JPH10264279A - One side absorptive deoxidation multilayered body and its manufacture - Google Patents

One side absorptive deoxidation multilayered body and its manufacture

Info

Publication number
JPH10264279A
JPH10264279A JP9071626A JP7162697A JPH10264279A JP H10264279 A JPH10264279 A JP H10264279A JP 9071626 A JP9071626 A JP 9071626A JP 7162697 A JP7162697 A JP 7162697A JP H10264279 A JPH10264279 A JP H10264279A
Authority
JP
Japan
Prior art keywords
layer
oxygen
resin
porous
deoxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9071626A
Other languages
Japanese (ja)
Inventor
Masukazu Hirata
益一 平田
Yoshinori Mabuchi
義則 馬渕
Hiroshi Hasegawa
浩 長谷川
Chiharu Nishizawa
千春 西沢
Noriyuki Kimura
紀之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP9071626A priority Critical patent/JPH10264279A/en
Publication of JPH10264279A publication Critical patent/JPH10264279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Packages (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To preclude a deoxidation component from being projected, and widen the selectivity of material of a barrier layer by providing a shielding layer having a resin layer of a non- porous thin film and a protection layer in which a resin composition having a grain water- insoluble filler dispersed therein is made being porous minutely, on the absorptive surface side of a deoxidation layer employing a minutely porous deoxidation resin layer. SOLUTION: On one surface of a resin composition layer 3 with deoxidizing component dispersed, one or more layers are laminated in which a thermoplastic resin layer 2 having oxygen permeability, and a resin composition layer 1 with a dispersed grain insoluble filler are bonded respectively, and a thermoplastic resin layer 5 is laminated on the other surface of the layer 3. The base material of a resin laminated body comprising each adjacent layer being heat-welded each other is oriented and, on the oriented base material layer 5 surface, a barrier layer 4 is laminated, and then, each provided on one surface of a deoxidizing layer comprising the layer 3 made being porous continuously minutely is a non-porous oxygen permeable layer having at least the layer 1 made being thinned and an oxygen permeable layer comprising the layer 2 made being porous continuously minutely, followed by providing the barrier layer 4 laminated on the oriented cushion layer having the layer oriented, on the other surface of the layer 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸素吸収機能を有す
るフィルム状又はシート状の片面吸収型脱酸素多層体と
その製造方法に関する。詳しくは、基材の樹脂積層体を
延伸することにより同時に形成された微多孔質の脱酸素
層の吸収面に無孔薄膜の酸素透過性層と微多孔質の酸素
透過性層とを備え、かつ脱酸素層の他面にバリア層を配
して、脱酸素性能に優れ、かつ耐水・耐油性を備えたフ
ィルム状又はシート状の片面吸収型脱酸素多層体とその
製造方法に関する。本発明の脱酸素多層体は、食品や医
薬品、金属製品などに代表される酸素の影響を受けて変
質し易い各種製品の変質を防止する目的でこれらを収納
するための容器および包装体として使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-sided absorption-type oxygen-absorbing multilayer film or sheet having an oxygen absorbing function and a method for producing the same. In more detail, a nonporous thin film oxygen-permeable layer and a microporous oxygen-permeable layer are provided on the absorption surface of the microporous deoxygenation layer formed simultaneously by stretching the resin laminate of the base material, Also, the present invention relates to a film- or sheet-shaped single-sided absorption deoxidized multilayer body having excellent deoxidation performance and having water and oil resistance by disposing a barrier layer on the other surface of the deoxidized layer, and a method for producing the same. The deoxidized multilayer body of the present invention is used as a container and a package for accommodating various products which are easily deteriorated under the influence of oxygen represented by food, medicine, metal products, etc. Is done.

【0002】[0002]

【従来の技術】酸化、腐敗、かび・細菌の繁殖などによ
る食品や医薬品をはじめ、金属製品などの変質を防止す
る目的で、これらを収納した包装容器や包装袋内の酸素
を除去するために脱酸素剤が従来より使用されている。
開発以来現在も多く使用されている脱酸素剤は粒状また
は粉状の脱酸素成分を小袋に詰めた形態のものである。
これに対して、より取扱いが容易で適用範囲が広く、誤
食などの問題のない脱酸素体として、フィルム状やシー
ト状の脱酸素体が知られている。このフィルム又はシー
ト状の脱酸素体(以下、単に「脱酸素体」という。)を
容器や袋に用いることにより、包装容器や包装袋自体に
脱酸素性能を持たせることができる。
2. Description of the Related Art For the purpose of preventing deterioration of foods and medicines, metal products, etc. due to oxidation, decay, propagation of mold and bacteria, etc., to remove oxygen in packaging containers and packaging bags containing these products. Oxygen absorbers have been used in the past.
Oxygen absorbers that have been frequently used since their development are in the form of granular or powdered oxygen-absorbing components packed in small bags.
On the other hand, a film-shaped or sheet-shaped oxygen absorber is known as an oxygen absorber that is easier to handle, has a wider application range, and has no problems such as accidental eating. By using this film or sheet oxygen absorber (hereinafter, simply referred to as “oxygen absorber”) for a container or a bag, the packaging container or the packaging bag itself can have oxygen absorbing performance.

【0003】このような脱酸素体には、熱可塑性樹脂を
マトリックス成分として粒状または粉状の脱酸素成分を
分散、固定化した脱酸素樹脂組成物が用いられ、また脱
酸素成分には公知の脱酸素剤、特に脱酸素性能に優れた
鉄粉系脱酸素剤が利用されることが多いが、脱酸素体自
体が食品などの被包装物に直接接触することは好ましく
なく、脱酸素体となる脱酸素樹脂組成物からなる脱酸素
層を設け、これを通気性の遮蔽層で覆った脱酸素多層体
とすることが知られている。一般に脱酸素多層体は、一
面を酸素の吸収面として通気性材料で覆い、他面をガス
バリア材料で覆った多層構成がとられる。この吸収面の
遮蔽層に多孔性の通気材料を用いた場合、多水分系の被
包装物に対して脱酸素成分の溶出による汚染がしばしば
経験され、遮蔽層には脱酸素成分の溶出の心配がないも
のが望ましく、この点では樹脂層が好ましく、また脱酸
素層を被覆する層が樹脂層で構成された積層体は、製造
や成形加工が容易で好都合でもある。
[0003] An oxygen-absorbing composition in which a particulate or powdery oxygen-absorbing component is dispersed and fixed using a thermoplastic resin as a matrix component is used for such an oxygen-absorbing material. Oxygen absorbers, especially iron powder-based oxygen absorbers with excellent deoxidation performance are often used, but it is not preferable that the oxygen absorber itself comes into direct contact with food or other packaged objects, and It is known that a deoxidized layer made of a deoxidized resin composition is provided and this is covered with a gas-permeable shielding layer to form a deoxidized multilayer body. In general, the deoxidized multilayer body has a multilayer structure in which one surface is covered with a gas-permeable material and the other surface is covered with a gas barrier material as an oxygen absorbing surface. When a porous ventilation material is used for the shielding layer of the absorbing surface, contamination of the moisture-containing packaged article by the elution of the deoxidized component is often experienced, and the elution of the deoxidized component is likely to occur in the shielding layer. In this respect, a resin layer is preferable, and a laminate in which a layer covering the deoxidation layer is formed of a resin layer is easy and convenient to manufacture and mold.

【0004】例えば、特公昭62−1824、特公昭6
3−2648等には脱酸素層の両面を樹脂層で覆った多
層体が知られていた。しかし、従来の脱酸素層を樹脂層
で覆った脱酸素多層体の脱酸素速度は著しく低いものに
留まっていた。これは、脱酸素成分が配合される樹脂と
して用いられたポリオレフィン系樹脂の酸素透過性が比
較的低いために、脱酸素樹脂層自体の脱酸素性能が高い
ものにならないことと、同様に脱酸素層を吸収面を被覆
する樹脂の遮蔽層の酸素透過度が低いこととに因る。換
言すれば、脱酸素層の脱酸素成分がマトリックス成分の
樹脂と遮蔽層の樹脂に隔てられているためである。
For example, Japanese Patent Publication No. 62-1824 and Japanese Patent Publication No. 6
For example, a multilayer body in which both surfaces of a deoxygenation layer are covered with a resin layer has been known in 3-2-2648 and the like. However, the deoxidation rate of a conventional deoxidized multilayer in which a deoxidized layer is covered with a resin layer has been extremely low. This is because the oxygen permeability of the polyolefin resin used as the resin in which the deoxidizing component is blended is relatively low, so that the deoxidizing resin layer itself does not have high deoxidizing performance. This is because the oxygen permeability of the resin shielding layer that covers the absorption surface of the layer is low. In other words, this is because the deoxidizing component of the deoxidizing layer is separated between the resin of the matrix component and the resin of the shielding layer.

【0005】また特開平2−72851には、脱酸素樹
脂層自体の脱酸素性能の向上を図る技術として、熱可塑
性樹脂に鉄粉主剤の脱酸素成分を混練した樹脂組成物の
シートを延伸し微多孔質化することによって脱酸素層を
形成する方法が示されている。さらに同じ特開平2−7
2851及び特開平5−162251には、脱酸素成分
を含有する樹脂組成物の層に熱可塑性樹脂に難水溶性フ
ィラーを配合した樹脂組成物の層を積層した多層体を延
伸して、この二つの層を同時に微多孔質化して脱酸素層
と隔離層を形成する技術が記載されている。
Japanese Patent Application Laid-Open No. 2-72851 discloses a technique for improving the deoxidizing performance of a deoxidized resin layer itself by stretching a sheet of a resin composition obtained by kneading a deoxidizing component of a main component of iron powder into a thermoplastic resin. A method for forming a deoxygenated layer by making it microporous is described. Japanese Patent Laid-Open No. 2-7
No. 2851 and JP-A-5-162251 disclose a multi-layered body in which a layer of a resin composition containing a deoxidizing component and a layer of a resin composition in which a poorly water-soluble filler is blended with a thermoplastic resin are stretched. A technique is described in which two layers are simultaneously made microporous to form a deoxygenation layer and an isolation layer.

【0006】この場合、脱酸素成分及びフィラーのごと
き粒状異物をそれぞれ含む樹脂組成物からなる二つの層
は、延伸することにより、粒状異物と樹脂との界面が剥
離して多くの細孔ができ、できた細孔が相互に結ばれて
全体が連続微多孔質体となる。これによって樹脂部分の
酸素透過性が著しく改善されるために、二つの層は、そ
れぞれ、脱酸素速度及び通気性が著しく向上する。また
この微多孔質体は、多孔体ではあるが、非極性または低
極性の高分子を用いられているために、その撥水性によ
り水が通り難いものとなっている。このように、連続微
多孔質の脱酸素層が連続微多孔質の遮蔽層で覆われた形
態の脱酸素多層体は、脱酸素速度が早く、被包装物が多
水分系のものでも短期間なら脱酸素成分の溶出汚染の問
題はなく、優れた脱酸素多層体であると考えられる。
In this case, the two layers made of the resin composition each containing a particulate debris such as a deoxygenating component and a filler are stretched, whereby the interface between the particulate debris and the resin is peeled off to form many pores. The formed pores are mutually connected to form a continuous microporous body as a whole. This significantly improves the oxygen permeability of the resin portion, so that the two layers each have a significantly improved deoxygenation rate and air permeability. Although the microporous body is a porous body, non-polar or low-polarity polymers are used, so that water repellency makes it difficult for water to pass through. As described above, the deoxidized multilayer body in which the continuous microporous oxygen scavenging layer is covered with the continuous microporous shielding layer has a high deoxygenation rate, and can be used for a short period even when the packaged object has a high moisture content. If so, there is no problem of elution and contamination of the deoxygenated component, and it is considered that this is an excellent deoxygenated multilayer.

【0007】しかし、食品などの被包装物中に、相対的
に極性の低い液体(例えば、水単独でなく各種の油脂や
アルコールなどが加わる場合)が存在する場合には、連
続微多孔質部分の細孔中に液体が浸透し、その液相を経
路として脱酸素成分が脱酸素多層体の外部に溶出して、
被包装物を汚染するという問題があった。また、水の場
合でも長期間になると、細孔中の気体が散逸(液体中に
溶解など)した場合には水が浸透し、同様に脱酸素成分
が溶出することがある。これを防ぐために隔離層に撥油
性を与える目的で、例えば、フッ素系処理剤などで撥油
処理をすることも可能であるが、新たな汚染の危険性が
生じるために、処理剤はできるだけ使用しないことが望
ましい。
However, when a relatively low-polarity liquid (for example, when various oils and fats or alcohols are added in addition to water alone) is present in a package such as food, the continuous microporous portion The liquid penetrates into the pores of the deoxygenation, and the deoxygenated component elutes out of the deoxygenated multilayer body through the liquid phase,
There is a problem that the packaged material is contaminated. Further, even in the case of water, if the gas in the pores is dissipated (dissolved in a liquid or the like) over a long period of time, the water penetrates and the deoxygenated component may be eluted similarly. To prevent this, it is possible to apply oil-repellent treatment with a fluorine-based treatment agent, for example, in order to impart oil repellency to the separation layer.However, the treatment agent should be used as much as possible due to the risk of new contamination. Desirably not.

【0008】また脱酸素成分の溶出防止という観点から
は、脱酸素層の遮蔽層は無孔の樹脂層であることが好ま
しいが、この樹脂層が厚くなると酸素の透過性が十分で
ないことになる。このため、遮蔽層として、厚みの薄い
プラスチック層を遮蔽層として用いた例は多く知られて
いる。例えば、特開平5−318675には、延伸して
微多孔質化した脱酸素樹脂層に樹脂の皮膜を形成した酸
素吸収多層シートが提案されている。しかしながら、脱
酸素樹脂層に直接無孔の薄い皮膜を形成した酸素吸収シ
ートは、製造中や取扱い中に脱酸素樹脂中の脱酸素成
分、特に鉄の粉や粒子がシート表面の遮蔽層の厚みの薄
い皮膜に突出するという強度的な問題があり、依然とし
て脱酸素成分による汚染の恐れが存在する。勢い遮蔽層
の皮膜の厚さを大きくすると通気性を損なうことにな
り、結果として脱酸素速度の低いものとならざるを得な
かった。
Further, from the viewpoint of preventing elution of the deoxidized component, the shielding layer of the deoxidized layer is preferably a non-porous resin layer. However, if this resin layer is thick, oxygen permeability is not sufficient. . For this reason, many examples are known in which a thin plastic layer is used as a shielding layer. For example, Japanese Patent Application Laid-Open No. 5-318675 proposes an oxygen-absorbing multilayer sheet in which a resin film is formed on a deoxidized resin layer which has been rendered microporous by stretching. However, the oxygen-absorbing sheet in which a nonporous thin film is formed directly on the oxygen-absorbing resin layer, the oxygen-absorbing component in the oxygen-absorbing resin, especially iron powder and particles during the production and handling is affected by the thickness of the shielding layer on the sheet surface. However, there is a problem of strength in that the film is protruded into a thin film having a small thickness, and there is still a risk of contamination by a deoxidizing component. When the thickness of the film of the momentum shielding layer is increased, the air permeability is impaired, and as a result, the deoxygenation rate must be low.

【0009】このために、実質的に十分な酸素透過性を
備えた無孔の樹脂薄膜を脱酸素樹脂層に積層して脱酸素
多層体を形成することは実際は容易ではない。特に厚み
の薄いフィルム状の脱酸素多層体を商用生産することは
ほぼ不可能に近い。例えば、脱酸素樹脂層にフィルムを
貼り合わせるにしても、酸素透過性に優れた接着剤がな
く、貼り合わせ法で遮蔽層として無孔の薄膜を積層して
脱酸素多層体を製造することは難しい。また押出し積層
法や共押出し積層法などの公知の積層法で脱酸素多層体
を製造しようとすると、脱酸素樹脂層が鉄粉などの異物
を含むために、鉄粉が薄膜を破りピンホールが生じたり
多層体の表面に凹凸が生じたりするなど、フィルム加工
上に問題がある。このように、脱酸素多層体を包装材料
として、液体物質に使用しても脱酸素成分の溶出汚染の
懸念が全くなく、かつ脱酸素性能に優れた、実用性のあ
るフィルム状又はシート状の脱酸素多層体及びその製造
方法はないというのが実情である。
For this reason, it is actually not easy to form a deoxidized multilayer body by laminating a nonporous resin thin film having substantially sufficient oxygen permeability on a deoxidized resin layer. In particular, it is almost impossible to commercially produce a thin oxygen-containing multilayer film. For example, even if a film is bonded to a deoxygenated resin layer, there is no adhesive having excellent oxygen permeability, and a non-porous thin film is laminated as a shielding layer by a bonding method to produce a deoxygenated multilayer body. difficult. Also, when attempting to produce a deoxidized multilayer body by a known lamination method such as an extrusion lamination method or a co-extrusion lamination method, since the deoxidized resin layer contains foreign matter such as iron powder, the iron powder breaks the thin film and pinholes are formed. There is a problem in film processing, for example, the occurrence of irregularities or irregularities on the surface of the multilayer body. As described above, even when the deoxidized multilayer body is used as a packaging material, there is no concern about elution and contamination of the deoxygenated component even when used for a liquid substance, and the deoxygenation performance is excellent, and a practical film or sheet is used. The fact is that there is no deoxygenated multilayer body and its manufacturing method.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、前記
従来技術の問題点を解決して、脱酸素層として脱酸素性
能に優れた微多孔質脱酸素樹脂層と脱酸素層の吸収面側
の隔離層として無孔薄膜の酸素透過性層を備え、脱酸素
成分が表面に突出するようなことがなく、液体物質に使
用しても脱酸素成分の溶出による汚染がなく安全衛生性
に問題がなく、さらにバリア層に各種の材料の使用が可
能で製造加工が容易であり、脱酸素性能に優れかつ耐水
・耐油性に優れたフィルム状又はシート状の片面吸収型
脱酸素多層体とその製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a microporous oxygen-absorbing resin layer having excellent oxygen-absorbing performance as an oxygen-absorbing layer. Equipped with a non-porous thin film oxygen permeable layer as an isolation layer on the side, the deoxygenated component does not protrude to the surface, and even when used for liquid substances, there is no contamination due to the elution of the deoxygenated component for safety and health. There is no problem, and it is possible to use various materials for the barrier layer, it is easy to manufacture and process, and it is a single-sided absorption type deoxygenated multilayer body in the form of a film or sheet excellent in deoxidation performance and excellent in water resistance and oil resistance. It is to provide a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】本発明者らが、上記課題
を解決するべく鋭意研究を重ねた結果、脱酸素多層体の
脱酸素層として脱酸素性能に優れた微多孔質の脱酸素樹
脂層を用い、この脱酸素層の吸収面側に、無孔薄膜の樹
脂層とこれに保護層として粒状難水溶性フィラーを分散
した樹脂組成物を微多孔質化させた層とを組み合わせて
積層した構成の遮蔽層を設けることにより、脱酸素速度
に優れ、かつ、脱酸素成分が表面に突出するようなこと
がなく、液体物質に使用しても脱酸素成分の溶出の恐れ
のない、フィルム状又はシート状の脱酸素多層体とする
ことができることを見い出した。そして、脱酸素多層体
の製造に際し、脱酸素成分を分散した樹脂組成物の層の
吸収面側に酸素透過性を有する熱可塑性樹脂の層と粒状
難水溶性フィラーを分散した樹脂組成物の層を組み合わ
せ積層した樹脂積層体を延伸することにより、連続微多
孔質の脱酸素層に無孔薄膜の酸素透過性層と連続微多孔
質の酸素透過性層とを組み合わせた遮蔽層が一挙に形成
できることを見い出した。同時に前記樹脂積層体の吸収
面側の他面に予め樹脂層(緩衝層)を設けておき、これ
を延伸して緩衝層の面にバリア層を積層することによ
り、上記課題を解決して、フィルム状又はシート状の片
面吸収型脱酸素多層体が容易に製造できることを見い出
した。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a microporous oxygen-absorbing resin excellent in oxygen-absorbing performance as the oxygen-absorbing layer of the oxygen-absorbing multilayer body. Using a layer, on the absorption surface side of this deoxidizing layer, a resin layer of a non-porous thin film and a layer obtained by dispersing a finely porous resin composition in which a particulate poorly water-soluble filler is dispersed as a protective layer are laminated. By providing a shielding layer having a configuration as described above, a film having an excellent deoxygenation rate, no deoxygenation component protruding to the surface, and no danger of elution of the deoxygenation component even when used for a liquid substance. It has been found that a deoxygenated multilayer body in the shape of a sheet or a sheet can be obtained. In the production of the deoxidized multilayer body, a layer of a thermoplastic resin having oxygen permeability and a layer of a resin composition in which a particulate poorly water-soluble filler is dispersed on the absorption surface side of the layer of the resin composition in which the deoxidized component is dispersed By stretching the resin laminate obtained by combining and laminating, a shielding layer that combines a continuous microporous oxygen-permeable layer and a continuous microporous oxygen-permeable layer on a continuous microporous deoxygenation layer is formed at once I found what I could do. At the same time, a resin layer (buffer layer) is provided in advance on the other surface on the absorption surface side of the resin laminate, and is stretched to laminate a barrier layer on the surface of the buffer layer. It has been found that a single-sided absorption deoxidized multilayer body in the form of a film or sheet can be easily produced.

【0012】すなわち、本発明は、脱酸素層の一面に酸
素透過性層を備え、他面にバリア層を備えたフィルム状
又はシート状の脱酸素多層体において、脱酸素成分を分
散させた樹脂組成物が連続微多孔質化されてなる脱酸素
層Aの一面に、少なくとも無孔薄膜の熱可塑性樹脂から
なる酸素透過性層Cと粒状の難水溶性フィラーを分散さ
せた樹脂組成物が連続微多孔質化されてなる酸素透過性
層Bとを備え、かつ前記層Aの他面に熱可塑性樹脂から
なる緩衝層Eを備え、隣接する前記各層が熱融着されて
なる積層体の緩衝層E面にバリア層Dが積層されてなる
ことを特徴とする片面吸収型脱酸素多層体を提供する。
以下、「片面吸収型脱酸素多層体」を、「脱酸素多層
体」又は「多層体」と言うことがある。
That is, the present invention relates to a film-shaped or sheet-shaped oxygen-absorbing multilayer body having an oxygen-permeable layer on one side of a deoxygenation layer and a barrier layer on the other side, and a resin in which an oxygen-absorbing component is dispersed. A resin composition in which at least an oxygen-permeable layer C made of a nonporous thin-film thermoplastic resin and a granular poorly water-soluble filler are dispersed on one surface of a deoxidized layer A in which the composition is continuously microporous. A microporous oxygen-permeable layer B, and a buffer layer E made of a thermoplastic resin on the other surface of the layer A, and a buffer of a laminate formed by heat-sealing the adjacent layers. Provided is a single-sided absorption deoxidized multilayer body characterized in that a barrier layer (D) is laminated on a layer (E) side.
Hereinafter, the “single-sided absorption-type oxygen-absorbing multilayer body” may be referred to as a “oxygen-absorbing multilayer body” or “multilayer body”.

【0013】ここで、本発明の脱酸素多層体は、脱酸素
成分を分散させた樹脂組成物が微多孔質化された脱酸素
層Aを備え、この脱酸素成分としては、鉄粉を主剤とす
る脱酸素成分が好ましい。
Here, the deoxidized multilayer body of the present invention includes a deoxidized layer A in which a resin composition in which a deoxidized component is dispersed is made microporous, and iron powder is used as a main component of the deoxidized component. Is preferred.

【0014】また前記脱酸素層Aの吸収面側には、無孔
薄膜の熱可塑性樹脂からなる酸素透過性層Cと粒状の難
水溶性フィラーを分散させた樹脂組成物が微多孔質化さ
れてなる酸素透過性層Bとがそれぞれ1層以上組み合わ
されて積層された遮蔽層(酸素透過性層)が形成されて
いるが、前記酸素透過性層Cの酸素透過率は、1×10
-11 〜6×10-9[cm3 /cm2 ・sec ・Pa]であること
が好ましい。
On the absorption surface side of the oxygen-absorbing layer A, a resin composition in which an oxygen-permeable layer C made of a nonporous thin-film thermoplastic resin and a particulate water-insoluble filler are dispersed is made microporous. The oxygen permeable layer B is formed by combining at least one layer with each other to form a shielding layer (oxygen permeable layer). The oxygen permeability of the oxygen permeable layer C is 1 × 10
-11 to 6 × 10 -9 [cm 3 / cm 2 · sec · Pa] is preferable.

【0015】さらに、本発明の脱酸素多層体は、その酸
素透過性層Cが存在する側をn−ヘプタンに浸漬した際
に、脱酸素多層体からの溶出量が表面積1cm2 当たり
0.3mg以下であることが好ましく、これにより、脱酸
素多層体は耐油性に優れたものとなり、包装材料とした
場合に被包装物への影響を避けることができる。
Furthermore, when the oxygen-permeable multilayer C of the present invention is immersed in n-heptane on the side where the oxygen-permeable layer C is present, the amount of elution from the oxygen-desorbing multilayer is 0.3 mg / cm 2 of surface area. It is preferable that the content is not more than the above, whereby the deoxidized multilayer body has excellent oil resistance, and when it is used as a packaging material, it is possible to avoid the influence on the article to be packaged.

【0016】本発明に係る脱酸素多層体は片側吸収型の
脱酸素体であるが、前記脱酸素層Aの吸収面側に形成さ
れた遮蔽層の構成は簡便な構成が好ましく、脱酸素層A
から順に酸素透過性層B、酸素透過性層Cが積層された
構成、あるいは脱酸素層Aから順に酸素透過性層C、酸
素透過性層Bが積層された構成とすることができる。
The oxygen-absorbing multilayer body according to the present invention is a one-side absorption oxygen absorber, and the shielding layer formed on the absorption surface side of the oxygen-absorbing layer A preferably has a simple structure. A
, An oxygen permeable layer B and an oxygen permeable layer C are stacked in this order, or a deoxygenation layer A in which an oxygen permeable layer C and an oxygen permeable layer B are stacked in that order.

【0017】また本発明は、上記本発明の片側吸収型脱
酸素多層体を製造する方法として、脱酸素成分を分散さ
せた樹脂組成物の層aの一面に酸素透過性を有する熱可
塑性樹脂の層cと粒状の難水溶性フィラーを分散させた
樹脂組成物の層bとがそれぞれ1層以上組み合わされて
積層され、かつ前記層aの他面に熱可塑性樹脂の層eが
積層され、隣接する前記各層が互いに熱融着されてなる
樹脂積層体の基材を延伸し、次に延伸した前記基材の層
e面にバリア層Dを積層して、層aが連続微多孔質化さ
れてなる脱酸素層Aの一面に、少なくとも層cが薄膜化
されてなる無孔の酸素透過性層Cと層bが連続微多孔質
化されてなる酸素透過性層Bとを備え、前記層Aの他面
に層eが延伸されてなる緩衝層Eに積層してなるバリア
層Dを備えたフィルム状又はシート状の脱酸素多層体を
製造する片側吸収型脱酸素多層体の製造方法を提供す
る。
The present invention also relates to a method for producing the above-mentioned single-sided absorption-type oxygen-absorbing multilayer body, wherein the oxygen-permeable thermoplastic resin is provided on one surface of a layer a of a resin composition in which an oxygen-absorbing component is dispersed. The layer c and the layer b of the resin composition in which the particulate poorly water-soluble filler is dispersed are respectively combined in one or more layers, and a layer e of a thermoplastic resin is laminated on the other surface of the layer a. The base material of the resin laminate obtained by heat-sealing the respective layers to each other is stretched, and then the barrier layer D is laminated on the layer e surface of the stretched base material, so that the layer a is continuously microporous. A layer of oxygen-permeable layer C in which at least layer c is made thinner and oxygen-permeable layer B in which layer b is made continuous and microporous on one surface of the oxygen-absorbing layer A comprising A filter having a barrier layer D laminated on a buffer layer E formed by stretching a layer e on the other side of A To provide a method of manufacturing a side absorption type oxygen multilayered body for producing a beam-like or sheet-like oxygen multilayered body.

【0018】ここで上記本発明の製造方法においては、
前記樹脂積層体の基材を1軸方向又は2軸方向に面積換
算で2〜20倍に延伸することが好ましい。また基材の
樹脂積層体の延伸は、1軸延伸、2軸同時延伸又は2軸
逐次延伸のいずれの方法であってもよい。
Here, in the production method of the present invention,
It is preferable to stretch the base material of the resin laminate in the uniaxial direction or the biaxial direction by 2 to 20 times in terms of area. The stretching of the resin laminate of the substrate may be any of uniaxial stretching, biaxial simultaneous stretching, and biaxial sequential stretching.

【0019】本発明においては、延伸した前記樹脂積層
体の脱酸素層Aの他面に緩衝層Eを介してバリア層Dを
積層することにより、酸素バリア性に優れた材料や複合
材料等の各種材料を、接着、融着、押し出しコーティン
グ、蒸着等の方法を、その材料や構成に応じ適宜選択し
て、積層することができる。仮に、緩衝層Eの介在なく
直接延伸によって形成された脱酸素層Aに、例えば、接
着剤を塗布すれば、脱酸素層Aに形成された微多孔質層
に接着剤が浸透することとなり、また軟化点の高い樹脂
層を熱融着させようとすれば、微多孔質層を損なうこと
となり、前記公知の方法は採用できない。しかし、本発
明によれば、樹脂積層体にバリア層として予め積層して
延伸することが不可能な材料でも、緩衝層Eを介して積
層することにより、バリア層Dとすることが可能とな
る。
In the present invention, by laminating a barrier layer D via a buffer layer E on the other surface of the oxygen-absorbing layer A of the stretched resin laminate, a material having excellent oxygen barrier properties or a composite material can be obtained. Various materials can be laminated by appropriately selecting a method such as adhesion, fusion, extrusion coating, vapor deposition or the like according to the material or configuration. If, for example, an adhesive is applied to the oxygen-absorbing layer A formed by direct stretching without the intervention of the buffer layer E, the adhesive will permeate the microporous layer formed in the oxygen-absorbing layer A, Further, if a resin layer having a high softening point is to be thermally fused, the microporous layer will be damaged, and the above-mentioned known method cannot be adopted. However, according to the present invention, it is possible to form the barrier layer D by laminating through the buffer layer E even if the material cannot be laminated and stretched in advance as a barrier layer on the resin laminate. .

【0020】[0020]

【発明の実施の態様】本発明の片側吸収型脱酸素多層体
の態様が、図1;無孔質層C/多孔質層B/脱酸素層A
/緩衝層E/接着層F/バリヤ層Dに例示される。ここ
で、図1の吸収面の構成、無孔質層C/多孔質層B/脱
酸素層Aを、多孔質層B/無孔質層C/脱酸素層Aにす
ることもできる。なお、ここでは、酸素透過層Cを無孔
質層C、酸素透過層Bを多孔質層Bと言い換える。ま
た、緩衝層Eとバリヤ層Dの間に接着層Fが設けられて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 shows a non-porous layer C / porous layer B / oxygen-absorbing layer A.
/ Buffer layer E / adhesive layer F / barrier layer D. Here, the configuration of the absorption surface in FIG. 1 and the non-porous layer C / porous layer B / deoxygenation layer A may be replaced with a porous layer B / non-porous layer C / deoxygenation layer A. Here, the oxygen permeable layer C is referred to as a non-porous layer C, and the oxygen permeable layer B is referred to as a porous layer B. Further, an adhesive layer F is provided between the buffer layer E and the barrier layer D.

【0021】本発明の脱酸素多層体は、脱酸素性能を備
えた包装材料として吸収面を内側にして、包装袋や包装
容器の一部又は全部に様々の形で使用することができ
る。例えば、図2は、脱酸素体10を包装用容器20の
トップシールフィルムに用いた例であり、図3は、脱酸
素体10を包装袋の片側に利用した例である。ここで
は、被包装物は固体に制限することなく、液体、または
固体、液体の両方を含むものであってもよい。
The deoxidized multilayer body of the present invention can be used in various forms for a part or all of a packaging bag or a packaging container, with the absorbent surface inside, as a packaging material having a deoxidizing performance. For example, FIG. 2 shows an example in which the oxygen absorber 10 is used as a top seal film of a packaging container 20, and FIG. 3 shows an example in which the oxygen absorber 10 is used on one side of a packaging bag. Here, the item to be packaged is not limited to a solid, but may include a liquid, or both a solid and a liquid.

【0022】次に、本発明の脱酸素多層体を構成する各
層について詳しく説明する。本発明の脱酸素多層体にお
いて重要な機能を果たす無孔薄膜の酸素透過性層Cにつ
いては、その酸素透過率が、1×10-11 〜6×10-9
[cm3 /cm2 ・sec・Pa]であることが望まれる。その
必要性は、次の計算によって理解される。
Next, each layer constituting the deoxidized multilayer body of the present invention will be described in detail. The oxygen permeability of the non-porous thin film oxygen permeable layer C which plays an important role in the deoxidized multilayer body of the present invention is 1 × 10 -11 to 6 × 10 -9.
[Cm 3 / cm 2 · sec · Pa] is desired. The need is understood by the following calculation.

【0023】面積Aの膜の両面の圧力差p(圧力差は一
定)、体積Vの気体を透過させるのに要する時間tの場
合、その定義より、気体透過率(P/X、Pは気体透過
係数、Xは膜の厚さ)は、次式で示される。 P/X=
V/(A・p・t)
In the case of the pressure difference p (the pressure difference is constant) between both surfaces of the membrane having the area A and the time t required to pass the gas having the volume V, the gas permeability (P / X, P The transmission coefficient, X is the thickness of the film) is expressed by the following equation. P / X =
V / (A ・ p ・ t)

【0024】ここで取り扱う脱酸素多層体を用いた脱酸
素を対象とする有限系では、酸素の圧力が脱酸素に伴っ
て低下するので、圧力差が低下していくことを考慮する
と、酸素濃度の変化は直線的な減少ではなく、ほぼ指数
関数的な減少となる。そのため、例えば、酸素濃度20.6
容積%の空気を含む対象系から、酸素濃度 0.1容積%の
状態に酸素濃度が低下するとすると、この場合の気体透
過率は前式で計算される値の loge (20.6 /0.1 )=5
倍程度あればよいことになる。さらに、空気の体積Va
(V=0.206 Va )、空気の圧力pa (p= 0.206
a )より、係数0.206 は相殺されて、前記の気体透過
率の式は、P/X=5Va /(A・pa ・t)となる。
In a finite system for deoxidation using a deoxygenated multilayer body handled here, since the pressure of oxygen decreases with deoxidation, considering that the pressure difference decreases, the oxygen concentration is reduced. Is not a linear decrease but an almost exponential decrease. Therefore, for example, an oxygen concentration of 20.6
Assuming that the oxygen concentration is reduced from a target system containing air at a volume of 0.1% by volume to an oxygen concentration of 0.1% by volume, the gas permeability in this case is log e (20.6 / 0.1) = 5 of the value calculated by the above equation.
It should be about twice as much. Furthermore, the volume of air V a
(V = 0.206 V a ), air pressure p a (p = 0.206
From p a ), the coefficient of 0.206 is canceled out, and the above equation for gas permeability is P / X = 5V a / (A · p a · t).

【0025】ここで、上記の気体透過率の式より、本発
明に係わる脱酸素多層体の無孔の酸素透過性層Cに要求
される酸素透過率を計算すると、pa =1.013 ×105Pa
(常圧)において、Va /A=0.1 〜5cm3/cm2 (脱酸
素多層体の吸収面側の単位表面積当たりの被包装物側に
存在する空気量で、本発明に係る脱酸素対象系はほとん
どこの範囲に含まれる)、脱酸素所要時間t=0.5 〜5d
ayとすると、Va /(A・t)=0.02〜10cm3 /cm2
day となり、結局、P/X=1.1 ×10-11 〜 5.7×10-9
[cm3 /cm2 ・sec ・Pa]となる。
Here, when the oxygen permeability required for the non-porous oxygen permeable layer C of the deoxidized multilayer body according to the present invention is calculated from the above gas permeability equation, p a = 1.013 × 10 5 Pa
In (normal pressure), V a /A=0.1 ~5cm 3 / cm 2 ( in the amount of air present in the packaged articles side per unit surface area of the absorbing surface side of the oxygen multilayered body, deoxygenated object of the present invention The system is almost included in this range), the time required for deoxidation t = 0.5 to 5d
When ay, V a / (A · t) = 0.02~10cm 3 / cm 2 ·
day, and eventually P / X = 1.1 × 10 -11 to 5.7 × 10 -9
[Cm 3 / cm 2 · sec · Pa].

【0026】したがって、酸素透過性層Cを構成する樹
脂及び厚さは、前記の酸素透過率P/Xで表される要求
性能に応じて、適宜、選択することができる。樹脂とし
ては、非極性または低極性高分子で、その酸素透過係数
Pは、前記の酸素透過率に対する要求が低い場合には特
に制限がないが、より広い要求範囲に対応するために
は、Pが1×10-13 [cm3 ・cm/cm2 ・sec ・Pa]以
上、さらにできれば1×10-12 [cm3 ・cm/cm2 ・se
c ・Pa]以上の熱可塑性樹脂が好ましい。また無孔質体
であれば、単独のモノマー種から重合された高分子のみ
でなく、各種の共重合体、樹脂の混合体でもあってもよ
い。さらに酸素透過性層Cは、層全体での酸素透過率が
前記の範囲を満たしていれば、複数の層で構成してもよ
い。
Therefore, the resin and the thickness of the oxygen permeable layer C can be appropriately selected according to the required performance represented by the oxygen permeability P / X. The resin is a non-polar or low-polarity polymer, and its oxygen permeability coefficient P is not particularly limited when the requirement for the oxygen permeability is low. Is 1 × 10 -13 [cm 3 · cm / cm 2 · sec · Pa] or more, and preferably 1 × 10 -12 [cm 3 · cm / cm 2 · se]
c · Pa] or higher. In addition, as long as it is nonporous, it may be not only a polymer polymerized from a single monomer species, but also a mixture of various copolymers and resins. Further, the oxygen-permeable layer C may be composed of a plurality of layers as long as the oxygen permeability of the entire layer satisfies the above range.

【0027】酸素透過性層Cを構成する樹脂の具体的な
例としては、エチレン、プロピレン、1−ブテン、4−
メチル−1−ペンテンなどのオレフィン類の単独重合体
および共重合体、エチレン−酢酸ビニル共重合体、ポリ
ブタジエン、ポリイソプレン、スチレン−ブタジエン共
重合体とその水素添加物、各種シリコン樹脂、などがあ
り、さらにこれらの変成物、グラフト体、混合物などで
あってもよい。
Specific examples of the resin constituting the oxygen-permeable layer C include ethylene, propylene, 1-butene, 4-
There are homopolymers and copolymers of olefins such as methyl-1-pentene, ethylene-vinyl acetate copolymer, polybutadiene, polyisoprene, styrene-butadiene copolymer and hydrogenated products thereof, various silicone resins, and the like. And modified products, grafts, and mixtures thereof.

【0028】また、他の脱酸素層Aや酸素透過性層Bの
マトリックス成分となる樹脂にこの層Cと同じ樹脂を用
いる場合には特に制限はないが、異なる樹脂を用いる場
合には、その樹脂と層Cを構成する樹脂との親和性が重
要である。すなわち、積層に際し特に接着剤などを用い
ない場合には、層Cの樹脂と他の層に用いる樹脂とが互
いに相溶性を持っていることが望まれる。なお、ここで
の「相溶性」の証明は熱力学的に厳密である必要はな
く、例えば、両者のヒートシールが可能な程度であれば
それを肯定してよい。
There is no particular limitation on the case where the same resin as this layer C is used as the matrix component of the other oxygen-desorbing layer A or the oxygen-permeable layer B. The affinity between the resin and the resin constituting the layer C is important. That is, when an adhesive is not particularly used for lamination, it is desired that the resin of the layer C and the resin used for the other layers have compatibility with each other. The proof of the “compatibility” here does not need to be thermodynamically strict. For example, if the heat sealing of both can be performed, it may be affirmed.

【0029】ここで、典型的な非極性高分子であるポリ
プロピレンと酸素透過性の比較的高いポリメチルペンテ
ンを用いて無孔質の酸素透過性層Cを構成したケースに
ついて試算してみる。 1)ポリプロピレン:酸素透過係数P= 1.7×10
-13 [cm3 ・cm/cm2 ・sec ・Pa](30℃)(Polymer
Handbook, 2nd Ed. III-235. J.Brandrup and E.H.Imme
rgut, John Willy & Sons(1975) 、単位は変換) 厚さX>10μm においては、P/X<1.7 ×10-17 [cm
3 /cm2 ・sec ・Pa]の範囲であれば適用可能である。
典型的な対象として、Va /A=1cm3/cm2 、t=1da
y の場合には、同様の計算より、厚さX=3μm の薄さ
が必要となる。この厚さの無孔質層は、強度面からはほ
ぼ限界にあるが、所要脱酸素時間を考慮すれば、層厚を
厚くできるので、ポリプロピレンが使用できることが判
る。
Here, a trial calculation will be made for a case where the nonporous oxygen-permeable layer C is formed using polypropylene, which is a typical nonpolar polymer, and polymethylpentene having a relatively high oxygen permeability. 1) Polypropylene: oxygen permeability coefficient P = 1.7 × 10
-13 [cm 3 · cm / cm 2 · sec · Pa] (30 ° C) (Polymer
Handbook, 2nd Ed. III-235. J. Brandrup and EHImme
rgut, John Willy & Sons (1975), unit is converted) When thickness X> 10 μm, P / X <1.7 × 10 −17 [cm
3 / cm 2 · sec · Pa].
Typical subjects, V a / A = 1cm 3 / cm 2, t = 1da
In the case of y, the same calculation requires a thickness of X = 3 μm. Although the thickness of the nonporous layer having this thickness is almost at its limit in terms of strength, it can be understood that polypropylene can be used because the layer thickness can be increased in consideration of the required deoxidation time.

【0030】2)ポリメチルペンテン:酸素透過係数P
=2.4 ×10-12 [cm3 ・cm/cm2 ・sec ・Pa](25℃)
(Polymer Handbook, 2nd Ed. III-235 ) 厚さX>10μm においては、P/X<2.4 ×10-9[cm3
/cm2 ・sec ・Pa]の範囲であれば適用可能である。こ
の場合には、Va /A=1cm3/cm2 、t=1dayの場合で
も厚さX=42μm となるので実用的な層となる。以上の
ように、遮蔽用の無孔質層における酸素透過性について
は、適当な樹脂を正しく選択すれば、ほぼ要求性能を満
たすことが可能である。
2) Polymethylpentene: oxygen permeability coefficient P
= 2.4 × 10 -12 [cm 3 · cm / cm 2 · sec · Pa] (25 ° C)
(Polymer Handbook, 2nd Ed. III-235) For a thickness X> 10 μm, P / X <2.4 × 10 −9 [cm 3
/ Cm 2 · sec · Pa]. In this case, the practical layer since a V a / A = 1cm 3 / cm 2, t = even for 1day thickness X = 42 .mu.m. As described above, with respect to the oxygen permeability of the nonporous layer for shielding, it is possible to substantially satisfy the required performance by properly selecting an appropriate resin.

【0031】無孔質の酸素透過性層Cの厚さの最大値
は、酸素透過率で表される脱酸素対象物の要求性能と樹
脂の酸素透過係数とにより決定される。ただし、ピンホ
ールなどが発生しないように安定して製造可能で、か
つ、通常の使用において内容物との接触などでもピンホ
ールや破れが生じないことが確実であれば、最大値より
もできるだけ薄いことが望ましい。層Cの厚さは、製造
上少なくとも3μm 程度は必要であり、一般的には厚さ
5〜20μm 程度が望ましい。
The maximum value of the thickness of the nonporous oxygen-permeable layer C is determined by the required performance of the object to be deoxidized represented by the oxygen permeability and the oxygen permeability coefficient of the resin. However, if it can be manufactured stably so that pinholes do not occur, and if it is certain that pinholes and tears will not occur even in contact with the contents in normal use, it is as thin as possible than the maximum value It is desirable. The thickness of the layer C is required to be at least about 3 .mu.m in production, and generally, the thickness is preferably about 5 to 20 .mu.m.

【0032】次に、酸素透過性層Bは、熱可塑性樹脂に
粒状の難水溶性フィラーを分散させた樹脂組成物が延伸
によって連続微多孔質化された樹脂組成物の層よりな
る。この層Bに用いられるフィラーとしては、水に不溶
または難溶の無機または有機物であれば特に制限はない
が、被包装物が酸性などの液体の場合にも使用できる脱
酸素多層体とする場合で、特にこの層Bが最外層に位置
する場合には、それらの条件下でも溶出しないことが必
要となる。また、燃焼の危険性が低い酸化物などのフィ
ラーが望ましい。
Next, the oxygen-permeable layer B is a layer of a resin composition in which a resin composition in which granular water-insoluble fillers are dispersed in a thermoplastic resin is made continuous and microporous by stretching. The filler used in the layer B is not particularly limited as long as it is an inorganic or organic substance that is insoluble or hardly soluble in water. In particular, when the layer B is located at the outermost layer, it is necessary that the layer B does not elute under these conditions. Further, a filler such as an oxide having a low risk of burning is desirable.

【0033】酸素透過性層Bに用いる無機フィラーの例
としては、シリカ、珪藻土、タルク、チタニア、硫酸バ
リウムなどが適当である。また有機フィラーの例として
は、マトリックスの樹脂よりも高融点を有する粒状樹
脂、セルロース粉末などが適当である。フィラーの粒径
としては、樹脂への添加などを含めて扱い易い範囲であ
れば特に制限はないが、他の層を傷つけず、さらに連続
多孔質層として前記酸素透過性層Cを保護する点から、
層Cの厚さ未満で、より細かい方が望ましく、最大粒径
で10μm 以下が好ましい。
Suitable examples of the inorganic filler used in the oxygen-permeable layer B include silica, diatomaceous earth, talc, titania, and barium sulfate. Suitable examples of the organic filler include a granular resin having a higher melting point than that of the matrix resin, and cellulose powder. The particle size of the filler is not particularly limited as long as it is in a range that is easy to handle, including addition to the resin, but it does not damage other layers and further protects the oxygen-permeable layer C as a continuous porous layer. From
It is desirable that the thickness be smaller than the thickness of the layer C, and it is desirable that the maximum particle size be 10 μm or less.

【0034】酸素透過性層Bに用いる熱可塑性樹脂とし
ては、樹脂そのものの酸素透過性は、微多孔質化される
ためにあまり問題とならず、難水溶性フィラーを容易に
混合、分散させられるものであれば、特に制限はない。
むしろ、無孔質層Cとの相溶性のよさ、延伸の容易さ、
脱酸素多層体の使用温度範囲、などを考慮して選択すれ
ばよく、一般的には前述の無孔質層Cの樹脂の例に準ず
る。
As for the thermoplastic resin used for the oxygen-permeable layer B, the oxygen permeability of the resin itself is not so serious because it is microporous, and the poorly water-soluble filler can be easily mixed and dispersed. There is no particular limitation as long as it is one.
Rather, good compatibility with the non-porous layer C, ease of stretching,
The selection may be made in consideration of the operating temperature range of the deoxidized multilayer body, and the like, and generally follows the examples of the resin of the nonporous layer C described above.

【0035】難水溶性フィラーのマトリックス樹脂に対
する添加比率は、一般に体積分率で10〜60容積%、
より好ましくは20〜40容積%の範囲である。難水溶
性フィラーの添加比率が低すぎると微多孔質化が難し
く、高すぎるとフィルム化又はシート化が困難となるこ
とから、これらを考慮して前記範囲で適正に設定すれば
よい。
The addition ratio of the poorly water-soluble filler to the matrix resin is generally 10 to 60% by volume in volume fraction,
More preferably, it is in the range of 20 to 40% by volume. If the addition ratio of the poorly water-soluble filler is too low, it is difficult to make the porous material microporous, and if it is too high, it becomes difficult to form a film or a sheet.

【0036】また、酸素透過性層Bの通気性は、粒状の
難水溶性フィラーを分散させた樹脂組成物に形成された
連続微多孔質構造によって十分に確保される。この層B
における微多孔の体積分率は 0.1以上が望ましく、層の
強度の観点から、上限は 0.9以下、好ましくは 0.5以下
である。
The air permeability of the oxygen-permeable layer B is sufficiently ensured by the continuous microporous structure formed in the resin composition in which the particulate water-insoluble filler is dispersed. This layer B
Is preferably 0.1 or more, and from the viewpoint of the strength of the layer, the upper limit is 0.9 or less, preferably 0.5 or less.

【0037】酸素透過性層Bの厚さは、外部の力からの
酸素透過性層Cの保護や補強、また脱酸素成分粒子によ
る層Cの損傷(例えば大きな鉄粉による破れなど)の防
止、ができる程度の厚さが必要で、少なくとも脱酸素成
分の最大粒子径以上が望ましい。他方、必要以上に厚い
と脱酸素多層体を厚くすることになるので、層Bの厚さ
は、厚くとも脱酸素成分粒子の最大粒径の10倍以下で
ある。通常は、20〜200μmの範囲が好ましい。
The thickness of the oxygen permeable layer B is determined to protect and reinforce the oxygen permeable layer C from external force, prevent damage to the layer C by deoxygenated particles (for example, breakage by large iron powder), Is necessary, and the thickness is preferably at least the maximum particle diameter of the deoxidizing component. On the other hand, if the thickness is unnecessarily large, the deoxidized multilayer body will be thickened. Therefore, the thickness of the layer B is at most 10 times or less the maximum particle size of the deoxidized component particles. Usually, the range of 20 to 200 μm is preferable.

【0038】上記の酸素透過性層C及び酸素透過性層B
の2種の層は、各1層以上を組み合わせ、脱酸素層Aの
吸収面側に積層して、酸素透過性の遮蔽層が構成され
る。これらの2種の酸素透過性層の多層構造中における
位置及びその数は、脱酸素多層体を包装材として使用し
た場合に、被包装物に対して脱酸素層Aとの間にあれば
特に制限はなく、用途・目的、生産性等に応じて、適
宜、選択される。ただし、全体の層数をできるだけ少な
くしてより簡便に製造することを考慮すれば、脱酸素層
Aの吸収面側に酸素透過性層C及び酸素透過性層Bを各
1層の構成とすることができる。この場合、酸素透過性
層C又は酸素透過性層Bが、脱酸素層Aに対して直接被
包装物側、すなわち最外層に位置する構成となる。
The above-described oxygen-permeable layer C and oxygen-permeable layer B
The two types of layers described above are combined with one or more layers and stacked on the absorption surface side of the deoxidizing layer A to form an oxygen-permeable shielding layer. The position and the number of these two types of oxygen-permeable layers in the multilayer structure are particularly determined if the oxygen-permeable multilayer body is used as a packaging material and between the oxygen-desorbing layer A and the object to be packaged. There is no limitation, and it is appropriately selected according to the use / purpose, productivity, and the like. However, considering that the total number of layers is made as small as possible and that the production is simpler, the oxygen-permeable layer C and the oxygen-permeable layer B are each configured as one layer on the absorption surface side of the oxygen-absorbing layer A. be able to. In this case, the configuration is such that the oxygen-permeable layer C or the oxygen-permeable layer B is located directly on the side of the package, that is, on the outermost layer with respect to the deoxidized layer A.

【0039】ここで、酸素透過性層Cが脱酸素層Aと酸
素透過性層Bとの中間にある場合には、難水溶性フィラ
ーを含む連続微多孔質の酸素透過性層Bが外部からの力
に対して無孔薄膜の酸素透過性層Cを保護するように作
用し、層Cが層Bの内容物側にある場合には、層Bが層
Cを裏から補強するように作用し、いずれにしても、本
発明の脱酸素多層体においては、酸素透過性層Bは酸素
透過性層Cの保護層の役割を果たす。また、酸素透過性
層Cが脱酸素層Aと酸素透過性層Bの間にある構成は、
製造時延伸に際し、層Cは厚さ方向への変形が少ないた
めに損傷し難く、また製造後は外部からの直接の衝撃か
ら保護される点で優れている。他方、酸素透過性層Cが
最外層に位置する構成は、極性の低い液体と接触して
も、多層体内部への液体の浸透が全くない点が優れてい
る。これらの利害得失を勘案して層構成が選択される。
Here, when the oxygen-permeable layer C is located between the oxygen-absorbing layer A and the oxygen-permeable layer B, the continuous microporous oxygen-permeable layer B containing a poorly water-soluble filler is supplied from outside. Acts to protect the oxygen permeable layer C of the non-porous thin film against the force of the layer B. When the layer C is on the content side of the layer B, the layer B acts to reinforce the layer C from behind. In any case, in the deoxidized multilayer body of the present invention, the oxygen-permeable layer B functions as a protective layer for the oxygen-permeable layer C. Further, the configuration in which the oxygen-permeable layer C is between the deoxidized layer A and the oxygen-permeable layer B is as follows.
During production, the layer C is excellent in that it is hardly damaged due to little deformation in the thickness direction, and is protected from direct impact from the outside after production. On the other hand, the configuration in which the oxygen-permeable layer C is located at the outermost layer is excellent in that even when the oxygen-permeable layer C comes into contact with a low-polarity liquid, there is no penetration of the liquid into the multilayer body. The layer configuration is selected in consideration of these advantages and disadvantages.

【0040】脱酸素層Aは熱可塑性樹脂に脱酸素成分を
分散させた脱酸素樹脂組成物の層が延伸により微多孔質
化されたものよりなる。この脱酸素層Aに用いる脱酸素
成分としては、種々の組成物が知られているが、中でも
鉄粉、アルミニウム粉、ケイ素粉などの金属粉、第一鉄
塩などの無機塩類、アスコルビン酸とその塩類、カテコ
ール、グリセリンなどのアルコールまたはフェノール類
などが好ましく、特に鉄粉を主成分とするものが好適で
ある。さらに、鉄粉と各種塩類、特にハロゲン化金属を
添加したもの、中でも鉄粉の表面をハロゲン化金属で被
覆したものが好ましい。
The oxygen-absorbing layer A is made of a layer of an oxygen-absorbing resin composition obtained by dispersing an oxygen-absorbing component in a thermoplastic resin and has been made microporous by stretching. Various compositions are known as a deoxidizing component used for the deoxidizing layer A. Among them, metal powders such as iron powder, aluminum powder and silicon powder, inorganic salts such as ferrous salt, and ascorbic acid Alcohols such as salts, catechol and glycerin, and phenols are preferable, and those containing iron powder as a main component are particularly preferable. Further, those obtained by adding iron powder and various salts, particularly a metal halide, particularly those obtained by coating the surface of iron powder with a metal halide are preferred.

【0041】鉄粉などの脱酸素成分の粒子の大きさは、
最大粒径が脱酸素層Aの厚さを超えなければ、粒径分布
などに特に制限はないが、酸化速度の点、他の層を傷つ
けない(貫通などのない)点ではより細かいものが望ま
しい。ただし、粒子が細か過ぎる場合には粉塵爆発など
の危険性から取扱いに慎重さが要求され、また、一般に
高価となることから、脱酸素成分の粒子の大きさは、平
均粒径として10〜100μm が好ましく、30〜50
μm がより好ましい。
The size of the particles of the deoxidizing component such as iron powder is as follows:
As long as the maximum particle size does not exceed the thickness of the deoxidized layer A, there is no particular limitation on the particle size distribution, but finer particles are required in terms of oxidation rate and in that they do not damage other layers (no penetration). desirable. However, if the particles are too fine, careful handling is required due to the danger of dust explosion and the like, and since they are generally expensive, the size of the particles of the deoxidizing component is 10 to 100 μm as an average particle size. Is preferred, and 30 to 50
μm is more preferred.

【0042】脱酸素層Aに用いる熱可塑性樹脂として
は、この場合も前記微多孔質化する酸素透過性層Bの場
合と同様、樹脂そのものの酸素透過性は、微多孔質化さ
れるためにあまり問題とならず、鉄粉などの脱酸素成分
を容易に混合、分散させられるものであれば、特に制限
はなく、樹脂の選択は、前述の酸素透過性層Bに係る樹
脂の選択に準ずる。
As in the case of the oxygen-permeable layer B, which is made microporous, the thermoplastic resin used for the oxygen-absorbing layer A also has the oxygen permeability of the resin itself because it becomes microporous. There is no particular limitation as long as it can easily mix and disperse the deoxidizing component such as iron powder, and the selection of the resin is similar to the selection of the resin for the oxygen-permeable layer B described above. .

【0043】脱酸素成分の熱可塑性樹脂に対する添加比
率は、同様に微多孔質化するために、体積分率で10〜
60容積%、より好ましくは20〜40容積%の範囲に
選ばれる。添加比率を重量分率で表現すると脱酸素成分
の密度によって異なることになるが、鉄粉主剤の脱酸素
成分の場合、添加比率は40〜90重量%、より好まし
くは60〜85重量wt%となる。また、鉄粉を少なくす
る場合には、他のフィラーを加えることにより、同様に
連続微多孔質化が可能である。
The addition ratio of the deoxidizing component to the thermoplastic resin is 10 to 10% by volume in order to similarly make the porous material microporous.
It is selected in the range of 60% by volume, more preferably 20 to 40% by volume. When the addition ratio is expressed in terms of weight fraction, it differs depending on the density of the deoxidizing component. In the case of the deoxidizing component of the iron powder base, the adding ratio is 40 to 90% by weight, more preferably 60 to 85% by weight. Become. In addition, when the amount of iron powder is reduced, continuous microporosity can be similarly obtained by adding another filler.

【0044】また脱酸素層Aも、酸素透過性層Bと同
様、微多孔の体積分率は 0.1以上、上限は 0.9以下、好
ましくは 0.5以下が望ましい。脱酸素層A内の通気性が
粒状脱酸素成分を分散した樹脂組成物に形成された連続
微多孔質構造によって確保され、層内では容易に酸素が
脱酸素成分に到達することができる。
The deoxidized layer A also has a microporous volume fraction of 0.1 or more and an upper limit of 0.9 or less, preferably 0.5 or less, like the oxygen-permeable layer B. The air permeability in the oxygen-absorbing layer A is ensured by the continuous microporous structure formed in the resin composition in which the particulate oxygen-absorbing component is dispersed, and oxygen can easily reach the oxygen-absorbing component in the layer.

【0045】脱酸素層Aの厚さは、まず、酸素の総吸収
量によりほぼ決定される。すなわち、対象とする空気の
中の酸素を全て吸収できる最低量の脱酸素成分を含む厚
さが最低の厚さとなる。通常は、内容物の長期保存時の
若干の酸素流入をも考慮して、この最低量の脱酸素成分
の2〜3倍を用いるため、厚さもこの最低の場合の2〜
3倍が基本となる。加えて、脱酸素層が連続微多孔質化
していると、微多孔化していない場合と比較して、脱酸
素層内部の脱酸素成分まで直ちに脱酸素に関与する。そ
のため、特に、初期の吸収速度が厚さにほぼ比例して大
きくなる。そこで、この脱酸素速度をも考慮して厚さを
決定する。ただし、他方で無孔質の酸素透過性層Cの酸
素透過が律速となるため、層Cにおける透過速度と脱酸
素層Aにおける吸収速度とが等しくなる場合が、最大の
吸収速度となる。脱酸素層Aの厚さは、上記を考慮して
適宜決められるが、通常、好ましくは10〜400μ
m、より好ましくは30〜200μmの範囲に選ばれ
る。
First, the thickness of the deoxidizing layer A is substantially determined by the total amount of oxygen absorbed. That is, the thickness including the minimum amount of the deoxygenated component that can absorb all the oxygen in the target air is the minimum thickness. Usually, in consideration of a slight inflow of oxygen during long-term storage of the contents, to use 2 to 3 times the minimum amount of the deoxidized component, the thickness is 2 to 3 in this minimum case.
Three times the basics. In addition, when the oxygen scavenging layer is continuously microporous, it immediately participates in oxygen scavenging up to the oxygen scavenging component inside the oxygen scavenging layer as compared with the case where the oxygen scavenging layer is not microporous. Therefore, in particular, the initial absorption rate increases substantially in proportion to the thickness. Therefore, the thickness is determined in consideration of the deoxidation rate. However, on the other hand, since the oxygen transmission of the nonporous oxygen-permeable layer C is rate-determining, the maximum absorption rate is obtained when the transmission rate in the layer C is equal to the absorption rate in the deoxygenation layer A. The thickness of the deoxidizing layer A is appropriately determined in consideration of the above, but is usually preferably 10 to 400 μm.
m, more preferably in the range of 30 to 200 μm.

【0046】緩衝層Eに用いる熱可塑性樹脂としては、
脱酸素層Aの樹脂に熱融着可能で前記樹脂積層体として
一体化して延伸できるものであれば、特に制限はなく、
脱酸素層Aと相溶性があり、加工性を考慮して選ばれ、
通常、ポリエチレン、ポリプロピレン等のポリオレフィ
ン系樹脂が用いられる。緩衝層Eの厚さは、10〜50
0μm、より好ましくは20〜200μmの範囲に選ば
れる。
As the thermoplastic resin used for the buffer layer E,
There is no particular limitation as long as it can be heat-fused to the resin of the oxygen-absorbing layer A and can be integrally stretched as the resin laminate.
Compatible with the deoxygenation layer A, selected in consideration of processability,
Usually, polyolefin resins such as polyethylene and polypropylene are used. The thickness of the buffer layer E is 10 to 50.
0 μm, more preferably 20 to 200 μm.

【0047】バリヤ層Dを構成する樹脂としては、ポリ
エチレンテレフタレート、ポリブチレンテレフタレート
等のポリエステル類、ナイロン6、ナイロンMXD等の
ポリアミド類、ポリ塩化ビニル、ポリ塩化ビニリデン等
の塩素含有樹脂、エチレン−ビニルアルコール共重合体
等の低酸素透過性樹脂が挙げられる。バリヤ層Dに係る
樹脂は、必ずしも酸素バリヤ性樹脂でなくても、厚みを
厚くすることによって実質的にバリヤ層として使用でき
るものであれば、酸素透過性の樹脂でも使用できる。さ
らにバリヤ層Dを構成する材料としては、前記低酸素透
過性樹脂の単層フィルムの他、このフィルムの複合フィ
ルム、アルミニウム等の金属箔、金属又は金属酸化物、
ケイ素酸化物等の蒸着膜を用いた複合フィルムであって
もよい。バリヤ層Dは、延伸用基材の樹脂積層体を延伸
した後、前記の緩衝層E面に積層され、緩衝層Eとバリ
ヤ層Dとの間には、接着層を設けることができる。
Examples of the resin constituting the barrier layer D include polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyamides such as nylon 6 and nylon MXD; chlorine-containing resins such as polyvinyl chloride and polyvinylidene chloride; Low oxygen permeable resins such as alcohol copolymers may be mentioned. The resin relating to the barrier layer D is not necessarily an oxygen barrier resin, but may be an oxygen permeable resin as long as the resin can be used substantially as a barrier layer by increasing the thickness. Further, as a material constituting the barrier layer D, in addition to the single-layer film of the low oxygen permeable resin, a composite film of this film, a metal foil such as aluminum, a metal or metal oxide,
It may be a composite film using a deposited film of silicon oxide or the like. The barrier layer D is laminated on the buffer layer E after stretching the resin laminate of the stretching substrate, and an adhesive layer can be provided between the buffer layer E and the barrier layer D.

【0048】本発明の脱酸素多層体は、包装材料とし
て、各種の液体を多く含む系に好適に用いられるには、
それら液体に対する耐液性があることが好ましい。前記
の各層を構成する樹脂として、主に非極性又は低極性の
高分子、又はこれらの高分子の混合物を用いることによ
り、水、アルコール類などの高極性溶媒や、酸、アルカ
リなどの水溶液に対する耐液性をほぼ付与することがで
きる。しかし、非極性又は低極性の高分子の中には、各
種の油類や低極性の有機溶媒類によっては、部分的また
は完全に溶解されてしまうものがある。そこで、このよ
うな各種の油類や低極性の有機溶媒類に対する耐性(以
下、耐油性と呼ぶ)を必要とする用途では、さらに樹脂
種を選択すると良い。この選択には、例えば、代表的な
1種以上の溶媒に対する樹脂の溶解量を測定することで
可能であり、その溶解量が予め定めた値よりも低ければ
耐油性の用途に使用できる。
The oxygen-depleted multilayer body of the present invention is suitable for use as a packaging material in a system containing a large amount of various liquids.
It is preferable to have liquid resistance to these liquids. By using a non-polar or low-polarity polymer or a mixture of these polymers as a resin constituting each layer, water, a highly polar solvent such as alcohols, an acid, and an aqueous solution such as an alkali are used. Almost liquid resistance can be provided. However, some non-polar or low-polarity polymers are partially or completely dissolved depending on various oils or low-polarity organic solvents. Therefore, for applications requiring resistance to such various oils and low-polarity organic solvents (hereinafter referred to as oil resistance), it is better to further select a resin type. This selection can be made, for example, by measuring the amount of the resin dissolved in one or more representative solvents, and if the amount of the resin is lower than a predetermined value, the resin can be used for oil-resistant applications.

【0049】各種フィルムを、例えば食品の包装容器に
用いる場合の溶解量については、一般に満たすべき基準
が存在する。日本における基準は、「食品衛生法」に基
づく「食品、添加物等の規格基準」(昭和34年厚生省
告示第370号)の「第3器具及び容器包装」の「D
器具若しくは容器包装又はこれらの材質別規格」の「2
合成樹脂製の器具又は容器包装」に示される。このう
ち、耐油性は、フィルムの表面積1cm2 当たり2cm3
n−ヘプタンを用いて、25℃でフィルムを1時間浸漬
させた場合の、n−ヘプタン中の蒸発残留物の量(溶出
後のn−ヘプタン重量に対する蒸発残留物の重量の比で
表す)で判断される。ただし、有限時間内の溶出のた
め、一般に溶解量は平衡値ではない。この量が規定値以
下であれば包装容器に使用可能となる。規定値は各樹脂
種について定められており、高めの規定値の例として、
ポリスチレンの240ppm 、ポリエチレンとポリプロピ
レンについての150ppm (100℃を超える用途で使
用する場合は30ppm )などがある。n−ヘプタンの密
度0.68g/cm3 を用いて、フィルムの表面積1cm2
当たりの溶出重量は、上記240ppm の場合、約0.3
mgと計算される。
When various films are used for, for example, food packaging containers, there are generally standards to be satisfied for the amount of dissolution. The standard in Japan is “D” of “Third apparatus and container and packaging” of “Standards for foods and additives” based on the “Food Sanitation Law” (Notification No. 370 of the Ministry of Health and Welfare in 1959).
“2.
Synthetic resin utensils or containers and packaging ". Of these, oil resistance was determined by measuring the amount of evaporation residue in n-heptane (after elution) when the film was immersed at 25 ° C. for 1 hour using 2 cm 3 of n-heptane per 1 cm 2 of surface area of the film. (expressed as the ratio of the weight of evaporation residue to the weight of n-heptane). However, the dissolution amount is generally not an equilibrium value due to elution within a finite time. If this amount is below the specified value, it can be used for packaging containers. The specified value is determined for each resin type, and as an example of a higher specified value,
There are 240 ppm of polystyrene and 150 ppm of polyethylene and polypropylene (30 ppm when used in applications exceeding 100 ° C.). Using a density of n-heptane of 0.68 g / cm 3 , the surface area of the film was 1 cm 2.
The eluted weight per 240 ppm is about 0.3
Calculated as mg.

【0050】以上のように、脱酸素多層体に耐油性が必
要な場合は、上記の基準に従って樹脂種を選択すればよ
い。なお、一般に、樹脂と溶媒との親和性が低い場合に
はフィルムの表面付近のみからの溶出であるが、親和性
が高い場合には、溶媒はフィルムの層の内部まで浸透す
るため、内部からも溶出が生じる。すなわち、親和性が
高い場合の溶出量は、単にフィルムの表面積だけでな
く、それらの厚さにも影響を受ける。そこで、脱酸素多
層体の耐油性を測定する場合には、厚さが定まったも
の、つまり完全に多層化した後のものを用いる。また、
脱酸素対象物に接触する側のみでの測定となることか
ら、脱酸素多層体の酸素吸収面が測定部位となる。
As described above, when oil resistance is required for the deoxidized multilayer body, the resin type may be selected in accordance with the above criteria. In general, when the affinity between the resin and the solvent is low, elution occurs only from the vicinity of the surface of the film, but when the affinity is high, the solvent penetrates to the inside of the film layer. Elution also occurs. That is, the amount of elution when the affinity is high is affected not only by the surface area of the film but also by their thickness. Therefore, when measuring the oil resistance of the deoxidized multilayer body, the one having a fixed thickness, that is, the one after complete multilayering is used. Also,
Since the measurement is performed only on the side in contact with the object to be deoxidized, the oxygen absorption surface of the deoxidized multilayer body is the measurement site.

【0051】本発明の脱酸素多層体は、フィルム状又は
シート状の脱酸素性包装材料として、例えば包装袋や包
装容器の一部や全部に種々の形で使用することができ
る。その際の被包装物は、固体、液体、クリーム状やス
ラリー状の半液体、またはこれらの混じったものでもよ
い。このため、本発明の脱酸素多層体の各層を構成する
材料としては、高い脱酸素速度を維持し、脱酸素成分及
び樹脂の溶出防止ができ、新たな溶出などの問題が生じ
るようなことがなければ、前述の材料以外に各種の添加
物を加えることが可能である。添加物としては、例え
ば、着色または隠蔽のための顔料や染料、酸化防止や分
解防止などのための安定化成分、帯電防止成分、吸湿成
分、脱臭成分、可塑化成分、難燃化成分などが挙げられ
る。また、同様に脱酸素多層体としての性能に悪影響を
与えない限り、印刷層や易開封層、易剥離層などを追加
することが可能である。
The deoxidized multilayer body of the present invention can be used in various forms as a film-shaped or sheet-shaped deoxidized packaging material, for example, for a part or all of a packaging bag or a packaging container. The packaged material at that time may be a solid, liquid, creamy or slurry-like semi-liquid, or a mixture thereof. Therefore, as a material constituting each layer of the deoxidized multilayer body of the present invention, it is possible to maintain a high deoxygenation rate, prevent elution of deoxygenated components and resins, and cause problems such as new elution. If not, various additives other than the above-described materials can be added. Examples of the additives include pigments and dyes for coloring or hiding, stabilizing components for preventing oxidation and decomposition, antistatic components, moisture absorbing components, deodorizing components, plasticizing components, and flame retarding components. No. Similarly, a printing layer, an easy-opening layer, an easy-peeling layer, and the like can be added as long as the performance of the deoxygenated multilayer body is not adversely affected.

【0052】本発明における製造上の要点は、複数の樹
脂層を積層して予め延伸用基材の樹脂積層体を製造した
後、この樹脂積層体の複数の樹脂層をまとめて同時に延
伸することにある。この方法により、脱酸素層Aと難水
溶性フィラーを含む酸素透過性層Bとを、それぞれ、効
果的に連続微多孔質化すると同時に、無孔樹脂層の酸素
透過性層Cを安定して薄くすることが可能となり、優れ
た脱酸素性能を備えた脱酸素層Aと、その吸収面側に無
孔薄膜の酸素透過性層Cと微多孔質の酸素透過性層Bを
組み合わせて積層した酸素透過性に優れた遮蔽層とを備
えた多層体を製造することが可能になる。
The essential point of the production in the present invention is that a plurality of resin layers are laminated, a resin laminate of a stretching base material is produced in advance, and then a plurality of resin layers of the resin laminate are simultaneously stretched. It is in. According to this method, the deoxidized layer A and the oxygen-permeable layer B containing the poorly water-soluble filler are each effectively and continuously made microporous, and at the same time, the oxygen-permeable layer C of the nonporous resin layer is stably formed. The oxygen-absorbing layer A, which can be made thinner and has excellent oxygen-absorbing performance, and a nonporous thin-film oxygen-permeable layer C and a microporous oxygen-permeable layer B are laminated on the absorption surface side. It is possible to manufacture a multilayer body including a shielding layer having excellent oxygen permeability.

【0053】複数の樹脂層を積層する基材の樹脂積層体
の製造には、通常の共押出しや押出しコーティング、押
出しラミネートなどの手法を用いることが可能であり、
いずれの手法でも、本発明に合致した多層構造を得るこ
とができる。特に逐次積層する押出しコーティングや押
出しラミネートが好ましく、一度形成された平滑なフィ
ルム(特に延伸前は厚いため、強度的にも問題がない)
に次の層を重ねていくために、例えば脱酸素成分に鉄粉
を用いる場合でも、他の層が鉄粉の凹凸の影響を受けに
くい。
For the production of a resin laminate of a substrate on which a plurality of resin layers are laminated, it is possible to use ordinary methods such as co-extrusion, extrusion coating and extrusion lamination.
Either technique can provide a multilayer structure consistent with the present invention. In particular, extrusion coating and extrusion lamination, which are sequentially laminated, are preferable, and a once formed smooth film (particularly before stretching, it is thick, so there is no problem in strength)
For example, even if iron powder is used as the deoxidizing component, the other layers are less likely to be affected by the irregularities of the iron powder.

【0054】基材の樹脂積層体の延伸は、通常知られて
いるように、1軸延伸、2軸同時延伸、2軸逐次延伸の
いずれの手法を用いてもよい。この場合の延伸温度は、
酸素透過性層Cに係る樹脂の溶融温度付近以下が好まし
く、また延伸倍率は面積換算で2〜20倍とすることが
望ましい。延伸によって基材の樹脂積層体の厚みは薄く
なるが、延伸前後の厚みの変化は各層を構成する材料、
層構成及び延伸倍率等によって異なるので、これらを考
慮して、予め積層する各層の厚さと全体の厚さを決める
必要がある。
The stretching of the resin laminate of the base material may be performed by any of uniaxial stretching, biaxial simultaneous stretching, and biaxial sequential stretching, as is generally known. The stretching temperature in this case is
The melting temperature of the resin relating to the oxygen-permeable layer C is preferably equal to or lower than the melting temperature, and the stretching ratio is desirably 2 to 20 times in terms of area. Although the thickness of the resin laminate of the base material is reduced by stretching, the change in thickness before and after the stretching is the material constituting each layer,
Since the thickness differs depending on the layer configuration, the stretching ratio, and the like, it is necessary to determine the thickness of each layer to be laminated and the total thickness in advance in consideration of these factors.

【0055】本発明の脱酸素多層体は片側吸収型であ
り、脱酸素層Aの吸収面の他面側に緩衝層Eを介してバ
リヤ層Dが積層される。バリヤ層Dは、熱ラミネート、
ドライラミネート、押出しコーティングなど、公知の方
法により、接着または融着して、最終的な多層構造とさ
れる。
The oxygen-absorbing multilayer body of the present invention is of a one-side absorption type, and a barrier layer D is laminated on the other side of the absorption surface of the oxygen-absorbing layer A via a buffer layer E. The barrier layer D is a heat laminate,
Adhesion or fusion is performed by a known method such as dry lamination or extrusion coating to obtain a final multilayer structure.

【0056】[0056]

【実施例】以下、実施例と比較例を用いて本発明をさら
に詳しく説明するが、本発明はこれらによって限定され
るものではない。なお、説明中の共通事項は次の通りで
ある。製造したフィルム状又はシート状の脱酸素多層体
(以下、単に脱酸素多層体という)は、脱酸素性能、脱
酸素成分の溶出及び耐油性について、それぞれ、次に述
べる方法で評価した。なお、脱酸素性能の試験に際して
は、所定の大きさに切り出した試料の脱酸素多層体の断
面を合成ゴム系接着剤で覆い、切断面に脱酸素層が露出
して結果に影響することがないように、端面処理して試
験に供した。また脱酸素成分の溶出試験には、前記端面
処理した試料を、さらに、温度60℃、相対湿度80%
の空気中に約5日間放置し、予め脱酸素樹脂組成物中の
鉄粉を十分酸化させて測定用試料とした。なお、この酸
化処理は、脱酸素成分の鉄は酸化することによって溶出
し易くなるために行った。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The common items in the description are as follows. The produced film-shaped or sheet-shaped oxygen-absorbing multilayer body (hereinafter, simply referred to as oxygen-absorbing multilayer body) was evaluated for the oxygen-absorbing performance, the elution of the oxygen-absorbing component, and the oil resistance by the following methods. In the test of the oxygen-absorbing performance, the cross section of the oxygen-absorbing multilayer body of the sample cut into a predetermined size is covered with a synthetic rubber-based adhesive, and the oxygen-absorbing layer may be exposed on the cut surface, which may affect the results. In order to avoid such a situation, the test piece was subjected to an end face treatment. In the dissolution test of the deoxygenated component, the end-treated sample was further subjected to a temperature of 60 ° C. and a relative humidity of 80%.
Was left in the air for about 5 days, and the iron powder in the oxygen-absorbing resin composition was sufficiently oxidized in advance to obtain a measurement sample. Note that this oxidation treatment was performed because iron as a deoxidizing component is easily leached by oxidation.

【0057】1)脱酸素性能の評価(脱酸素時間及び総
酸素吸収量の測定) 端面処理した所定面積の試料(面積;300cm2 、寸
法;15cm×20cm)と加湿用の水を含ませた脱脂綿と
を、アルミニウム箔積層フィルム製のバリア袋(寸法;
20cm×30cm)に入れ、空気を所定量充填した後、袋
をヒートシールして密封した。この密封袋を25℃に保
持しておき、袋内の酸素濃度をガスクロマトグラフ
((株) 島津製作所、GC-14B)を用いて経時的に測定
し、酸素濃度の変化を追跡した。通常は、脱酸素性能を
脱酸素時間で評価することとし、脱酸素時間を測定する
場合には、面積300cm2 の試料に対して充填する空気
量を300cm3 とし、袋内の酸素濃度が0.1容量%に
達するまでの時間を脱酸素時間として示した。総酸素吸
収量の測定は適宜行うが、この場合には、面積300cm
2 の試料に対し充填空気量を1500cm3 とし、袋内の
酸素濃度の変化がなくなった時点の酸素濃度から酸素吸
収量を算出し、これを総酸素吸収量とした。
1) Evaluation of Deoxygenation Performance (Measurement of Deoxygenation Time and Total Oxygen Absorption) A sample having a predetermined area (area: 300 cm 2 , dimensions: 15 cm × 20 cm) treated with an end face and water for humidification were included. Absorbent cotton and barrier bag made of aluminum foil laminated film (Dimensions;
(20 cm × 30 cm), and after filling with a predetermined amount of air, the bag was heat-sealed and sealed. This sealed bag was kept at 25 ° C., and the oxygen concentration in the bag was measured over time using a gas chromatograph (GC-14B, Shimadzu Corporation), and the change in the oxygen concentration was tracked. Normally, the deoxidizing performance is evaluated by the deoxidizing time. When measuring the deoxidizing time, the amount of air to be filled into a sample having an area of 300 cm 2 is set to 300 cm 3, and the oxygen concentration in the bag is 0%. The time required to reach 0.1% by volume was indicated as the deoxygenation time. The measurement of the total oxygen absorption amount is appropriately performed. In this case, the area is 300 cm.
The amount of air to be filled was set to 1500 cm 3 for the sample No. 2, and the oxygen absorption amount was calculated from the oxygen concentration at the time when the oxygen concentration in the bag stopped changing, and this was defined as the total oxygen absorption amount.

【0058】2)脱酸素成分(鉄イオン)の溶出評価 前記端面処理並びに酸化処理した試料(面積;300cm
2 、寸法;15cm×20cm)を、蓋付きのポリエチレン
製容器に入れた塩酸水溶液(塩酸濃度0.01N)10
00cm3 に25℃で浸漬し、プラズマ発光分光分析装置
(セイコー電子工業(株)、機種名;SPS1200VR )を用
い、浸漬液中の鉄濃度を経日的に測定した。なお、この
場合、塩酸水溶液は塩酸(原子吸光分析用)と純水(導
電率0.07μS/cm未満)から調製したものを用い、ま
た試料が外面に酸素透過性層B(微多孔質樹脂層)を有
する層構成の脱酸素多層体の場合には、特に断りのない
限り予め試料をエタノールに浸漬処理して撥水性を低下
させてから、浸漬試験に供した。
2) Evaluation of Elution of Deoxygenated Component (Iron Ion) Sample (area: 300 cm) subjected to the end face treatment and oxidation treatment
2. Dimensions: 15 cm × 20 cm) were placed in a polyethylene container with a lid and placed in a hydrochloric acid aqueous solution (hydrochloric acid concentration: 0.01 N).
It was immersed in 00 cm 3 at 25 ° C., and the iron concentration in the immersion liquid was measured over time using a plasma emission spectrometer (Seiko Electronics Co., Ltd., model name: SPS1200VR). In this case, the hydrochloric acid aqueous solution used was prepared from hydrochloric acid (for atomic absorption analysis) and pure water (conductivity less than 0.07 μS / cm), and the sample had an oxygen-permeable layer B (microporous resin) on the outer surface. In the case of a deoxidized multilayer body having a layer configuration having a layer), the sample was previously immersed in ethanol to reduce the water repellency unless otherwise specified, and then subjected to an immersion test.

【0059】この試験による鉄の許容上限濃度は、鉄濃
度の標準モデル溶液に塩化第二鉄水溶液を用いた味覚試
験より、3ppm とした。すなわち、塩化第二鉄水溶液を
用い、塩化第二鉄の濃度を0ppm から段階的に上げて味
覚に影響を与える濃度を調べたところ、約10ppm に達
すると味覚に若干の変化を覚えた。そこで塩化第二鉄鉄
濃度10ppm から塩素分を除いた3ppm を鉄相当分とし
て、鉄の許容上限濃度とした。
The allowable upper limit concentration of iron in this test was determined to be 3 ppm from a taste test using an aqueous solution of ferric chloride as a standard model solution of iron concentration. That is, when the concentration of ferric chloride was gradually increased from 0 ppm using an aqueous ferric chloride solution and the concentration affecting taste was examined, a slight change in taste was observed when the concentration reached about 10 ppm. Therefore, the permissible upper limit concentration of iron was defined as 3 ppm obtained by removing the chlorine content from the ferric chloride concentration of 10 ppm.

【0060】3)耐油性の評価:n−ヘプタン(試薬特
級)400cm3 を入れた試験容器の開口部(開口部面積
200cm2 )に、端面処理した脱酸素体試料(寸法;2
0cm×20cm、面積;400cm2 )の吸収面を容器側に
向けて重ね合わせ、締付け治具を用いて容器を密封した
後、容器をひっくり返して試料にn−ヘプタンを接触さ
せ、25℃で1時間保持した。続いて、脱酸素体試料に
接触させたn−ヘプタンを蒸発乾固させ、残留物の重量
を測定し、この重量から同量のn−ヘプタンの空試験の
蒸発残渣量を差し引き、これをn−ヘプタンの接触面積
200cm2 で割り算して、n−ヘプタン2cm3 /接触面
積1cm2 当たりの溶出量で示した。
3) Evaluation of oil resistance: An oxygen-absorbed sample (dimensions: 2) having an end face treated at the opening (opening area 200 cm 2 ) of a test container containing 400 cm 3 of n-heptane (special reagent grade).
The absorbent surface of 0 cm × 20 cm, area: 400 cm 2 ) was placed on the container side, and the container was sealed with a clamping jig. Then, the container was turned upside down, and n-heptane was brought into contact with the sample. Hold for 1 hour. Subsequently, the n-heptane in contact with the oxygen scavenger sample was evaporated to dryness, the weight of the residue was measured, and the amount of the evaporation residue in the blank test of the same amount of n-heptane was subtracted from this weight. It was divided by the contact area of heptane (200 cm 2 ) and expressed as the amount of elution per 2 cm 3 of n-heptane / cm 2 of contact area.

【0061】上記方法は、前述の「食品、添加物等の規
格基準」(昭和34年厚生省告示第370号)の「第3
器具及び容器包装」の「B 器具又は容器包装一般の
試験法」の「4 蒸発残留物試験法」に準じて行った方
法であり、ポリスチレンの規定値240ppm から計算さ
れた、n−ヘプタン2cm3 /接触面積1cm2 当たりの溶
出量0.3mgを基準値とし、ここでは、これと比較し
て、耐油性を判断する。なお、耐油性を必要としない用
途には、この評価に関係なく使用可能である。
The above method is described in the “Standards for Foods, Additives, etc.” (No. 370 of the Ministry of Health and Welfare, No. 370 of 1959).
This is a method performed in accordance with “4 Evaporation residue test method” of “B. Test method of utensils or containers and packaging in general” of “Equipment and containers and packaging”, and n-heptane 2 cm 3 calculated from the specified value of polystyrene of 240 ppm. The elution amount per 1 cm 2 of contact area is 0.3 mg as a reference value, and here, oil resistance is judged in comparison with this value. In addition, it can be used for applications that do not require oil resistance regardless of this evaluation.

【0062】次に、脱酸素多層体の製造における共通事
項は次の通りである。脱酸素層Aに用いる脱酸素成分と
して、鉄粉(平均粒径約35μm 、最大粒径約100μ
m )に50重量%塩化カルシウム水溶液を噴霧して加熱
乾燥させ、鉄粉100重量部当たり2重量部の比率で塩
化カルシウムを鉄粉表面にコーティングした粒状の脱酸
素成分(以下、塩化カルシウムコーティング鉄粉と呼
ぶ)を調製した。次いで2軸押出機を用い、前記粒状脱
酸素成分と所定の樹脂とを、所定混合比で混練、ストラ
ンドダイより押し出し、冷却後、ペレタイザーで切断し
て樹脂組成物のペレットを得、これを脱酸素層Aの材料
とした。
Next, the common items in the production of the deoxidized multilayer body are as follows. As a deoxidizing component used in the deoxidizing layer A, iron powder (average particle size of about 35 μm, maximum particle size of about 100 μm)
m) is sprayed with a 50% by weight aqueous solution of calcium chloride, dried by heating, and coated on the surface of iron powder with calcium chloride at a ratio of 2 parts by weight per 100 parts by weight of iron powder. Flour) was prepared. Next, using a twin-screw extruder, the granular deoxygenated component and a predetermined resin are kneaded at a predetermined mixing ratio, extruded from a strand die, cooled, and then cut with a pelletizer to obtain resin composition pellets. The material for the oxygen layer A was used.

【0063】酸素透過性層(多孔質層)Bに係る難水溶
性フィラーとして、合成シリカ((株) 龍森、商品名;
CRYSTALITE VXS2 、平均粒径5μm )を用い、同様に2
軸押出機で、前記の合成シリカと所定の樹脂とを、混合
比50:50(重量比)で混練して樹脂組成物のペレッ
トを得、これを多孔質層Bの材料とした。なお、難水溶
性フィラーとして、珪藻土(RADIOLITE F 、昭和化学工
業( 株) 、平均粒径7μm )を用いた場合は、珪藻土4
0wt%、樹脂60wt%の混合比としたものを用いた。た
だし、以下の実施例においては、特に断らない限り前者
を用いた。
As a poorly water-soluble filler for the oxygen-permeable layer (porous layer) B, synthetic silica (Tatsumori Co., Ltd., trade name;
CRYSTALITE VXS2, average particle size 5 μm)
The synthetic silica and the predetermined resin were kneaded with a screw extruder at a mixing ratio of 50:50 (weight ratio) to obtain a pellet of a resin composition, which was used as a material of the porous layer B. When diatomaceous earth (RADIOLITE F, Showa Chemical Industry Co., Ltd., average particle size 7 μm) is used as the poorly water-soluble filler, diatomaceous earth 4
A mixture having a mixing ratio of 0 wt% and a resin of 60 wt% was used. However, in the following examples, the former was used unless otherwise specified.

【0064】(1)ポリプロピレン(FX4D):三菱化学
( 株) 、商品名としてはポリプロピレンであるが、実際
は他のα−オレフィンを若干含む共重合体、メルトフロ
ーレート6.0g/10min 、融点140℃、25℃にお
ける酸素透過係数1.4×10 -13 [cm3 ・cm/cm2
sec ・Pa]。 (2)直鎖状低密度ポリエチレン(ULTZEX 2520F):三
井石油化学工業( 株) 、商品名としてはポリエチレンで
あるが、実際は他のα−オレフィンを若干含む共重合
体、メルトフローレート2.3g/10min 、融点118
℃、25℃における酸素透過係数3.0×10-13 [cm3
・cm/cm2 ・sec ・Pa]。 (3)4−メチル−1−ペンテン共重合体(TPX MX002
):三井石油化学工業(株) 、メルトフローレート22
g/10min(260℃) 、融点235℃、25℃における酸
素透過係数2.4×10-12 [cm3 ・cm/cm2 ・sec ・
Pa]。 (4)エチレン−プロピレン共重合体(TAFMER S-4030
):三井石油化学工業(株) 、エチレン成分のmol 分率
は約0.5、メルトフローレート0.2g/10min(19
0℃) 、単独での酸素透過係数は不明、ポリプロピレン
(FX4D)50wt%との混合物の25℃における酸素透過
係数3.0×10-13 [cm3 ・cm/cm2 ・sec ・Pa]。 (5)エチレン−プロピレン共重合体(TAFMER P-0680
):三井石油化学工業(株) 、エチレン成分のmol 分率
は約0.75、メルトフローレート0.4g/10min(1
90℃) 、25℃における酸素透過係数1.4×10-12
[cm3 ・cm/cm2・sec ・Pa]、直鎖状低密度ポリエチ
レン(ULTZEX 2520F)30wt%との混合物の25℃にお
ける酸素透過係数8.2×10-13 [cm3 ・cm/cm2
sec ・Pa]。 (6)水素添加スチレン−ブタジエン共重合体とポリプ
ロピレンとの混合物(DYNARON H4800N):日本合成ゴム
( 株) 、ポリプロピレン分率30wt%、メルトフローレ
ート16g/10min (230℃)。 (7)エチレン−酢酸ビニル共重合体(LV360 ):三菱
化学( 株) 、酢酸ビニル分率10wt%、メルトフローレ
ート9.0g/10min 、融点95℃。 (8)接着性ポリオレフィン(ADMER NF300 ):三井石
油化学工業( 株) 、メルトフローレート1.3g/10mi
n(190℃) 、融点120℃。 (9)接着性ポリオレフィン(ADMER NF550 ):三井石
油化学工業( 株) 、メルトフローレート6.2g/10mi
n(190℃) 、融点120℃。 (10)ナイロンMXD(MX-NYLON 6007 ):三菱ガス
化学( 株) 、メルトフローレート2.0g/10min 、融
点240℃。 (11)エチレン−ビニルアルコール共重合体(EVAL E
P-E105):( 株) クラレ、エチレン成分のmol 分率0.
44、メルトフローレート5.5g/10min(190℃)
、融点165℃。 (12)酸素バリヤフィルムとして、厚さ15μm のナ
イロンフィルム(SUPERNYL、三菱化学( 株) )、または
ナイロンとポリプロピレンの積層フィルム(SUPERNYLの
ナイロン層とポリプロピレン層との間に薄い接着層を含
む、合計厚さ65μm 、三菱化学( 株) )を用い、その
接着にはドライラミネート用接着剤(東洋モートン(
株) 、AD-585とCAT-10)を用いた。
(1) Polypropylene (FX4D): Mitsubishi Chemical
Co., Ltd. has a brand name of polypropylene,
Is a copolymer containing a small amount of other α-olefin,
Rate 6.0g / 10min, melting point 140 ℃, 25 ℃
Oxygen permeability coefficient of 1.4 × 10 -13[cmThree・ Cm / cmTwo
sec Pa]. (2) Linear low-density polyethylene (ULTZEX 2520F): three
Well Petrochemical Industry Co., Ltd.
There is a copolymer containing some other α-olefins.
Body, melt flow rate 2.3g / 10min, melting point 118
C., oxygen transmission coefficient at 25 ° C. 3.0 × 10-13[cmThree
・ Cm / cmTwo-Sec-Pa]. (3) 4-methyl-1-pentene copolymer (TPX MX002
 ): Mitsui Petrochemical Industry Co., Ltd., melt flow rate 22
g / 10min (260 ° C), melting point 235 ° C, acid at 25 ° C
Elemental transmission coefficient 2.4 × 10-12[cmThree・ Cm / cmTwo・ Sec ・
Pa]. (4) Ethylene-propylene copolymer (TAFMER S-4030
 ): Mitsui Petrochemical Industry Co., Ltd., mol fraction of ethylene component
Is about 0.5, melt flow rate 0.2g / 10min (19
0 ° C), oxygen transmission coefficient alone is unknown, polypropylene
(FX4D) Oxygen permeation of mixture with 50wt% at 25 ℃
Coefficient 3.0 × 10-13[cmThree・ Cm / cmTwo-Sec-Pa]. (5) Ethylene-propylene copolymer (TAFMER P-0680
 ): Mitsui Petrochemical Industry Co., Ltd., mol fraction of ethylene component
Is about 0.75, melt flow rate 0.4g / 10min (1
90 ° C.), oxygen permeability coefficient at 25 ° C. 1.4 × 10-12
[cmThree・ Cm / cmTwo・ Sec ・ Pa], linear low density polyethylene
At 25 ° C of a mixture with 30 wt% of ren (ULTZEX 2520F)
Permeation coefficient 8.2 × 10-13[cmThree・ Cm / cmTwo
sec Pa]. (6) Hydrogenated styrene-butadiene copolymer and polyp
Mixture with propylene (DYNARON H4800N): Nippon Synthetic Rubber
Co., Ltd., polypropylene fraction 30wt%, melt flow
16 g / 10 min (230 ° C). (7) Ethylene-vinyl acetate copolymer (LV360): Mitsubishi
Chemical Co., Ltd., vinyl acetate fraction 10wt%, melt flow
9.0g / 10min, melting point 95 ° C. (8) Adhesive polyolefin (ADMER NF300): Mitsui Ishi
Oil Chemical Industry Co., Ltd., melt flow rate 1.3g / 10mi
n (190 ° C), melting point 120 ° C. (9) Adhesive polyolefin (ADMER NF550): Mitsuiishi
Oil Chemical Industry Co., Ltd., melt flow rate 6.2g / 10mi
n (190 ° C), melting point 120 ° C. (10) Nylon MXD (MX-NYLON 6007): Mitsubishi Gas
Chemical Co., Ltd., melt flow rate 2.0g / 10min, melting
Point 240 ° C. (11) ethylene-vinyl alcohol copolymer (EVAL E
P-E105): Kuraray Co., Ltd., mole fraction of ethylene component 0.
44, melt flow rate 5.5g / 10min (190 ° C)
 Mp 165 ° C. (12) As an oxygen barrier film, a 15 μm thick
Iron film (SUPERNYL, Mitsubishi Chemical Corporation), or
Nylon and polypropylene laminated film (SUPERNYL
Include a thin adhesive layer between the nylon and polypropylene layers
Using a total thickness of 65 μm, Mitsubishi Chemical Corporation)
Adhesive for dry lamination (Toyo Morton (
AD-585 and CAT-10) were used.

【0065】実施例1 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )50wt%とポリプロピレン
(FX4D)50wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)、緩衝層
Eに係る樹脂成分としてポリプロピレン(同)を用い
て、無孔質層Cに係る層100μm /多孔質層Bに係る
層150μm /脱酸素層Aに係る層150μm /緩衝層
Eに係る層300μm 、の構成と各厚さで、共押し出し
により4層を積層した。この4層品を温度130℃、縦
3倍×横3倍で2軸同時延伸した。延伸後の各層の厚さ
の概略は、無孔質層C10μm /多孔質層B55μm /
脱酸素層A60μm /緩衝層E35μm であった。この
4層延伸品の緩衝層Eの表面を3.6kJ/m2 (慣用的な
単位では60W /m2/min )の放電エネルギーでコロナ
放電処理してから、ナイロンフィルムをドライラミネー
ト用接着剤(乾燥後の厚さ約10μm )で接着して、無
孔質層C/多孔質層B/脱酸素層A/緩衝層E/接着層
F/バリヤ層Dの6層構成の脱酸素フィルムとした。脱
酸素時間は2.0日、鉄の溶出は20日後で0.06pp
m 、無孔質層C側からのn−ヘプタンへの溶出量は1cm
2 当たり0.08mgであった。
Example 1 A mixture of 50% by weight of an ethylene-propylene copolymer (TAFMER S-4030) and 50% by weight of polypropylene (FX4D) as the resin component for the non-porous layer C, the porous layer B and the deoxidized layer A Using polypropylene (same as above) as the resin component according to (1) and polypropylene (same as above) as the resin component according to the buffer layer E, a layer of 100 μm for the non-porous layer C / a layer of 150 μm for the porous layer B / a deoxygenation layer A Four layers were laminated by co-extrusion with the structure and the thickness of the layer 150 μm / the buffer layer E 300 μm. This four-layer product was simultaneously biaxially stretched at a temperature of 130 ° C. and three times longer by three times longer. The outline of the thickness of each layer after stretching is as follows: nonporous layer C 10 μm / porous layer B 55 μm /
Deoxygenation layer A was 60 μm / buffer layer E was 35 μm. The surface of the buffer layer E of the four-layer stretched product is subjected to corona discharge treatment with a discharge energy of 3.6 kJ / m 2 (60 W / m 2 / min in a conventional unit), and then the nylon film is subjected to dry laminating adhesive. (Thickness after drying is about 10 μm), and a deoxygenation film having a six-layer structure of nonporous layer C / porous layer B / deoxygenation layer A / buffer layer E / adhesion layer F / barrier layer D did. Deoxygenation time is 2.0 days, iron elution is 0.06 pp after 20 days
m, the elution amount of n-heptane from the non-porous layer C side is 1 cm
0.08 mg per 2 .

【0066】実施例2 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER P-0680 )70wt%と直鎖状低密度ポ
リエチレン(ULTZEX 2520F)30wt%との混合物、多孔
質層B及び脱酸素層Aに係る樹脂成分として直鎖状低密
度ポリエチレン(同)、緩衝層Eに係る樹脂成分として
直鎖状低密度ポリエチレン(同)を用いて、無孔質層C
に係る層40μm /多孔質層Bに係る層100μm /脱
酸素層Aに係る層100μm /緩衝層Eに係る層200
μm 、の構成と各厚さで、共押し出しにより4層を積層
した。この4層品を温度100℃、縦4倍で1軸延伸し
た。延伸後の各層の厚さの概略は、無孔質層C10μm
/多孔質層B40μm /脱酸素層A40μm /緩衝層E
50μm であった。この4層延伸品の緩衝層Eの表面を
3.6kJ/m2 の放電エネルギーでコロナ放電処理してか
ら、ナイロンフィルムをドライラミネート用接着剤(乾
燥後の厚さ約10μm )で接着して、無孔質層C/多孔
質層B/脱酸素層A/緩衝層E/接着層F/バリヤ層D
の6層構成の脱酸素フィルムとした。脱酸素時間は1.
7日、鉄の溶出は20日後で0.09ppm 、無孔質層C
側からのn−ヘプタンへの溶出量は1cm2 当たり0.0
2mgであった。
Example 2 A mixture of 70% by weight of an ethylene-propylene copolymer (TAFMER P-0680) and 30% by weight of a linear low-density polyethylene (ULTZEX 2520F) as a resin component for the non-porous layer C, a porous layer B and the oxygen-absorbing layer A, using a linear low-density polyethylene (same as above) as the resin component and the buffer layer E using a linear low-density polyethylene (same as the resin component).
40 μm per layer / 100 μm per layer of the porous layer B / 100 μm per layer of the deoxidizing layer A / layer 200 pertaining to the buffer layer E
Four layers were laminated by co-extrusion with a thickness of μm and each thickness. This four-layer product was uniaxially stretched at a temperature of 100 ° C. and a length of 4 times. The outline of the thickness of each layer after stretching is as follows: Non-porous layer C 10 μm
/ Porous layer B 40 μm / deoxygenation layer A 40 μm / buffer layer E
It was 50 μm. The surface of the buffer layer E of the four-layer stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then a nylon film is bonded with an adhesive for dry lamination (about 10 μm in thickness after drying). Non-porous layer C / porous layer B / deoxygenation layer A / buffer layer E / adhesive layer F / barrier layer D
Was obtained. The deoxidation time was 1.
7 days, iron elution was 0.09 ppm after 20 days, non-porous layer C
Elution amount from the side to the n- heptane 1 cm 2 per 0.0
2 mg.

【0067】実施例3 無孔質層C及び緩衝層Eに係る樹脂成分として4−メチ
ル−1−ペンテン共重合体(TPX MX002 )、多孔質層B
及び脱酸素層Aに係る樹脂成分として4−メチル−1−
ペンテン共重合体(同)を用いて、無孔質層Cに係る層
40μm /多孔質層Bに係る層100μm /脱酸素層A
に係る層200μm /緩衝層Eに係る層100μm 、の
構成と各厚さで、共押し出しにより4層を積層した。こ
の4層品を、温度130℃、縦4倍で1軸延伸した。延
伸後の各層の厚さの概略は、無孔質層Cに係る層10μ
m /多孔質層Bに係る層40μm /脱酸素層Aに係る層
80μm /緩衝層Eに係る層25μm であった。この4
層延伸品の緩衝層Eの表面を1.8kJ/m2 の放電エネル
ギーでコロナ放電処理してから、ナイロンフィルムをド
ライラミネート用接着剤(乾燥後の厚さ約10μm )で
接着して、無孔質層C/多孔質層B/多孔質脱酸素層A
/緩衝層E/接着層F/バリヤ層Dの6層構成の脱酸素
フィルムとした。脱酸素時間は0.7日、鉄の溶出は2
0日後で0.12ppm 、無孔質層C側からのn−ヘプタ
ンへの溶出量は1cm2 当たり0.30mgであった。
Example 3 As a resin component for the non-porous layer C and the buffer layer E, 4-methyl-1-pentene copolymer (TPX MX002), porous layer B
And 4-methyl-1- as a resin component for the deoxidation layer A
Using a pentene copolymer (same as above), a layer 40 μm for the non-porous layer C / a layer 100 μm for the porous layer B / a deoxygenation layer A
And a layer having a thickness of 200 μm per 100 μm per buffer layer E, and four layers were laminated by co-extrusion. The four-layered product was uniaxially stretched at a temperature of 130 ° C. and a length of 4 times. The outline of the thickness of each layer after stretching is as follows.
m / the layer relating to the porous layer B / 40 μm / the layer relating to the oxygen scavenging layer A / 80 μm / the layer relating to the buffer layer E = 25 μm. This 4
The surface of the buffer layer E of the layer-stretched product is subjected to a corona discharge treatment with a discharge energy of 1.8 kJ / m 2 , and then a nylon film is adhered with an adhesive for dry lamination (about 10 μm in thickness after drying). Porous layer C / porous layer B / porous deoxygenated layer A
/ A buffer layer E / adhesive layer F / barrier layer D. Deoxygenation time 0.7 days, iron elution 2
After 0 day, the concentration was 0.12 ppm, and the amount of elution from the nonporous layer C side into n-heptane was 0.30 mg / cm 2 .

【0068】実施例4 無孔質層Cに係る樹脂成分として水素添加スチレン−ブ
タジエン共重合体とポリプロピレンとの混合物(DYNARO
N H4800N)、多孔質層B及び脱酸素層Aに係る樹脂成分
としてポリプロピレン(FX4D)、緩衝層Eに係る樹脂成
分としてポリプロピレン(同)を用いて、無孔質層Cに
係る層100μm /多孔質層Bに係る層150μm /脱
酸素層Aに係る層150μm /緩衝層Eに係る層300
μm 、の構成と各厚さで、共押し出しにより4層を積層
した。この4層品を温度130℃、縦3倍×横3倍で2
軸同時延伸した。延伸後の各層の厚さの概略は、無孔質
層C10μm /多孔質層B55μm /脱酸素層A60μ
m /緩衝層E35μm であった。この4層延伸品の緩衝
層Eの表面を3.6kJ/m2 の放電エネルギーでコロナ放
電処理してから、ナイロンフィルムをドライラミネート
用接着剤(乾燥後の厚さ約10μm )で接着して、無孔
質層C/多孔質層B/脱酸素層A/緩衝層E/接着層F
/バリヤ層Dの6層構成の脱酸素フィルムとした。脱酸
素時間は1.3日、鉄の溶出は20日後で0.08ppm
、無孔質層C側からのn−ヘプタンへの溶出量は1cm
2 当たり0.60mgであった。
Example 4 A mixture of a hydrogenated styrene-butadiene copolymer and polypropylene (DYNARO
NH4800N), polypropylene (FX4D) as a resin component for the porous layer B and the deoxygenation layer A, and polypropylene (same as above) as a resin component for the buffer layer E, and a layer for the nonporous layer C of 100 μm / porous. Layer 150 μm according to the porous layer B / 150 μm layer according to the deoxidizing layer A / layer 300 according to the buffer layer E
Four layers were laminated by co-extrusion with a thickness of μm and each thickness. This four-layer product is heated at 130 ° C, 3x3 x 3x2
Axial simultaneous stretching was performed. The outline of the thickness of each layer after stretching is as follows: non-porous layer C 10 μm / porous layer B 55 μm / deoxygenation layer A 60 μm
m / buffer layer E was 35 μm. The surface of the buffer layer E of the four-layer stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then a nylon film is bonded with an adhesive for dry lamination (about 10 μm in thickness after drying). Non-porous layer C / porous layer B / deoxygenation layer A / buffer layer E / adhesive layer F
/ Oxygen barrier film having a six-layer structure of barrier layer D. Deoxygenation time is 1.3 days, iron elution is 0.08 ppm after 20 days
The elution amount of n-heptane from the non-porous layer C side was 1 cm.
0.60 mg per 2 .

【0069】実施例5 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )70wt%とポリプロピレン
(FX4D)30wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)、緩衝層
Eに係る樹脂成分としてポリプロピレン(同)を用い
て、無孔質層Cに係る層100μm /多孔質層Bに係る
層150μm /脱酸素層Aに係る層150μm /緩衝層
Eに係る層300μm 、の構成と各厚さで、共押し出し
により4層を積層した。この4層品を温度130℃、縦
6倍で1軸延伸した。延伸後の各層の厚さの概略は、無
孔質層C17μm /多孔質層B70μm /脱酸素層A8
0μm /緩衝層E50μm であった。この4層延伸品の
緩衝層Eの表面を3.6kJ/m2 の放電エネルギーでコロ
ナ放電処理してから、ナイロンフィルムをドライラミネ
ート用接着剤(乾燥後の厚さ約10μm )で接着して、
無孔質層C/多孔質層B/脱酸素層A/緩衝層E/接着
層F/バリヤ層Dの6層構成の脱酸素フィルムとした。
脱酸素時間は2.1日、鉄の溶出は20日後で0.09
ppm 、無孔質層C側からのn−ヘプタンへの溶出量は1
cm2 当たり0.45mgであった。
Example 5 A mixture of 70% by weight of an ethylene-propylene copolymer (TAFMER S-4030) and 30% by weight of polypropylene (FX4D) as the resin component for the non-porous layer C, the porous layer B and the deoxidized layer A Using polypropylene (same as above) as the resin component according to (1) and polypropylene (same as above) as the resin component according to the buffer layer E, a layer of 100 μm for the non-porous layer C / a layer of 150 μm for the porous layer B / a deoxygenation layer A Four layers were laminated by co-extrusion with the structure and the thickness of the layer 150 μm / the buffer layer E 300 μm. The four-layer product was uniaxially stretched at a temperature of 130 ° C. and a length of 6 times. The outline of the thickness of each layer after stretching is as follows: non-porous layer C 17 μm / porous layer B 70 μm / deoxygenation layer A8
0 μm / buffer layer E was 50 μm. The surface of the buffer layer E of the four-layer stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then a nylon film is bonded with an adhesive for dry lamination (about 10 μm in thickness after drying). ,
The oxygen-absorbing film had a six-layer structure of a nonporous layer C / porous layer B / oxygen-absorbing layer A / buffer layer E / adhesive layer F / barrier layer D.
Deoxygenation time is 2.1 days, iron elution is 0.09 after 20 days.
ppm, elution amount of n-heptane from the non-porous layer C side is 1
0.45 mg per cm 2 .

【0070】実施例6 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )70wt%とポリプロピレン
(FX4D)30wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)、緩衝層
Eに係る樹脂成分としてポリプロピレン(同)を用い
て、無孔質層Cに係る層100μm /多孔質層Bに係る
層150μm /脱酸素層Aに係る層150μm /緩衝層
Eに係る層300μm 、の構成と各厚さで、共押し出し
により4層を積層した。この4層品を温度130℃、縦
4倍×横4倍で2軸同時延伸した。延伸後の各層の厚さ
の概略は、無孔質層C7μm /多孔質層B30μm /脱
酸素層A35μm /緩衝層E20μm であった。この4
層延伸品の緩衝層Eの表面を3.6kJ/m2 の放電エネル
ギーでコロナ放電処理してから、ナイロンフィルムをド
ライラミネート用接着剤(乾燥後の厚さ約10μm )で
接着して、無孔質層C/多孔質層B/脱酸素層A/緩衝
層E/接着層F/バリヤ層Dの6層構成の脱酸素フィル
ムとした。脱酸素時間は1.3日、鉄の溶出は20日後
で0.08ppm 、無孔質層C側からのn−ヘプタンへの
溶出量は1cm2 当たり0.24mgであった。
Example 6 A mixture of 70% by weight of ethylene-propylene copolymer (TAFMER S-4030) and 30% by weight of polypropylene (FX4D) as a resin component for the non-porous layer C, a porous layer B and a deoxidized layer A Using polypropylene (same as above) as the resin component according to (1) and polypropylene (same as above) as the resin component according to the buffer layer E, a layer of 100 μm for the non-porous layer C / a layer of 150 μm for the porous layer B / a deoxygenation layer A Four layers were laminated by co-extrusion with the structure and the thickness of the layer 150 μm / the buffer layer E 300 μm. The four-layered product was simultaneously biaxially stretched at a temperature of 130 ° C. and 4 × 4 × 4. The thickness of each layer after stretching was as follows: non-porous layer C 7 μm / porous layer B 30 μm / deoxygenation layer A 35 μm / buffer layer E 20 μm. This 4
The surface of the buffer layer E of the layer-stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then a nylon film is adhered with an adhesive for dry lamination (about 10 μm in thickness after drying). An oxygen-absorbing film having a six-layer structure of porous layer C / porous layer B / oxygen-absorbing layer A / buffer layer E / adhesive layer F / barrier layer D was used. The deoxygenation time was 1.3 days, the elution of iron was 0.08 ppm after 20 days, and the elution amount of n-heptane from the nonporous layer C side was 0.24 mg / cm 2 .

【0071】実施例7 無孔質層Cに係る樹脂成分としてエチレン−酢酸ビニル
共重合体(LV360 )、多孔質層B及び脱酸素層Aに係る
樹脂成分として直鎖状低密度ポリエチレン(ULTZEX 252
0F)、緩衝層Eに係る樹脂成分として直鎖状低密度ポリ
エチレン(同)を用いて、無孔質層Cに係るE40μm
/多孔質層Bに係る層100μm /脱酸素層Aに係る層
100μm /緩衝層Eに係る層200μm 、の構成と各
厚さで、共押し出しにより4層を積層した。この4層品
を温度80℃、縦4倍で1軸延伸した。延伸後の各層の
厚さの概略は、無孔質層C10μm /多孔質層B40μ
m/脱酸素層A40μm /緩衝層E50μm であった。
この4層延伸品の緩衝層Eの表面を3.6kJ/m2 の放電
エネルギーでコロナ放電処理してから、ナイロンフィル
ムをドライラミネート用接着剤(乾燥後の厚さ約10μ
m )で接着して、無孔質層C/多孔質層B/脱酸素層A
/緩衝層E/接着層F/バリヤ層Dの6層構成の脱酸素
フィルムとした。脱酸素時間は1.4日、鉄の溶出は2
0日後で0.07ppm 、無孔質層C側からのn−ヘプタ
ンへの溶出量は1cm2 当たり0.01mgであった。
Example 7 Ethylene-vinyl acetate copolymer (LV360) was used as the resin component for the nonporous layer C, and linear low-density polyethylene (ULTZEX 252) was used as the resin component for the porous layer B and the oxygen-absorbing layer A.
0F), a linear low-density polyethylene (same as above) was used as the resin component for the buffer layer E, and E40 μm for the nonporous layer C.
Four layers were laminated by co-extrusion, with the respective configurations and thicknesses: 100 μm for the porous layer B / 100 μm for the oxygen-absorbing layer A / 200 μm for the buffer layer E. The four-layered product was uniaxially stretched at a temperature of 80 ° C. and a length of 4 times. The outline of the thickness of each layer after stretching is as follows: non-porous layer C 10 μm / porous layer B 40 μm
m / deoxygenation layer A 40 μm / buffer layer E 50 μm.
The surface of the buffer layer E of the four-layer stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then the nylon film is dried with an adhesive for dry lamination (about 10 μm in thickness after drying).
m), and the non-porous layer C / porous layer B / deoxygenation layer A
/ A buffer layer E / adhesive layer F / barrier layer D. Deoxidation time is 1.4 days, iron elution is 2
It was 0.07 ppm after 0 days, and the amount of elution from the nonporous layer C side into n-heptane was 0.01 mg / cm 2 .

【0072】実施例8 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )70wt%とポリプロピレン
(FX4D)30wt%との混合物、難水溶性フィラーとして
珪藻土、多孔質層B及び脱酸素層Aに係る樹脂成分とし
てポリプロピレン(同)、緩衝層Eに係る樹脂成分とし
てポリプロピレン(同)を用いて、無孔質層Cに係る層
100μm /多孔質層Bに係る層150μm /脱酸素層
Aに係る層150μm /緩衝層Eに係る層300μm 、
の構成と各厚さで、共押し出しにより4層を積層した。
この4層品を温度130℃、縦3倍×横3倍で2軸同時
延伸した。延伸後の各層の厚さの概略は、無孔質層C1
0μm /多孔質層B55μm /脱酸素層A60μm /緩
衝層E35μm であった。この4層延伸品の緩衝層Eの
表面を3.6kJ/m2 の放電エネルギーでコロナ放電処理
してから、ナイロンフィルムをドライラミネート用接着
剤(乾燥後の厚さ約10μm )で接着して、無孔質層C
/多孔質層B/多孔質脱酸素層A/緩衝層E/接着層F
/バリヤ層Dの6層構成の脱酸素フィルムとした。脱酸
素時間は1.2日、鉄の溶出は20日後で0.08ppm
、無孔質層CC側からのn−ヘプタンへの溶出量は1c
m2 当たり0.34mgであった。
Example 8 A mixture of 70% by weight of ethylene-propylene copolymer (TAFMER S-4030) and 30% by weight of polypropylene (FX4D) as a resin component for the non-porous layer C, diatomaceous earth as a poorly water-soluble filler, and porous Using polypropylene (same as above) as the resin component for the layer B and the oxygen-absorbing layer A and polypropylene (same as the same) as the resin component for the buffer layer E, the layer of the nonporous layer C 100 μm / the layer of the porous layer B 150 μm / layer relating to the deoxygenation layer A 150 μm / layer relating to the buffer layer E 300 μm,
With the above structure and each thickness, four layers were laminated by co-extrusion.
This four-layer product was simultaneously biaxially stretched at a temperature of 130 ° C. and three times longer by three times longer. The outline of the thickness of each layer after stretching is as follows.
0 μm / porous layer B 55 μm / deoxygenation layer A 60 μm / buffer layer E 35 μm. The surface of the buffer layer E of the four-layer stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then a nylon film is bonded with an adhesive for dry lamination (about 10 μm in thickness after drying). , Non-porous layer C
/ Porous layer B / porous deoxygenated layer A / buffer layer E / adhesive layer F
/ Oxygen barrier film having a six-layer structure of barrier layer D. Deoxygenation time is 1.2 days, iron elution is 0.08 ppm after 20 days
And the amount of elution from the non-porous layer CC side to n-heptane is 1 c
0.34 mg per m 2 .

【0073】実施例9 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )50wt%とポリプロピレン
(FX4D)50wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)、緩衝層
Eに係る樹脂成分としてポリプロピレン(同)を用い
て、無孔質層Cに係る層100μm /多孔質層Bに係る
層150μm /脱酸素層Aに係る層150μm /緩衝層
Eに係る層800μm 、の構成と各厚さで、共押し出し
により4層を積層した。この4層品を温度130℃、縦
3倍×横3倍で2軸同時延伸した。延伸後の各層の厚さ
の概略は、無孔質層C10μm /多孔質層B55μm /
脱酸素層A60μm /緩衝層E90μm であった。この
4層延伸品の緩衝層E側に、ナイロンとポリプロピレン
の積層フィルム(緩衝層Eにポリプロピレン側が接す
る)を熱融着により積層して、無孔質層C/多孔質層B
/脱酸素層A/緩衝層E/融着層(ポリプロピレン)/
バリヤ層D(ナイロン)の6層構成の脱酸素フィルムと
した。ただし、熱融着における加熱は、ナイロン層側か
らのみ行い、脱酸素層Aと多孔質層Bとの熱による無孔
化を最小限に抑えた温度と加熱時間とした。脱酸素時間
は2.3日、鉄の溶出は20日後で0.06ppm 、無孔
質層C側からのn−ヘプタンへの溶出量は1cm2 当たり
0.08mgであった。
Example 9 A mixture of 50% by weight of an ethylene-propylene copolymer (TAFMER S-4030) and 50% by weight of polypropylene (FX4D) as the resin components for the non-porous layer C, the porous layer B and the deoxidized layer A Using polypropylene (same as above) as the resin component according to (1) and polypropylene (same as above) as the resin component according to the buffer layer E, a layer of 100 μm for the non-porous layer C / a layer of 150 μm for the porous layer B / a deoxygenation layer A Four layers were laminated by co-extrusion with the structure and the thickness of the layer 150 μm / the buffer layer E 800 μm. This four-layer product was simultaneously biaxially stretched at a temperature of 130 ° C. and three times longer by three times longer. The outline of the thickness of each layer after stretching is as follows: nonporous layer C 10 μm / porous layer B 55 μm /
Deoxygenation layer A was 60 μm / buffer layer E was 90 μm. On the buffer layer E side of the four-layer stretched product, a laminated film of nylon and polypropylene (the polypropylene side is in contact with the buffer layer E) is laminated by heat fusion to form a nonporous layer C / porous layer B
/ Deoxygenation layer A / Buffer layer E / Fused layer (polypropylene) /
A six-layer oxygen-absorbing film composed of a barrier layer D (nylon) was obtained. However, the heating in the heat fusion was performed only from the nylon layer side, and the temperature and the heating time were set to minimize the non-porosity of the deoxidized layer A and the porous layer B due to heat. The deoxygenation time was 2.3 days, the elution of iron was 0.06 ppm after 20 days, and the elution amount of n-heptane from the nonporous layer C side was 0.08 mg per 1 cm 2 .

【0074】実施例10 無孔質層C及び緩衝層Eに係る樹脂成分として直鎖状低
密度ポリエチレン(ULTZEX 2520F)、多孔質層B及び脱
酸素層Aに係る樹脂成分として直鎖状低密度ポリエチレ
ン(同)を用いて、無孔質層Cに係る層40μm /多孔
質層Bに係る層100μm /脱酸素層Aに係る層100
μm /緩衝層Eに係る層800μm 、の構成と各厚さで
共押し出しにより、4層を積層した。この4層品を、温
度100℃、縦4倍で1軸延伸した。延伸後の各層の厚
さの概略は、無孔質層C10μm/多孔質層B40μm
/脱酸素層A40μm /緩衝層E200μmmであった。
この4層延伸品の緩衝層E側に、厚さ15μm の接着性
ポリオレフィン(ADMER NF550 )の層と、厚さ20μm
のエチレン−ビニルアルコール共重合体(EVAL EP-E10
5)の層とを、共押し出しラミネートにより同時に積層
して、無孔質層CC/多孔質層B/脱酸素層A/緩衝層
E/接着性樹脂層(ADMER )/バリヤ層D(EVAL)の6
層構成の脱酸素フィルムとした。ただし、共押し出しラ
ミネートは、脱酸素層Aと多孔質層Bとの熱による無孔
化を最小限に抑える溶融樹脂温度とラミネート速度で行
った。脱酸素時間は2.8日、鉄の溶出は20日後で
0.07ppm 、無孔質層C側からのn−ヘプタンへの溶
出量は1cm2 当たり0.01mg未満であった。
Example 10 Linear low-density polyethylene (ULTZEX 2520F) as the resin component for the nonporous layer C and the buffer layer E, and linear low-density polyethylene for the porous layer B and the deoxygenation layer A Using polyethylene (same as above), layer 40 μm for non-porous layer C / layer 100 μm for porous layer B / layer 100 for oxygen-absorbing layer A
Four layers were laminated by co-extrusion at a thickness of 800 μm and a thickness of μm / buffer layer E. The four-layer product was uniaxially stretched at a temperature of 100 ° C. and a length of 4 times. The outline of the thickness of each layer after stretching is as follows: non-porous layer C 10 μm / porous layer B 40 μm
/ Deoxygenation layer A 40 μm / buffer layer E 200 μmm.
A layer of adhesive polyolefin (ADMER NF550) having a thickness of 15 μm and a thickness of 20 μm were provided on the buffer layer E side of the four-layer stretched product.
Ethylene-vinyl alcohol copolymer (EVAL EP-E10
The layers of 5) are simultaneously laminated by co-extrusion lamination to form a nonporous layer CC / porous layer B / deoxygenation layer A / buffer layer E / adhesive resin layer (ADMER) / barrier layer D (EVAL). 6 of
A deoxidized film having a layer structure was obtained. However, the co-extrusion lamination was performed at a molten resin temperature and a laminating speed that minimized nonporous formation of the deoxidized layer A and the porous layer B due to heat. The deoxygenation time was 2.8 days, the elution of iron was 0.07 ppm after 20 days, and the amount of elution from the nonporous layer C into n-heptane was less than 0.01 mg / cm 2 .

【0075】実施例11 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )50wt%とポリプロピレン
(FX4D)50wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)、緩衝層
Eに係る樹脂成分としてポリプロピレン(同)を用い
て、多孔質層Bに係る層150μm /無孔質層Cに係る
層100μm /脱酸素層Aに係る層150μm /緩衝層
Eに係る層300μm 、の構成と各厚さで、共押し出し
により4層を積層した。この4層品を温度130℃、縦
3倍×横3倍で2軸同時延伸した。延伸後の各層の厚さ
の概略は、多孔質層B55μm /無孔質層C10μm /
脱酸素層A60μm /緩衝層E35μm であった。この
4層延伸品の緩衝層Eの表面を3.6kJ/m2 の放電エネ
ルギーでコロナ放電処理してから、ナイロンフィルムを
ドライラミネート用接着剤(乾燥後の厚さ約10μm )
で接着して、多孔質層B/無孔質層C/脱酸素層A/緩
衝層E/接着層F/バリヤ層Dの6層構成の脱酸素フィ
ルムとした。脱酸素時間は2.1日、鉄の溶出は20日
後で0.15ppm 、多孔質層B側のn−ヘプタンへの溶
出量は1cm2 当たり0.10mgであった。
Example 11 A mixture of 50% by weight of an ethylene-propylene copolymer (TAFMER S-4030) and 50% by weight of polypropylene (FX4D) as a resin component for the nonporous layer C, a porous layer B and a deoxidized layer A Using polypropylene (same as above) as the resin component according to (1) and polypropylene (same as above) as the resin component according to the buffer layer E, the layer 150 μm according to the porous layer B / the layer 100 μm according to the non-porous layer C / the deoxygenation layer A Four layers were laminated by co-extrusion with the structure and the thickness of the layer 150 μm / the buffer layer E 300 μm. This four-layer product was simultaneously biaxially stretched at a temperature of 130 ° C. and three times longer by three times longer. The outline of the thickness of each layer after stretching is as follows: porous layer B 55 μm / porous layer C 10 μm /
Deoxygenation layer A was 60 μm / buffer layer E was 35 μm. The surface of the buffer layer E of the four-layer stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then the nylon film is subjected to dry laminating adhesive (thickness after drying is about 10 μm).
To form an oxygen-absorbing film having a six-layer structure of porous layer B / non-porous layer C / oxygen-absorbing layer A / buffer layer E / adhesive layer F / barrier layer D. The deoxygenation time was 2.1 days, the elution of iron was 0.15 ppm after 20 days, and the elution amount of n-heptane on the porous layer B side was 0.10 mg / cm 2 .

【0076】比較例1 多孔質層B及び脱酸素層Aに係る樹脂成分としてポリプ
ロピレン(FX4D)、緩衝層Eに係る樹脂成分としてポリ
プロピレン(同)を用いて、多孔質層Bに係る層150
μm /脱酸素層Aに係る層150μm /緩衝層Eに係る
層300μm 、の構成と各厚さで、共押し出しにより3
層を積層した。この3層品を温度130℃、縦3倍×横
3倍で2軸同時延伸した。延伸後の各層の厚さの概略
は、多孔質層B55μm /脱酸素層A60μm /緩衝層
E35μm であった。この3層延伸品の緩衝層Eの表面
を3.6kJ/m2 の放電エネルギーでコロナ放電処理して
から、ナイロンフィルムをドライラミネート用接着剤
(乾燥後の厚さ約10μm )で接着して、多孔質層B/
多孔質脱酸素層A/緩衝層E/接着層F/バリヤ層Dの
5層構成の脱酸素フィルムとした。脱酸素時間は0.6
日、鉄の溶出は20日後で2ppm (塩酸水溶液への浸漬
の前に、予めエタノールに数十秒浸漬した場合には20
日後で26ppm )、バリア層D側からのn−ヘプタンへ
の溶出量は1cm2当たり0.01mg未満であった。
COMPARATIVE EXAMPLE 1 Polypropylene (FX4D) was used as the resin component for the porous layer B and the deoxygenation layer A, and polypropylene (same as above) was used as the resin component for the buffer layer E.
.mu.m / 150 .mu.m of the layer relating to the deoxidizing layer A / 300 .mu.m of the layer relating to the buffer layer E.
The layers were stacked. The three-layered product was simultaneously biaxially stretched at a temperature of 130 ° C. at a length of 3 × 3. The approximate thickness of each layer after stretching was: porous layer B 55 μm / deoxygenation layer A 60 μm / buffer layer E 35 μm. The surface of the buffer layer E of the three-layer stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then a nylon film is bonded with an adhesive for dry lamination (about 10 μm in thickness after drying). , Porous layer B /
An oxygen-absorbing film having a five-layer structure of porous oxygen-absorbing layer A / buffer layer E / adhesive layer F / barrier layer D was used. Deoxidation time is 0.6
After 2 days, the elution of iron is 2 ppm (20% if immersed in ethanol for several tens of seconds before immersion in aqueous hydrochloric acid.
The amount eluted from the barrier layer D side into n-heptane was less than 0.01 mg / cm 2 .

【0077】比較例2 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )50wt%とポリプロピレン
(FX4D)50wt%との混合物、脱酸素層Aに係る樹脂成
分としてポリプロピレン(同)、緩衝層Eに係る樹脂成
分としてポリプロピレン(同)を用いて、無孔質層Cに
係る層100μm /脱酸素層Aに係る層150μm /緩
衝層Eに係る層300μm 、の構成と各厚さで、共押し
出しにより3層を積層した。この3層品を温度130
℃、縦3倍×横3倍で2軸同時延伸した。延伸後の各層
の厚さの概略は、無孔質層C10μm /脱酸素層A60
μm/緩衝層E35μm であった。この3層延伸品の緩
衝層Eの表面を3.6kJ/m2の放電エネルギーでコロナ
放電処理してから、ナイロンフィルムをドライラミネー
ト用接着剤(乾燥後の厚さ約10μm )で接着して、無
孔質層C/脱酸素層A/緩衝層E/接着層F/バリヤ層
Dの5層構成の脱酸素フィルムとした。脱酸素時間は
1.9日、鉄の溶出は20日後で1.1ppm 、無孔質層
C側からのn−ヘプタンへの溶出量は1cm2 当たり0.
09mgであった。光学顕微鏡で観察したところ、無孔質
層Cを貫通した鉄粉がわずかに確認された。
Comparative Example 2 A mixture of 50% by weight of ethylene-propylene copolymer (TAFMER S-4030) and 50% by weight of polypropylene (FX4D) as the resin component for the non-porous layer C, Using polypropylene (same as above) and polypropylene (same as above) as a resin component for the buffer layer E, a structure of 100 μm for the nonporous layer C / 150 μm for the oxygen-absorbing layer A / 300 μm for the buffer layer E And three layers were laminated by coextrusion at each thickness. The three-layer product is heated to a temperature of 130.
The film was biaxially stretched at a temperature of 3 times the length and 3 times the width. The outline of the thickness of each layer after stretching is as follows: nonporous layer C10 μm / deoxygenation layer A60
μm / buffer layer E was 35 μm. The surface of the buffer layer E of the three-layer stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then a nylon film is bonded with an adhesive for dry lamination (about 10 μm in thickness after drying). The oxygen-absorbing film had a five-layer structure of nonporous layer C / oxygen-absorbing layer A / buffer layer E / adhesive layer F / barrier layer D. The deoxygenation time was 1.9 days, the elution of iron was 1.1 ppm after 20 days, and the elution amount of n-heptane from the nonporous layer C side was 0.1 ppm / cm 2 .
09 mg. When observed with an optical microscope, a slight amount of iron powder penetrating the nonporous layer C was confirmed.

【0078】比較例3 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )50wt%とポリプロピレン
(FX4D)50wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)、緩衝層
Eに係る樹脂成分としてポリプロピレン(同)を用い
て、無孔質層Cに係る層25μm /多孔質層Bに係る層
20μm /脱酸素層Aに係る層150μm /緩衝層Eに
係る層200μm 、の構成と各厚さで、共押し出しによ
り4層を積層した。この無延伸の4層品の緩衝層Eの表
面を3.6kJ/m2 の放電エネルギーでコロナ放電処理し
てから、ナイロンフィルムをドライラミネート用接着剤
(乾燥後の厚さ約10μm )で接着して、無孔質層C/
多孔質層B/脱酸素層A/緩衝層E/接着層F/バリヤ
層Dの6層構成の脱酸素フィルムとした。脱酸素時間は
40日、鉄の溶出は20日後で0.03ppm 、無孔質層
C側からのn−ヘプタンへの溶出量は1cm2 当たり0.
12mgであった。
Comparative Example 3 A mixture of 50% by weight of an ethylene-propylene copolymer (TAFMER S-4030) and 50% by weight of polypropylene (FX4D) as the resin components for the non-porous layer C, the porous layer B and the deoxidized layer A Using polypropylene (same as above) as the resin component according to (1) and polypropylene (same as above) as the resin component according to the buffer layer E, a layer 25 μm for the non-porous layer C / a layer 20 μm for the porous layer B / a deoxygenation layer A Four layers were laminated by co-extrusion with the configuration and the thickness of the layer 150 μm / the buffer layer E 200 μm. The surface of the unstretched four-layer buffer layer E is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then the nylon film is bonded with an adhesive for dry lamination (about 10 μm in thickness after drying). And the non-porous layer C /
An oxygen-absorbing film having a six-layer structure of porous layer B / oxygen-absorbing layer A / buffer layer E / adhesive layer F / barrier layer D was used. The deoxygenation time was 40 days, the elution of iron was 0.03 ppm after 20 days, and the amount of elution from the nonporous layer C side to n-heptane was 0.1 per cm 2 .
It was 12 mg.

【0079】比較例4 多孔質層B及び脱酸素層Aに係る樹脂成分としてポリプ
ロピレン(FX4D)、緩衝層Eに係る樹脂成分としてポリ
プロピレン(同)を用いて、多孔質層に係る層150μ
m /脱酸素層Aに係る層150μm /緩衝層Eに係る層
300μm 、の構成と各厚さで、共押し出しにより3層
を積層した。この3層品を温度130℃、縦3倍×横3
倍で2軸同時延伸した。延伸後の各層の厚さの概略は、
多孔質層B55μm /脱酸素層A60μm /緩衝層E3
5μm であった。この3層延伸品の緩衝層Eの表面を
3.6kJ/m2 の放電エネルギーでコロナ放電処理してか
ら、ナイロンフィルムをドライラミネート用接着剤(乾
燥後の厚さ約10μm )で接着して、多孔質層B/多孔
質脱酸素層A/緩衝層E/接着層F/バリヤ層Dの5層
構成とした。さらに、この5層品の多孔質層B側に、エ
チレン−プロピレン共重合体(TAFMER S-4030 )50wt
%とポリプロピレン(FX4D)50wt%との混合物を用い
て、押し出しコーティングにより、厚さ10μm の無孔
質層を追加することを試みた。溶融樹脂の熱量不足、さ
らに多孔質層B部分のわずかな凹凸のためか、厚さ10
μm では融着できず、積層は不可能であった。
COMPARATIVE EXAMPLE 4 Polypropylene (FX4D) was used as the resin component for the porous layer B and the deoxidizing layer A, and polypropylene (same as above) was used as the resin component for the buffer layer E.
Three layers were laminated by co-extrusion, each having a structure of m / 150 μm of the layer for deoxidizing layer A / 300 μm of the layer for the buffer layer E. This three-layer product is heated at 130 ° C, 3 times vertically and 3 times horizontally.
The film was biaxially stretched at the same time. The outline of the thickness of each layer after stretching is
Porous layer B 55 μm / deoxygenation layer A 60 μm / buffer layer E3
It was 5 μm. The surface of the buffer layer E of the three-layer stretched product is subjected to a corona discharge treatment with a discharge energy of 3.6 kJ / m 2 , and then a nylon film is bonded with an adhesive for dry lamination (about 10 μm in thickness after drying). , A porous layer B / porous deoxygenated layer A / buffer layer E / adhesive layer F / barrier layer D. Further, on the porous layer B side of the five-layer product, 50 wt% of ethylene-propylene copolymer (TAFMER S-4030) was added.
% And polypropylene (FX4D) 50 wt%, an attempt was made to add a 10 μm thick non-porous layer by extrusion coating. Possibly due to lack of heat of the molten resin and slight unevenness of the porous layer B part,
At μm, fusion was not possible and lamination was impossible.

【0080】比較例5 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )50wt%とポリプロピレン
(FX4D)50wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)を用い
て、無孔質層Cに係る層100μm /多孔質層Bに係る
層150μm /脱酸素層Aに係る層150μm 、の構成
と各厚さで、共押し出しにより3層を積層した。この3
層品を温度130℃、縦3倍×横3倍で2軸同時延伸し
た。延伸後の各層の厚さの概略は、無孔質層C10μm
/多孔質層B55μm /多孔質脱酸素層A60μm であ
った。この3層延伸品の脱酸素層A側に、ナイロンフィ
ルムをドライラミネート用接着剤(乾燥後の厚さ約50
μm )で接着して、無孔質層C/多孔質層B/脱酸素層
A/接着層F/バリヤ層Dの5層構成の脱酸素フィルム
とした(バリヤ層の積層強度は十分高くなった)。脱酸
素時間は10日であった。多孔質脱酸素層Aと多孔質層
Bとの細孔の、一部または全てが接着剤で埋められたと
考えられる。鉄の溶出は20日後で0.06ppm 、無孔
質層C側からのn−ヘプタンへの溶出量は1cm2 当たり
0.08mgであった。
Comparative Example 5 A mixture of 50% by weight of an ethylene-propylene copolymer (TAFMER S-4030) and 50% by weight of polypropylene (FX4D) as the resin component for the non-porous layer C, the porous layer B and the deoxidized layer A Using polypropylene (same as above) as a resin component according to the present invention, the thickness and the thickness of the layer of the non-porous layer C 100 μm / the porous layer B 150 μm / the oxygen absorbing layer A 150 μm Three layers were laminated by extrusion. This 3
The layered product was simultaneously biaxially stretched at a temperature of 130 ° C. and 3 times length × 3 times width. The outline of the thickness of each layer after stretching is as follows: Non-porous layer C 10 μm
/ Porous layer B 55 μm / porous deoxygenation layer A 60 μm. On the oxygen-absorbing layer A side of the three-layer stretched product, a nylon film is coated with an adhesive for dry lamination (with a thickness of about 50 after drying).
μm) to form an oxygen-absorbing film having a five-layer structure of nonporous layer C / porous layer B / oxygen-absorbing layer A / adhesive layer F / barrier layer D (the lamination strength of the barrier layer is sufficiently high. T). The deoxygenation time was 10 days. It is considered that a part or all of the pores of the porous oxygen-absorbing layer A and the porous layer B were filled with the adhesive. The elution of iron was 0.06 ppm after 20 days, and the elution amount of n-heptane from the nonporous layer C side was 0.08 mg / cm 2 .

【0081】比較例6 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )50wt%とポリプロピレン
(FX4D)50wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)を用い
て、無孔質層Cに係る層100μm /多孔質層Bに係る
層150μm /脱酸素層Aに係る層150μm 、の構成
と各厚さで、共押し出しにより3層を積層した。この3
層品を温度130℃、縦3倍×横3倍で2軸同時延伸し
た。延伸後の各層の厚さの概略は、無孔質層C10μm
/多孔質層B55μm /脱酸素層A60μm であった。
この3層延伸品の脱酸素層A側に、ナイロンとポリプロ
ピレンの積層フィルム(脱酸素層Aにポリプロピレン側
が接する)を熱融着により積層して、無孔質層C/多孔
質層B/脱酸素層A/融着層(ポリプロピレン)/バリ
ヤ層D(ナイロン)の5層構成の脱酸素フィルムとし
た。ただし、熱融着における加熱は、ナイロン層側から
のみ行い、脱酸素層Aと多孔質層Bとの熱による無孔化
を最小限に抑えた温度と加熱時間とした。脱酸素時間は
15日となった。脱酸素層Aと多孔質層Bとの細孔の、
一部または全てが、熱により無孔化されたと考えられ
る。鉄の溶出は20日後で0.06ppm 、無孔質層C側
からのn−ヘプタンへの溶出量は1cm 2 当たり0.08
mgであった。
Comparative Example 6 Ethylene-propylene was used as the resin component for the nonporous layer C.
50% by weight of copolymer (TAFMER S-4030) and polypropylene
(FX4D) Mixture with 50wt%, porous layer B and deoxygenation layer
Using polypropylene (same as above) as the resin component for A
And the layer of the nonporous layer C 100 μm / the layer of the porous layer B
Configuration of layer 150 μm / layer 150 μm related to deoxidation layer A
And three layers were laminated by coextrusion at each thickness. This 3
The layered product is biaxially stretched at 130 ° C, 3x3x3x
Was. The outline of the thickness of each layer after stretching is as follows: Non-porous layer C 10 μm
/ Porous layer B 55 μm / deoxygenation layer A 60 μm.
On the oxygen-absorbing layer A side of this three-layer stretched product, nylon and polypropylene
Pyrene laminated film (Polypropylene side for oxygen scavenging layer A)
Are in contact with each other) by heat sealing to form a non-porous layer C / porous
Layer B / deoxygenation layer A / fusion layer (polypropylene) / burr
Oxygen layer D (nylon)
Was. However, heating in heat fusion is performed from the nylon layer side.
Only to make the deoxygenation layer A and the porous layer B nonporous by heat.
And the heating time were minimized. Deoxygenation time
It was 15 days. Of pores between the deoxidizing layer A and the porous layer B,
Some or all are considered to be nonporous due to heat
You. Elution of iron was 0.06 ppm after 20 days, non-porous layer C side
Elution amount into n-heptane from Two0.08 per
mg.

【0082】比較例7 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )50wt%とポリプロピレン
(FX4D)50wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)を用い
て、無孔質層Cに係る層100μm /多孔質層Bに係る
層150μm /脱酸素層Aに係る層150μm 、の構成
と各厚さで、共押し出しにより3層を積層した。この3
層品を温度130℃、縦3倍×横3倍で2軸同時延伸し
た。延伸後の各層の厚さの概略は、無孔質層C10μm
/多孔質層B55μm /脱酸素層A60μm であった。
この3層積品の脱酸素層Aに、厚さ15μm の接着性ポ
リオレフィン(ADMER NF550)の層と、厚さ20μm の
エチレン−ビニルアルコール共重合体(EVAL EP-E105)
の層とを、共押し出しラミネートにより同時に積層し
て、無孔質層C/多孔質層B/脱酸素層A/接着性樹脂
層(ADMER )/バリヤ層D(EVAL)の5層構成の脱酸素
フィルムとした。ただし、共押し出しラミネートは、脱
酸素層Aと多孔質層Bとの熱による無孔化を最小限に抑
える溶融樹脂温度とラミネート速度で行った。脱酸素時
間は12日となった。脱酸素層Aと多孔質層Bとの細孔
の、一部または全てが、熱により無孔化されたと考えら
れる。鉄の溶出は20日後で0.07ppm 、無孔質層C
側からのn−ヘプタンへの溶出量は1cm2 当たり0.0
1mg未満であった。
Comparative Example 7 A mixture of 50% by weight of an ethylene-propylene copolymer (TAFMER S-4030) and 50% by weight of polypropylene (FX4D) as the resin components for the non-porous layer C, the porous layer B and the deoxidized layer A Using polypropylene (same as above) as a resin component according to the present invention, the thickness and the thickness of the layer of the non-porous layer C 100 μm / the porous layer B 150 μm / the oxygen absorbing layer A 150 μm Three layers were laminated by extrusion. This 3
The layered product was simultaneously biaxially stretched at a temperature of 130 ° C. and 3 times length × 3 times width. The outline of the thickness of each layer after stretching is as follows: Non-porous layer C 10 μm
/ Porous layer B 55 μm / deoxygenation layer A 60 μm.
A 15 μm-thick adhesive polyolefin (ADMER NF550) layer and a 20 μm-thick ethylene-vinyl alcohol copolymer (EVAL EP-E105)
Are simultaneously laminated by co-extrusion lamination to form a five-layer structure comprising a nonporous layer C / porous layer B / deoxygenation layer A / adhesive resin layer (ADMER) / barrier layer D (EVAL). An oxygen film was used. However, the co-extrusion lamination was performed at a molten resin temperature and a laminating speed that minimized nonporous formation of the deoxidized layer A and the porous layer B due to heat. The deoxidation time was 12 days. It is considered that some or all of the pores in the deoxidized layer A and the porous layer B were made nonporous by heat. Elution of iron is 0.07 ppm after 20 days, non-porous layer C
Elution amount from the side to the n- heptane 1 cm 2 per 0.0
It was less than 1 mg.

【0083】比較例8 無孔質層Cに係る樹脂成分としてエチレン−プロピレン
共重合体(TAFMER S-4030 )50wt%とポリプロピレン
(FX4D)50wt%との混合物、多孔質層B及び脱酸素層
Aに係る樹脂成分としてポリプロピレン(同)を用い
て、無孔質層Cに係る層100μm /多孔質層Bに係る
層150μm /脱酸素層Aに係る層150μm 、の構成
と各厚さで、共押し出しにより3層を積層した。この3
層品を温度130℃、縦3倍×横3倍で2軸同時延伸し
た。延伸後の各層の厚さの概略は、無孔質層C10μm
/多孔質層B55μm /多孔質脱酸素層A60μm であ
った。この3層延伸品の多孔質脱酸素層A側に、ナイロ
ンフィルムをドライラミネート用接着剤(乾燥後の厚さ
約10μm )で接着して、無孔質層C/多孔質層B/脱
酸素層A/接着層/バリヤ層Dの5層構成の脱酸素フィ
ルムとすることを試みた。接着剤を塗布する面を脱酸素
層A側にした場合には脱酸素層Aによる接着剤の吸収が
著しく、塗布する面をナイロンフィルム側にした場合に
は接着剤層と脱酸素層Aとの接触面積の不足が生じて、
いずれもバリヤ層Dは剥離し易かった。したがって、既
述の緩衝層Eを設けることが脱酸素層Aとバリヤ層Dと
の接着性を向上する上で好適であることが分かった。
Comparative Example 8 A mixture of 50% by weight of an ethylene-propylene copolymer (TAFMER S-4030) and 50% by weight of polypropylene (FX4D) as the resin components for the non-porous layer C, the porous layer B and the deoxidized layer A Using polypropylene (same as above) as a resin component according to the present invention, the thickness and the thickness of the layer of the non-porous layer C 100 μm / the porous layer B 150 μm / the oxygen absorbing layer A 150 μm Three layers were laminated by extrusion. This 3
The layered product was simultaneously biaxially stretched at a temperature of 130 ° C. and 3 times length × 3 times width. The outline of the thickness of each layer after stretching is as follows: Non-porous layer C 10 μm
/ Porous layer B 55 μm / porous deoxygenation layer A 60 μm. A nylon film is adhered to the porous deoxygenated layer A side of the three-layer stretched product with a dry laminating adhesive (about 10 μm in thickness after drying) to form a nonporous layer C / porous layer B / deoxygenated layer. An attempt was made to provide a deoxidized film having a five-layer structure of layer A / adhesive layer / barrier layer D. When the surface on which the adhesive is applied is on the oxygen-absorbing layer A side, the adhesive is significantly absorbed by the oxygen-absorbing layer A, and when the surface on which the adhesive is applied is on the nylon film side, the adhesive layer and the oxygen-absorbing layer A Shortage of contact area of
In each case, the barrier layer D was easily peeled off. Therefore, it was found that the provision of the above-described buffer layer E was suitable for improving the adhesion between the deoxidizing layer A and the barrier layer D.

【0084】[0084]

【発明の効果】本発明のフィルム状又はシート状の脱酸
素多層体は、脱酸素速度に優れ、かつ脱酸素成分の溶出
汚染の防止性を持ち、包装材料としても、優れた新規な
脱酸素体である。したがって、本発明の脱酸素多層体
は、特に、従来の脱酸素剤の主な適用対象であった液体
成分の少ない系だけでなく、各種の液体成分が多量に含
まれる系に対しても適用可能であって、食品、医薬品や
金属製品などの、酸素の影響を受けて変質し易い各種製
品の酸化を防止する目的を持つ容器および包装体を構成
するために用いることができる。
EFFECT OF THE INVENTION The film- or sheet-shaped deoxidized multilayer body of the present invention has a novel deoxygenation property which has an excellent deoxidation rate, has a property of preventing the elution and contamination of deoxidized components, and is excellent as a packaging material. Body. Therefore, the deoxidized multilayer body of the present invention is particularly applicable not only to a system with a small amount of liquid components, which was the main application target of the conventional oxygen absorber, but also to a system containing a large amount of various liquid components. It can be used to form containers and packages having the purpose of preventing the oxidation of various products that are easily deteriorated under the influence of oxygen, such as foods, medicines and metal products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の片側吸収型脱酸素多層体の層構成例
の断面図
FIG. 1 is a cross-sectional view of a layer configuration example of a one-sided absorption type deoxidized multilayer body of the present invention.

【図2】 本発明のフィルム状の片側吸収型脱酸素多層
体をトップシールフィルムに使用した包装容器の断面図
FIG. 2 is a cross-sectional view of a packaging container using the film-shaped single-sided absorption type deoxidized multilayer body of the present invention as a top seal film.

【図3】 本発明のフィルム状の片側吸収型脱酸素多層
体を片面に使用した包装袋の断面図
FIG. 3 is a cross-sectional view of a packaging bag using the film-shaped single-sided absorption-type deoxidized multilayer body of the present invention on one side.

【符号の説明】[Explanation of symbols]

1 無孔質な酸素透過性層C 2 多孔質な酸素透過性層B 3 多孔質な脱酸素層A 4 バリヤ層D 5 緩衝層E 6 接着層F(接着剤、接着用樹脂など) 10 片側吸収型のフィルム状脱酸素多層体 30 内容物(固体、液体、固体と液体など) 40 バリヤ性のある容器本体 50 脱酸素機能のない一般のバリヤフィルムまたはバ
リヤ袋
DESCRIPTION OF SYMBOLS 1 Non-porous oxygen-permeable layer C 2 Porous oxygen-permeable layer B 3 Porous deoxygenation layer A 4 Barrier layer D 5 Buffer layer E 6 Adhesion layer F (adhesive, resin for adhesion, etc.) 10 One side Absorption type film-shaped deoxidizing multilayer body 30 Contents (solid, liquid, solid and liquid, etc.) 40 Container body with barrier property 50 General barrier film or barrier bag without deoxidizing function

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西沢 千春 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所 (72)発明者 木村 紀之 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Chiharu Nishizawa 6-1-1-1 Shinjuku, Katsushika-ku, Tokyo Tokyo Metropolitan Research Institute of Mitsubishi Gas Chemical Co., Ltd. (72) Inventor Noriyuki Kimura 6-1-1 Shinjuku, Katsushika-ku, Tokyo No.1 Mitsubishi Gas Chemical Co., Ltd. Tokyo Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 脱酸素層の一面に酸素透過性層を備え、
他面にバリア層を備えたフィルム状又はシート状の脱酸
素多層体において、脱酸素成分を分散させた樹脂組成物
が連続微多孔質化されてなる脱酸素層Aの一面に、少な
くとも無孔薄膜の熱可塑性樹脂からなる酸素透過性層C
と粒状の難水溶性フィラーを分散させた樹脂組成物が連
続微多孔質化されてなる酸素透過性層Bとを備え、かつ
前記層Aの他面に熱可塑性樹脂からなる緩衝層Eを備
え、隣接する前記各層が熱融着されてなる積層体の緩衝
層E面にバリア層Dが積層されてなることを特徴とする
片側吸収型脱酸素多層体。
1. An oxygen-permeable layer is provided on one side of a deoxygenation layer,
In a film-shaped or sheet-shaped oxygen-absorbing multilayer body provided with a barrier layer on the other surface, at least one non-porous surface of the oxygen-absorbing layer A in which a resin composition in which an oxygen-absorbing component is dispersed is continuously made microporous. Oxygen permeable layer C made of thin film thermoplastic resin
And an oxygen-permeable layer B in which a resin composition in which granular poorly water-soluble fillers are dispersed is continuously made microporous, and a buffer layer E made of a thermoplastic resin is provided on the other surface of the layer A. A barrier layer D is laminated on the surface of the buffer layer E of a laminate obtained by heat-sealing each of the adjacent layers, the single-sided absorption-type deoxidized multilayer body.
【請求項2】 前記脱酸素成分が主剤として鉄粉を含有
する請求項1記載の脱酸素多層体。
2. The deoxidized multilayer body according to claim 1, wherein the deoxidized component contains iron powder as a main agent.
【請求項3】 前記酸素透過性層Cの酸素透過率が、1
×10-11 〜6×10-9[cm3 /cm2 ・sec ・Pa]であ
る請求項1記載の脱酸素多層体。
3. The oxygen permeable layer C having an oxygen permeability of 1
The deoxidized multilayer body according to claim 1, wherein the density is from 10 -11 to 6 10 -9 [cm 3 / cm 2 · sec · Pa].
【請求項4】 前記脱酸素多層体の酸素透過性層Cが存
在する側をn−ヘプタンに浸漬した際に、脱酸素多層体
からの溶出量が表面積1cm2 当たり0.3mg以下である
請求項1記載の脱酸素多層体。
4. When the oxygen-permeable layer C of the deoxidized multilayer body is immersed in n-heptane, the amount of elution from the deoxygenated multilayer body is 0.3 mg or less per 1 cm 2 of surface area. Item 2. The deoxidized multilayer body according to Item 1.
【請求項5】 前記脱酸素層Aの一面に、脱酸素層Aか
ら順に酸素透過性層C、酸素透過性層Bが積層された請
求項1記載の脱酸素脱酸素体。
5. The deoxidized oxygen absorber according to claim 1, wherein an oxygen permeable layer C and an oxygen permeable layer B are laminated on one surface of the deoxygenated layer A in this order from the deoxygenated layer A.
【請求項6】 前記脱酸素層A一面に、脱酸素層Aから
順に酸素透過性層B、酸素透過性層Cが積層された請求
項1記載の脱酸素脱酸素体。
6. The deoxidized oxygen absorber according to claim 1, wherein an oxygen-permeable layer B and an oxygen-permeable layer C are laminated on the entire surface of the oxygen-absorbing layer A in this order.
【請求項7】 脱酸素成分を分散させた樹脂組成物の層
aの一面に酸素透過性を有する熱可塑性樹脂の層cと粒
状の難水溶性フィラーを分散させた樹脂組成物の層bと
がそれぞれ1層以上組み合わせて積層され、かつ前記層
aの他面に熱可塑性樹脂の層eが積層され、隣接する前
記各層が互いに熱融着されてなる樹脂積層体の基材を延
伸し、次に延伸した前記基材の層e面にバリア層Dを積
層して、層aが連続微多孔質化されてなる脱酸素層Aの
一面に、少なくとも層cが薄膜化されてなる無孔の酸素
透過性層Cと層bが連続微多孔質化されてなる酸素透過
性層Bとを備え、前記層Aの他面に層eが延伸されてな
る緩衝層Eに積層してなるバリア層Dを備えたフィルム
状又はシート状の脱酸素多層体を製造する片面吸収型脱
酸素多層体の製造方法。
7. A layer c of a thermoplastic resin having oxygen permeability on one surface of a layer a of a resin composition in which a deoxygenating component is dispersed, and a layer b of a resin composition in which a particulate poorly water-soluble filler is dispersed. Are laminated in combination with one or more layers, and a layer e of a thermoplastic resin is laminated on the other surface of the layer a, and the base material of the resin laminate obtained by heat-sealing the adjacent layers to each other is stretched; Next, a barrier layer D is laminated on the layer e surface of the stretched base material, and a non-porous layer obtained by thinning at least the layer c on one surface of the oxygen-absorbing layer A in which the layer a is continuously microporous. A barrier formed by laminating a buffer layer E in which a layer e is stretched on the other surface of the layer A, comprising an oxygen permeable layer C and an oxygen permeable layer B in which the layer b is made continuous and microporous. Method for producing single-sided absorption deoxidized multilayer body for producing film-shaped or sheet-shaped deoxidized multilayer body provided with layer D Law.
【請求項8】 前記樹脂積層体の基材を1軸方向又は2
軸方向に面積換算で2〜20倍に延伸する請求項9記載
の製造方法。
8. The method according to claim 8, wherein the base material of the resin laminate is uniaxially or
The production method according to claim 9, wherein the film is stretched 2 to 20 times in an axial direction in terms of area.
JP9071626A 1997-03-25 1997-03-25 One side absorptive deoxidation multilayered body and its manufacture Pending JPH10264279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9071626A JPH10264279A (en) 1997-03-25 1997-03-25 One side absorptive deoxidation multilayered body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9071626A JPH10264279A (en) 1997-03-25 1997-03-25 One side absorptive deoxidation multilayered body and its manufacture

Publications (1)

Publication Number Publication Date
JPH10264279A true JPH10264279A (en) 1998-10-06

Family

ID=13466061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9071626A Pending JPH10264279A (en) 1997-03-25 1997-03-25 One side absorptive deoxidation multilayered body and its manufacture

Country Status (1)

Country Link
JP (1) JPH10264279A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272851A (en) * 1988-09-08 1990-03-13 Mitsubishi Gas Chem Co Inc Filmy disoxidant
JPH0565176A (en) * 1991-08-30 1993-03-19 Toray Ind Inc Packaging bag
JPH05162251A (en) * 1991-12-13 1993-06-29 Sumitomo Chem Co Ltd Oxygen absorbing multilayered sheet
JPH05318675A (en) * 1992-05-15 1993-12-03 Sumitomo Chem Co Ltd Oxygen absorbing sheet
JPH06125751A (en) * 1991-01-28 1994-05-10 Nitto Denko Corp Porous sheet for food-packaging
JPH08132573A (en) * 1994-11-07 1996-05-28 Toppan Printing Co Ltd Oxygen absorbing laminate
JPH09234811A (en) * 1995-12-27 1997-09-09 Mitsubishi Gas Chem Co Inc Film-like or sheet-like deoxidizing multilayer body and its manufacture
JPH09234832A (en) * 1995-12-28 1997-09-09 Mitsubishi Gas Chem Co Inc Oxygen absorbing multi-layer film and its manufacture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272851A (en) * 1988-09-08 1990-03-13 Mitsubishi Gas Chem Co Inc Filmy disoxidant
JPH06125751A (en) * 1991-01-28 1994-05-10 Nitto Denko Corp Porous sheet for food-packaging
JPH0565176A (en) * 1991-08-30 1993-03-19 Toray Ind Inc Packaging bag
JPH05162251A (en) * 1991-12-13 1993-06-29 Sumitomo Chem Co Ltd Oxygen absorbing multilayered sheet
JPH05318675A (en) * 1992-05-15 1993-12-03 Sumitomo Chem Co Ltd Oxygen absorbing sheet
JPH08132573A (en) * 1994-11-07 1996-05-28 Toppan Printing Co Ltd Oxygen absorbing laminate
JPH09234811A (en) * 1995-12-27 1997-09-09 Mitsubishi Gas Chem Co Inc Film-like or sheet-like deoxidizing multilayer body and its manufacture
JPH09234832A (en) * 1995-12-28 1997-09-09 Mitsubishi Gas Chem Co Inc Oxygen absorbing multi-layer film and its manufacture

Similar Documents

Publication Publication Date Title
KR100274695B1 (en) Oxygen-absorbing multi-layer film and method for preparing same
JP2967740B2 (en) Method for producing oxygen-absorbing multilayer film
JP6573607B2 (en) Easy-cut absorbable laminate and packaging bag using the same
JPS621824B2 (en)
KR19990007487A (en) Deoxygen component, deoxidant package and deoxygenated multilayer body comprising same
US6117538A (en) Deoxidizing multilayered body and method or manufacturing the same
JPH09234811A (en) Film-like or sheet-like deoxidizing multilayer body and its manufacture
WO2014045964A1 (en) Drug packaging sheet and drug-packaged product
TWI451970B (en) Multi-layered sheet, container and packaging article
JP3545089B2 (en) Method for producing oxygen-absorbing container and oxygen-absorbing container obtained by this method
JPH10264279A (en) One side absorptive deoxidation multilayered body and its manufacture
JPH07156970A (en) Laminated body, and package body constituted therewith
JP3856056B2 (en) Easy-to-open deoxidized multilayer body
JP4178333B2 (en) Deoxygenating monolayers and multilayers
WO2019239871A1 (en) Lid for blister pack
JP3019153B2 (en) Oxygen absorbing multilayer film
JP2002201360A (en) Oxygen-absorbing composition, film or sheet comprising the composition and oxygen-absorbing laminated film or sheet having layer comprising the composition, packaging container comprising the film or sheet
JP2020175935A (en) Content containing blister pack
JP2020175936A (en) Absorbent transparent lid material
JP4548566B2 (en) Deoxygenated multilayer body
JP4433111B2 (en) Method for producing stretched deoxygenated multilayer body
JP4411646B2 (en) Laminated packaging material
US20030180519A1 (en) Multilayered deoxidizer and production process
JP2002103530A (en) Deoxygenating multilayered material
JP2017213786A (en) Oxygen absorbing film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061025