deoxidizing component is at least equal to or larger than the maximum particle diameter. On the other hand, if the thickness is unnecessarily large, the deoxidized multilayer body will be thickened. Therefore, the thickness of the layer B is at most 10 times or less the maximum particle size of the deoxidized component particles. Usually, the range of 20 to 200 μm is preferable.

【0042】上記の酸素透過性層C及び酸素透過性層B
の2種の層は、各1層以上を組み合わせ、脱酸素層Aの
吸収面側に積層して、酸素透過性の遮蔽層が構成され
る。これらの2種の酸素透過性層の多層構造中における
位置及びその数は、脱酸素多層体を包装材として使用し
た場合に、被包装物に対して脱酸素層Aとの間にあれば
特に制限はなく、用途・目的、生産性等に応じて、適
宜、選択される。ただし、全体の層数をできるだけ少な
くしてより簡便に製造することを考慮すれば、脱酸素層
Aの吸収面側に酸素透過性層C及び酸素透過性層Bを各
1層の構成とすることができる。この場合、酸素透過性
層C又は酸素透過性層Bが、脱酸素層Aに対して直接被
包装物側、すなわち最外層に位置する構成となる。
The above oxygen permeable layer C and oxygen permeable layer B
The two types of layers described above are combined with one or more layers and stacked on the absorption surface side of the deoxidizing layer A to form an oxygen-permeable shielding layer. The position and the number of these two types of oxygen-permeable layers in the multilayer structure are particularly determined if the oxygen-permeable multilayer body is used as a packaging material and between the oxygen-desorbing layer A and the object to be packaged. There is no limitation, and it is appropriately selected according to the use / purpose, productivity, and the like. However, considering that the total number of layers is made as small as possible and that the production is simpler, the oxygen-permeable layer C and the oxygen-permeable layer B are each configured as one layer on the absorption surface side of the oxygen-absorbing layer A. be able to. In this case, the configuration is such that the oxygen-permeable layer C or the oxygen-permeable layer B is located directly on the side of the package, that is, on the outermost layer with respect to the deoxidized layer A.

【0043】ここで、酸素透過性層Cが脱酸素層Aと酸
素透過性層Bとの中間にある場合には、難水溶性フィラ
ーを含む連続微多孔質の酸素透過性層Bが外部からの力
に対して無孔薄膜の酸素透過性層Cを保護するように作
用し、層Cが層Bの内容物側にある場合には、層Bが層
Cを裏から補強するように作用し、いずれにしても、本
発明の脱酸素多層体においては、酸素透過性層Bは酸素
透過性層Cの保護層の役割を果たす。また、酸素透過性
層Cが脱酸素層Aと酸素透過性層Bの間にある構成は、
製造時延伸に際し、層Cは厚さ方向への変形が少ないた
めに損傷し難く、また製造後は外部からの直接の衝撃か
ら保護される点で優れている。他方、酸素透過性層Cが
最外層に位置する構成は、極性の低い液体と接触して
も、多層体内部への液体の浸透が全くない点が優れてい
る。これらの利害得失を勘案して層構成が選択される。
Here, when the oxygen permeable layer C is between the deoxygenating layer A and the oxygen permeable layer B, the continuous microporous oxygen permeable layer B containing a hardly water-soluble filler is externally applied. Acts to protect the oxygen-permeable layer C of the non-porous thin film against the force of, and when layer C is on the contents side of layer B, layer B acts to reinforce layer C from the back. However, in any case, in the deoxidized multilayer body of the present invention, the oxygen permeable layer B plays a role of a protective layer of the oxygen permeable layer C. Further, the configuration in which the oxygen-permeable layer C is between the deoxidized layer A and the oxygen-permeable layer B is as follows.
During production, the layer C is excellent in that it is hardly damaged due to little deformation in the thickness direction, and is protected from direct impact from the outside after production. On the other hand, the configuration in which the oxygen-permeable layer C is located at the outermost layer is excellent in that even when the oxygen-permeable layer C comes into contact with a low-polarity liquid, there is no penetration of the liquid into the multilayer body. The layer configuration is selected in consideration of these advantages and disadvantages.

【0044】脱酸素層Aは熱可塑性樹脂に脱酸素成分を
分散させた脱酸素樹脂組成物の層が延伸により微多孔質
化されたものよりなる。この脱酸素層Aに用いる脱酸素
成分としては、種々の組成物が知られているが、中でも
鉄粉、アルミニウム粉、ケイ素粉などの金属粉、第一鉄
塩などの無機塩類、アスコルビン酸とその塩類、カテコ
ール、グリセリンなどのアルコールまたはフェノール類
などが好ましく、特に鉄粉を主成分とするものが好適で
ある。さらに、鉄粉と各種塩類、特にハロゲン化金属を
添加したもの、中でも鉄粉の表面をハロゲン化金属で被
覆したものが好ましい。
The deoxidizing layer A is composed of a layer of a deoxidizing resin composition in which a deoxidizing component is dispersed in a thermoplastic resin, which is made microporous by stretching. Various compositions are known as a deoxidizing component used for the deoxidizing layer A. Among them, metal powders such as iron powder, aluminum powder and silicon powder, inorganic salts such as ferrous salt, and ascorbic acid Alcohols such as salts, catechol and glycerin, and phenols are preferable, and those containing iron powder as a main component are particularly preferable. Further, iron powder and various salts, especially those to which a metal halide is added, and among them, those in which the surface of iron powder is coated with a metal halide are preferable.

【0045】鉄粉などの脱酸素成分の粒子の大きさは、
最大粒径が脱酸素層Aの厚さを超えなければ、粒径分布
などに特に制限はないが、酸化速度の点、他の層を傷つ
けない(貫通などのない)点ではより細かいものが望ま
しい。ただし、粒子が細か過ぎる場合には粉塵爆発など
の危険性から取扱いに慎重さが要求され、また、一般に
高価となることから、脱酸素成分の粒子の大きさは、平
均粒径として10〜100μm が好ましく、30〜50
μm がより好ましい。
The particle size of the deoxidizing component such as iron powder is
As long as the maximum particle size does not exceed the thickness of the deoxidized layer A, there is no particular limitation on the particle size distribution, but finer particles are required in terms of oxidation rate and in that they do not damage other layers (no penetration). desirable. However, if the particles are too fine, careful handling is required due to the danger of dust explosion and the like, and since they are generally expensive, the size of the particles of the deoxidizing component is 10 to 100 μm as an average particle size. Is preferred, and 30 to 50
μm is more preferred.

【0046】脱酸素層Aに用いる熱可塑性樹脂として
は、この場合も前記微多孔質化する酸素透過性層Bの場
合と同様、樹脂そのものの酸素透過性は、微多孔質化さ
れるためにあまり問題とならず、鉄粉などの脱酸素成分
を容易に混合、分散させられるものであれば、特に制限
はなく、樹脂の選択は、前述の酸素透過性層Bに係る樹
脂の選択に準ずる。
As for the thermoplastic resin used for the deoxidizing layer A, the oxygen permeability of the resin itself is also microporous, as in the case of the oxygen permeable layer B which is also microporous in this case. There is no particular limitation as long as it is not a serious problem and a deoxidizing component such as iron powder can be easily mixed and dispersed, and the selection of the resin is based on the selection of the resin for the oxygen permeable layer B described above. .

【0047】脱酸素成分の熱可塑性樹脂に対する添加比
率は、同様に微多孔質化するために、体積分率で10〜
60容積%、より好ましくは20〜40容積%の範囲に
選ばれる。添加比率を重量分率で表現すると脱酸素成分
の密度によって異なることになるが、鉄粉主剤の脱酸素
成分の場合、添加比率は40〜90重量%、より好まし
くは60〜85重量wt%となる。また、鉄粉を少なくす
る場合には、他のフィラーを加えることにより、同様に
連続微多孔質化が可能である。
The addition ratio of the deoxidizing component to the thermoplastic resin is in the range of 10 to 10 in terms of volume fraction in order to make the same microporous.
60% by volume, more preferably 20 to 40% by volume is selected. When the addition ratio is expressed in terms of weight fraction, it differs depending on the density of the deoxidizing component. In the case of the deoxidizing component of the iron powder base, the adding ratio is 40 to 90% by weight, more preferably 60 to 85% by weight. Become. In addition, when the amount of iron powder is reduced, continuous microporosity can be similarly obtained by adding another filler.

【0048】また脱酸素層Aも、酸素透過性層Bと同
様、微多孔の体積分率は 0.1以上、上限は 0.9以下、好
ましくは 0.5以下が望ましい。脱酸素層A内の通気性が
粒状脱酸素成分を分散した樹脂組成物に形成された連続
微多孔質構造によって確保され、層内では容易に酸素が
脱酸素成分に到達することができる。
In the deoxidizing layer A as well as the oxygen permeable layer B, the volume fraction of microporous is 0.1 or more and the upper limit is 0.9 or less, preferably 0.5 or less. The air permeability in the deoxidizing layer A is ensured by the continuous microporous structure formed in the resin composition in which the granular deoxidizing component is dispersed, and oxygen can easily reach the deoxidizing component in the layer.

【0049】脱酸素層Aの厚さは、まず、酸素の総吸収
量によりほぼ決定される。すなわち、対象とする空気の
中の酸素を全て吸収できる最低量の脱酸素成分を含む厚
さが最低の厚さとなる。通常は、内容物の長期保存時の
若干の酸素流入をも考慮して、この最低量の脱酸素成分
の2〜3倍を用いるため、厚さもこの最低の場合の2〜
3倍が基本となる。加えて、脱酸素層が連続微多孔質化
していると、微多孔化していない場合と比較して、脱酸
素層内部の脱酸素成分まで直ちに脱酸素に関与する。そ
のため、特に、初期の吸収速度が厚さにほぼ比例して大
きくなる。そこで、この脱酸素速度をも考慮して厚さを
決定する。ただし、他方で無孔質の酸素透過性層Cの酸
素透過が律速となるため、層Cにおける透過速度と脱酸
素層Aにおける吸収速度とが等しくなる場合が、最大の
吸収速度となる。脱酸素層Aの厚さは、上記を考慮して
適宜決められるが、通常、好ましくは10〜400μ
m、より好ましくは30〜200μmの範囲に選ばれ
る。
First, the thickness of the deoxidizing layer A is almost determined by the total amount of absorbed oxygen. That is, the thickness including the minimum amount of the deoxygenated component that can absorb all the oxygen in the target air is the minimum thickness. Usually, in consideration of a slight inflow of oxygen during long-term storage of the contents, to use 2 to 3 times the minimum amount of the deoxidized component, the thickness is 2 to 3 in this minimum case.
Basically 3 times. In addition, when the oxygen scavenging layer is continuously microporous, it immediately participates in oxygen scavenging up to the oxygen scavenging component inside the oxygen scavenging layer as compared with the case where the oxygen scavenging layer is not microporous. Therefore, in particular, the initial absorption rate increases substantially in proportion to the thickness. Therefore, the thickness is determined in consideration of the deoxidation rate. However, on the other hand, since the oxygen transmission of the nonporous oxygen-permeable layer C is rate-determining, the maximum absorption rate is obtained when the transmission rate in the layer C is equal to the absorption rate in the deoxygenation layer A. The thickness of the deoxidizing layer A is appropriately determined in consideration of the above, but is usually preferably 10 to 400 μm.
m, more preferably in the range of 30 to 200 μm.

【0050】本発明に係る脱酸素多層体は、片面吸収型
の場合には、脱酸素層Aの吸収面の他面側にはバリヤ層
Dが積層された多層体である。バリヤ層Dを構成する樹
脂としては、ポリエチレンテレフタレート、ポリブチレ
ンテレフタレート等のポリエステル類、ナイロン6、ナ
イロンMXD等のポリアミド類、ポリ塩化ビニル、ポリ
塩化ビニリデン等の塩素含有樹脂、エチレン−ビニルア
ルコール共重合体等の低酸素透過性樹脂が挙げられる。
バリヤ層Dに係る樹脂は、必ずしも酸素バリヤ性樹脂で
なくても、厚みを厚することによって実質的にバリヤ層
として使用できるものであれば、酸素透過性の樹脂でも
使用できる。さらにバリヤ層Dを構成する材料として
は、前記低酸素透過性樹脂の単層フィルムの他、このフ
ィルムの複合フィルム、アルミニウム等の金属箔、金属
又は金属酸化物、ケイ素酸化物等の蒸着膜を用いた複合
フィルムであってもよい。
In the case of the single-sided absorption type, the deoxidizing multilayer body according to the present invention is a multilayer body in which the barrier layer D is laminated on the other side of the absorbing surface of the deoxidizing layer A. Examples of the resin constituting the barrier layer D include polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as nylon 6 and nylon MXD, chlorine-containing resins such as polyvinyl chloride and polyvinylidene chloride, and ethylene-vinyl alcohol copolymer. Examples include low oxygen permeable resins such as coalesced products.
The resin relating to the barrier layer D is not necessarily an oxygen barrier resin, but may be an oxygen permeable resin as long as it can be used substantially as a barrier layer by increasing the thickness. Further, as the material for forming the barrier layer D, in addition to the single-layer film of the low oxygen permeable resin, a composite film of this film, a metal foil such as aluminum, a vapor deposition film of metal or metal oxide, silicon oxide, etc. It may be the composite film used.

【0051】バリヤ層Dの形成には、構成する材料の性
質に応じて、バリヤ層となる樹脂層を他の樹脂層と共に
予め積層して延伸用基材の樹脂積層体を形成しておき、
この基材を延伸してバリヤ層Dを形成するか、或いは、
バリヤ層となる樹脂層を備えない延伸用基材の樹脂積層
体を延伸した後にバリヤ層Dを積層する方法をとること
ができる。なお、バリヤ層Dと前記脱酸素層Aとの間に
は、バリヤ層Dを積層するために、他の樹脂層や接着層
を設けることができる。
In forming the barrier layer D, a resin layer serving as a barrier layer is preliminarily laminated together with other resin layers in accordance with the properties of the constituent materials to form a resin laminate of the stretching base material.
This substrate is stretched to form a barrier layer D, or
A method of laminating the barrier layer D after stretching the resin laminated body of the stretching base material which does not include the resin layer to be the barrier layer can be adopted. Note that another resin layer or an adhesive layer can be provided between the barrier layer D and the deoxidizing layer A in order to stack the barrier layer D.

【0052】本発明の脱酸素多層体は、包装材料とし
て、各種の液体を多く含む系に好適に用いられるには、
それら液体に対する耐液性があることが好ましい。前記
の各層を構成する樹脂として、主に非極性又は低極性の
高分子、又はこれらの高分子の混合物を用いることによ
り、水、アルコール類などの高極性溶媒や、酸、アルカ
リなどの水溶液に対する耐液性をほぼ付与することがで
きる。しかし、非極性又は低極性の高分子の中には、各
種の油類や低極性の有機溶媒類によっては、部分的また
は完全に溶解されてしまうものがある。そこで、このよ
うな各種の油類や低極性の有機溶媒類に対する耐性(以
下、耐油性と呼ぶ)を必要とする用途では、さらに樹脂
種を選択すると良い。この選択には、例えば、代表的な
1種以上の溶媒に対する樹脂の溶解量を測定することで
可能であり、その溶解量が予め定めた値よりも低ければ
耐油性の用途に使用できる。
The deoxygenated multilayer body of the present invention is suitable for use as a packaging material in a system containing various liquids.
It is preferable to have liquid resistance to these liquids. By using a non-polar or low-polarity polymer or a mixture of these polymers as a resin constituting each layer, water, a highly polar solvent such as alcohols, an acid, and an aqueous solution such as an alkali are used. Almost liquid resistance can be provided. However, some non-polar or low-polarity polymers are partially or completely dissolved depending on various oils or low-polarity organic solvents. Therefore, for applications requiring resistance to such various oils and low-polarity organic solvents (hereinafter referred to as oil resistance), it is better to further select a resin type. This selection can be made, for example, by measuring the amount of the resin dissolved in one or more representative solvents, and if the amount of the resin is lower than a predetermined value, the resin can be used for oil-resistant applications.

【0053】各種フィルムを、例えば食品の包装容器に
用いる場合の溶解量については、一般に満たすべき基準
が存在する。日本における基準は、「食品衛生法」に基
づく「食品、添加物等の規格基準」(昭和34年厚生省
告示第370号)の「第3器具及び容器包装」の「D
器具若しくは容器包装又はこれらの材質別規格」の「2
合成樹脂製の器具又は容器包装」に示される。このう
ち、耐油性は、フィルムの表面積1cm2 当たり2cm3
n−ヘプタンを用いて、25℃でフィルムを1時間浸漬
させた場合の、n−ヘプタン中の蒸発残留物の量(溶出
後のn−ヘプタン重量に対する蒸発残留物の重量の比で
表す)で判断される。ただし、有限時間内の溶出のた
め、一般に溶解量は平衡値ではない。この量が規定値以
下であれば包装容器に使用可能となる。規定値は各樹脂
種について定められており、高めの規定値の例として、
ポリスチレンの240ppm 、ポリエチレンとポリプロピ
レンについての150ppm (100℃を超える用途で使
用する場合は30ppm )などがある。n−ヘプタンの密
度0.68g/cm3 を用いて、フィルムの表面積1cm2
当たりの溶出重量は、上記240ppm の場合、約0.3
mgと計算される。
Regarding the amount of dissolution when various films are used in, for example, food packaging containers, there are generally standards to be met. The standard in Japan is “D” of “Third apparatus and container and packaging” of “Standards for foods and additives” based on the “Food Sanitation Law” (Notification No. 370 of the Ministry of Health and Welfare in 1959).
“2.
Synthetic resin utensils or containers and packaging ". Of these, oil resistance was determined by measuring the amount of evaporation residue in n-heptane (after elution) when the film was immersed at 25 ° C. for 1 hour using 2 cm 3 of n-heptane per 1 cm 2 of surface area of the film. (expressed as the ratio of the weight of evaporation residue to the weight of n-heptane). However, the dissolution amount is generally not an equilibrium value due to elution within a finite time. If this amount is below the specified value, it can be used for packaging containers. The specified value is specified for each resin type, and as an example of a higher specified value,
There are 240 ppm of polystyrene, 150 ppm of polyethylene and polypropylene (30 ppm when used in applications above 100 ° C). Using a density of n-heptane of 0.68 g / cm 3 , the surface area of the film was 1 cm 2.
The eluted weight per 240 ppm is about 0.3
Calculated as mg.

【0054】以上のように、脱酸素多層体に耐油性が必
要な場合は、上記の基準に従って樹脂種を選択すればよ
い。なお、一般に、樹脂と溶媒との親和性が低い場合に
はフィルムの表面付近のみからの溶出であるが、親和性
が高い場合には、溶媒はフィルムの層の内部まで浸透す
るため、内部からも溶出が生じる。すなわち、親和性が
高い場合の溶出量は、単にフィルムの表面積だけでな
く、それらの厚さにも影響を受ける。そこで、脱酸素多
層体の耐油性を測定する場合には、厚さが定まったも
の、つまり完全に多層化した後のものを用いる。また、
脱酸素対象物に接触する側のみでの測定となることか
ら、脱酸素多層体の酸素吸収面(片側吸収型では酸素透
過性層を配した一方の側、両側吸収型では同じく両方の
側)が測定部位となる。
As described above, when oil resistance is required for the deoxidized multilayer body, the resin species may be selected according to the above criteria. In general, when the affinity between the resin and the solvent is low, elution occurs only from the vicinity of the surface of the film, but when the affinity is high, the solvent penetrates to the inside of the film layer. Elution also occurs. That is, the amount of elution when the affinity is high is affected not only by the surface area of the film but also by their thickness. Therefore, when measuring the oil resistance of the deoxidized multilayer body, the one having a fixed thickness, that is, the one after complete multilayering is used. Also,
Oxygen absorption surface of the deoxygenation multilayer body (one side with an oxygen permeable layer for one side absorption type, both sides for both sides absorption type) because it is measured only on the side in contact with the deoxygenation target. Is the measurement site.

【0055】本発明の脱酸素多層体は、フィルム状又は
シート状の脱酸素性包装材料として、例えば包装袋や包
装容器の一部や全部に種々の形で使用することができ
る。その際の被包装物は、固体、液体、クリーム状やス
ラリー状の半液体、またはこれらの混じったものでもよ
い。このため、本発明の脱酸素多層体の各層を構成する
材料としては、高い脱酸素速度を維持し、脱酸素成分及
び樹脂の溶出防止ができ、新たな溶出などの問題が生じ
るようなことがなければ、前述の材料以外に各種の添加
物を加えることが可能である。添加物としては、例え
ば、着色または隠蔽のための顔料や染料、酸化防止や分
解防止などのための安定化成分、帯電防止成分、吸湿成
分、脱臭成分、可塑化成分、難燃化成分などが挙げられ
る。また、同様に脱酸素多層体としての性能に悪影響を
与えない限り、印刷層や易開封層、易剥離層などを追加
することが可能である。
The deoxidizing multilayer body of the present invention can be used in various forms as a film-shaped or sheet-shaped deoxidizing packaging material, for example, in a part or all of a packaging bag or a packaging container. The packaged material at that time may be a solid, liquid, creamy or slurry-like semi-liquid, or a mixture thereof. Therefore, as a material constituting each layer of the deoxidized multilayer body of the present invention, it is possible to maintain a high deoxygenation rate, prevent elution of deoxygenated components and resins, and cause problems such as new elution. If not, various additives other than the above-described materials can be added. Examples of the additives include pigments and dyes for coloring or hiding, stabilizing components for preventing oxidation and decomposition, antistatic components, moisture absorbing components, deodorizing components, plasticizing components, and flame retarding components. No. Similarly, a printing layer, an easy-opening layer, an easy-peeling layer, and the like can be added as long as the performance of the deoxygenated multilayer body is not adversely affected.

【0056】本発明における製造上の要点は、複数の樹
脂層を積層して予め延伸用基材の樹脂積層体を製造した
後、この樹脂積層体の複数の樹脂層をまとめて同時に延
伸することにある。この方法により、脱酸素層Aと難水
溶性フィラーを含む酸素透過性層Bとを、それぞれ、効
果的に連続微多孔質化すると同時に、無孔樹脂層の酸素
透過性層Cを安定して薄くすることが可能となり、優れ
た脱酸素性能を備えた脱酸素層Aと、その吸収面側に無
孔薄膜の酸素透過性層Cと微多孔質の酸素透過性層Bを
組み合わせて積層した酸素透過性に優れた遮蔽層とを備
えた多層体を製造することが可能になる。仮に、各層を
延伸後に積層する手法(既製の単層の多孔質フィルムを
使用することを含む)を採っても、積層時に接着または
融着が必要となり、接着または融着によって折角の微多
孔が損なわれ酸素透過性が低下してしまうことや、無孔
薄膜を接着または融着する際の困難さがある。
The essential point of the production in the present invention is that a plurality of resin layers are laminated to produce a resin laminate of a base material for stretching in advance, and then a plurality of resin layers of this resin laminate are collectively stretched. It is in. According to this method, the deoxidized layer A and the oxygen-permeable layer B containing the poorly water-soluble filler are each effectively and continuously made microporous, and at the same time, the oxygen-permeable layer C of the nonporous resin layer is stably formed. The oxygen-absorbing layer A, which can be made thinner and has excellent oxygen-absorbing performance, and a nonporous thin-film oxygen-permeable layer C and a microporous oxygen-permeable layer B are laminated on the absorption surface side. It is possible to manufacture a multilayer body including a shielding layer having excellent oxygen permeability. Even if a method of laminating each layer after stretching (including using a ready-made single-layer porous film) is taken, adhesion or fusion is required at the time of lamination, and the microporosity at a sharp angle is caused by the adhesion or fusion. It is impaired and oxygen permeability is lowered, and there is difficulty in adhering or fusing the non-porous thin film.

【0057】複数の樹脂層を積層する基材の樹脂積層体
の製造には、通常の共押出しや押出しコーティング、押
出しラミネートなどの手法を用いることが可能であり、
いずれの手法でも、本発明に合致した多層構造を得るこ
とができる。特に逐次積層する押出しコーティングや押
出しラミネートが好ましく、一度形成された平滑なフィ
ルム(特に延伸前は厚いため、強度的にも問題がない)
に次の層を重ねていくために、例えば脱酸素成分に鉄粉
を用いる場合でも、他の層が鉄粉の凹凸の影響を受けに
くい。
In the production of the resin laminate of the base material on which a plurality of resin layers are laminated, the usual methods such as coextrusion, extrusion coating and extrusion lamination can be used.
Either technique can provide a multilayer structure consistent with the present invention. In particular, extrusion coating and extrusion lamination, which are sequentially laminated, are preferable, and a once formed smooth film (particularly before stretching, it is thick, so there is no problem in strength)
For example, even if iron powder is used as the deoxidizing component, the other layers are less likely to be affected by the irregularities of the iron powder.

【0058】基材の樹脂積層体の延伸は、通常知られて
いるように、1軸延伸、2軸同時延伸、2軸逐次延伸の
いずれの手法を用いてもよい。この場合の延伸温度は、
酸素透過性層Cに係る樹脂の溶融温度付近以下が好まし
く、また延伸倍率は面積換算で2〜20倍とすることが
望ましい。延伸によって基材の樹脂積層体の厚みは薄く
なるが、延伸前後の厚みの変化は各層を構成する材料、
層構成及び延伸倍率等によって異なるので、これらを考
慮して、予め積層する各層の厚さと全体の厚さを決める
必要がある。
The resin laminate of the substrate may be stretched by any of uniaxial stretching, biaxial simultaneous stretching, and biaxial sequential stretching, as is generally known. The stretching temperature in this case is
The melting temperature of the resin relating to the oxygen-permeable layer C is preferably equal to or lower than the melting temperature, and the stretching ratio is desirably 2 to 20 times in terms of area. Although the thickness of the resin laminate of the base material is reduced by stretching, the change in thickness before and after the stretching is the material constituting each layer,
Since the thickness differs depending on the layer configuration, the stretching ratio, and the like, it is necessary to determine the thickness of each layer to be laminated and the total thickness in advance in consideration of these factors.

【0059】前述のように、本発明の脱酸素多層体が片
面吸収型の場合には、脱酸素層Aの吸収面の他面側には
バリヤ層Dが積層された多層体である。バリヤ層Dは、
樹脂層として、延伸用基材の樹脂積層体に積層して延伸
して形成することができるが、基材の樹脂積層体の延伸
後に積層することもできる。バリヤ層Dを後から加える
場合には、層Dを熱ラミネート、ドライラミネート、押
出しコーティングなど、公知の方法により、接着または
融着して、最終的な多層構造とすることができる。
As described above, when the deoxidizing multilayer body of the present invention is a single-sided absorption type, it is a multilayer body in which the barrier layer D is laminated on the other side of the absorbing surface of the deoxidizing layer A. The barrier layer D is
The resin layer can be formed by laminating and stretching the resin laminate of the stretching base material, but can also be laminated after stretching the resin laminate of the base material. When the barrier layer D is added later, the layer D can be adhered or fused by a known method such as heat lamination, dry lamination, and extrusion coating to form a final multilayer structure.

【0060】[0060]

【実施例】以下、実施例と比較例を用いて本発明をさら
に詳しく説明するが、本発明はこれらによって限定され
るものではない。なお、説明中の共通事項は次の通りで
ある。製造したフィルム状又はシート状の脱酸素多層体
(以下、単に脱酸素多層体という)は、脱酸素性能、脱
酸素成分の溶出及び耐油性について、それぞれ、次に述
べる方法で評価した。なお、脱酸素性能の試験に際して
は、所定の大きさに切り出した試料の脱酸素多層体の断
面を合成ゴム系接着剤で覆い、切断面に脱酸素層が露出
して結果に影響することがないように、端面処理して試
験に供した。また脱酸素成分の溶出試験には、前記端面
処理した試料を、さらに、温度60℃、相対湿度80%
の空気中に約5日間放置し、予め脱酸素樹脂組成物中の
鉄粉を十分酸化させて測定用試料とした。なお、この酸
化処理は、脱酸素成分の鉄は酸化することによって溶出
し易くなるために行った。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The common items in the description are as follows. The produced film-shaped or sheet-shaped oxygen-absorbing multilayer body (hereinafter, simply referred to as oxygen-absorbing multilayer body) was evaluated for the oxygen-absorbing performance, the elution of the oxygen-absorbing component, and the oil resistance by the following methods. In the test of the oxygen-absorbing performance, the cross section of the oxygen-absorbing multilayer body of the sample cut into a predetermined size is covered with a synthetic rubber-based adhesive, and the oxygen-absorbing layer may be exposed on the cut surface, which may affect the results. In order to avoid such a situation, the test piece was subjected to an end face treatment. In the dissolution test of the deoxygenated component, the end-treated sample was further subjected to a temperature of 60 ° C. and a relative humidity of 80%.
Was left in the air for about 5 days, and the iron powder in the oxygen-absorbing resin composition was sufficiently oxidized in advance to obtain a measurement sample. Note that this oxidation treatment was performed because iron as a deoxidizing component is easily leached by oxidation.

【0061】1)脱酸素性能の評価(脱酸素時間及び総
酸素吸収量の測定) 端面処理した所定面積の試料(面積;300cm2 、寸
法;15cm×20cm)と加湿用の水を含ませた脱脂綿と
を、アルミニウム箔積層フィルム製のバリア袋(寸法;
20cm×30cm)に入れ、空気を所定量充填した後、袋
をヒートシールして密封した。この密封袋を25℃に保
持しておき、袋内の酸素濃度をガスクロマトグラフ
((株) 島津製作所、GC-14B)を用いて経時的に測定
し、酸素濃度の変化を追跡した。通常は、脱酸素性能を
脱酸素時間で評価することとし、脱酸素時間を測定する
場合には、面積300cm2 の試料に対して充填する空気
量を300cm3 とし、袋内の酸素濃度が0.1容量%に
達するまでの時間を脱酸素時間として示した。総酸素吸
収量の測定は適宜行うが、この場合には、面積300cm
2 の試料に対し充填空気量を1500cm3 とし、袋内の
酸素濃度の変化がなくなった時点の酸素濃度から酸素吸
収量を算出し、これを総酸素吸収量とした。
1) Evaluation of deoxidation performance (measurement of deoxidation time and total oxygen absorption amount) A sample (area: 300 cm 2 , size: 15 cm x 20 cm) having a predetermined area subjected to end face treatment and water for humidification were included. Absorbent cotton and a barrier bag made of aluminum foil laminated film (dimensions;
(20 cm × 30 cm), and after filling with a predetermined amount of air, the bag was heat-sealed and sealed. This sealed bag was kept at 25 ° C., and the oxygen concentration in the bag was measured over time using a gas chromatograph (GC-14B, Shimadzu Corporation), and the change in the oxygen concentration was tracked. Normally, the deoxidizing performance is evaluated by the deoxidizing time. When measuring the deoxidizing time, the amount of air to be filled into a sample having an area of 300 cm 2 is set to 300 cm 3, and the oxygen concentration in the bag is 0%. The time required to reach 0.1% by volume was indicated as the deoxygenation time. The measurement of the total oxygen absorption amount is appropriately performed. In this case, the area is 300 cm.
The amount of air to be filled was set to 1500 cm 3 for the sample No. 2, and the oxygen absorption amount was calculated from the oxygen concentration at the time when the oxygen concentration in the bag stopped changing, and this was defined as the total oxygen absorption amount.

【0062】2)脱酸素成分(鉄イオン)の溶出評価 前記端面処理並びに酸化処理した試料(面積;300cm
2 、寸法;15cm×20cm)を、蓋付きのポリエチレン
製容器に入れた塩酸水溶液(塩酸濃度0.01N)10
00cm3 に25℃で浸漬し、プラズマ発光分光分析装置
(セイコー電子工業(株)、機種名;SPS1200VR )を用
い、浸漬液中の鉄濃度を経日的に測定した。なお、この
場合、塩酸水溶液は塩酸(原子吸光分析用)と純水(導
電率0.07μS/cm未満)から調製したものを用い、ま
た試料が外面に酸素透過性層B(微多孔質樹脂層)を有
する層構成の脱酸素多層体の場合には、特に断りのない
限り予め試料をエタノールに浸漬処理して撥水性を低下
させてから、浸漬試験に供した。
2) Elution evaluation of deoxidized components (iron ions) Samples (area: 300 cm) subjected to the above-mentioned end surface treatment and oxidation treatment
2. Dimensions: 15 cm × 20 cm) were placed in a polyethylene container with a lid and placed in a hydrochloric acid aqueous solution (hydrochloric acid concentration: 0.01 N).
It was immersed in 00 cm 3 at 25 ° C., and the iron concentration in the immersion liquid was measured over time using a plasma emission spectrometer (Seiko Electronics Co., Ltd., model name: SPS1200VR). In this case, the hydrochloric acid aqueous solution used was prepared from hydrochloric acid (for atomic absorption analysis) and pure water (conductivity less than 0.07 μS / cm), and the sample had an oxygen-permeable layer B (microporous resin) on the outer surface. In the case of a deoxidized multilayer body having a layer configuration having a layer), the sample was previously immersed in ethanol to reduce the water repellency unless otherwise specified, and then subjected to an immersion test.

【0063】この試験による鉄の許容上限濃度は、鉄濃
度の標準モデル溶液に塩化第二鉄水溶液を用いた味覚試
験より、3ppm とした。すなわち、塩化第二鉄水溶液を
用い、塩化第二鉄の濃度を0ppm から段階的に上げて味
覚に影響を与える濃度を調べたところ、約10ppm に達
すると味覚に若干の変化を覚えた。そこで塩化第二鉄鉄
濃度10ppm から塩素分を除いた3ppm を鉄相当分とし
て、鉄の許容上限濃度とした。
The allowable upper limit concentration of iron in this test was set to 3 ppm by the taste test using an aqueous ferric chloride solution as a standard model solution of iron concentration. That is, when the concentration of ferric chloride was gradually increased from 0 ppm using an aqueous ferric chloride solution and the concentration affecting taste was examined, a slight change in taste was observed when the concentration reached about 10 ppm. Therefore, the permissible upper limit concentration of iron was defined as 3 ppm obtained by removing the chlorine content from the ferric chloride concentration of 10 ppm.

【0064】3)耐油性の評価:n−ヘプタン(試薬特
級)400cm3 を入れた試験容器の開口部(開口部面積
200cm2 )に、端面処理した脱酸素体試料(寸法;2
0cm×20cm、面積;400cm2 )の吸収面を容器側に
向けて重ね合わせ、締付け治具を用いて容器を密封した
後、容器をひっくり返して試料にn−ヘプタンを接触さ
せ、25℃で1時間保持した。続いて、脱酸素体試料に
接触させたn−ヘプタンを蒸発乾固させ、残留物の重量
を測定し、この重量から同量のn−ヘプタンの空試験の
蒸発残渣量を差し引き、これをn−ヘプタンの接触面積
200cm2 で割り算して、n−ヘプタン2cm3 /接触面
積1cm2 当たりの溶出量で示した。
3) Evaluation of oil resistance: A deoxidized body sample (dimension: 2; end-face treated) was placed in the opening (opening area 200 cm 2 ) of a test container containing 400 cm 3 of n-heptane (special grade reagent).
The absorbent surface of 0 cm × 20 cm, area: 400 cm 2 ) was placed on the container side, and the container was sealed with a clamping jig. Then, the container was turned upside down, and n-heptane was brought into contact with the sample. Hold for 1 hour. Subsequently, the n-heptane in contact with the oxygen scavenger sample was evaporated to dryness, the weight of the residue was measured, and the amount of the evaporation residue in the blank test of the same amount of n-heptane was subtracted from this weight. It was divided by the contact area of heptane (200 cm 2 ) and expressed as the amount of elution per 2 cm 3 of n-heptane / cm 2 of contact area.

【0065】上記方法は、前述の「食品、添加物等の規
格基準」(昭和34年厚生省告示第370号)の「第3
器具及び容器包装」の「B 器具又は容器包装一般の
試験法」の「4 蒸発残留物試験法」に準じて行った方
法であり、ポリスチレンの規定値240ppm から計算さ
れた、n−ヘプタン2cm3 /接触面積1cm2 当たりの溶
出量0.3mgを基準値とし、ここでは、これと比較し
て、耐油性を判断する。なお、耐油性を必要としない用
途には、この評価に関係なく使用可能である。
The above-mentioned method is the same as the above-mentioned "Standard of foods, additives, etc." (Ministry of Health and Welfare Notification No. 370 of 1959), "No. 3".
This is a method performed in accordance with “4 Evaporation residue test method” of “B. Test method of utensils or containers and packaging in general” of “Equipment and containers and packaging”, and n-heptane 2 cm 3 calculated from the specified value of polystyrene of 240 ppm. The elution amount per 1 cm 2 of contact area is 0.3 mg as a reference value, and here, oil resistance is judged in comparison with this value. In addition, it can be used for applications that do not require oil resistance, regardless of this evaluation.

【0066】次に、脱酸素多層体の製造における共通事
項は次の通りである。脱酸素層Aに用いる脱酸素成分と
して、鉄粉(平均粒径約35μm 、最大粒径約100μ
m )に50重量%塩化カルシウム水溶液を噴霧して加熱
乾燥させ、鉄粉100重量部当たり2重量部の比率で塩
化カルシウムを鉄粉表面にコーティングした粒状の脱酸
素成分(以下、塩化カルシウムコーティング鉄粉と呼
ぶ)を調製した。次いで2軸押出機を用い、前記粒状脱
酸素成分と所定の樹脂とを、混合比70:30(重量
比)で混練、ストランドダイより押し出し、冷却後、ペ
レタイザーで切断して樹脂組成物のペレットを得た。塩
化カルシウムコーティング鉄粉70重量%と各種の樹脂
30重量%の樹脂組成物のペレットIを脱酸素層Aの材
料とした。
Next, common items in the production of the deoxidized multilayer body are as follows. As a deoxidizing component used in the deoxidizing layer A, iron powder (average particle size of about 35 μm, maximum particle size of about 100 μm)
m) is sprayed with a 50% by weight aqueous solution of calcium chloride, dried by heating, and coated on the surface of iron powder with calcium chloride at a ratio of 2 parts by weight per 100 parts by weight of iron powder. Flour) was prepared. Then, using a twin-screw extruder, the granular deoxygenated component and a predetermined resin are kneaded at a mixing ratio of 70:30 (weight ratio), extruded from a strand die, cooled, and then cut with a pelletizer to pellet the resin composition. Got A pellet I of a resin composition containing 70% by weight of calcium chloride-coated iron powder and 30% by weight of various resins was used as a material for the deoxidizing layer A.

【0067】酸素透過性層Bに係る難水溶性フィラーと
して、合成シリカ((株) 龍森、商品名;CRYSTALITE V
XS2 、平均粒径5μm )を用い、同様に2軸押出機で、
前記の合成シリカと所定の樹脂とを、混合比50:50
(重量比)で混練して樹脂組成物のペレットを得た。合
成シリカ50重量%と各種の樹脂50重量%を混合した
樹脂組成物のペレットIIを酸素透過性層Bの材料とし
た。
As a hardly water-soluble filler for the oxygen permeable layer B, synthetic silica (Tatsumori Co., Ltd., trade name; CRYSTALITE V)
XS2, average particle size 5 μm), and in the same way with a twin-screw extruder,
The synthetic silica and the predetermined resin are mixed at a mixing ratio of 50:50.
The mixture was kneaded (weight ratio) to obtain pellets of the resin composition. A pellet II of a resin composition obtained by mixing 50% by weight of synthetic silica and 50% by weight of various resins was used as a material of the oxygen permeable layer B.

【0068】実施例1 脱酸素多層体を製造するにあたり、各層を構成するため
に使用した樹脂は次の通りであった。なお、脱酸素多層
体の脱酸素層Aとバリヤ層Dとの間に緩衝層Fと接着層
Eを設けた。酸素透過性層C(無孔質層)に係る樹脂;
エチレン−プロピレン共重合体(三井石油化学工業
(株) ;TAFMER P-0680 、エチレン成分のモル分率約
0.75、メルトフローレート0.4g/10min(190
℃) 、25℃における酸素透過係数1.4×10-12 [cm3
・cm/cm2 ・sec ・Pa])と直鎖状低密度ポリエチレン
(三井石油化学工業(株) ;ULTZEX 2520F、商品名はポ
リエチレンであるが、実際は他のα−オレフィンを若干
含む共重合体、メルトフローレート2.3g/10min、
融点118℃、25℃における酸素透過係数 3.0×10
-13 [cm3 ・cm/cm2 ・sec ・Pa])との混合物(重量
混合比70:30)(混合樹脂の25℃における酸素透
過係数 8.2×10-13 [cm3 ・cm/cm2 ・sec ・Pa])、
酸素透過性層B(多孔質層)に係る樹脂;同じ直鎖状低
密度ポリエチレン(三井石油化学工業(株) ;ULTZEX 2
520F)、脱酸素層Aに係る樹脂;同じく直鎖状低密度ポ
リエチレン(三井石油化学工業(株) ;ULTZEX 2520
F)、緩衝層Fに係る樹脂;同じく直鎖状低密度ポリエ
チレン(三井石油化学工業(株) ;ULTZEX 2520F)、接
着層Eに係る樹脂;接着性ポリオレフィン(三井石油化
学工業(株) ;ADMER NF300 、メルトフローレート1.
3g/10min(190℃) 、融点120℃)、バリヤ層D
に係る樹脂;ナイロンMXD(三菱ガス化学(株) ;MX
-NYLON 6007 、メルトフローレート2.0g/10min 、
融点240℃)
Example 1 In producing a deoxidized multilayer body, the resins used for constituting each layer were as follows. A buffer layer F and an adhesive layer E were provided between the deoxidizing layer A and the barrier layer D of the deoxidizing multilayer body. Resin related to oxygen permeable layer C (non-porous layer);
Ethylene-propylene copolymer (Mitsui Petrochemical Co., Ltd .; TAFMER P-0680, molar ratio of ethylene component about 0.75, melt flow rate 0.4 g / 10 min (190
℃), oxygen permeability coefficient at 25 ℃ 1.4 × 10 -12 [cm 3
・ Cm / cm 2・ sec ・ Pa]) and linear low-density polyethylene (Mitsui Petrochemical Industry Co., Ltd .; ULTZEX 2520F, the trade name is polyethylene, but in reality it is a copolymer containing some α-olefins. , Melt flow rate 2.3g / 10min,
Oxygen transmission coefficient at melting point 118 ℃, 25 ℃ 3.0 × 10
-13 [cm 3 · cm / cm 2 · sec · Pa]) (mixing ratio 70:30 by weight) (oxygen permeability coefficient of mixed resin at 25 ° C 8.2 × 10 -13 [cm 3 · cm / cm 2)・ Sec ・ Pa]),
Resin related to oxygen permeable layer B (porous layer); same linear low-density polyethylene (Mitsui Petrochemical Industry Co., Ltd .; ULTZEX 2
520F), resin for deoxidizing layer A; also linear low-density polyethylene (Mitsui Petrochemical Co., Ltd .; ULTZEX 2520
F), resin for buffer layer F; also linear low-density polyethylene (Mitsui Petrochemical Industry Co., Ltd .; ULTZEX 2520F), resin for adhesive layer E; adhesive polyolefin (Mitsui Petrochemical Industry Co., Ltd.); ADMER NF300, melt flow rate 1.
3g / 10min (190 ℃), melting point 120 ℃), barrier layer D
Related resin; Nylon MXD (Mitsubishi Gas Chemical Co., Ltd .; MX
-NYLON 6007, melt flow rate 2.0g / 10min,
Melting point 240 ° C)

【0069】共押出積層装置を用い、各層に係る樹脂若
しくは樹脂組成物の6種を溶融共押し出しして、無孔質
層Cに係る樹脂層;40μm /多孔質層Bに係るフィラ
−含有樹脂層;100μm /脱酸素層Aに係る脱酸素成
分含有樹脂層;100μm /緩衝層Fに係る樹脂層;1
00μm /接着層Eに係る樹脂層;20μm /バリヤ層
Dに係る樹脂層;100μm の6層から構成される樹脂
積層体(厚さ;460μm )を、延伸用基材として得
た。次に前記基材の樹脂積層体を100℃において縦4
倍の倍率で1軸延伸し、片側吸収型のフィルム状脱酸素
多層体(厚さ;145μm )を製造した。延伸後の脱酸
素多層体の各層の厚さは、概略、無孔質層C;10μm
/多孔質層B;40μm /脱酸素層A;40μm /緩衝
層F;25μm /接着層E;5μm /バリヤ層D;25
μm であった。
Using a coextrusion laminating apparatus, 6 kinds of resin or resin composition for each layer are melted and coextruded to obtain a resin layer for non-porous layer C; 40 μm / filler-containing resin for porous layer B Layer; 100 μm / deoxidizing component-containing resin layer related to deoxidizing layer A; 100 μm / resin layer related to buffer layer F; 1
A resin laminate (thickness: 460 μm) composed of 6 layers of 00 μm / resin layer relating to the adhesive layer E; 20 μm / resin layer relating to the barrier layer D; 100 μm was obtained as a stretching base material. Next, the resin laminate of the above-mentioned substrate is vertically 4 at 100 ° C.
The film was uniaxially stretched at a double magnification to produce a one-side absorption type film-shaped deoxidized multilayer body (thickness: 145 μm). The thickness of each layer of the deoxidized multilayered body after stretching is roughly as follows: non-porous layer C: 10 μm
/ Porous layer B; 40 µm / deoxidation layer A; 40 µm / buffer layer F; 25 µm / adhesive layer E; 5 µm / barrier layer D; 25
μm.

【0070】片側吸収型脱酸素多層体の評価結果は、そ
れぞれ、脱酸素時間は1.7日、鉄の溶出は20日後で
0.09ppm 、無孔質層C側からのn−ヘプタンへの溶
出量は1cm2 当たり0.02mgであった。
The evaluation results of the single-sided absorption type deoxidized multilayer body were as follows: deoxidation time was 1.7 days, iron elution was 0.09 ppm after 20 days, and non-porous layer C side was changed to n-heptane. The elution amount was 0.02 mg per cm 2 .

【0071】実施例2 実施例1の脱酸素多層体の各層に使用した樹脂におい
て、無孔質層Cに係る樹脂;前記エチレン−プロピレン
共重合体(三井石油化学工業(株) ;TAFMER P-0680 )
としたこと以外は、実施例1と同じ樹脂を使用して延伸
用基材の樹脂積層体を作製した。得られた樹脂積層体
(厚さ;460μm )は、無孔質層Cに係る樹脂層;4
0μm /多孔質層Bに係るフィラ−含有樹脂層;100
μm /脱酸素層Aに係る脱酸素成分含有樹脂層;100
μm /緩衝層Fに係る樹脂層;100μm /接着層Eに
係る樹脂層;20μm /バリヤ層Dに係る樹脂層;10
0μmの6層構成であった。続いて基材の樹脂積層体を
100℃において縦4倍の倍率で1軸延伸し、片側吸収
型のフィルム状脱酸素多層体(厚さ;145μm )を製
造した。延伸後の脱酸素多層体の各層の厚さは、概略、
無孔質層C;10μm /多孔質層B;40μm /脱酸素
層A;40μm /緩衝層F;25μm /接着層E;5μ
m /バリヤ層D;25μm であった。
Example 2 In the resin used for each layer of the deoxidizing multilayer body of Example 1, the resin relating to the non-porous layer C; the ethylene-propylene copolymer (Mitsui Petrochemical Co., Ltd .; TAFMER P- 0680)
A resin laminate of a base material for stretching was prepared using the same resin as in Example 1 except for the above. The resulting resin laminate (thickness: 460 μm) was a resin layer related to the non-porous layer C; 4
0 μm / filler-containing resin layer relating to porous layer B; 100
μm / deoxidizing component-containing resin layer related to deoxidizing layer A; 100
μm / resin layer related to buffer layer F; 100 μm / resin layer related to adhesive layer E; 20 μm / resin layer related to barrier layer D; 10
It had a 6-layer structure of 0 μm. Subsequently, the resin laminate as a base material was uniaxially stretched at 100 ° C. at a magnification of 4 times in the longitudinal direction to produce a one-side absorption type film-shaped deoxidized multilayer body (thickness: 145 μm). The thickness of each layer of the deoxidized multilayer body after stretching is roughly,
Non-porous layer C; 10 μm / porous layer B; 40 μm / deoxidation layer A; 40 μm / buffer layer F; 25 μm / adhesive layer E; 5 μ
m 2 / barrier layer D; 25 μm.

【0072】得られた片側吸収型脱酸素多層体の評価結
果は、それぞれ、脱酸素時間は1.1日、鉄の溶出は2
0日後で0.13ppm 、無孔質層C側からのn−ヘプタ
ンへの溶出量は1cm2 当たり0.86mgであった。この
場合、無孔質層Cからの溶出量が多かった。
The evaluation results of the obtained single-sided absorption type deoxidized multilayer body were as follows: deoxidation time was 1.1 days, and elution of iron was 2
It was 0.13 ppm after 0 days, and the amount eluted from the non-porous layer C side to n-heptane was 0.86 mg per cm 2 . In this case, the elution amount from the non-porous layer C was large.

【0073】実施例3 脱酸素多層体の各層を構成するために使用した樹脂は次
の通りであった。なお、ここでは脱酸素層Aとバリヤ層
Dとの間に接着層Eを設けた。無孔質層Cに係る樹脂;
前記エチレン−プロピレン共重合体(三井石油化学工業
(株) ;TAFMER P-0680 )と前記直鎖状低密度ポリエチ
レン(三井石油化学工業(株) ;ULTZEX 2520F)との混
合物(重量混合比70:30)、多孔質層Bに係る樹
脂;同じ直鎖状低密度ポリエチレン(三井石油化学工業
(株) ;ULTZEX 2520F)、脱酸素層Aに係る樹脂;同じ
直鎖状低密度ポリエチレン(三井石油化学工業(株) ;
ULTZEX 2520F)、接着層Eに係る樹脂;前記接着性ポリ
オレフィン(三井石油化学工業(株) ;ADMER NF300
)、バリヤ層Dに係る樹脂;前記ナイロンMXD(三
菱ガス化学(株) ;MX-NYLON 6007 )
Example 3 The resins used to form each layer of the deoxidized multilayer body were as follows. Here, the adhesive layer E was provided between the deoxidizing layer A and the barrier layer D. Resin relating to non-porous layer C;
A mixture of the ethylene-propylene copolymer (Mitsui Petrochemical Industry Co., Ltd .; TAFMER P-0680) and the linear low-density polyethylene (Mitsui Petrochemical Industry Co., Ltd .; ULTZEX 2520F) (weight mixing ratio 70: 30), the resin relating to the porous layer B; the same linear low-density polyethylene (Mitsui Petrochemical Industry Co., Ltd .; ULTZEX 2520F), the resin relating to the deoxidizing layer A; the same linear low-density polyethylene (Mitsui Petrochemical) Industry Co., Ltd.
ULTZEX 2520F), resin for adhesive layer E; the adhesive polyolefin (Mitsui Petrochemical Industry Co., Ltd .; ADMER NF300
), Resin for barrier layer D; Nylon MXD (Mitsubishi Gas Chemical Co., Ltd .; MX-NYLON 6007)

【0074】5種溶融共押出しにより、無孔質層Cに係
る樹脂層;40μm /多孔質層Bに係るフィラ−含有樹
脂層;100μm /脱酸素層Aに係る脱酸素成分含有樹
脂層;100μm /接着層Eに係る樹脂層;100μm
/バリヤ層Dに係る樹脂層;100μm の構成の5層の
樹脂積層体(厚さ;440μm )を得た。続いて基材の
樹脂積層体を100℃において縦4倍の倍率で1軸延伸
し、片側吸収型のフィルム状脱酸素多層体(厚さ;14
0μm )を製造した。延伸後の脱酸素多層体の各層の厚
さは、概略、無孔質層C;10μm /多孔質層B40μ
m /脱酸素層A40μm /接着層E25μm /バリヤ層
D25μm であった。
By 5 kinds of melt coextrusion, the resin layer relating to the non-porous layer C; 40 μm / the filler-containing resin layer relating to the porous layer B; 100 μm / the deoxidizing component-containing resin layer relating to the deoxidizing layer A; 100 μm / Resin layer related to adhesive layer E: 100 μm
/ Resin layer related to barrier layer D; a resin laminate of 5 layers (thickness: 440 μm) having a constitution of 100 μm was obtained. Subsequently, the resin laminate as the base material was uniaxially stretched at 100 ° C. at a ratio of 4 times the longitudinal direction to obtain a film-type deoxidized multilayer body of one side absorption type (thickness:
0 μm) was produced. The thickness of each layer of the deoxidized multilayer body after stretching is roughly as follows: non-porous layer C; 10 μm / porous layer B 40 μ
m / deoxidation layer A 40 μm / adhesive layer E 25 μm / barrier layer D 25 μm.

【0075】得られた片側吸収型の酸素多層体の評価結
果は、それぞれ、脱酸素時間は1.7日、鉄の溶出は2
0日後で0.09ppm 、無孔質層C側からのn−ヘプタ
ンへの溶出量は1cm2 当たり0.02mgであった。
The evaluation results of the obtained single-sided absorption type oxygen multilayer bodies were as follows: deoxidation time was 1.7 days, and elution of iron was 2
After 0 days, it was 0.09 ppm, and the amount eluted from the non-porous layer C side to n-heptane was 0.02 mg per cm 2 .

【0076】実施例4 脱酸素多層体の各層を構成するために使用した樹脂は次
の通りであった。無孔質層Cに係る樹脂;エチレン−プ
ロピレン共重合体(三井石油化学工業(株) ;TAFMER S
-4030 、エチレン成分のモル分率約0.5、メルトフロ
ーレート0.2g/10min(190℃) )とポリプロピレ
ン(三菱化学(株);FX4D、商品名はポリプロピレンで
あるが、実際は他のα−オレフィンを若干含む共重合
体、メルトフローレート6.0g/10min 、融点140
℃、25℃における酸素透過係数 1.4×10-13 [cm3
cm/cm2 ・sec ・Pa])との混合物(重量混合比50:
50)(混合樹脂の25℃における酸素透過係数 3.0×
10-13 [cm3 ・cm/cm 2 ・sec ・Pa])、酸素透過性層
Bに係る樹脂;同じポリプロピレン(三菱化学(株);
FX4D)、脱酸素層Aに係る樹脂;同じポリプロピレン
(三菱化学(株);FX4D)、緩衝層Fに係る樹脂;同じ
くポリプロピレン(三菱化学(株);FX4D)
Example 4 The resin used to form each layer of the deoxidized multilayer body was as follows.
It was as follows. Resin relating to non-porous layer C; ethylene
Ropylene copolymer (Mitsui Petrochemical Co., Ltd.); TAFMER S
-4030, the mole fraction of ethylene component is about 0.5, melt flow
-Rate 0.2g / 10min (190 ℃)) and polypropylene
(Mitsubishi Chemical Co., Ltd .; FX4D, trade name is polypropylene
There is a copolymer containing some other α-olefins.
Body, melt flow rate 6.0g / 10min, melting point 140
Oxygen permeability coefficient at 25 ℃, 1.4 × 10-13 [cmThree
cm / cmTwo・ Sec ・ Pa]) mixture (weight mixing ratio 50:
50) (oxygen permeability coefficient of mixed resin at 25 ° C. 3.0 ×
Ten-13 [cmThree・ Cm / cm Two・ Sec ・ Pa]), oxygen permeable layer
Resin related to B; same polypropylene (Mitsubishi Chemical Corporation;
FX4D), resin related to deoxidizing layer A; same polypropylene
(Mitsubishi Chemical Co., Ltd .; FX4D), resin for buffer layer F; same
Ku polypropylene (Mitsubishi Chemical Corporation; FX4D)

【0077】4種溶融共押出しにより、無孔質層Cに係
る樹脂層;100μm /多孔質層Bに係るフィラ−含有
樹脂層;150μm /脱酸素層Aに係る脱酸素成分含有
樹脂層;150μm /緩衝層Fに係る樹脂層;800μ
m の4層構成の樹脂積層体(厚さ;1200μm )を得
た。続いて基材の4層樹脂積層体を130℃において縦
3倍×横3倍で2軸同軸延伸し、脱酸素多層体(厚さ;
215μm )を作製した。延伸後の脱酸素多層体の各層
の厚さは、概略、無孔質層C;10μm /多孔質層B;
55μm /脱酸素層A;60μm /緩衝層F;90μm
であった。
By four kinds of melt coextrusion, the resin layer for the non-porous layer C; 100 μm / the filler-containing resin layer for the porous layer B; 150 μm / the deoxidizing component-containing resin layer for the deoxidizing layer A; 150 μm / Resin layer related to buffer layer F; 800μ
A resin laminate (thickness: 1200 μm) having a 4-layer structure of m 2 was obtained. Subsequently, the four-layer resin laminate of the base material was biaxially coaxially stretched at 130 ° C. with a length of 3 times and a width of 3 times to obtain a deoxidized multilayer body (thickness;
215 μm) was prepared. The thickness of each layer of the deoxidized multilayer body after stretching is roughly as follows: non-porous layer C; 10 μm / porous layer B;
55 μm / deoxidation layer A; 60 μm / buffer layer F; 90 μm
Met.

【0078】上記に得られた脱酸素多層体の緩衝層F側
に、ナイロンとポリプロピレンの積層フィルムのポリプ
ロピレン側を貼り合わせ熱融着して、無孔質層C/多孔
質層B/脱酸素層A/緩衝層F/融着層(ポリプロピレ
ン)/バリヤ層D(ナイロン)の6層構成の片側吸収型
のフィルム状脱酸素多層体を製造した。なお、熱融着に
際し、加熱はナイロン積層フィルム側からのみ行い、熱
による多孔質層B及び脱酸素層Aの無孔化を最小限に抑
えるように加熱温度と時間を調整した。
On the buffer layer F side of the deoxygenated multilayer body obtained above, the polypropylene side of the laminated film of nylon and polypropylene was adhered and heat-sealed to obtain a non-porous layer C / porous layer B / deoxidized layer. A single-sided absorption type film-type deoxidized multilayer body having a six-layer structure of layer A / buffer layer F / fusion layer (polypropylene) / barrier layer D (nylon) was produced. In the heat fusion, heating was performed only from the nylon laminated film side, and the heating temperature and time were adjusted so as to minimize the non-pore formation of the porous layer B and the deoxidized layer A due to heat.

【0079】得られた片側吸収型脱酸素多層体の評価結
果は、それぞれ、脱酸素時間は2.3日、鉄の溶出は2
0日後で0.06ppm 、無孔質層C側からのn−ヘプタ
ンへの溶出量は1cm2 当たり0.08mgであった。
The evaluation results of the obtained single-sided absorption type deoxidized multilayer body were as follows: deoxidation time was 2.3 days and iron elution was 2 days.
After 0 day, it was 0.06 ppm, and the amount eluted from the non-porous layer C side to n-heptane was 0.08 mg per cm 2 .

【0080】実施例5 無孔質層Cに係る樹脂、多孔質層Bに係る樹脂、脱酸素
層Aに係る樹脂、及び緩衝層Fに係る樹脂に、それぞ
れ、前記直鎖状低密度ポリエチレン(三井石油化学工業
(株) ;ULTZEX 2520F)を用い、3種4層の溶融共押出
しにより、無孔質層Cに係る樹脂層;40μm /多孔質
層Bに係るフィラ−含有樹脂層;100μm /脱酸素層
Aに係る脱酸素成分含有樹脂層;100μm /緩衝層F
に係る樹脂層;800μm の4層構成の樹脂積層体(厚
さ;1040μm )を得た。続いて、この4層樹脂積層
体を100℃において縦4倍で1軸延伸し、脱酸素多層
体(厚さ;290μm )を作製した。延伸後の脱酸素多
層体の各層の厚さは、概略、無孔質層C;10μm /多
孔質層B;40μm /脱酸素層A;40μm /緩衝層
F;200μm であった。
Example 5 The linear low-density polyethylene (resin for the non-porous layer C, the porous layer B, the deoxidizing layer A, and the buffer layer F) was used. Mitsui Petrochemical Industry Co., Ltd .; ULTZEX 2520F), by melt coextrusion of 4 layers of 3 types, resin layer related to non-porous layer C: 40 μm / filler-containing resin layer related to porous layer B: 100 μm / Deoxidizing component-containing resin layer related to deoxidizing layer A; 100 μm / buffer layer F
A resin layer having a four-layer structure (thickness: 1040 μm) having a resin layer of 800 μm was obtained. Subsequently, the four-layer resin laminate was uniaxially stretched at 100 ° C. in a length of 4 to prepare a deoxidized multilayer body (thickness: 290 μm). The thickness of each layer of the deoxidized multilayer body after stretching was roughly: non-porous layer C; 10 μm / porous layer B; 40 μm / deoxidized layer A; 40 μm / buffer layer F; 200 μm.

【0081】上記に得られた脱酸素多層体の緩衝層F側
に、接着層Eとして、接着性ポリオレフィン(三井石油
化学工業(株) ;ADMER NF550 、メルトフローレート
6.2g/10min(190℃) 、融点120℃)を15μ
m の厚さに、バリヤ層Dとして、エチレン−ビニルアル
コール共重合体((株) クラレ;EVAL EP-E105、メルト
フローレート5.5g/10min (190℃)、融点16
5℃)を20μm の厚さに共押し出しして積層し、無孔
質層C/多孔質層B/脱酸素層A/緩衝層F/接着層E
/バリヤ層D(EVAL)の6層構成の片側吸収型の脱
酸素多層体を製造した。
Adhesive polyolefin (Mitsui Petrochemical Co., Ltd .; ADMER NF550, melt flow rate 6.2 g / 10 min (190 ° C.) was used as an adhesive layer E on the buffer layer F side of the deoxidized multilayer body obtained above. ), Melting point 120 ° C.) 15 μ
As a barrier layer D, ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd .; EVAL EP-E105, melt flow rate 5.5 g / 10 min (190 ° C), melting point 16)
5 ° C.) is coextruded to a thickness of 20 μm and laminated to form a non-porous layer C / porous layer B / deoxidizing layer A / buffer layer F / adhesive layer E.
A single-sided absorption type deoxidized multilayer body having a 6-layer structure of a barrier layer D (EVAL) was manufactured.

【0082】得られた片側吸収型の脱酸素多層体の評価
結果は、それぞれ、脱酸素時間は2.8日、鉄の溶出は
20日後で0.07ppm 、無孔質層C側からのn−ヘプ
タンへの溶出量は1cm2 当たり0.01mg未満であっ
た。
The evaluation results of the obtained single-sided absorption type deoxidized multilayer body were as follows: deoxidation time was 2.8 days, iron elution was 0.07 ppm after 20 days, and n from the non-porous layer C side was measured. -Elution into heptane was less than 0.01 mg / cm 2 .

【0083】実施例6 無孔質層Cに係る樹脂;前記エチレン−プロピレン共重
合体(三井石油化学工業(株) ;TAFMER S-4030 )と前
記ポリプロピレン(三菱化学(株);FX4D)との混合物
(重量混合比50:50)、多孔質層Bに係る樹脂;同
じポリプロピレン(三菱化学(株);FX4D)、脱酸素層
Aに係る樹脂;同じポリプロピレン(三菱化学(株);
FX4D)、緩衝層Fに係る樹脂;同じポリプロピレン(三
菱化学(株);FX4D)を、それぞれ、用いて、4種4層
の溶融共押出しにより、多孔質層Bに係るフィラ−含有
樹脂層;150μm /無孔質層Cに係る樹脂層;100
μm /脱酸素層Aに係る脱酸素成分含有樹脂層;150
μm /緩衝層Fに係る樹脂層;300μm の4層構成の
樹脂積層体(厚さ;700μm )を得た。次に上記の4
層樹脂積層体を130℃において縦3倍×横3倍で2軸
同軸延伸して、脱酸素多層体(厚さ;160μm )を作
製した。延伸後の脱酸素多層体の各層の厚さは、概略、
多孔質層B55μm /無孔質層C;10μm /脱酸素層
A;60μm /緩衝層F;35μm であった。
Example 6 Resin relating to non-porous layer C; ethylene-propylene copolymer (Mitsui Petrochemical Co., Ltd .; TAFMER S-4030) and polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D) Mixture (mixing ratio by weight 50:50), resin for porous layer B; same polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D), resin for deoxidizing layer A, same polypropylene (Mitsubishi Chemical Co., Ltd .;
FX4D), the resin relating to the buffer layer F; the same polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D) is used, respectively, by melt coextrusion of 4 layers of 4 types, the filler-containing resin layer relating to the porous layer B; 150 μm / resin layer related to non-porous layer C; 100
μm / deoxidizing component-containing resin layer related to deoxidizing layer A; 150
A resin layer having a four-layer structure (thickness: 700 μm) of 300 μm / resin layer relating to μm / buffer layer F was obtained. Next, above 4
The layered resin laminate was biaxially coaxially stretched at 130 ° C. with a length of 3 times and a width of 3 times to prepare a deoxidized multilayer body (thickness: 160 μm). The thickness of each layer of the deoxidized multilayer body after stretching is roughly,
Porous layer B 55 μm / non-porous layer C; 10 μm / deoxidized layer A; 60 μm / buffer layer F; 35 μm.

【0084】上記に作製した脱酸素多層体の緩衝層F側
の表面を3.6kJ/m2の放電エネルギーでコロナ放電処
理してから、この面にドライラミネート用接着剤を乾燥
後の厚さが10μm になるように塗布し、この上にナイ
ロンフィルムを積層接着して、多孔質層B/無孔質層C
/脱酸素層A/緩衝層F/接着層E/バリヤ層D(ナイ
ロン)の6層構成の片側吸収型の脱酸素多層体を製造し
た。
The surface of the deoxidizing multilayer body on the buffer layer F side prepared as described above was subjected to corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then the dry laminate adhesive was applied to this surface to a thickness after drying. To a thickness of 10 μm, and a nylon film is laminated and adhered on this to form a porous layer B / non-porous layer C.
A single-sided absorption type deoxidizing multilayer body having a 6-layer structure of / deoxidizing layer A / buffer layer F / adhesive layer E / barrier layer D (nylon) was produced.

【0085】得られた片側吸収型脱酸素多層体の評価結
果は、それぞれ、脱酸素時間は2.1日、鉄の溶出は2
0日後で0.15ppm 、無孔質層C側からのn−ヘプタ
ンへの溶出量は1cm2 当たり0.10mgであった。
The evaluation results of the obtained single-sided absorption type deoxidized multilayer bodies were as follows: deoxidation time was 2.1 days and iron elution was 2
It was 0.15 ppm after 0 days, and the amount eluted from the non-porous layer C side to n-heptane was 0.10 mg per 1 cm 2 .

【0086】実施例7 脱酸素多層体の各層を構成するために使用した樹脂は次
の通りであった。無孔質層Cに係る樹脂;前記エチレン
−プロピレン共重合体(三井石油化学工業(株) ;TAFM
ER S-4030 )と前記ポリプロピレン(三菱化学(株);
FX4D)との混合物(重量混合比50:50)、多孔質層
Bに係る樹脂;同じポリプロピレン(三菱化学(株);
FX4D)、脱酸素層Aに係る樹脂;同じポリプロピレン
(三菱化学(株);FX4D)
Example 7 The resins used to form each layer of the deoxidized multilayer body were as follows. Resin related to non-porous layer C; ethylene-propylene copolymer (Mitsui Petrochemical Industry Co., Ltd .; TAFM
ER S-4030) and the polypropylene (Mitsubishi Chemical Co., Ltd.);
FX4D) mixture (weight mixing ratio 50:50), resin relating to porous layer B; same polypropylene (Mitsubishi Chemical Co., Ltd .;
FX4D), resin related to deoxidizing layer A; same polypropylene (Mitsubishi Chemical Corporation; FX4D)

【0087】まず多孔質層Bに係るフィラ−含有樹脂組
成物単層のフィルムを作製し、このフィルムに無孔質層
Cに係る樹脂を押し出しコーティングして積層し、無孔
質層Cに係る樹脂層(100μm )/多孔質層Bに係る
フィラ−含有樹脂層(150μm )の2層構成のフィル
ムを得た。得られた2層フィルム2枚の間に脱酸素層A
に係る脱酸素成分含有樹脂組成物を溶融押し出しして積
層し、無孔質層Cに係る樹脂層;100μm /多孔質層
Bに係るフィラ−含有樹脂層;150μm /脱酸素層A
に係る脱酸素成分含有樹脂層;150μm /多孔質層B
に係るフィラ−含有樹脂層;150μm /無孔質層Cに
係る樹脂層;100μm の5層構成の樹脂積層体(厚
さ;650μm )を作製した。
First, a film of the filler-containing resin composition single layer relating to the porous layer B was prepared, and the resin relating to the non-porous layer C was extrusion-coated on this film and laminated to form the non-porous layer C. A film having a two-layer structure of a resin layer (100 μm) / a filler-containing resin layer (150 μm) related to the porous layer B was obtained. The deoxidizing layer A is formed between the two obtained two-layer films.
The deoxidizing component-containing resin composition according to (1) is melt-extruded and laminated, and the resin layer according to the non-porous layer C is 100 μm / the filler-containing resin layer according to the porous layer B is 150 μm / the deoxidizing layer A.
Deoxidizing component-containing resin layer according to the present invention; 150 μm / porous layer B
A resin laminate (thickness: 650 μm) having a five-layer structure of a filler-containing resin layer according to (1), a resin layer related to 150 μm / a non-porous layer C; and 100 μm was prepared.

【0088】次に上記基材の5層樹脂積層体を130℃
において縦3倍×横3倍で2軸同軸延伸して、両側吸収
型のフィルム状脱酸素多層体(厚さ;190μm )を製
造した。延伸後の脱酸素多層体の各層の厚さは、概略、
無孔質層C;10μm /多孔質層B;55μm /脱酸素
層A;60μm /多孔質層B;55μm /無孔質層C;
10μm であった。
Next, the five-layer resin laminate of the above-mentioned substrate was placed at 130 ° C.
Was biaxially stretched at a length of 3 times and a width of 3 times to prepare a double-sided absorption type deoxidized multilayer body (thickness: 190 μm). The thickness of each layer of the deoxidized multilayer body after stretching is roughly,
Non-porous layer C; 10 μm / porous layer B; 55 μm / deoxidized layer A; 60 μm / porous layer B; 55 μm / non-porous layer C;
It was 10 μm.

【0089】得られた両側吸収型脱酸素多層体の評価結
果は、それぞれ、脱酸素時間は1.0日、鉄の溶出は2
0日後で0.13ppm 、片側分の無孔質層C側からのn
−ヘプタンへの溶出量は1cm2 当たり0.07mgであっ
た。
The evaluation results of the obtained bilateral absorption type deoxidized multilayer body were as follows: deoxidation time was 1.0 day, and iron elution was 2 days.
0.13 ppm after 0 days, n from one side of the non-porous layer C side
-The amount eluted into heptane was 0.07 mg / cm 2 .

【0090】実施例8 無孔質層Cに係る樹脂、多孔質Bに係る係る樹脂、及び
脱酸素層Aに係る樹脂に、それぞれ、前記直鎖状低密度
ポリエチレン(三井石油化学工業(株) ;ULTZEX 2520
F)を用い、3種5層の溶融共押出しにより、無孔質層
Cに係る樹脂層;40μm /多孔質層Bに係るフィラ−
含有樹脂層;100μm /脱酸素層Aに係る脱酸素成分
含有樹脂層;100μm /多孔質層Bに係るフィラ−含
有樹脂層;100μm /無孔質層Cに係る樹脂層;40
μm の5層構成の樹脂積層体(厚さ;380μm )を得
た。
Example 8 The linear low density polyethylene (Mitsui Petrochemical Industry Co., Ltd.) was used for the resin for the non-porous layer C, the resin for the porous B, and the resin for the deoxidizing layer A, respectively. ; ULTZEX 2520
Resin layer of non-porous layer C: 40 μm / filler of porous layer B by melt coextrusion of 5 layers of 3 types using F);
Containing resin layer: 100 μm / deoxidizing component-containing resin layer relating to deoxidizing layer A; 100 μm / filler-containing resin layer relating to porous layer B; 100 μm / resin layer relating to non-porous layer C; 40
A resin laminate (thickness: 380 μm) having a 5-layer structure of μm was obtained.

【0091】続いて、上記基材の5層樹脂積層体を10
0℃において縦4倍で1軸延伸し、両側吸収型のフィル
ム状脱酸素多層体(厚さ;140μm )を製造した。延
伸後の脱酸素多層体の各層の厚さは、概略、無孔質層
C;10μm /多孔質層B40μm /脱酸素層A;40
μm /多孔質層B40μm /無孔質層C;10μm であ
った。
Subsequently, the five-layer resin laminate of the above-mentioned base material was formed into 10 layers.
The film was uniaxially stretched at a temperature of 4 times at 0 ° C. to prepare a double-sided absorption type deoxidized multilayer film (thickness: 140 μm). The thickness of each layer of the deoxidized multilayer body after stretching is roughly as follows: non-porous layer C; 10 μm / porous layer B 40 μm / deoxidized layer A; 40
μm / porous layer B 40 μm / non-porous layer C: 10 μm.

【0092】得られた両側吸収型脱酸素多層体の評価結
果は、それぞれ、脱酸素時間は1.3日、鉄の溶出は2
0日後で0.13ppm 、片側分の無孔質層C側からのn
−ヘプタンへの溶出量は1cm2 当たり0.01mg未満で
あった。
The evaluation results of the obtained bilateral absorption type deoxidized multilayer body were as follows: deoxidation time was 1.3 days, and iron elution was 2
0.13 ppm after 0 days, n from one side of the non-porous layer C side
-Elution into heptane was less than 0.01 mg / cm 2 .

【0093】比較例1 酸素透過性層Bに係る樹脂、脱酸素層A及び緩衝層Fに
係る樹脂に、それぞれ、前記ポリプロピレン(三菱化学
(株);FX4D)を用い、溶融共押出しにより、多孔質層
Bに係るフィラ−含有樹脂層;150μm /脱酸素層A
に係る脱酸素成分含有樹脂層;150μm /緩衝層Fに
係る樹脂層;300μm の3層構成の樹脂積層体(厚
さ;600μm )を得た。次に得られた3層樹脂積層体
を130℃において縦3倍×横3倍で2軸同時延伸し、
無孔質の酸素透過性層Cを備えない脱酸素多層体(厚
さ;150μm )を作製した。延伸後の脱酸素多層体の
各層の厚さは、概略、多孔質層B;55μm /脱酸素層
A;60μm /緩衝層F;35μm であった。
Comparative Example 1 Polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D) was used as the resin for the oxygen permeable layer B and the resin for the deoxidizing layer A and the buffer layer F, respectively, by melt coextrusion to obtain a porous film. Filler-containing resin layer relating to the quality layer B; 150 μm / deoxidation layer A
A resin layer having a three-layer structure (thickness: 600 μm) of 150 μm / resin layer related to buffer layer F; 300 μm was obtained. Next, the obtained three-layer resin laminate is simultaneously biaxially stretched at a temperature of 130 ° C. with a length of 3 times and a width of 3 times,
A deoxidized multilayer body (thickness: 150 μm) having no nonporous oxygen permeable layer C was prepared. The thickness of each layer of the deoxidized multilayer body after stretching was roughly: porous layer B; 55 μm / deoxidized layer A; 60 μm / buffer layer F; 35 μm.

【0094】上記の脱酸素多層体の緩衝層F側の表面を
3.6kJ/m2の放電エネルギーでコロナ放電処理してか
ら、この面にドライラミネート用接着剤を乾燥後の厚さ
が10μm になるように塗布し、この上にナイロンフィ
ルムを積層接着して、多孔質層B/脱酸素層A/緩衝層
F/接着層E/バリヤ層D(ナイロン)の5層構成の片
側吸収型の脱酸素多層体を製造した。
The surface of the deoxidizing multilayer body on the buffer layer F side was subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then a dry laminating adhesive having a thickness of 10 μm was dried on this surface. And then a nylon film is laminated and adhered onto this to form a one-sided absorption type having a five-layer structure of porous layer B / deoxidizing layer A / buffer layer F / adhesive layer E / barrier layer D (nylon). Was prepared.

【0095】無孔質の酸素透過性層Cを備えない片側吸
収型脱酸素多層体の評価結果は、それぞれ、脱酸素時間
は0.6日、鉄の溶出は20日後で2ppm 、また予めエ
タノールに浸漬した場合は26ppm であり、多孔質層B
側からのn−ヘプタンへの溶出量は1cm2 当たり0.0
1mg未満であった。
The evaluation results of the single-sided absorption type deoxidizing multilayer body without the non-porous oxygen permeable layer C were as follows: deoxidation time was 0.6 days, iron elution was 2 ppm after 20 days, and ethanol was previously prepared. It is 26 ppm when immersed in the porous layer B
Elution amount from the side to the n- heptane 1 cm 2 per 0.0
It was less than 1 mg.

【0096】比較例2 無孔質層Cに係る樹脂;前記エチレン−プロピレン共重
合体(三井石油化学工業(株) ;TAFMER S-4030 )と前
記ポリプロピレン(三菱化学(株);FX4D)との混合物
(重量混合比50:50)、脱酸素層Aに係る樹脂及び
緩衝層Fに係る樹脂に同ポリプロピレン(三菱化学
(株);FX4D)を用い、溶融共押出しにより、無孔質層
Cに係る樹脂層;100μm /脱酸素層Aに係る脱酸素
成分含有樹脂層;150μm /緩衝層Fに係る樹脂層;
300μm の3層構成の樹脂積層体(厚さ;550μm
)を得た。次に得られた3層樹脂積層体を130℃に
おいて縦3倍×横3倍で2軸同時延伸し、延伸用基材の
脱酸素多層体(厚さ;105μm)を作製した。延伸後
の脱酸素多層体の各層の厚さは、概略、無孔質層C;1
0μm /脱酸素層A;60μm /緩衝層F;35μm で
あった。上記の脱酸素多層体の緩衝層F面に、比較例1
と同様に、表面処理後、ドライラミネート用接着剤(厚
さ10μm )を介してナイロンフィルムを積層接着
し、、無孔質層C/脱酸素層A/緩衝層F/接着層E/
バリヤ層D(ナイロン)の5層構成の片側吸収型の脱酸
素多層体を製造した。
Comparative Example 2 Resin relating to non-porous layer C; ethylene-propylene copolymer (Mitsui Petrochemical Co., Ltd .; TAFMER S-4030) and polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D) Polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D) was used for the mixture (weight mixing ratio 50:50), the resin for the deoxidizing layer A and the resin for the buffer layer F, and the non-porous layer C was formed by melt coextrusion. Such a resin layer; 100 μm / a resin layer containing a deoxidizing component related to the deoxidizing layer A; 150 μm / a resin layer related to the buffer layer F;
Three-layer resin laminate of 300 μm (thickness: 550 μm
) Got. Next, the obtained three-layer resin laminate was biaxially simultaneously stretched at 130 ° C. with a length of 3 times and a width of 3 times to prepare a deoxidizing multilayer body (thickness: 105 μm) of a stretching base material. The thickness of each layer of the deoxidized multilayer body after stretching is roughly the same as that of the non-porous layer C; 1
0 μm / deoxidation layer A; 60 μm / buffer layer F; 35 μm. On the buffer layer F side of the above deoxidized multilayer body, Comparative Example 1
Similarly to the above, after the surface treatment, a nylon film is laminated and adhered via a dry laminating adhesive (thickness 10 μm), and a non-porous layer C / deoxidation layer A / buffer layer F / adhesion layer E /
A one-side absorption type deoxidizing multilayer body having a five-layer structure of barrier layer D (nylon) was produced.

【0097】多孔質の酸素透過性層Bを備えない片側吸
収型脱酸素多層体の評価結果は、それぞれ、脱酸素時間
は1.9日、鉄の溶出は20日後で1.1ppm 、無孔質
層C側からのn−ヘプタンへの溶出量は1cm2 当たり
0.09mgであった。また脱酸素多層体の無孔質層C側
表面を光学顕微鏡で観察したところ、無孔質層を貫通し
た鉄粉がわずかながら認められた。
The evaluation results of the single-sided absorption type deoxidizing multilayer body without the porous oxygen permeable layer B were as follows: deoxidation time was 1.9 days, iron elution was 1.1 ppm after 20 days, non-porous The amount eluted from the stratum C side to n-heptane was 0.09 mg / cm 2 . When the surface of the deoxidized multilayer body on the non-porous layer C side was observed with an optical microscope, a small amount of iron powder penetrating the non-porous layer was observed.

【0098】比較例3 前記エチレン−プロピレン共重合体(三井石油化学工業
(株) ;TAFMER S-4030 )と前記ポリプロピレン(三菱
化学(株);FX4D)との混合物(重量混合比50:5
0)、同ポリプロピレン(三菱化学(株);FX4D)を用
いたフィラー含有樹脂組成物ペレットII、同ポリプロ
ピレン(三菱化学(株);FX4D)を用いた脱酸素成分含
有樹脂組成物ペレットI、及び同ポリプロピレン(三菱
化学(株);FX4D)を溶融共押し出しして、無孔質の樹
脂層;25μm /フィラー含有樹脂層;20μm /脱酸
素成分含有樹脂層;150μm /緩衝層F;200μm
の4層構成の樹脂積層体(厚さ;395μm )を得た。
次に得られた4層樹脂積層体を延伸することなくそのま
ま緩衝層F面に、比較例1と同様に、表面処理後、ドラ
イラミネート用接着剤(厚さ10μm )を介してナイロ
ンフィルムを積層接着し、無孔質層/脱酸素成分含有樹
脂層/脱酸素成分含有樹脂層/緩衝層/接着層/バリヤ
層(ナイロン)の6層構成の片面吸収型の脱酸素多層体
を製造した。
Comparative Example 3 A mixture (weight mixing ratio 50: 5) of the ethylene-propylene copolymer (Mitsui Petrochemical Co., Ltd .; TAFMER S-4030) and the polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D).
0), a filler-containing resin composition pellet II using the same polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D), a deoxidizing component-containing resin composition pellet I using the polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D), and The same polypropylene (Mitsubishi Chemical Co., Ltd .; FX4D) was melt-extruded to form a non-porous resin layer; 25 μm / filler-containing resin layer; 20 μm / deoxidizing component-containing resin layer; 150 μm / buffer layer F; 200 μm
A four-layer resin laminate (thickness: 395 μm) was obtained.
Then, the obtained four-layer resin laminate was directly stretched on the surface of the buffer layer F without stretching, as in Comparative Example 1, and after the surface treatment, a nylon film was laminated via an adhesive for dry lamination (thickness: 10 μm). Adhesion was performed to produce a single-sided absorption type oxygen absorbing multilayer body having a six-layer structure of non-porous layer / deoxidizing component-containing resin layer / deoxidizing component-containing resin layer / buffer layer / adhesive layer / barrier layer (nylon).

【0099】上記に得られた片側吸収型脱酸素多層体の
評価結果は、それぞれ、脱酸素時間は40日、鉄の溶出
は20日後で0.03ppm 、無孔質層側からのn−ヘプ
タンへの溶出量は1cm2 当たり0.12mgであった。
The evaluation results of the one-side absorption type deoxidized multilayer body obtained above were as follows: deoxidation time was 40 days, iron elution was 0.03 ppm after 20 days, and n-heptane from the non-porous layer side was obtained. The amount eluted into the column was 0.12 mg / cm 2 .

【0100】比較例4 多孔質層Bに係る樹脂、脱酸素層Aに係る樹脂及び緩衝
層Fに係る樹脂に同ポリプロピレン(三菱化学(株);
FX4D)を用い、溶融共押出しにより、多孔質層Bに係る
フィラー含有樹脂層;150μm /脱酸素層Aに係る脱
酸素成分含有樹脂層;150μm /緩衝層Fに係る樹脂
層;300μm の3層構成の樹脂積層体(厚さ;600
μm )を得た。次に得られた3層樹脂積層体を130℃
において縦3倍×横3倍で2軸同時延伸し、延伸用基材
の脱酸素多層体(厚さ;150μm )を作製した。延伸
後の多層体の各層の厚さは、概略、多孔質層B;55μ
m/脱酸素層A;60μm /緩衝層F;35μm であっ
た。上記3層の多層体の緩衝層F面に、比較例1と同様
に、表面処理後、ドライラミネート用接着剤(厚さ10
μm )を介してナイロンフィルムを積層接着し、多孔質
層B/脱酸素層A/緩衝層F/接着層E/バリヤ層D
(ナイロン)の5層構成とした。
Comparative Example 4 The same polypropylene was used as the resin for the porous layer B, the resin for the deoxidizing layer A and the resin for the buffer layer F (Mitsubishi Chemical Co .;
FX4D) by melt coextrusion, the filler-containing resin layer relating to the porous layer B; 150 μm / the deoxidizing component-containing resin layer relating to the deoxidizing layer A; 150 μm / the resin layer relating to the buffer layer F; 300 μm, three layers Structure of resin laminate (thickness: 600
μm) was obtained. Next, the obtained three-layer resin laminate is heated to 130 ° C.
At the same time, the film was simultaneously biaxially stretched 3 times in the longitudinal direction and 3 times in the lateral direction to prepare a deoxidized multilayer body (thickness: 150 μm) as a stretching base material. The thickness of each layer of the multilayer body after stretching is about 55 μm for the porous layer B;
m / deoxidized layer A: 60 μm / buffer layer F: 35 μm. On the surface of the buffer layer F of the above three-layered multilayer body, as in Comparative Example 1, after surface treatment, an adhesive for dry lamination (thickness 10
Nylon films are laminated and adhered to each other to form a porous layer B / deoxidizing layer A / buffer layer F / adhesive layer E / barrier layer D.
(Nylon) has a five-layer structure.

【0101】さらに上記の5層構成の多層体の多孔質層
B側に、前記エチレン−プロピレン共重合体(三井石油
化学工業(株) ;TAFMER S-4030 )と前記ポリプロピレ
ン(三菱化学(株);FX4D)との混合物(重量混合比5
0:50)を用い、押し出しコーティングによって、無
孔薄膜の樹脂層Cを厚さ10μm に追加形成しようと試
みた。しかしながら、多孔質層Bや脱酸素層Aの微細孔
を損なわないように加熱しようとすると熱量が不足し、
また多孔質層B面のわずかな凹凸のためか、厚さ10μ
m では融着できず、結局、無孔薄膜の樹脂層Cを積層す
ることができなかった。
Further, on the side of the porous layer B of the above-mentioned 5-layered multilayer body, the ethylene-propylene copolymer (Mitsui Petrochemical Industry Co., Ltd .; TAFMER S-4030) and the polypropylene (Mitsubishi Chemical Co., Ltd.) ; Mixture with FX4D (weight mixing ratio 5
At 0:50), an attempt was made to additionally form a resin layer C of a non-porous thin film with a thickness of 10 μm by extrusion coating. However, if an attempt is made to heat the porous layer B or the deoxidizing layer A so as not to damage the fine pores, the amount of heat will be insufficient,
Also, the thickness of 10 μm may be due to slight unevenness on the surface of the porous layer B.
In the case of m, fusion could not be performed, and consequently, the resin layer C of a non-porous thin film could not be laminated.

【0102】[0102]

【発明の効果】本発明のフィルム状又はシート状の脱酸
素多層体は、脱酸素速度に優れ、かつ脱酸素成分の溶出
汚染の防止性を持ち、包装材料としても、優れた新規な
脱酸素体である。したがって、本発明の脱酸素多層体
は、特に、従来の脱酸素剤の主な適用対象であった液体
成分の少ない系だけでなく、各種の液体成分が多量に含
まれる系に対しても適用可能であって、食品、医薬品や
金属製品などの、酸素の影響を受けて変質し易い各種製
品の酸化を防止する目的を持つ容器および包装体を構成
するために用いることができる。
INDUSTRIAL APPLICABILITY The film-like or sheet-like deoxidizing multilayer body of the present invention has an excellent deoxidizing rate, has a property of preventing elution and contamination of deoxidizing components, and is a novel deoxidizing material which is excellent as a packaging material. It is the body. Therefore, the deoxidized multilayer body of the present invention is particularly applicable not only to a system with a small amount of liquid components, which was the main application target of the conventional oxygen absorber, but also to a system containing a large amount of various liquid components. It can be used to form containers and packages having the purpose of preventing the oxidation of various products that are easily deteriorated under the influence of oxygen, such as foods, medicines and metal products.

【図面の簡単な説明】[Brief description of drawings]

【図1】 片側吸収型の脱酸素多層体の層構成例(無孔
質な酸素透過性層Cを最外層とする場合)の断面図
FIG. 1 is a cross-sectional view of a layer structure example of a one-side absorption type deoxidizing multilayer body (when the nonporous oxygen-permeable layer C is the outermost layer).

【図2】 片側吸収型の脱酸素多層体の層構成例(無孔
質な酸素透過性層Cが多孔質の酸素透過性層Bと脱酸素
層Aとの中間にある場合)の断面図
FIG. 2 is a cross-sectional view of a layer configuration example of a one-side absorption type deoxidizing multilayer body (in the case where a nonporous oxygen permeable layer C is between a porous oxygen permeable layer B and a deoxidizing layer A).

【図3】 片側吸収型の脱酸素多層体の層構成例(脱酸
素層Aのバリヤ層D側に緩衝層F及び接着層Eを備える
場合)の断面図
FIG. 3 is a cross-sectional view of a layer configuration example of a one-side absorption type deoxidizing multilayer body (in the case where a buffer layer F and an adhesive layer E are provided on the barrier layer D side of the deoxidizing layer A).

【図4】 両側吸収型の脱酸素多層体の層構成例の断面
FIG. 4 is a cross-sectional view of a layer configuration example of a double-sided absorption type deoxidizing multilayer body.

【図5】 片側吸収型のフィルム状脱酸素多層体をトッ
プシールフィルムに使用した包装容器の断面図
FIG. 5 is a cross-sectional view of a packaging container using a one-side absorption type film-shaped deoxidizing multilayer body as a top seal film.

【図6】片側吸収型のフィルム状脱酸素多層体を片面に
使用した包装袋の断面図
FIG. 6 is a cross-sectional view of a packaging bag in which a one-sided absorption type deoxidized multilayer film is used on one surface.

【図7】両側吸収型のフィルム状脱酸素多層体を内袋に
使用した包装袋の断面図
FIG. 7 is a cross-sectional view of a packaging bag in which a double-sided absorption type film-shaped deoxidizing multilayer body is used as an inner bag.

【図8】両側吸収型のフィルム状脱酸素多層体を中仕切
りに使用した包装袋の断面図
FIG. 8 is a sectional view of a packaging bag in which a double-sided absorption type film-shaped deoxidizing multilayer body is used as a partition.

【符号の説明】[Explanation of symbols]

1 無孔質な酸素透過性層C 2 多孔質な酸素透過性層B 3 多孔質な脱酸素層A 4 バリヤ層D 5 緩衝層F 6 接着層E(接着剤、接着用樹脂など) 10 片側吸収型のフィルム状脱酸素多層体 20 両側吸収型のフィルム状脱酸素多層体 30 内容物(固体、液体、固体と液体など) 40 バリヤ性のある容器本体 50 脱酸素機能のない一般のバリヤフィルムまたはバ
リヤ袋
1 Non-porous oxygen permeable layer C 2 Porous oxygen permeable layer B 3 Porous deoxidizing layer A 4 Barrier layer D 5 Buffer layer F 6 Adhesive layer E (adhesive, adhesive resin, etc.) 10 One side Absorption-type film deoxidation multilayer body 20 Double-sided absorption-type film deoxidation multilayer body 30 Contents (solid, liquid, solid and liquid, etc.) 40 Barrier container body 50 General barrier film without deoxidation function Or barrier bag

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B65D 81/24 B65D 81/24 D // B29K 105:04 B29L 9:00 (72)発明者 西沢 千春 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所 (72)発明者 高橋 秀之 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所 (72)発明者 江藤 晴明 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京工場 (72)発明者 木村 紀之 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display area B65D 81/24 B65D 81/24 D // B29K 105: 04 B29L 9:00 (72) Inventor Chiharu Nishizawa Tokyo 6-1, 1-1 Shinjuku, Katsushika-ku, Tokyo Research Laboratory, Mitsubishi Gas Chemical Co., Ltd. (72) Inventor Hideyuki Takahashi 6-1-1, Shinjuku, Katsushika-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. (72) Inventor Haruaki Eto 6-1, 1-1 Shinjuku, Katsushika-ku, Tokyo Tokyo Factory, Mitsubishi Gas Chemical Co., Ltd. (72) Inventor Noriyuki Kimura 6-1-1, Shinjuku, Katsushika-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. Tokyo Research Laboratory

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 複数の樹脂の層が互いに積層され脱酸素
機能を有するように構成されたフィルム状又はシート状
の脱酸素多層体において、少なくとも脱酸素成分を分散
させた樹脂組成物が連続微多孔質化されてなる脱酸素層
Aと、無孔薄膜の熱可塑性樹脂からなる酸素透過性層C
と、粒状の難水溶性フィラーを分散させた樹脂組成物が
連続微多孔質化されてなる酸素透過性層Bとを備え、前
記脱酸素層Aの少なくとも一面に前記酸素透過性層Cと
前記酸素透過性層Bとがそれぞれ1層以上組み合わされ
て積層され、かつ、隣接する各層が互いに熱融着され、
酸素吸収面が形成されていることを特徴とする脱酸素多
層体。
1. A film-like or sheet-like deoxidizing multilayer body in which a plurality of resin layers are laminated on each other so as to have a deoxidizing function, and at least a resin composition in which a deoxidizing component is dispersed is continuously finely divided. Deoxidized layer A made porous and oxygen permeable layer C made of non-porous thin film thermoplastic resin
And an oxygen permeable layer B obtained by continuously microporous a resin composition in which a granular poorly water-soluble filler is dispersed, and the oxygen permeable layer C and the oxygen permeable layer C on at least one surface of the deoxidation layer A. The oxygen permeable layer B and one or more layers are respectively combined and laminated, and adjacent layers are heat-sealed to each other,
A deoxidized multilayer body having an oxygen absorbing surface.
【請求項2】 前記脱酸素成分が主剤として鉄粉を含有
する請求項1記載の脱酸素多層体。
2. The deoxidized multilayer body according to claim 1, wherein the deoxidized component contains iron powder as a main agent.
【請求項3】 前記酸素透過性層Cの酸素透過率が、1
×10-11 〜6×10-9[cm3 /cm2 ・sec ・Pa]であ
る請求項1記載の脱酸素多層体。
3. The oxygen permeable layer C having an oxygen permeability of 1
The deoxidized multilayer body according to claim 1, wherein the density is from 10 -11 to 6 10 -9 [cm 3 / cm 2 · sec · Pa].
【請求項4】 前記脱酸素多層体の酸素透過性層Cが存
在する側をn−ヘプタンに浸漬した際に、脱酸素多層体
からの溶出量が表面積1cm2 当たり0.3mg以下である
請求項1記載の脱酸素多層体。
4. When the oxygen-permeable layer C of the deoxidized multilayer body is immersed in n-heptane, the amount of elution from the deoxygenated multilayer body is 0.3 mg or less per 1 cm 2 of surface area. Item 2. The deoxidized multilayer body according to Item 1.
【請求項5】 前記脱酸素層Aの片面に酸素透過性層C
と酸素透過性層Bとがそれぞれ1層以上組み合わされて
積層され、かつ、脱酸素層Aの他面にバリア層Dが積層
されてなり、前記脱酸素層Aの片側から酸素が吸収され
るように構成された請求項1記載の脱酸素多層体。
5. An oxygen permeable layer C on one surface of the deoxidizing layer A.
And at least one oxygen-permeable layer B are laminated in combination, and the barrier layer D is laminated on the other surface of the deoxidizing layer A, so that oxygen is absorbed from one side of the deoxidizing layer A. The deoxidized multilayer body according to claim 1, configured as described above.
【請求項6】 前記脱酸素層Aの両面に、それぞれ、酸
素透過性層Cと酸素透過性層Bとがそれぞれ1層以上組
み合わされて積層され、前記脱酸素層Aの両側から酸素
が吸収されるように構成された請求項1記載の脱酸素多
層体。
6. An oxygen-permeable layer C and an oxygen-permeable layer B are laminated on both surfaces of the deoxidizing layer A in combination of one or more layers, respectively, and oxygen is absorbed from both sides of the deoxidizing layer A. The deoxidizing multilayer body according to claim 1, which is configured to be
【請求項7】 前記脱酸素層Aの少なくとも一面に、脱
酸素層Aから順に酸素透過性層Cと酸素透過性層Bが積
層されている請求項1記載の脱酸素脱酸素体。
7. The deoxidized oxygen scavenger according to claim 1, wherein an oxygen permeable layer C and an oxygen permeable layer B are laminated in order from the deoxidized layer A on at least one surface of the deoxidized layer A.
【請求項8】 前記脱酸素層Aの少なくとも一面に、脱
酸素層Aから順に酸素透過性層Bと酸素透過性層Cが積
層されている請求項1記載の脱酸素脱酸素体。
8. The deoxidized oxygen scavenger according to claim 1, wherein an oxygen permeable layer B and an oxygen permeable layer C are laminated in order from the deoxidized layer A on at least one surface of the deoxidized layer A.
【請求項9】 複数の樹脂の層が互いに積層され脱酸素
機能を有するように構成されたフィルム状又はシート状
の脱酸素多層体の製造方法において、少なくとも脱酸素
成分を分散させた樹脂組成物の層aと、酸素透過性を有
する熱可塑性樹脂の層cと、粒状の難水溶性フィラーを
分散させた樹脂組成物の層bとを備え、前記層aの少な
くとも一面に前記層cと前記層bとがそれぞれ1層以上
組み合わされて積層され、かつ、隣接する各層が互いに
熱融着されてなる樹脂積層体の基材を延伸する工程を備
え、この延伸工程により、樹脂積層体の基材を薄膜状に
するとともに、前記層cを無孔な状態で薄膜化して酸素
透過性層Cを形成しながら、前記層aを連続微多孔質化
して脱酸素層Aと前記層bを連続微多孔質化して酸素透
過性層Bを同時に形成することを特徴とする脱酸素多層
体の製造方法。
9. A method for producing a film-like or sheet-like deoxidizing multilayer body in which a plurality of resin layers are laminated on each other so as to have a deoxidizing function, and at least a deoxidizing component is dispersed in the resin composition. Layer a, a layer c of a thermoplastic resin having oxygen permeability, and a layer b of a resin composition in which a granular poorly water-soluble filler is dispersed, and the layer c and the layer a on at least one surface of the layer a. The method includes a step of stretching a base material of a resin laminated body in which at least one layer b is combined and laminated, and adjacent layers are heat-sealed to each other. The material is formed into a thin film and the layer c is thinned in a non-porous state to form the oxygen permeable layer C, while the layer a is continuously microporous to continuously connect the deoxidized layer A and the layer b. Simultaneously forms the oxygen permeable layer B by making it microporous. A method for producing a deoxidized multilayer body, comprising:
【請求項10】 前記樹脂積層体の基材を1軸方向又は
2軸方向に面積換算で2〜20倍に延伸する請求項9記
載の脱酸素多層体の製造方法。
10. The method for producing a deoxidized multilayer body according to claim 9, wherein the base material of the resin laminate is stretched in a uniaxial direction or a biaxial direction by 2 to 20 times in area conversion.
【請求項11】 前記樹脂積層体の基材が前記層aの一
面に前記層cと前記層bとがそれぞれ1層以上組み合わ
されて積層され、かつ、前記層aの他面に延伸後にバリ
ア層Dとなる熱可塑性樹脂の層が積層された樹脂積層体
である請求項9記載の脱酸素多層体の製造方法。
11. A base material of the resin laminate is laminated on one surface of the layer a by combining one or more layers of the layer c and the layer b, and is stretched on the other surface of the layer a to form a barrier. The method for producing a deoxidized multilayer body according to claim 9, which is a resin laminate in which thermoplastic resin layers to be the layer D are laminated.
【請求項12】 前記層aの一面に前記層cと前記層b
とがそれぞれ1層以上組み合わされて積層された樹脂積
層体の基材を延伸したのち、さらにこの基材の前記層a
が微多孔質化されて形成された脱酸素層Aの他面にバリ
ア層Dを積層する請求項9記載の脱酸素多層体の製造方
法。
12. The layer c and the layer b are provided on one surface of the layer a.
After stretching the base material of the resin laminated body in which one or more layers are combined and laminated, and further, the layer a of the base material is further stretched.
10. The method for producing a deoxidized multilayer body according to claim 9, wherein the barrier layer D is laminated on the other surface of the deoxidized layer A formed by microporous.
【請求項13】 前記樹脂積層体の基材が前記層aの両
面に前記層cと前記層bとがそれぞれ1層以上組み合わ
されて積層され、かつ、前記層aの他面に延伸後にバリ
ア層Dとなる熱可塑性樹脂の層が積層された樹脂積層体
である請求項9記載の脱酸素多層体の製造方法。
13. A base material of the resin laminate is laminated on both surfaces of the layer a by combining one or more layers c and b, and a barrier is formed on the other surface of the layer a after stretching. The method for producing a deoxidized multilayer body according to claim 9, which is a resin laminate in which thermoplastic resin layers to be the layer D are laminated.
JP34778696A 1995-12-27 1996-12-26 Film-like or sheet-like deoxidizing multilayer body and its manufacture Pending JPH09234811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34778696A JPH09234811A (en) 1995-12-27 1996-12-26 Film-like or sheet-like deoxidizing multilayer body and its manufacture

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7-340669 1995-12-27
JP34067095 1995-12-27
JP7-340670 1995-12-27
JP34066995 1995-12-27
JP34778696A JPH09234811A (en) 1995-12-27 1996-12-26 Film-like or sheet-like deoxidizing multilayer body and its manufacture

Publications (1)

Publication Number Publication Date
JPH09234811A true JPH09234811A (en) 1997-09-09

Family

ID=27340976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34778696A Pending JPH09234811A (en) 1995-12-27 1996-12-26 Film-like or sheet-like deoxidizing multilayer body and its manufacture

Country Status (1)

Country Link
JP (1) JPH09234811A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264279A (en) * 1997-03-25 1998-10-06 Mitsubishi Gas Chem Co Inc One side absorptive deoxidation multilayered body and its manufacture
JP2002144507A (en) * 2000-08-28 2002-05-21 Mitsubishi Gas Chem Co Inc Deoxidation multilayer laminate
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11970682B2 (en) 2022-05-03 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264279A (en) * 1997-03-25 1998-10-06 Mitsubishi Gas Chem Co Inc One side absorptive deoxidation multilayered body and its manufacture
JP2002144507A (en) * 2000-08-28 2002-05-21 Mitsubishi Gas Chem Co Inc Deoxidation multilayer laminate
JP4548566B2 (en) * 2000-08-28 2010-09-22 三菱瓦斯化学株式会社 Deoxygenated multilayer body
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11667874B2 (en) 2014-10-29 2023-06-06 Corning Incorporated Perfusion bioreactor platform
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11970682B2 (en) 2022-05-03 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange

Similar Documents

Publication Publication Date Title
KR100274695B1 (en) Oxygen-absorbing multi-layer film and method for preparing same
JP2967740B2 (en) Method for producing oxygen-absorbing multilayer film
TWI720953B (en) Laminated body for blister packaging, blister packaging using the same, and manufacturing method of blister packaging packaging body and laminated body
JP6573607B2 (en) Easy-cut absorbable laminate and packaging bag using the same
JPS621824B2 (en)
KR20180006962A (en) Laminate for blister pack and blister pack using the same
US6117538A (en) Deoxidizing multilayered body and method or manufacturing the same
JPH09234811A (en) Film-like or sheet-like deoxidizing multilayer body and its manufacture
TW201609501A (en) Laminate for use in blister pack, blister pack using same, and blister pack packaging
US20150217542A1 (en) Medicine packaging sheet and medicine package
WO2019239871A1 (en) Lid for blister pack
JP3856056B2 (en) Easy-to-open deoxidized multilayer body
JPH07156970A (en) Laminated body, and package body constituted therewith
JP4513253B2 (en) Removable lid
CN111278745B (en) Lid material for blister package
JPH10264279A (en) One side absorptive deoxidation multilayered body and its manufacture
JP3019153B2 (en) Oxygen absorbing multilayer film
JP4548566B2 (en) Deoxygenated multilayer body
JP3943990B2 (en) Package with atmosphere improving tape and method for producing package with atmosphere improving tape
US20030180519A1 (en) Multilayered deoxidizer and production process
JP4411646B2 (en) Laminated packaging material
JP4433111B2 (en) Method for producing stretched deoxygenated multilayer body
JP2017213786A (en) Oxygen absorbing film
TW202000462A (en) Readily peelable absorption film
JP2002103530A (en) Deoxygenating multilayered material

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050112

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050126

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

A131 Notification of reasons for refusal

Effective date: 20050413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050803