JP4411646B2 - Laminated packaging material - Google Patents

Laminated packaging material Download PDF

Info

Publication number
JP4411646B2
JP4411646B2 JP2000188723A JP2000188723A JP4411646B2 JP 4411646 B2 JP4411646 B2 JP 4411646B2 JP 2000188723 A JP2000188723 A JP 2000188723A JP 2000188723 A JP2000188723 A JP 2000188723A JP 4411646 B2 JP4411646 B2 JP 4411646B2
Authority
JP
Japan
Prior art keywords
layer
oxygen
packaging material
laminated packaging
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000188723A
Other languages
Japanese (ja)
Other versions
JP2002001888A (en
Inventor
泰宏 小田
文雄 生島
康代 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2000188723A priority Critical patent/JP4411646B2/en
Publication of JP2002001888A publication Critical patent/JP2002001888A/en
Application granted granted Critical
Publication of JP4411646B2 publication Critical patent/JP4411646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、引き裂き性に優れた積層包装材料に関するもので、より詳細には特定の多層構造を有するにも係わらず優れた引き裂き性を有し、また、長期にわたる保存でも優れた内容物の保存性、酸化防止性、保香性、静菌性等を可能とする引き裂き性に優れた積層包装材料に関するものである。
【0002】
【従来の技術】
従来、容器内の酸素を除去するために酸素吸収剤の使用が行われており、これを適用した例としては特公昭62−1824号等が提案されており、酸素透過性を有する樹脂に還元性物質を主剤とする酸素吸収剤を配合して成る層と、酸素ガス遮断性を有する層とを積層して、包装用多層構造物としている。
しかしながら、酸素吸収剤として、鉄系のものは酸素吸収速度も吸収容量も大きく、コストの点で優れたものであるが、鉄やその化合物が内容物中に溶出すると、その量が微量でも内容物の保存性、酸化防止性、保香性、静菌性等を損なうといった問題がある。
上記した鉄系等の酸素吸収剤の内容物中への溶出を防止するために、鉄系酸素吸収剤を配合した樹脂層の内外面に酸素吸収剤未配合の樹脂層を積層し、鉄系酸素吸収剤の露出を防止する手段も、例えば特開平10−114371号等により提案されている。
【0003】
【発明が解決しようとする課題】
上記した従来の酸素吸収剤を配合した酸素吸収層を有する包装用多層構造物は、少なくとも内層、酸素吸収層、クッション層及び酸素バリヤー層を備え、上記層の内、内層、酸素吸収層及びクッション層は、包装用容器における酸素吸収能力を発揮させるため、酸素透過性が大きく耐湿性を有する低−、中−、高密度ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂を用いたものが多数提案されている。
しかしながら、各層に要求される主な要求性能は、内層がヒートシール性、酸素吸収層が酸素吸収剤との配合性、クッション層が酸素吸収層表面の微細な凹凸の吸収、接着性であり、そのためこれらの要求性能を満足するための樹脂選択が行われる結果、容易に包装袋等を開封する引き裂き性を考慮した材料選択に欠けていた。
【0004】
【課題を解決するための手段】
本発明によれば、内層、酸素吸収剤を配合した酸素吸収層、クッション層及び酸素バリヤー層から成り、上記内層、酸素吸収層及びクッション層の基材を低密度ポリエチレン樹脂とし、内層及びクッション層の基材の密度を、酸素吸収層の基材の密度よりも大とした積層包装材料が提供される。また、本発明の上記積層包装材料においては、酸素吸収層の基材のメルトインデックス(MI,JIS K7210)が1.7乃至8.0g/10minであることが好ましい。さらに、本発明の積層包装材料において、内層、酸素吸収層、クッション層及び酸素バリヤー層の厚みを、それぞれ5乃至50μm、10乃至100μm、5乃至50μm、5乃至50μmで、トータル厚みが30乃至300μmであることが好ましい。
【0005】
【発明の実施の形態】
[積層包装材料の構成]
本発明の積層包装材料の一例を示す図1において、この積層包装材料1は、低密度ポリエチレン樹脂内層2、低密度ポリエチレン樹脂に鉄系酸素吸収剤を配合した酸素吸収層3、低密度ポリエチレン樹脂クッション層4、接着剤層5a、酸素バリヤー層6、接着剤層5b及び外層7の積層体から成る。
本発明では、この低密度ポリエチレン樹脂から成る酸素吸収層3及びこれをサンドイッチする内層2、クッション層4を低密度ポリエチレンで構成するのは、低密度ポリエチレン(LDPE)は酸素透過性が大きく、しかも耐湿性に優れており、さらに包装袋等の容器の開封時における引き裂き性が良いことによる。
このサンドイッチ構造により、酸素吸収層3の鉄系酸素吸収剤粒子が外面に露出するのが防止され、特に、包装材料製造段階から包装初期における鉄露出や鉄移行によるフレーバー低下の原因を抑制するのに有効である。
即ち、この積層包装材料1は、容器内酸素は低密度ポリエチレンを介して鉄系酸素吸収剤に透過移動する一方で、水分と鉄系酸素吸収剤との直接的な接触が遮断される。
【0006】
また、上記低密度ポリエチレンクッション層4は、酸素吸収層3の鉄系酸素吸収剤粒子の凹凸による接着性の低下及び外層7の平滑性を向上させる。
本発明の積層包装材料1における酸素吸収層3は、低密度ポリエチレン連続相中に鉄系酸素吸収剤が分散粒子相として存在しており、酸素吸収性能はこの鉄系酸素吸収剤により、上記鉄系酸素吸収剤粒子を低密度ポリエチレンとの組成物の形で用いるのは、酸素吸収剤粒子を包装材料に成形可能にし、且つその脱落を防止するためである。
【0007】
さらに、本発明の積層包装材料の内層2、酸素吸収層3及びクッション層4を構成する低密度ポリエチレンの密度は、0.915乃至0.925g/cmとするのが好ましい。
特に、上記内層2及びクッション層4の密度を引き裂き性の点から大とし、一方、酸素吸収層の密度を酸素吸収性能の点から小とする。
かくして、本発明の多層包装材料では、保存初期における酸素吸収が上記積層構成により極めて有効に行われると共に、開封も極めて容易に行われる。
この低密度ポリエチレン樹脂内層2/低密度ポリエチレン樹脂酸素吸収層3/低密度ポリエチレン樹脂クッション層4から成る積層体の外面側に、外層7で保護された酸素バリヤー層6を張り合わせる。
【0008】
図2には、酸素バリヤー層6として無機蒸着プラスチックフィルムを用いた場合を例示する。
この場合、無機蒸着面がクッション層4と接着し、基材のプラスチックフィルムが外面側となり保護層となる。
【0009】
[内層]
本発明の積層包装材料の内層には引き裂き性、ヒートシール性、及び上記した酸素吸収層との接着性の点から、上記酸素吸収層と同様の低密度ポリエチレンが使用される。
この低密度ポリエチレン内層には、酸素吸収剤による着色を隠蔽する目的と、酸素吸収により生成する酸化鉄粒子の内面側への突き刺しを防止する上で、白色顔料、特に二酸化チタンを配合することが望ましい。
二酸化チタンの配合量は、特に制限されないが低密度ポリエチレン100重量部当たり5乃至25重量部の範囲が好ましい。
低密度ポリエチレン内層の厚みは、5乃至50μm、特に10乃至30μmの範囲にあるのが良い。
この厚みが上記範囲を下回ると酸化で生成する鉄酸化物粒子が突き出してフレーバーが低下する傾向があり、一方厚みが上記範囲を上回ると酸素吸収性が低下する傾向がある。
【0010】
[酸素吸収層]
本発明の積層包装材料に用いる酸素吸収層は、引き裂き性及び鉄系酸素吸収剤の分散性の点から低密度ポリエチレンが使用される。
低密度ポリエチレン100重量部当たり鉄系酸素吸収剤を2乃至60重量部分散させるのが良く、鉄系酸素吸収剤の量が上記範囲を下回ると酸素吸収能力が不十分となり、一方、鉄系酸素吸収剤の量が上記範囲を上回ると配合組成物の成形性の低下、酸素吸収後の体積膨張に伴うトラブルが発生しやすく、また、引き裂き性が低下する。
また、酸素吸収層の低密度ポリエチレンのメルトインデックス(MI,JISK7210)は、1.7乃至8.0g/10minが好ましい。
上記メルトインデックスが1.7g/10min未満であると後述する酸素吸収剤の分散性が低下し、酸素吸収剤の凝集物が増加するため外観不良を生じ、一方、8.0g/10minを越えると製膜性が劣り、安定した製膜が困難となる。
酸素吸収層の厚みは、10乃至100μm、特に15乃至60μmの範囲にあるのが良く、この厚みが上記範囲を下回ると酸素吸収能力が不足する傾向が有り、一方、上記範囲を上回ると成形性が悪くなると共に、容器材料としての可撓性、柔軟性及び引き裂き性が低下する傾向がある。
【0011】
[鉄系酸素吸収剤]
本発明の積層包装材料の酸素吸収層に用いる酸素吸収剤としては、従来この種の用途に使用されている鉄系酸素吸収剤は全て使用できるが、例えば還元鉄、鉄低位酸化物、例えば酸化第一鉄、四三酸化鉄、更に還元性鉄化合物、例えば炭化鉄、ケイ素鉄、鉄カルボニル、水酸化鉄等の一種又は組み合わせたものを主成分としたものが挙げられ、これらは必要に応じてアルカリ金属、アルカリ土類金属の水酸化物、炭酸塩、亜硫酸塩、チオ硫酸塩、第三リン酸塩、第二リン酸塩、有機酸塩、ハロゲン化物等と組み合わせて使用することができる。
鉄系酸素吸収剤粒子は、還元鉄粉と酸化促進剤乃至触媒がブレンドされたものでも良いが、還元鉄粉の粒子表面に酸化促進剤乃至触媒を固着したものがより好ましい。
鉄系酸素吸収剤は、レーザー錯乱法で測定して10乃至50μmのメジアン粒子径を有し、そのアスペクト比(短径/長径)は0.75以下のものが50%以上を占めるような紡鐘乃至偏平状粒子であるのが良い。
また、BET比表面積が0.5m/g以上、見掛け密度が2.2g/cc以下であるものが好ましい。
【0012】
[クッション層]
本発明の積層包装材料のクッション層には、引き裂き性、酸素吸収層中の酸素吸収剤に対する緩衝性及び上記酸素吸収層との接着性の点から、上記酸素吸収層及び内層と同様の低密度ポリエチレンが使用される。
低密度ポリエチレンクッション層の厚みは、5乃至50μm、特に10乃至30μmの範囲にあるのが良い。
この厚みが上記範囲を下回ると酸化で生成した鉄酸化物粒子の酸素バリヤー層への突き出しを生じて酸素遮断性が低下する傾向があり、一方、厚みが上記範囲を上回ると成形性が悪くなると共に、容器材料としての可撓性、柔軟性及び引き裂き性が低下する傾向がある。
尚、後述する酸素バリヤー層として、透明、半透明のエチレン−ビニルアルコール共重合体、ポリアミド類等から成る樹脂フィルム、或いはシリカ等を蒸着した樹脂フィルム等を用いる場合は、上記クッション層に、内層と同様に酸素吸収層の還元鉄粉による着色を隠蔽する目的で、隠蔽剤、例えば二酸化チタン等の白色顔料を配合することが好ましい。
【0013】
[酸素バリヤー層]
本発明の積層包装材料の酸素バリヤー層としては、アルミニウム箔、エチレンビニルアルコール共重合体、無機蒸着プラスチックフィルム等が用いられる。
そして、それらの厚みは酸素遮断性、容器材料としての可撓性、柔軟性の点から、アルミニウム箔の場合は、5乃至50μm、特に7乃至20μmが好ましい。
エチレンビニルアルコール共重合体の場合は、5乃至50μm、特に10乃至30μmが好ましい。
無機蒸着プラスチックフィルムの場合は、酸化アルミ、酸化珪素等の蒸着層の厚みは50乃至3000オングストロームで、その基体として延伸ナイロンフィルム、延伸ポリエステルフィルム、延伸ポリプロピレンフィルム等とし、無機蒸着された上記フィルムの厚みは5乃至50μm、特に10乃至30μmが好ましい。
【0014】
[外層]
酸素ガスバリヤー層としてアルミニウム箔、エチレンビニルアルコール共重合体を用いた場合は、保護層として外層を設け、上記外層としては延伸されたナイロンやポリエステル等の延伸フィルムが用いられる。
積層構成の適当な例は、AL/PET、AL/Ny、AL/Ny/PET、AL/PET/Ny等である。
延伸フィルムの厚みは、5乃至50μm、特に10乃至25μmの範囲にあるのが良い。 この厚みが上記範囲を下回るとガスバリヤー層に対する保護効果が不十分であり、一方、厚みが上記範囲を上回ると容器材料としての可撓性、柔軟性及び引き裂き性が低下する傾向があると共に、コスト高となる。
【0015】
[積層包装材料の製造]
本発明の積層容器材料は、低密度ポリエチレン内層/低密度ポリエチレンと鉄系酸素吸収剤との組成物から成る酸素吸収層/低密度ポリエチレンクッション層から成る予備積層体を先ず製造し、この予備積層体とアルミニウム箔、或いはエチレンビニルアルコール共重合体等と延伸フィルムの積層体、または、無機蒸着プラスチックフィルムを接着する。
そして、トータル厚みとしては、各層の性能を保持しつつ引き裂き性の点から、30乃至300μmとするのが好ましい。
本発明の積層包装材料は、例えば、多層同時押し出し装置を用いて、内層、酸素吸収層、クッション層に対応する押出機で樹脂組成物を溶融昆練した後、T−ダイ、サーキュラーダイ等の多層多重ダイスを通して、所定形状に押し出し成形するものである。
このように多層同時押し出し装置を用いることにより、接着剤等を使用することなく、低密度ポリエチレンの内層、酸素吸収層及びクッション層から成る三層フィルムを形成する。
【0016】
尚、上記三層フィルムの形成は、多層同時押し出し装置の使用に制限されるものでなく、順次積層して形成することもできる。
次いで、得られた内層、酸素吸収層及びクッション層から成る三層共押し出しフィルムのクッション層側に、ドライラミネーション等により酸素バリヤー層及び必要に応じて外層を積層し、積層包装材料とする。
但し、工程順序を逆して、酸素バリヤー層、外層を予め製造しておき、酸素バリヤー層側に内層、酸素吸収層及びクッション層から成る三層共押し出しフィルムを押し出しコートして、積層包装材料としても良い。
【0017】
[用途]
本発明の積層容器材料は、柔軟容器材料として各種包装袋等の容器や可撓性蓋材の用途に用いることができる。
包装袋の形態としては、三方、四方シールの通常のパウチ類、ガセットパウチ類、スタンディングパウチ類、ピロー包装袋等が挙げられるがこれらには限定されない。
また、蓋材としては、カップ、トレー等の容器に対するシール蓋として用いることができる。
本発明の積層容器材料を、包装容器、特にパウチ類に用いる場合、一方の面或いは両方の面を酸素吸収性材で形成することができる。
本発明の積層容器材料は、特に酸化劣化や微生物による汚染を受けやすい医薬品、化粧品、例えば、アミノ酸製剤、脂肪乳剤、塩酸ドパミン配合循環不全改善剤、各種ビタミン配合パック剤等、或いは鰹節、海産物等の食品、饅頭等の和菓子の保存に効果的である。
【0018】
【実施例】
本発明の積層容器材料をつぎの例で説明する。
【0019】
[実施例1]
メルトインデックス(MI,JIS K7210)が7.0g/10min、密度0.919g/cmの低密度ポリエチレン樹脂(LDPE)に、平均粒径20μmの鉄系酸素吸収剤を樹脂100重量部に対して40部の割合で配合した酸素吸収性組成物(PO)を中間層とし、その両側の層をメルトインデックス(MI,JIS K7210)が1.5g/10min、密度0.923g/cmの低密度ポリエチレン樹脂(LDPE)とした3層構成のフィルムをインフレーション製膜機によって作成した。
この時、内層となるLDPE層には二酸化チタン顔料をLDPE100重量部当たり10重量部配合した。
層構成は、白色LDPE層(内層)/LDPE層(酸素吸収層)/LDPE層(クッション層)=20/25/10(μm)とした。
この層のLDPE層(クッション層)側に接着剤を用いて7μmのアルミニウム箔と更に12μmのポリエチレンテレフタレート(PET)フィルムを積層し、白色LDPE層(内層)/LDPE層(酸素吸収層)/LDPE層(クッション層)/AL箔(酸素バリヤー層)/PET(外層)となるトータル厚み80μmの酸素吸収性積層包装材料作成した。
【0020】
[実施例2]
実施例1のクッション層に二酸化チタン顔料を内層と同様に添加し、酸素バリヤー層を12μmの二軸延伸エチレンビニルアルコール共重合体、外層を15μmのナイロンとし、トータル厚み85μmとした以外は実施例1と同様の酸素吸収性積層包装材料を作成した。
【0021】
[実施例3]
実施例2の酸素バリヤー層と外層に変えて、基材の二軸延伸ポリエステルフィルムに酸化珪素を800Å蒸着した蒸着プラスチックフィルムを用い、トータル厚み12μmとした以外は実施例1と同様の酸素吸収性積層包装材料を作成した。
【0022】
[比較例1]
実施例1の内層基材を、メルトインデックス(MI,JIS K7210)が6.0g/10min、密度が0.925/cmの直鎖状低密度ポリエチレン(LLDPE)とし、トータル厚み80μmとした以外は実施例1と同様の酸素吸収性の積層包装材料を作成した。
【0023】
[比較例2]
比較例1において、酸素吸収層を内層と同様の直鎖状低密度ポリエチレン(LLDPE)とし、トータル厚み80μmとした以外は比較例と同様の酸素吸収性の積層包装材料を作成した。
【0024】
[比較例3]
比較例1において、クッション層を内層と同様の直鎖状低密度ポリエチレン(LLDPE)とし、トータル厚み80μmとした以外は比較例1と同様の酸素吸収性の積層包装材料を作成した。
【0025】
[比較例4]
比較例1において、酸素吸収層及びクッション層を内層と同様の直鎖状低密度ポリエチレン(LLDPE)とし、トータル厚み80μmとした以外は比較例1と同様の酸素吸収性の積層包装材料を作成した。
【0026】
[比較例5]
実施例1の内層、酸素吸収層及びクッション層を、メルトインデックス(MI,JIS K7210)が3.0g/10minのポリプロピレン(PP)とし、トータル厚みを90μmとした以外は実施例1と同様の酸素吸収性の積層包装材料を作成した。
【0027】
[比較例6]
実施例1の酸素吸収層の基材に、メルトインデックス(MI,JIS K7210)が1.0g/10min、密度が0.919g/cmの低密度ポリエチレン樹脂(LDPE)を用いた以外は実施例1と同様の酸素吸収性の積層包装材料を作成した。
本比較例の積層包装材料は、酸素吸収剤の凝集物が多く外観特性に劣っていた。
【0028】
[比較例7]
実施例1の酸素吸収層の基材に、メルトインデックス(MI,JIS K7210)が3.0g/10min、密度が0.928g/cmの低密度ポリエチレン樹脂(LDPE)を用いた以外は実施例1と同様の酸素吸収性の積層包装材料を作成した。
本比較例の積層包装材料は、酸素吸収性能が劣っていた。
【0029】
[評価]
上記した実施例及び比較例の酸素吸収性積層フィルムを用いて、95×135mmの4方をシールしたパウチを作成し、パウチ内の空気量が10ccになるようにビタミン配合バップ剤を充填密封後、22℃で保管した。
それぞれのパウチにおける引き裂き性の官能評価及びパウチ内の酸素濃度経時変化を測定した結果を表1に示す。
【0030】
【表1】

Figure 0004411646
表1の結果から、本発明の積層包装材料が酸素吸収性を低下させることなく、引き裂き性に優れていることが判る。
【0031】
【発明の効果】
本発明によれば、内層、酸素吸収層、クッション層及び酸素バリヤー層の要求性能を保ちつつ酸素吸収性を低下させることなく、引き裂き性、外観特性に優れた積層包装材料とすることができる。
【図面の簡単な説明】
【図1】 本発明における積層包装材料の参考断面図
【図2】 本発明における他の積層包装材料の参考断面図
【符号の説明】
1 積層容器材料
2 内層
3 酸素吸収層
4 クッション層
5 接着層
6 外層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated packaging material excellent in tearability, and more specifically, has excellent tearability despite having a specific multilayer structure, and excellent content storage even for long-term storage. The present invention relates to a laminated packaging material excellent in tearing properties, which can be improved in properties, antioxidant properties, aroma retaining properties, bacteriostatic properties and the like.
[0002]
[Prior art]
Conventionally, an oxygen absorbent has been used to remove oxygen in the container, and as an example to which this is applied, Japanese Examined Patent Publication No. 62-1824 has been proposed and reduced to a resin having oxygen permeability. A multilayer structure for packaging is formed by laminating a layer formed by blending an oxygen absorbent containing a functional substance as a main component and a layer having an oxygen gas barrier property.
However, iron-based oxygen absorbers have a high oxygen absorption rate and a large absorption capacity, and are excellent in terms of cost. However, if iron or its compounds are eluted in the contents, the content is small even if the amount is small. There exists a problem of impairing the preservation | save property of a thing, antioxidant property, a fragrance retention property, bacteriostatic property, etc.
In order to prevent elution of the above-mentioned iron-based oxygen absorbent into the contents, a resin layer containing no oxygen absorbent is laminated on the inner and outer surfaces of the resin layer containing the iron-based oxygen absorbent, and iron-based Means for preventing the oxygen absorbent from being exposed have also been proposed by, for example, Japanese Patent Application Laid-Open No. 10-114371.
[0003]
[Problems to be solved by the invention]
A multilayer structure for packaging having an oxygen absorbing layer containing the conventional oxygen absorbent described above includes at least an inner layer, an oxygen absorbing layer, a cushion layer, and an oxygen barrier layer, and the inner layer, the inner layer, the oxygen absorbing layer, and the cushion among the above layers. Many layers have been proposed that use polyolefin-based resins such as low-, medium-, high-density polyethylene, and polypropylene, which have high oxygen permeability and moisture resistance, in order to exhibit oxygen absorption capacity in packaging containers. .
However, the main required performance required for each layer is that the inner layer is heat-sealable, the oxygen absorbing layer is compounded with an oxygen absorbent, the cushion layer is absorbing fine irregularities on the surface of the oxygen absorbing layer, and adhesiveness. Therefore, as a result of selecting a resin to satisfy these required performances, the selection of a material in consideration of the tearability for easily opening a packaging bag or the like was lacking.
[0004]
[Means for Solving the Problems]
According to the present invention, the inner layer comprises an oxygen absorbing layer containing an oxygen absorbent, a cushion layer and an oxygen barrier layer. The inner layer, the oxygen absorbing layer and the cushion layer are made of a low density polyethylene resin, and the inner layer and the cushion layer are formed. A laminated packaging material is provided in which the density of the base material is larger than the density of the base material of the oxygen absorbing layer . Moreover, in the said laminated packaging material of this invention, it is preferable that the melt index (MI, JISK7210) of the base material of an oxygen absorption layer is 1.7 thru | or 8.0 g / 10min. Further, in the laminated packaging material of the present invention, the inner layer, an oxygen absorbing layer, the thickness of the cushion layer and the oxygen barrier layer, each 5 to 50 [mu] m, 10 to 100 [mu] m, 5 to 50 [mu] m, 5 to 50 [mu] m, the total thickness of 30 to It is preferable that it is 300 micrometers.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
[Composition of laminated packaging materials]
In FIG. 1 showing an example of the laminated packaging material of the present invention, this laminated packaging material 1 includes a low-density polyethylene resin inner layer 2, an oxygen-absorbing layer 3 in which an iron-based oxygen absorbent is blended with a low-density polyethylene resin, and a low-density polyethylene resin. It consists of a laminate of a cushion layer 4, an adhesive layer 5 a, an oxygen barrier layer 6, an adhesive layer 5 b and an outer layer 7.
In the present invention, the oxygen absorbing layer 3 made of the low density polyethylene resin, the inner layer 2 sandwiching the oxygen absorbing layer 3 and the cushion layer 4 are made of low density polyethylene. Low density polyethylene (LDPE) has high oxygen permeability, This is because it is excellent in moisture resistance and has good tearability when a container such as a packaging bag is opened.
This sandwich structure prevents the iron-based oxygen absorbent particles of the oxygen absorbing layer 3 from being exposed to the outer surface, and in particular, suppresses the cause of the decrease in flavor due to iron exposure and iron migration in the initial stage of packaging from the packaging material manufacturing stage. It is effective for.
That is, in the laminated packaging material 1, oxygen in the container permeates and transfers to the iron-based oxygen absorbent through the low-density polyethylene, while direct contact between moisture and the iron-based oxygen absorbent is blocked.
[0006]
Further, the low density polyethylene cushion layer 4 improves the decrease in adhesion due to the unevenness of the iron-based oxygen absorbent particles of the oxygen absorption layer 3 and the smoothness of the outer layer 7.
In the oxygen-absorbing layer 3 in the laminated packaging material 1 of the present invention, an iron-based oxygen absorbent is present as a dispersed particle phase in a low-density polyethylene continuous phase. The reason why the oxygen absorbent particles are used in the form of a composition with low-density polyethylene is to allow the oxygen absorbent particles to be molded into a packaging material and to prevent its falling off.
[0007]
Furthermore, the density of the low density polyethylene constituting the inner layer 2, the oxygen absorbing layer 3 and the cushion layer 4 of the laminated packaging material of the present invention is preferably 0.915 to 0.925 g / cm 3 .
In particular, the density of the inner layer 2 and the cushion layer 4 is increased from the viewpoint of tearability, while the density of the oxygen absorption layer is decreased from the viewpoint of oxygen absorption performance.
Thus, in the multilayer packaging material of the present invention, oxygen absorption in the initial stage of storage can be performed very effectively by the above-described laminated structure, and can be opened very easily.
The oxygen barrier layer 6 protected by the outer layer 7 is bonded to the outer surface of the laminate composed of the low density polyethylene resin inner layer 2 / the low density polyethylene resin oxygen absorbing layer 3 / the low density polyethylene resin cushion layer 4.
[0008]
FIG. 2 illustrates the case where an inorganic vapor-deposited plastic film is used as the oxygen barrier layer 6.
In this case, the inorganic vapor-deposited surface adheres to the cushion layer 4, and the base plastic film becomes the outer surface side to become a protective layer.
[0009]
[Inner layer]
For the inner layer of the laminated packaging material of the present invention, the same low density polyethylene as that of the oxygen absorbing layer is used from the viewpoint of tearability, heat sealability, and adhesiveness with the oxygen absorbing layer.
The low-density polyethylene inner layer may contain a white pigment, particularly titanium dioxide, for the purpose of concealing the coloring by the oxygen absorbent and to prevent the iron oxide particles generated by oxygen absorption from sticking to the inner surface side. desirable.
The blending amount of titanium dioxide is not particularly limited, but is preferably in the range of 5 to 25 parts by weight per 100 parts by weight of low density polyethylene.
The thickness of the low density polyethylene inner layer should be in the range of 5 to 50 μm, especially 10 to 30 μm.
When this thickness is less than the above range, iron oxide particles produced by oxidation tend to protrude and the flavor tends to decrease, while when the thickness exceeds the above range, oxygen absorbability tends to decrease.
[0010]
[Oxygen absorbing layer]
Low density polyethylene is used for the oxygen absorption layer used for the laminated packaging material of the present invention in terms of tearability and dispersibility of the iron-based oxygen absorbent.
It is preferable to disperse 2 to 60 parts by weight of iron-based oxygen absorbent per 100 parts by weight of low-density polyethylene. If the amount of iron-based oxygen absorbent is below the above range, the oxygen-absorbing capacity becomes insufficient. If the amount of the absorbent exceeds the above range, the moldability of the blended composition tends to decrease, troubles associated with volume expansion after oxygen absorption tend to occur, and tearability decreases.
The melt index (MI, JISK7210) of the low density polyethylene of the oxygen absorbing layer is preferably 1.7 to 8.0 g / 10 min.
When the melt index is less than 1.7 g / 10 min, the dispersibility of the oxygen absorbent described later decreases, and the aggregate of the oxygen absorbent increases, resulting in poor appearance. On the other hand, when the melt index exceeds 8.0 g / 10 min. Film forming property is inferior, and stable film formation becomes difficult.
The thickness of the oxygen absorbing layer should be in the range of 10 to 100 μm, particularly 15 to 60 μm. If this thickness is less than the above range, the oxygen absorption capacity tends to be insufficient, whereas if it exceeds the above range, the moldability is good. However, the flexibility, flexibility and tearability of the container material tend to decrease.
[0011]
[Iron-based oxygen absorber]
As the oxygen absorbent used in the oxygen absorbing layer of the laminated packaging material of the present invention, all iron-based oxygen absorbents conventionally used for this type of application can be used. For example, reduced iron, iron lower oxide, such as oxidation Examples include ferrous iron, triiron tetroxide, and reducing iron compounds such as iron carbide, silicon iron, iron carbonyl, iron hydroxide, and the like based on one or a combination thereof. Can be used in combination with alkali metal, alkaline earth metal hydroxide, carbonate, sulfite, thiosulfate, tertiary phosphate, secondary phosphate, organic acid salt, halide, etc. .
The iron-based oxygen absorbent particles may be a blend of reduced iron powder and an oxidation promoter or catalyst, but those having an oxidation promoter or catalyst fixed on the surface of the reduced iron powder particles are more preferable.
The iron-based oxygen absorber has a median particle diameter of 10 to 50 μm as measured by a laser confusion method, and an aspect ratio (minor axis / major axis) of 0.75 or less accounts for 50% or more. It may be a bell or a flat particle.
Further, those having a BET specific surface area of 0.5 m 2 / g or more and an apparent density of 2.2 g / cc or less are preferable.
[0012]
[Cushion layer]
The cushion layer of the laminated packaging material of the present invention has the same low density as the oxygen absorbing layer and the inner layer in terms of tearability, buffering property against the oxygen absorbent in the oxygen absorbing layer, and adhesiveness to the oxygen absorbing layer. Polyethylene is used.
The thickness of the low density polyethylene cushion layer may be in the range of 5 to 50 μm, particularly 10 to 30 μm.
If the thickness is less than the above range, the iron oxide particles produced by oxidation tend to protrude into the oxygen barrier layer, and the oxygen barrier property tends to be lowered. On the other hand, if the thickness exceeds the above range, the moldability is deteriorated. At the same time, the flexibility, flexibility and tearability of the container material tend to decrease.
In the case of using a transparent or translucent ethylene-vinyl alcohol copolymer, a resin film made of polyamide or the like, or a resin film deposited with silica or the like as the oxygen barrier layer described later, the inner layer is used as the cushion layer. Similarly to the above, for the purpose of concealing the coloring of the oxygen absorbing layer by the reduced iron powder, it is preferable to blend a concealing agent, for example, a white pigment such as titanium dioxide.
[0013]
[Oxygen barrier layer]
As the oxygen barrier layer of the laminated packaging material of the present invention, aluminum foil, ethylene vinyl alcohol copolymer, inorganic vapor-deposited plastic film or the like is used.
From the viewpoints of oxygen barrier properties, flexibility as a container material, and flexibility, the thickness is preferably 5 to 50 μm, particularly 7 to 20 μm in the case of an aluminum foil.
In the case of an ethylene vinyl alcohol copolymer, 5 to 50 μm, particularly 10 to 30 μm is preferable.
In the case of an inorganic vapor-deposited plastic film, the thickness of the vapor-deposited layer of aluminum oxide, silicon oxide, etc. is 50 to 3000 angstroms, and the base is a stretched nylon film, stretched polyester film, stretched polypropylene film, etc. The thickness is preferably 5 to 50 μm, particularly 10 to 30 μm.
[0014]
[Outer layer]
When an aluminum foil or an ethylene vinyl alcohol copolymer is used as the oxygen gas barrier layer, an outer layer is provided as a protective layer, and a stretched film such as stretched nylon or polyester is used as the outer layer.
Suitable examples of the laminated structure are AL / PET, AL / Ny, AL / Ny / PET, AL / PET / Ny and the like.
The stretched film should have a thickness of 5 to 50 μm, particularly 10 to 25 μm. When this thickness is less than the above range, the protective effect on the gas barrier layer is insufficient, while when the thickness exceeds the above range, the flexibility, flexibility and tearability of the container material tend to decrease, Cost increases.
[0015]
[Manufacture of laminated packaging materials]
The laminated container material of the present invention is produced by first producing a pre-laminate comprising an oxygen absorbing layer / low-density polyethylene cushion layer comprising a composition of a low density polyethylene inner layer / low density polyethylene and an iron-based oxygen absorbent. The laminate of the body and the aluminum foil or ethylene vinyl alcohol copolymer and the stretched film, or the inorganic vapor-deposited plastic film is bonded.
The total thickness is preferably 30 to 300 μm from the viewpoint of tearability while maintaining the performance of each layer.
The laminated packaging material of the present invention is prepared by, for example, melting and kneading the resin composition with an extruder corresponding to the inner layer, the oxygen absorbing layer, and the cushion layer using a multi-layer coextrusion apparatus, and then using a T-die, a circular die, etc. It is extruded through a multilayer multiple die into a predetermined shape.
Thus, by using a multilayer simultaneous extrusion apparatus, a three-layer film comprising an inner layer of low density polyethylene, an oxygen absorbing layer and a cushion layer is formed without using an adhesive or the like.
[0016]
The formation of the three-layer film is not limited to the use of a multilayer simultaneous extrusion apparatus, and can be formed by sequentially laminating.
Next, an oxygen barrier layer and, if necessary, an outer layer are laminated on the cushion layer side of the obtained three-layer coextruded film comprising an inner layer, an oxygen absorbing layer and a cushion layer by dry lamination or the like to obtain a laminated packaging material.
However, the process sequence is reversed, the oxygen barrier layer and the outer layer are manufactured in advance, and a three-layer coextruded film consisting of an inner layer, an oxygen absorbing layer and a cushion layer is extruded and coated on the oxygen barrier layer side to form a laminated packaging material It is also good.
[0017]
[Usage]
The laminated container material of the present invention can be used as a flexible container material for containers such as various packaging bags and flexible lid materials.
Examples of the form of the packaging bag include, but are not limited to, ordinary pouches having three- and four-sided seals, gusset pouches, standing pouches, and pillow packaging bags.
Moreover, as a lid | cover material, it can use as a sealing lid with respect to containers, such as a cup and a tray.
When the laminated container material of the present invention is used for a packaging container, particularly a pouch, one surface or both surfaces can be formed of an oxygen-absorbing material.
The layered container material of the present invention is particularly sensitive to oxidative degradation and contamination by microorganisms, cosmetics, such as amino acid preparations, fat emulsions, dopamine hydrochloride-containing circulatory failure improvers, various vitamin-containing packs, etc., bonito, marine products, etc. It is effective for preserving Japanese confectionery such as Japanese food and buns.
[0018]
【Example】
The laminated container material of the present invention will be described in the following example.
[0019]
[Example 1]
A low-density polyethylene resin (LDPE) having a melt index (MI, JIS K7210) of 7.0 g / 10 min and a density of 0.919 g / cm 3 and an iron-based oxygen absorbent having an average particle size of 20 μm with respect to 100 parts by weight of the resin. An oxygen-absorbing composition (PO) blended at a ratio of 40 parts is used as an intermediate layer, and the layers on both sides thereof are low density with a melt index (MI, JIS K7210) of 1.5 g / 10 min and a density of 0.923 g / cm 3 . A three-layer film made of polyethylene resin (LDPE) was prepared by an inflation film-forming machine.
At this time, the titanium dioxide pigment was blended with 10 parts by weight per 100 parts by weight of LDPE in the LDPE layer as the inner layer.
The layer structure was white LDPE layer (inner layer) / LDPE layer (oxygen absorption layer) / LDPE layer (cushion layer) = 20/25/10 (μm).
A 7 μm aluminum foil and a 12 μm polyethylene terephthalate (PET) film are laminated on the LDPE layer (cushion layer) side of this layer using an adhesive, and a white LDPE layer (inner layer) / LDPE layer (oxygen absorbing layer) / LDPE An oxygen-absorbing laminated packaging material having a total thickness of 80 μm was prepared as a layer (cushion layer) / AL foil (oxygen barrier layer) / PET (outer layer).
[0020]
[Example 2]
Example 1 except that titanium dioxide pigment was added to the cushion layer of Example 1 in the same manner as the inner layer, the oxygen barrier layer was 12 μm biaxially oriented ethylene vinyl alcohol copolymer, the outer layer was 15 μm nylon, and the total thickness was 85 μm. An oxygen-absorbing laminated packaging material similar to 1 was prepared.
[0021]
[Example 3]
Instead of the oxygen barrier layer and the outer layer of Example 2, an oxygen-absorbing property similar to that of Example 1 was used except that a vapor-deposited plastic film obtained by vapor-depositing silicon oxide on a biaxially stretched polyester film as a base material was used and the total thickness was 12 μm. A laminated packaging material was prepared.
[0022]
[Comparative Example 1]
The inner layer base material of Example 1 was a linear low density polyethylene (LLDPE) having a melt index (MI, JIS K7210) of 6.0 g / 10 min and a density of 0.925 / cm 3 , except that the total thickness was 80 μm. Produced an oxygen-absorbing laminated packaging material similar to that in Example 1.
[0023]
[Comparative Example 2]
In Comparative Example 1, an oxygen-absorbing laminated packaging material similar to that in the Comparative Example was prepared except that the oxygen-absorbing layer was linear low-density polyethylene (LLDPE) similar to the inner layer and the total thickness was 80 μm.
[0024]
[Comparative Example 3]
In Comparative Example 1, the same oxygen-absorbing laminated packaging material as in Comparative Example 1 was prepared except that the cushion layer was linear low-density polyethylene (LLDPE) similar to the inner layer and the total thickness was 80 μm.
[0025]
[Comparative Example 4]
In Comparative Example 1, an oxygen-absorbing laminated packaging material similar to Comparative Example 1 was prepared, except that the oxygen absorbing layer and the cushion layer were linear low density polyethylene (LLDPE) similar to the inner layer, and the total thickness was 80 μm. .
[0026]
[Comparative Example 5]
The oxygen, which is the same as that of Example 1, except that the inner layer, the oxygen absorbing layer and the cushion layer of Example 1 are polypropylene (PP) having a melt index (MI, JIS K7210) of 3.0 g / 10 min and the total thickness is 90 μm. Absorbent laminated packaging material was made.
[0027]
[Comparative Example 6]
Example except that a low-density polyethylene resin (LDPE) having a melt index (MI, JIS K7210) of 1.0 g / 10 min and a density of 0.919 g / cm 3 was used as the base material of the oxygen absorbing layer of Example 1. An oxygen-absorbing laminated packaging material similar to 1 was prepared.
The laminated packaging material of this comparative example had many oxygen absorbent aggregates and was inferior in appearance characteristics.
[0028]
[Comparative Example 7]
Example except that a low-density polyethylene resin (LDPE) having a melt index (MI, JIS K7210) of 3.0 g / 10 min and a density of 0.928 g / cm 3 was used as the base material of the oxygen absorption layer of Example 1. An oxygen-absorbing laminated packaging material similar to 1 was prepared.
The laminated packaging material of this comparative example was inferior in oxygen absorption performance.
[0029]
[Evaluation]
Using the oxygen-absorbing laminated films of the above-mentioned Examples and Comparative Examples, a pouch with 4 sides of 95 × 135 mm was prepared, and after filling and sealing with a vitamin-containing bop so that the air amount in the pouch was 10 cc And stored at 22 ° C.
Table 1 shows the results of sensory evaluation of tearability in each pouch and the measurement of changes in oxygen concentration with time in the pouch.
[0030]
[Table 1]
Figure 0004411646
From the results in Table 1, it can be seen that the laminated packaging material of the present invention is excellent in tearing properties without reducing oxygen absorption.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it can be set as the laminated packaging material excellent in tearability and an external appearance characteristic, without reducing oxygen absorptivity, maintaining the required performance of an inner layer, an oxygen absorption layer, a cushion layer, and an oxygen barrier layer.
[Brief description of the drawings]
1 is a cross-sectional view of a laminated packaging material according to the present invention. FIG. 2 is a cross-sectional view of another laminated packaging material according to the present invention.
1 Layered container material 2 Inner layer 3 Oxygen absorbing layer 4 Cushion layer 5 Adhesive layer 6 Outer layer

Claims (3)

内層、酸素吸収剤を配合した酸素吸収層、クッション層及び酸素バリヤー層から成り、上記内層、酸素吸収層及びクッション層の基材を低密度ポリエチレン樹脂とし、内層及びクッション層の基材の密度を、酸素吸収層の基材の密度よりも大としたことを特徴とする積層包装材料。Inner layer, an oxygen absorbent oxygen absorbing layer obtained by blending consists cushion layer and oxygen barrier layer, the inner layer, the base material of the oxygen-absorbing layer and the cushion layer with low density polyethylene resin, the density of the base material of the inner layer and the cushion layer A laminated packaging material characterized by having a density greater than the density of the base material of the oxygen absorbing layer . 酸素吸収層の基材のメルトインデックス(MI,JIS K7210)が1.7乃至8.0g/10minであることを特徴とする請求項1記載の積層包装材料。  2. The laminated packaging material according to claim 1, wherein a melt index (MI, JIS K7210) of the base material of the oxygen absorbing layer is 1.7 to 8.0 g / 10 min. 内層、酸素吸収層、クッション層及び酸素バリヤー層の厚みを、それぞれ5乃至50μm、10乃至100μm、5乃至50μm、5乃至50μmとし、トータル厚みを30乃至300μmとしたことを特徴とする請求項1又は2に記載の積層包装材料。The inner layer, the oxygen absorbing layer, the cushion layer, and the oxygen barrier layer have thicknesses of 5 to 50 μm, 10 to 100 μm, 5 to 50 μm, and 5 to 50 μm, respectively, and a total thickness of 30 to 300 μm. Or the laminated packaging material of 2.
JP2000188723A 2000-06-23 2000-06-23 Laminated packaging material Expired - Fee Related JP4411646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000188723A JP4411646B2 (en) 2000-06-23 2000-06-23 Laminated packaging material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000188723A JP4411646B2 (en) 2000-06-23 2000-06-23 Laminated packaging material

Publications (2)

Publication Number Publication Date
JP2002001888A JP2002001888A (en) 2002-01-08
JP4411646B2 true JP4411646B2 (en) 2010-02-10

Family

ID=18688465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000188723A Expired - Fee Related JP4411646B2 (en) 2000-06-23 2000-06-23 Laminated packaging material

Country Status (1)

Country Link
JP (1) JP4411646B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571835B2 (en) * 2004-07-22 2010-10-27 三菱樹脂株式会社 Coextruded composite film for lid of distribution package
CN110682645B (en) * 2019-10-08 2021-08-24 苏州扬子江新型材料股份有限公司 Multilayer heat-insulating high-corrosion-resistance PVDF film-coated plate

Also Published As

Publication number Publication date
JP2002001888A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
EP0367390B1 (en) Deoxidizer film
JP2967740B2 (en) Method for producing oxygen-absorbing multilayer film
AU728300B2 (en) Oxygen absorbing multi-layer film and oxygen absorbing packaging container
JPH08197692A (en) Gas barrier laminating material
KR100726261B1 (en) Oxygen absorbable laminate and production method thereof
JP2885079B2 (en) Humidity control laminated bag
JP3507593B2 (en) Sealed container with excellent storage properties
JP3687720B2 (en) Oxygen absorbing multilayer film and oxygen absorbing packaging container
JP4411646B2 (en) Laminated packaging material
JP4196142B2 (en) Oxygen-absorbing multilayer film and packaging container
JP2006335394A (en) Packaging bag consisting of hygroscopic packaging material
JP3282567B2 (en) Laminate for packaging containing activated oxygen absorber
JP2001121652A (en) Oxygen absorbing multi layer film and deoxygenating container
JP4099746B2 (en) Retort pouch
JPH07156970A (en) Laminated body, and package body constituted therewith
JP4852781B2 (en) Oxygen-absorbing laminate
JP2021147086A (en) Package
JP2002201360A (en) Oxygen-absorbing composition, film or sheet comprising the composition and oxygen-absorbing laminated film or sheet having layer comprising the composition, packaging container comprising the film or sheet
JPH04361038A (en) Composite film for packing
JP2002052655A (en) Oxygen absorbable multilayered material and method for preserving article containing low moisture content using the same
JP4595167B2 (en) Package
JP2005096853A (en) Moisture absorbing packaging material and packaging container using the same
JP2006335446A (en) Packaging material for syrup-containing fruit product
JP3019153B2 (en) Oxygen absorbing multilayer film
JP3376915B2 (en) Deoxygenated multilayer body, packaging container using the same, and method of storing food or medicine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4411646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees