JPH09234378A - Catalyst for exhaust gas purification and its preparation - Google Patents

Catalyst for exhaust gas purification and its preparation

Info

Publication number
JPH09234378A
JPH09234378A JP8046411A JP4641196A JPH09234378A JP H09234378 A JPH09234378 A JP H09234378A JP 8046411 A JP8046411 A JP 8046411A JP 4641196 A JP4641196 A JP 4641196A JP H09234378 A JPH09234378 A JP H09234378A
Authority
JP
Japan
Prior art keywords
exhaust gas
carrier
noble metal
fsm
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8046411A
Other languages
Japanese (ja)
Other versions
JP3555712B2 (en
Inventor
Yasutomo Goto
康友 後藤
Shinji Inagaki
伸二 稲垣
Yoshiaki Fukushima
喜章 福嶋
Yasuo Takada
保夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP04641196A priority Critical patent/JP3555712B2/en
Publication of JPH09234378A publication Critical patent/JPH09234378A/en
Application granted granted Critical
Publication of JP3555712B2 publication Critical patent/JP3555712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst for exhaust gas purification which purifies exhaust gas discharged from an internal combustion engine, etc., and especially has high NOx purification efficiency in an excess oxygen atmosphere. SOLUTION: By making a carrier of a porous body in which the pores of 1-10nm diameter is the most among pores in a carrier, and 60%. or more of the pores have diameters within a range of ±5nm of the particles supporting noble metals of a particle size of 10-30nm, a catalyst for exhaust gas purification having high exhaust gas purification efficiency is obtained. Especially, the catalyst has high purification efficiency for NOx contained in exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関などから
排出される排ガスを浄化する排ガス浄化用触媒及びその
製造方法に関し、詳しくはNOX 等の排ガスを浄化する
ための排ガス浄化用触媒及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine or the like and a method for producing the same, and more specifically to an exhaust gas purifying catalyst for purifying exhaust gas such as NO x and the like. The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】内燃機関から排出される排ガス中には、
一酸化炭素(CO)、窒素酸化物(NOX )等の有害な
物質が含まれている。このうちNOX の浄化方法とし
て、触媒作用によって排気ガス中に同時に含まれる炭化
水素(HC)でNOX を還元し、無害な窒素分子
(N2 )にする方法や、あるいは、排ガス中に炭化水素
を添加して、その炭化水素によりNOX を還元し浄化す
る方法がある。このような還元反応を促す触媒として
は、白金(Pt)、ロジウム(Rh)、パラジウム(P
d)、イリジウム(Ir)等の貴金属が知られており、
こうした貴金属を担体に担持させて構成される排ガス浄
化用触媒が排ガスの浄化に使用されている。
2. Description of the Related Art In exhaust gas discharged from an internal combustion engine,
It contains harmful substances such as carbon monoxide (CO) and nitrogen oxides (NO x ). Among them, as a method of purifying NO x, a method of reducing NO x with hydrocarbon (HC) simultaneously contained in the exhaust gas by a catalytic action to form harmless nitrogen molecules (N 2 ), or carbonization in exhaust gas There is a method in which hydrogen is added and NO x is reduced and purified by the hydrocarbon. As a catalyst for promoting such a reduction reaction, platinum (Pt), rhodium (Rh), palladium (P
d), noble metals such as iridium (Ir) are known,
Exhaust gas purifying catalysts which are formed by supporting such precious metals on a carrier are used for purifying exhaust gas.

【0003】従来、このような貴金属を担体に担持させ
て構成される排ガス浄化用触媒の製造方法としては、ア
ルミナ、シリカゲル、ゼオライト、セピオライト等の高
比表面積担体に貴金属を含む塩の水溶液を接触させ、そ
の後、塩が分解するのに必要な温度で熱処理する方法が
とられていた。このうち、セピオライト担体にパラジウ
ムを担持した後、これらを炭化水素を含まない酸化雰囲
気において400〜700℃の温度で熱処理して排ガス
浄化用触媒を製造する方法(特開平6−376号公報)
や、アルミナ担体に白金を担持した後700〜1000
℃で熱処理する方法(特公昭62−56783号公報)
が提案されている。
Conventionally, as a method for producing an exhaust gas purifying catalyst constituted by supporting such a noble metal on a carrier, an aqueous solution of a salt containing a noble metal is contacted with a carrier having a high specific surface area such as alumina, silica gel, zeolite or sepiolite. And then heat-treating at the temperature required for the salt to decompose. Of these, a method of supporting palladium on a sepiolite carrier and then heat-treating these in a hydrocarbon-free oxidizing atmosphere at a temperature of 400 to 700 ° C. to produce an exhaust gas purifying catalyst (JP-A-6-376)
Or 700 to 1000 after loading platinum on an alumina carrier
Method of heat treatment at ℃ (Japanese Patent Publication No. 62-56783)
Has been proposed.

【0004】しかし、酸素が多く含まれる排ガスにおい
ては、これらの方法によって製造された排ガス浄化用触
媒では、その排ガス中に含まれるNOX の浄化効率が低
い。
However, in the exhaust gas containing a large amount of oxygen, the exhaust gas purifying catalyst produced by these methods has a low purification efficiency of NO x contained in the exhaust gas.

【0005】[0005]

【発明が解決しようとする課題】そこで上記のような酸
素過剰下でのNOX の選択的還元反応等の排ガス浄化反
応に対し、十分な活性を有する排ガス浄化用触媒とし
て、層状シリカ多孔体あるいは層状シリカ−金属酸化物
多孔体よりなる担体に白金を担持し、350℃で熱処理
した後、炭化水素と空気とで構成され炭化水素に対する
空気の空燃比が18以下である雰囲気中で500℃以上
の温度で熱処理する方法(特開平6−63400号公
報)が開示されている。しかし、この方法で製造された
排ガス浄化用触媒は酸素過剰下にある排ガスにおいて高
いNOX の浄化作用を有するが、まだ十分とはいえな
い。なお、空燃比とは、空気の体積と気化したガソリン
の体積比をいう。
Therefore, a layered silica porous material or a layered silica porous material is used as an exhaust gas purifying catalyst having sufficient activity for the exhaust gas purifying reaction such as the selective reduction reaction of NO X under the excessive oxygen as described above. Platinum is supported on a carrier composed of a layered silica-metal oxide porous body, heat-treated at 350 ° C., and then 500 ° C. or more in an atmosphere composed of hydrocarbon and air and having an air-fuel ratio of air to hydrocarbon of 18 or less. There is disclosed a method of heat treatment at the temperature (Japanese Patent Laid-Open No. 6-63400). However, although the exhaust gas-purifying catalyst produced by this method has a high NO X purification effect in the exhaust gas in the presence of excess oxygen, it cannot be said to be sufficient yet. The air-fuel ratio means the volume ratio of air to vaporized gasoline.

【0006】本発明は、上記問題に鑑みてなされたもの
であり、内燃機関などから排出される排ガスを浄化し、
特に酸素過剰下において、さらに高いNOX の浄化作用
を有する排ガス浄化用触媒およびその製造方法を提供す
ることを目的とする。
The present invention has been made in view of the above problems, and purifies exhaust gas discharged from an internal combustion engine or the like,
Particularly, it is an object of the present invention to provide an exhaust gas purifying catalyst having a higher NO X purifying effect in the presence of excess oxygen and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は、従来技術に
よって製造された排ガス浄化用触媒においては担体上に
担持された貴金属は粒径が30nm以上に粒成長してい
ること、そして特開平6−63400号公報に示されて
いる排ガス浄化用触媒においては貴金属が10nm以上
の粒径に粒成長していないことに着眼し、貴金属の粒径
が10〜30nmである時、酸素過剰下でのNOX の選
択的還元反応等の排ガス浄化反応に対して活性が高いこ
とを見出し、また、中心細孔直径が1〜10nmの範囲
内にあって、全細孔の60%以上の細孔が該中心細孔直
径の±5nmの範囲内の直径を有する担体を用いると、
貴金属の平均粒径が10〜30nmの範囲内になるよう
に粒成長を制御できることを発見し、本発明に至ったの
である。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that in the exhaust gas purifying catalyst produced by the prior art, the noble metal supported on the carrier is grown to have a particle size of 30 nm or more. In the exhaust gas purifying catalyst disclosed in Japanese Patent Laid-Open No. 6-63400, it is noted that the noble metal does not grow to a particle size of 10 nm or more, and when the particle size of the noble metal is 10 to 30 nm, it is under oxygen excess. Found to have high activity for exhaust gas purification reactions such as the selective reduction reaction of NO x , and having a central pore diameter in the range of 1 to 10 nm and 60% or more of all pores. Using a carrier having a diameter within the range of ± 5 nm of the central pore diameter,
The inventors have found that the grain growth can be controlled so that the average grain size of the noble metal is within the range of 10 to 30 nm, and have reached the present invention.

【0008】すなわち、本発明は、多孔質の担体と、該
担体に担持された貴金属とよりなる排ガス浄化用触媒で
あって、該担体は、中心細孔直径が1〜10nmの範囲
内にあって、全細孔の60%以上の細孔が該中心細孔直
径の±5nmの範囲内の直径を有する多孔体であり、か
つ該貴金属は平均粒径が10〜30nmの範囲内にある
金属粒子であることを特徴とする排ガス浄化用触媒であ
る。またもう一つの本発明は、中心細孔直径が1〜10
nmの範囲内にあって、全細孔の60%以上の細孔が該
中心細孔直径の±5nmの範囲内の直径を有する担体に
貴金属を担持させる担持工程と、貴金属が担持された該
担体を、酸素・燃料比が4以上である混合気体の雰囲
気、又は炭化水素を含まず酸素を含む雰囲気中で600
〜1000℃に加熱する加熱工程と、からなることを特
徴とする排ガス浄化用触媒の製造方法である。なお、酸
素・燃料比とは、酸素ガスの体積と気化したガソリンの
体積比をいう。
That is, the present invention is an exhaust gas purifying catalyst comprising a porous carrier and a noble metal supported on the carrier, the carrier having a central pore diameter in the range of 1 to 10 nm. 60% or more of all the pores are porous bodies having a diameter within the range of ± 5 nm of the central pore diameter, and the noble metal is a metal having an average particle diameter within the range of 10 to 30 nm. It is an exhaust gas-purifying catalyst characterized by being particles. Another aspect of the present invention is that the central pore diameter is 1 to 10
nm, and 60% or more of all the pores have a supporting step of supporting the noble metal on a carrier having a diameter within the range of ± 5 nm of the central pore diameter. The carrier is 600 in an atmosphere of a mixed gas having an oxygen / fuel ratio of 4 or more or an atmosphere containing no hydrocarbon and containing oxygen.
A method for producing an exhaust gas-purifying catalyst, comprising: a heating step of heating to ˜1000 ° C. The oxygen / fuel ratio is the volume ratio of oxygen gas to vaporized gasoline.

【0009】[0009]

【発明の実施の形態】担体としては、層状シリカ多孔体
あるいは層状シリカ−金属酸化物多孔体を使用すること
ができる。なお、層状シリカ多孔体とは、骨格がシリカ
よりなる層状物を原料として、この層状物を多孔体とし
たものである。また、層状シリカ−金属酸化物多孔体と
は、前記の層状シリカ多孔体にアルミニウム等の金属の
酸化物を担持したものである。この層状シリカ多孔体
は、例えば、以下の製造方法により製造することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION As the carrier, a layered silica porous material or a layered silica-metal oxide porous material can be used. The layered silica porous material is a layered material having a skeleton made of silica as a raw material, and the layered material is a porous material. The layered silica-metal oxide porous body is the layered silica porous body carrying an oxide of a metal such as aluminum. This layered silica porous material can be manufactured, for example, by the following manufacturing method.

【0010】先ず、珪酸ソーダ等の珪酸塩を焼成してカ
ネマイト等の層状珪酸塩を形成する。この層状珪酸塩に
界面活性剤を添加し、この界面活性剤を層状珪酸塩の層
間に導入すると共に、界面活性剤が導入された部分以外
で隣合う層状珪酸塩どうしを結合させる。この結合は、
隣合う層状珪酸塩中のシラール(Si−OH)どうしが
脱水縮合し、シロキサン結合(Si−O−Si)が形成
されることにより生じる。この結合により、全体として
3次元ハニカム状となる。この3次元ハニカム状の層状
珪酸塩を焼成することにより、導入された界面活性剤が
除去されて細孔が形成される。このとき、添加する界面
活性剤の大きさを変化させることにより、形成される細
孔の直径を調整することができる。
First, a silicate such as sodium silicate is fired to form a layered silicate such as kanemite. A surfactant is added to the layered silicate to introduce the surfactant between the layers of the layered silicate, and to bond adjacent layered silicates other than the portion where the surfactant is introduced. This join
It occurs when silal (Si-OH) in adjacent layered silicates is dehydrated and condensed to form a siloxane bond (Si-O-Si). By this bonding, the whole becomes a three-dimensional honeycomb shape. By firing this three-dimensional honeycomb layered silicate, the introduced surfactant is removed and pores are formed. At this time, the diameter of the formed pores can be adjusted by changing the size of the added surfactant.

【0011】貴金属はPt、Rh、Pd、Irから選ば
れる少なくとも1種の貴金属であることが望ましい。な
お、貴金属にはAl、Mg、Tiから選ばれる少なくと
も1種の金属の酸化物が添加されることが望ましい。担
体に貴金属を担持させる方法としては、貴金属を含む溶
液中に担体を浸漬することにより担体中に貴金属を含む
溶液を含浸させ、加熱等により水分等の溶媒を蒸発させ
て担体中に貴金属を吸着させる方法が望ましい。このと
き貴金属は塩の形態で溶媒中に溶かすこともでき、貴金
属の塩は、該貴金属の塩の熱分解温度以上で加熱するこ
とによって分解し、単体金属として貴金属が担体に担持
される。なお、貴金属を含む溶液は酸性、中性、アルカ
リ性のいずれでもよい。また、溶液の溶媒を蒸発させる
ための加熱は110℃が望ましい。この方法によれば貴
金属の担持量を、貴金属を含む溶液の濃度の調整によっ
て行うことができ、貴金属の担持量を制御しやすいため
好ましい。
The noble metal is preferably at least one noble metal selected from Pt, Rh, Pd and Ir. It is desirable that the noble metal be added with an oxide of at least one metal selected from Al, Mg, and Ti. As a method of supporting the noble metal on the carrier, the carrier is impregnated with the solution containing the noble metal by immersing the carrier in the solution containing the noble metal, and the solvent such as water is evaporated by heating or the like to adsorb the noble metal on the carrier. It is desirable to use the method. At this time, the noble metal can be dissolved in the solvent in the form of a salt, and the noble metal salt is decomposed by heating at a temperature not lower than the thermal decomposition temperature of the noble metal salt, and the noble metal is supported as a single metal on the carrier. The solution containing the noble metal may be acidic, neutral or alkaline. Further, the heating for evaporating the solvent of the solution is preferably 110 ° C. According to this method, the amount of the precious metal supported can be adjusted by adjusting the concentration of the solution containing the precious metal, and the amount of the precious metal supported can be easily controlled, which is preferable.

【0012】前記の様に担体に貴金属を担持した後、酸
素・燃料比が4以上である混合気体の雰囲気、又は炭化
水素を含まず酸素を含む雰囲気中で貴金属が担持された
担体を加熱することが望ましい。このとき、炭化水素を
含まず空気(酸素20%含有)のみを含む雰囲気、すな
わち大気中で加熱することもでき、あるいはまた、酸素
が100%含まれる雰囲気中で加熱することもできる。
こうした熱処理条件下において貴金属の粒成長が促進さ
れ、貴金属の平均粒径を10〜30nmの範囲内とする
ことができる。これは、酸素の働きにより貴金属の結晶
粒間の結合を促進しているためであると考えられる。な
お、酸素・燃料比が4以下である混合気体の雰囲気、又
は酸素を含まない雰囲気中で加熱すると、貴金属の粒成
長が促進されず、貴金属の平均粒径を10〜30nmの
範囲内とすることはできない。
After supporting the noble metal on the carrier as described above, the carrier on which the noble metal is supported is heated in an atmosphere of a mixed gas having an oxygen / fuel ratio of 4 or more, or in an atmosphere containing no hydrocarbon and oxygen. Is desirable. At this time, heating can be performed in an atmosphere containing only air (containing 20% oxygen) without containing hydrocarbons, that is, in the atmosphere, or in an atmosphere containing 100% oxygen.
Under such heat treatment conditions, the grain growth of the noble metal is promoted, and the average grain size of the noble metal can be set within the range of 10 to 30 nm. It is considered that this is because the action of oxygen promotes the bond between the crystal grains of the noble metal. When heated in a mixed gas atmosphere having an oxygen / fuel ratio of 4 or less, or in an atmosphere containing no oxygen, the grain growth of the noble metal is not promoted and the average grain size of the noble metal is set within the range of 10 to 30 nm. It is not possible.

【0013】[0013]

【作用】本発明の排ガス浄化用触媒によって、排ガス中
に含まれるNOX が排気ガス中に同時に含まれる炭化水
素(HC)で還元され、無害な窒素分子(N2 )にな
る。また、本発明の排ガス浄化用触媒の製造方法によっ
て、酸素・燃料比が4以上である混合気体の雰囲気、又
は炭化水素を含まず酸素を含む雰囲気中では、中心細孔
直径が1〜10nmの範囲内にあって全細孔の60%以
上の細孔が該中心細孔直径の±5nmの範囲内の直径を
有する担体においては、貴金属が担体に担持された状態
で600〜1000℃で加熱することで平均粒径が10
〜30nmの範囲内に粒径の成長を制御することができ
る。これは、酸素・燃料比が4以上である混合気体の雰
囲気、又は炭化水素を含まず酸素を含む雰囲気中では貴
金属の微粒子が部分的に酸化され、粒子径が成長しやす
い状態となり、また中心細孔直径が1〜10nmの範囲
内にあって中心細孔直径の±5nmの範囲内にある直径
の細孔が全細孔の60%以上ある担体においては、細孔
によって形成される担体表面の凹凸の周期が規則的とな
り、粒子径が制御されやすくなるためである。そして6
00〜1000℃の加熱によって、担体に担持された貴
金属が粒成長する。このとき、貴金属が塩の形態で担体
に担持された場合も、塩の熱分解を経て単体貴金属の形
態で粒成長する。
With the catalyst for purifying exhaust gas of the present invention, NO x contained in the exhaust gas is reduced by hydrocarbon (HC) contained in the exhaust gas at the same time to become harmless nitrogen molecules (N 2 ). Further, according to the method for producing an exhaust gas purifying catalyst of the present invention, in a mixed gas atmosphere having an oxygen / fuel ratio of 4 or more, or in an atmosphere containing oxygen without hydrocarbons, the central pore diameter is 1 to 10 nm. In a carrier in which 60% or more of all the pores have a diameter within ± 5 nm of the central pore diameter, heating at 600 to 1000 ° C. with the noble metal supported on the carrier is carried out. The average particle size is 10
Particle size growth can be controlled within the range of ~ 30 nm. This is because the noble metal fine particles are partially oxidized in an atmosphere of a mixed gas having an oxygen / fuel ratio of 4 or more, or in an atmosphere not containing a hydrocarbon and containing oxygen, and the particle diameter easily grows. In the case of a carrier having 60% or more of all the pores having a diameter within the range of 1 to 10 nm and a central pore diameter of ± 5 nm, the carrier surface formed by the pores. This is because the cycle of the unevenness becomes regular and the particle size is easily controlled. And 6
The noble metal supported on the carrier is grain-grown by heating at 0 to 1000 ° C. At this time, even when the noble metal is supported on the carrier in the form of a salt, the particles grow in the form of a simple noble metal through thermal decomposition of the salt.

【0014】[0014]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (担体の形成)珪酸ソーダ粉末(SiO2 /Na2 O=
2.00;日本化学工業製)を空気中において700℃
で6時間焼成した。そして、得られた焼成珪酸ソーダ粉
末のうち50gを粒径1mm以下に粉砕した後、500
mlの水に分散させ、室温で3時間攪拌した。その後、
ブフナーロートを用いて固形分を濾別し、層状珪酸塩の
一種であるカネマイト(NaHSi2 5 ・3H2 O)
を得た。
The present invention will be described below in detail with reference to examples. (Formation of Carrier) Sodium silicate powder (SiO 2 / Na 2 O =
2.00; manufactured by Nippon Kagaku Kogyo) in air at 700 ° C
It was baked for 6 hours. Then, 50 g of the obtained baked sodium silicate powder was pulverized to a particle size of 1 mm or less, and then 500
It was dispersed in ml of water and stirred at room temperature for 3 hours. afterwards,
Kanemite (NaHSi 2 O 5 · 3H 2 O), which is a type of layered silicate, is obtained by filtering off the solid content using a Buchner funnel.
I got

【0015】次に、0.1モルのヘキサデシルトリメチ
ルアンモニウムクロライド(C16 33N(CH3 3
l)、あるいはドデシルトリメチルアンモニウムブロマ
イド(C1225N(CH3 3 Br)を1000mlの
水に溶解させることにより調整したアルキルトリメチル
アンモニウム(Cn 2n+1+ (CH3 3 )水溶液
に、乾燥せずに湿った状態のままの上記カネマイトを分
散させた。そして、これらの2種類の分散液をそれぞれ
2000ml容器のフラスコに入れ、攪拌モーターで攪
拌しながらオイルバス中において70℃で3時間加熱
し、2Nの塩酸水溶液を滴下して分散液のpHをゆっく
り8.5に調整してさらに攪拌しながら70℃で3時間
加熱した。加熱後、分散液を室温まで冷却し、固形生成
物を濾別した。得られた固形生成物を1000mlのイ
オン交換水で合計5回洗浄した後、乾燥して粉末を得
た。これらの粉末を空気中で550℃中において6時間
焼成し、2種類の層状シリカ多孔体を得た。これらの多
孔体はアルキル鎖長がn=12のものをFSM−23と
し、n=16のものをFSM−28とした。
Next, 0.1 mol of hexadecyl trimethyl
Lumonium chloride (C16H 33N (CHThree)ThreeC
l), or dodecyl trimethyl ammonium bromide
Id (C12Htwenty fiveN (CHThree)ThreeBr) of 1000 ml
Alkyl trimethyl prepared by dissolving it in water
Ammonium (CnH2n + 1N+(CHThree)Three) Aqueous solution
The above-mentioned kanemite, which remains moist without drying.
Scattered. And these two kinds of dispersion liquids
Place in a 2000 ml flask and stir with a stirring motor.
Heat in an oil bath at 70 ° C for 3 hours with stirring
Then, add 2N hydrochloric acid aqueous solution to adjust the pH of the dispersion.
Adjust to 8.5 and stir for 3 hours at 70 ℃.
Heated. After heating, cool the dispersion to room temperature to produce a solid
The product was filtered off. The solid product obtained was treated with 1000 ml of
After washing a total of 5 times with on-exchanged water, dry to obtain powder
Was. These powders in air at 550 ° C for 6 hours
Firing was performed to obtain two types of layered silica porous bodies. Many of these
The pores with an alkyl chain length of n = 12 are called FSM-23.
Then, the one with n = 16 was designated as FSM-28.

【0016】また、前記と同様の方法で焼成珪酸ソーダ
粉末から湿潤カネマイトを調整し、ヘキサデシルトリメ
チルアンモニウムクロライド0.1モルを1000ml
の水に溶解させ、0.2モルのメシチレン(1,3,5
−トリメチルベンゼン)を添加したものと、0.8モル
のメシチレンを添加した水溶液をそれぞれ調整した。そ
して、これらの水溶液中に湿潤カネマイトを分散させ、
FSM−23あるいはFSM−28を形成した時と同様
の方法で分散液を加熱、乾燥し粉末を得た。これらの粉
末を空気中において550℃で6時間焼成し、2種類の
層状シリカ多孔体を得た。これらの多孔体はメシチレン
0.2モルを添加させたものをFSM−48とし、メシ
チレン0.8モルを添加させたものをFSM−55とし
た。 (多孔体の結晶構造の測定)前記得られたFSM−2
3、FSM−28、FSM−48、FSM−55につい
て、理学電子RAD−B装置を用いて、Cu−Kαを線
源としてX線回折を行った。なお、線源のスリットは、
RS1.0mm、SS1.0mm、S0.3mmとし
た。FSM−23、FSM−28、FSM−48につい
て得られたX線回折(XRD)パターンをそれぞれ図1
〜3に示す。
Further, wet kanemite was prepared from calcined sodium silicate powder in the same manner as described above, and 1000 mol of hexadecyltrimethylammonium chloride (0.1 mol) was prepared.
Dissolved in water of 0.2 mol of mesitylene (1, 3, 5
-Trimethylbenzene) and an aqueous solution containing 0.8 mol of mesitylene were prepared. Then, disperse the wet kanemite in these aqueous solutions,
The dispersion was heated and dried in the same manner as when forming FSM-23 or FSM-28 to obtain a powder. These powders were fired in air at 550 ° C. for 6 hours to obtain two types of layered silica porous bodies. Regarding these porous materials, FSM-48 was prepared by adding 0.2 mol of mesitylene, and FSM-55 was prepared by adding 0.8 mol of mesitylene. (Measurement of crystal structure of porous body) FSM-2 obtained above
3, FSM-28, FSM-48, and FSM-55 were subjected to X-ray diffraction using Cu-Kα as a radiation source using a Rigaku Denshi RAD-B apparatus. In addition, the slit of the radiation source is
RS 1.0 mm, SS 1.0 mm, S 0.3 mm. The X-ray diffraction (XRD) patterns obtained for FSM-23, FSM-28, and FSM-48 are shown in FIG.
3 are shown.

【0017】図1と図2より、FSM−23とFSM−
28においては、六方構造を示すピークが見られた。し
かし、図3より、FSM−48においては、六方構造を
示すピークは見られなかった。また、図示しないが、F
SM−55ついても六方構造を示すピークは見られなか
った。これらの結果より、FSM−23とFSM−28
は結晶性が高いことがわかった。
From FIGS. 1 and 2, the FSM-23 and FSM-
In 28, a peak showing a hexagonal structure was observed. However, from FIG. 3, in FSM-48, no peak showing a hexagonal structure was observed. Although not shown, F
With SM-55, no peak showing a hexagonal structure was observed. From these results, FSM-23 and FSM-28
Was found to be highly crystalline.

【0018】また、FSM−48、FSM−55につい
て、線源のスリットを更に狭くして前記同様にX線回折
を行ったところ、得られたXRDパターンにおいて六方
構造を示すピークが検出された。このことより、FSM
−48、FSM−55も結晶性が高いことがわかった。 (細孔径分布の測定)本実施例で形成された多孔体中に
分布する細孔の径は、多孔体に窒素を吸着させる窒素吸
着法により測定した。この方法は、まず多孔体に窒素を
吸着させ、その吸着量を測定して窒素吸着等温線を表す
図を作成し、この図からCranston−Incla
y法により細孔容積(V)を細孔直径(D)で微分した
値(dV/dD)を計算して多孔体中の細孔径分布を求
める方法である。本窒素吸着測定は定容量法によって行
い、約50mgの多孔体試料を測定装置のサンプル管に
計り取り、管内の多孔体試料を130℃で加熱しながら
真空度が10-3Torrになるまで管内を1時間真空引
きし、多孔体中に分布する細孔内の空気を脱気した後、
サンプル管を液体窒素に浸して窒素の吸着測定を行っ
た。なお本測定装置は絶対圧型トランスデューサー(日
本エムケーエス(株)製Baraton127AA)お
よびコントロールバルブ(日本エムケーエス(株)製2
48A)を装着した真空ラインを用いた。この窒素吸着
測定の結果より、細孔容積(V;cc/g)を細孔直径
(D;Å)で微分した値(dV/dD;cc/gÅ)を
計算し、多孔体中にある細孔の細孔直径の分布を示す細
孔分布曲線を作成した。本実施例で形成した4種類の層
状シリカ多孔体(FSM−23、FSM−28、FSM
−48、FSM−55)の細孔分布曲線を図4〜7に示
す。また、本実施例の比較例としてシリカゲル多孔体
(540GM)およびアルミナ多孔体(γ−アルミナ)
の細孔分布曲線を図8および図9に示す。これらの図よ
り、それぞれの多孔体の中心細孔直径を求め、また、そ
の±5nmの細孔直径を計算し、±5nm細孔範囲とし
て中心細孔直径の±5nmの範囲内にある細孔直径範囲
を求めた。また、中心細孔直径の±5nmの範囲内にあ
る細孔直径の細孔容量の全細孔容量に対する比率を±5
nm細孔率として細孔分布曲線の積分曲線から求めた。
本実施例で形成された多孔体の中心細孔直径、±5nm
細孔範囲および±5nm細孔率を、比較例のシリカゲル
多孔体(540GM)およびアルミナ多孔体(γ−アル
ミナ)で求められた値とともに表1に示す。
When FSM-48 and FSM-55 were subjected to X-ray diffraction in the same manner as above with the slit of the radiation source further narrowed, a peak having a hexagonal structure was detected in the obtained XRD pattern. From this, FSM
It was found that -48 and FSM-55 also have high crystallinity. (Measurement of Pore Size Distribution) The diameter of the pores distributed in the porous body formed in this example was measured by a nitrogen adsorption method in which nitrogen is adsorbed in the porous body. In this method, first, nitrogen is adsorbed on a porous body, the adsorption amount is measured, and a diagram showing a nitrogen adsorption isotherm is created. From this diagram, Cranston-Incla
This is a method of obtaining a pore size distribution in a porous body by calculating a value (dV / dD) obtained by differentiating the pore volume (V) with the pore diameter (D) by the y method. This nitrogen adsorption measurement is performed by the constant volume method. About 50 mg of the porous body sample is weighed into a sample tube of the measuring device, and the inside of the tube is heated while heating the porous body sample in the tube at 130 ° C. until the vacuum degree becomes 10 −3 Torr. Is evacuated for 1 hour to deaerate the air in the pores distributed in the porous body,
The sample tube was immersed in liquid nitrogen to measure the adsorption of nitrogen. The measuring device is an absolute pressure type transducer (Barton 127AA manufactured by Nippon MKS Co., Ltd.) and a control valve (2 manufactured by Nippon MKS Co., Ltd.).
A vacuum line equipped with 48A) was used. From the results of this nitrogen adsorption measurement, the value (dV / dD; cc / gÅ) obtained by differentiating the pore volume (V; cc / g) by the pore diameter (D; Å) was calculated, and the fine particles in the porous body were calculated. A pore distribution curve showing the distribution of pore diameters of pores was created. Four types of layered silica porous bodies (FSM-23, FSM-28, FSM formed in this example
Pore distribution curves of -48, FSM-55) are shown in FIGS. As a comparative example of this example, a silica gel porous body (540GM) and an alumina porous body (γ-alumina) were used.
The pore distribution curves of are shown in FIGS. 8 and 9. From these figures, the central pore diameter of each porous body is determined, and the pore diameter of ± 5 nm is calculated, and the pores within the central pore diameter of ± 5 nm are defined as ± 5 nm pore range. The diameter range was determined. Further, the ratio of the pore volume of the pore diameter within the range of ± 5 nm of the central pore diameter to the total pore volume is ± 5.
The nm porosity was calculated from the integral curve of the pore distribution curve.
Central pore diameter of the porous body formed in this example, ± 5 nm
The pore range and the ± 5 nm porosity are shown in Table 1 together with the values obtained for the silica gel porous body (540GM) and the alumina porous body (γ-alumina) of Comparative Example.

【0019】[0019]

【表1】 表1により、本実施例により形成した層状シリカ多孔体
は中心細孔直径が1〜10nmの範囲にあり、その±5
nm細孔率は60%以上であるのに対し、シリカゲル多
孔体(540GM)およびアルミナ多孔体(γ−アルミ
ナ)の±5nm細孔率は60%以下であることから、本
実施例により形成した層状シリカ多孔体中には、比較例
のシリカゲル多孔体およびアルミナ多孔体に比べ、細孔
直径1〜10nmの微細な細孔が均一に分布しているこ
とがわかる。 (Pt粒子の形成)中心細孔直径が2.8nmである1
20gの層状シリカ多孔体(FSM−28)を、120
gのFSM−28に対してPtが2g担持されるように
ジニトロジアンミン白金水溶液(4.526重量%Pt
含有;田中貴金属工業製)44.19gを希釈した水溶
液に浸し、ホットスターラーで加熱攪拌しながら水溶液
中の水分を蒸発させ、110℃の真空乾燥器で10時間
乾燥させた。これを最高1200℃の温度で加熱できる
加熱炉の炉内に設置した。そして、大気中で乾燥させた
多孔体を室温から所定の温度(以下、前処理温度と称す
る)まで2時間かけて昇温し、さらに前処理温度を2時
間保持して加熱を行い排ガス浄化用触媒(Pt/FS
M)を形成した。この加熱によってジニトロジアンミン
白金は熱分解し、Ptが多孔体表面の細孔上で粒成長し
て、Pt粒子が形成された。
[Table 1] According to Table 1, the layered silica porous material formed according to the present example has a central pore diameter in the range of 1 to 10 nm, and its ± 5
nm porosity is 60% or more, whereas ± 5 nm porosity of the silica gel porous body (540GM) and the alumina porous body (γ-alumina) is 60% or less. It can be seen that fine pores having a pore diameter of 1 to 10 nm are uniformly distributed in the layered silica porous body as compared with the silica gel porous body and the alumina porous body of Comparative Examples. (Pt particle formation) Central pore diameter is 2.8 nm 1
20 g of layered silica porous material (FSM-28)
dinitrodiammine platinum aqueous solution (4.526% by weight Pt so that 2 g of Pt is supported on 1 g of FSM-28).
(Containing; manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) 44.19 g was immersed in a diluted aqueous solution, the water content in the aqueous solution was evaporated while heating and stirring with a hot stirrer, and dried in a vacuum dryer at 110 ° C. for 10 hours. This was installed in the furnace of a heating furnace capable of heating at a temperature of up to 1200 ° C. Then, the porous body dried in the atmosphere is heated from room temperature to a predetermined temperature (hereinafter, referred to as pretreatment temperature) over 2 hours, and further, the pretreatment temperature is maintained for 2 hours to perform heating to purify exhaust gas. Catalyst (Pt / FS
M) was formed. By this heating, dinitrodiammine platinum was thermally decomposed, and Pt was grain-grown on the pores on the surface of the porous body to form Pt particles.

【0020】得られた排ガス浄化用触媒は粉末X線回折
法によってX線回折を行った。得られたX線回折パター
ンから、Pt結晶の(111)面の回折による2θ=3
9.8°における回折ピークの半値幅を求め、数1に従
って多孔体表面のPtの平均粒径を求めた。数1におい
てLとBはそれぞれPt粒径(Å)と半値幅(de
g.)を示す。X線回折パターンは理学電子RAD−B
装置を用い、Cu−Kαを線源として測定した。
The obtained exhaust gas-purifying catalyst was subjected to X-ray diffraction by a powder X-ray diffraction method. From the obtained X-ray diffraction pattern, 2θ = 3 by the diffraction of the (111) plane of the Pt crystal
The full width at half maximum of the diffraction peak at 9.8 ° was obtained, and the average particle diameter of Pt on the surface of the porous body was obtained according to equation 1. In Equation 1, L and B are the Pt particle size (Å) and the full width at half maximum (de), respectively.
g. ). X-ray diffraction pattern is RAD-B
Using the apparatus, Cu-Kα was measured as a radiation source.

【0021】[0021]

【数1】 層状シリカ多孔体にジニトロジアンミン白金水溶液を含
浸させ、これを乾燥した後、大気中でそれぞれ500
℃、600℃、700℃、800℃、900℃、100
0℃の前処理温度で加熱して形成された6種の排ガス浄
化用触媒のPtの平均粒径および比表面積を表2に示
す。
[Equation 1] The layered silica porous material was impregnated with a dinitrodiammine platinum aqueous solution, dried, and then dried in air at 500
℃, 600 ℃, 700 ℃, 800 ℃, 900 ℃, 100
Table 2 shows the average particle size and specific surface area of Pt of the six types of exhaust gas-purifying catalysts formed by heating at the pretreatment temperature of 0 ° C.

【0022】[0022]

【表2】 ※はX線回折を用いた粒径測定法によってPtの粒径が
求められなかったので、CO吸着法で求めた値を用い
た。
[Table 2] * Means that the particle size of Pt could not be obtained by the particle size measurement method using X-ray diffraction, so the value obtained by the CO adsorption method was used.

【0023】表2より、加熱における前処理温度を60
0〜1000℃の範囲内で採用した場合、層状シリカ多
孔体上に形成されるPt粒子の平均粒径は10〜30n
mの範囲内にあることがわかる。また、比表面積は高比
表面積を保ったままであり、担体の構造が変化していな
いことが確認される。さらに、シリカゲル多孔体および
アルミナ多孔体を担体として、それぞれの担体にジニト
ロジアンミン白金水溶液を含浸させ、これらを乾燥した
後、大気中で所定の前処理温度で2時間加熱して2種類
の排ガス浄化用触媒(Pt/SiO2、Pt/Al2
3 )を形成した。このとき、所定の前処理温度を500
〜1000℃の範囲内から採用し、得られた各排ガス浄
化用触媒のPt粒子の平均粒径を調べた結果を、前記P
t/FSMのPt粒子の平均粒径とあわせて図10に示
す。図10より、前処理温度を600〜1000℃の範
囲内から採用した場合、Pt/FSMが最も10〜30
nmのPt粒子を形成しやすいことがわかる。 (排ガスの浄化試験)本実施例で得られた排ガス浄化用
触媒を用いて、酸素過剰下にあってNOX およびHCを
含む混合気体のNOX の浄化試験を行い、各排ガス浄化
用触媒の最大NOX 浄化率(%)を調べた。
From Table 2, the pretreatment temperature for heating is 60
When adopted in the range of 0 to 1000 ° C., the average particle diameter of Pt particles formed on the layered silica porous body is 10 to 30 n.
It can be seen that it is within the range of m. Further, the specific surface area remains high, confirming that the structure of the carrier has not changed. Further, using a silica gel porous body and an alumina porous body as a carrier, each carrier is impregnated with a dinitrodiammine platinum aqueous solution, dried, and then heated at a predetermined pretreatment temperature in the air for 2 hours to purify two kinds of exhaust gas. Catalyst (Pt / SiO 2 , Pt / Al 2 O
3 ) formed. At this time, the predetermined pretreatment temperature is set to 500
The result obtained by examining the average particle diameter of Pt particles of each of the obtained exhaust gas-purifying catalysts adopted from the range of up to 1000 ° C.
It is shown in FIG. 10 together with the average particle size of Pt particles of t / FSM. From FIG. 10, when the pretreatment temperature is adopted from the range of 600 to 1000 ° C., Pt / FSM is most 10 to 30.
It can be seen that Pt particles of nm are easily formed. (Exhaust Gas Purification Test) Using the exhaust gas purification catalyst obtained in this example, a NO X purification test of a mixed gas containing NO X and HC under an excess of oxygen was conducted, and each exhaust gas purification catalyst The maximum NO x purification rate (%) was investigated.

【0024】中心細孔直径2.8nmの層状シリカ多孔
体(FSM−28)を担体とし、ジニトロジアンミン白
金水溶液を含浸させ、これを乾燥した後、大気中で9通
りの前処理温度で加熱してPt粒子を形成し、Pt粒子
の平均粒径が異なる9種の排ガス浄化用触媒を得た。こ
れらの排ガス浄化用触媒を用いて排ガス浄化試験を行
い、Pt粒子の平均粒径が異なる各排ガス浄化用触媒の
最大NOX 浄化率を調べ、Pt粒子の平均粒径による排
ガス浄化用触媒のNOX の浄化効果の違いを明らかにし
た。その結果を図11に示す。図11より、Pt粒子の
平均粒径が10〜30nmの範囲内にある時、高いNO
X の浄化効果を有することがわかる。この結果より、粒
径が10〜30nmの範囲内にあるPt粒子は高いNO
X の浄化活性を有していることがわかる。
A layered silica porous material (FSM-28) having a central pore diameter of 2.8 nm was used as a carrier, impregnated with a dinitrodiammineplatinum aqueous solution, dried, and then heated in the atmosphere at 9 pretreatment temperatures. Thus, Pt particles were formed to obtain 9 kinds of exhaust gas purifying catalysts having different Pt particle average particle diameters. An exhaust gas purification test is carried out using these exhaust gas purification catalysts, the maximum NO x purification rate of each exhaust gas purification catalyst having different Pt particle average particle diameters is investigated, and NO of the exhaust gas purification catalyst based on the average particle diameter of Pt particles is examined. Clarified the difference in the purification effect of X. The result is shown in FIG. From FIG. 11, when the average particle diameter of Pt particles is in the range of 10 to 30 nm, high NO
It can be seen that X has a purifying effect. From this result, Pt particles having a particle size in the range of 10 to 30 nm have high NO.
It can be seen that it has X- purifying activity.

【0025】中心細孔直径2.8nmの層状シリカ多孔
体(FSM−28)、およびFSM−28に4重量%の
アルミナ(Al2 3 )を担持させたもの(Al2 3
/FSM−28)、シリカゲル多孔体(540GM)を
それぞれ担体として、これらの担体にジニトロジアンミ
ン白金水溶液を含浸させ、これらを乾燥した後、大気中
で所定の前処理温度で2時間加熱して3種類の排ガス浄
化用触媒(Pt/FSM、Pt/Al2 3 /FSM、
Pt/540GM)を形成した。このとき、所定の前処
理温度を500〜1000℃の範囲内から採用し、得ら
れた各排ガス浄化用触媒の最大NOX 浄化率を調べた結
果を図12に示す。図12より、600℃を越える前処
理温度によって加熱された場合においては、Pt/FS
MおよびPt/Al2 3 /FSMはPt/540GM
よりも高い最大NOX 浄化率を有することがわかる。こ
の結果より、Pt/FSMがPt/540GMより排ガ
ス浄化用触媒として優れていることがわかる。また、A
2 3 /FSMにPtを担持したPt/Al2 3
FSMもPt/540GMより優れていることがわか
る。
A layered silica porous material (FSM-28) having a central pore diameter of 2.8 nm, and one obtained by supporting 4% by weight of alumina (Al 2 O 3 ) on FSM-28 (Al 2 O 3
/ FSM-28) and silica gel porous material (540GM) as a carrier, these carriers are impregnated with an aqueous dinitrodiammineplatinum solution, dried, and then heated at a predetermined pretreatment temperature in the atmosphere for 2 hours. Exhaust gas purification catalysts (Pt / FSM, Pt / Al 2 O 3 / FSM,
Pt / 540GM) was formed. At this time, a predetermined pretreatment temperature was adopted from the range of 500 to 1000 ° C., and the results of examining the maximum NO x purification rate of each obtained exhaust gas purification catalyst are shown in FIG. From FIG. 12, it can be seen that Pt / FS when heated by a pretreatment temperature exceeding 600 ° C.
M and Pt / Al 2 O 3 / FSM are Pt / 540GM
It can be seen that it has a higher maximum NO x purification rate than. These results show that Pt / FSM is superior to Pt / 540GM as an exhaust gas purification catalyst. Also, A
Pt / Al 2 O 3 / Pt supported on l 2 O 3 / FSM
It can be seen that FSM is also superior to Pt / 540GM.

【0026】中心細孔直径が2.3nmの層状シリカ多
孔体(FSM−23)、2.8nmの層状シリカ多孔体
(FSM−28)、および4.8nmの層状シリカ多孔
体(FSM−48)を担体として、それぞれの担体にジ
ニトロジアンミン白金水溶液を含浸させ、これらを乾燥
した後、大気中で600℃で2時間加熱して3種類の排
ガス浄化用触媒を形成した。得られた各排ガス浄化用触
媒の最大NOX 浄化率を調べた結果を図13に示す。図
13より、どの排ガス浄化用触媒も高い最大NOX 浄化
率を有することがわかる。この結果より、中心細孔直径
が1〜10nmの範囲内であって微細な細孔直径の細孔
が均一に分布する多孔体を担体として用いた排ガス浄化
用触媒は、高いNOX 浄化活性を有することがわかる。
Layered silica porous body (FSM-23) having a central pore diameter of 2.3 nm, 2.8 nm layered silica porous body (FSM-28), and 4.8 nm layered silica porous body (FSM-48). As a carrier, each carrier was impregnated with a dinitrodiammine platinum aqueous solution, dried, and then heated in the air at 600 ° C. for 2 hours to form three kinds of exhaust gas-purifying catalysts. FIG. 13 shows the result of examining the maximum NO x purification rate of each of the obtained exhaust gas-purifying catalysts. From FIG. 13, it can be seen that any exhaust gas purification catalyst has a high maximum NO x purification rate. From these results, the exhaust gas-purifying catalyst using as the carrier a porous body having a central pore diameter in the range of 1 to 10 nm and fine pores having fine pore diameters uniformly distributed has a high NO x purification activity. You know that you have.

【0027】[0027]

【発明の効果】本発明の排ガス浄化用触媒によって排ガ
ス中の有害物質、とりわけNOX を浄化することができ
る。また、本発明の排ガス浄化用触媒の製造方法によっ
てNO X に対して高い浄化活性を有する貴金属粒子を均
一に担体上に形成することができる。
EFFECTS OF THE INVENTION Exhaust gas is exhausted by the exhaust gas purifying catalyst of the present invention.
Harmful substances in gas, especially NOXCan purify
You. In addition, according to the method for producing an exhaust gas purifying catalyst of the present invention,
NO XThe precious metal particles with high purification activity against
First, it can be formed on a carrier.

【図面の簡単な説明】[Brief description of drawings]

【図1】この図は、層状シリカ多孔体(FSM−23)
のX線回折パターンを示した図である。
FIG. 1 shows a layered silica porous material (FSM-23).
It is a figure showing the X-ray diffraction pattern of.

【図2】この図は、層状シリカ多孔体(FSM−28)
のX線回折パターンを示した図である。
FIG. 2 shows a layered silica porous material (FSM-28).
It is a figure showing the X-ray diffraction pattern of.

【図3】この図は、層状シリカ多孔体(FSM−48)
のX線回折パターンを示した図である。
FIG. 3 shows a layered silica porous body (FSM-48).
It is a figure showing the X-ray diffraction pattern of.

【図4】この図は、層状シリカ多孔体(FSM−23)
の細孔直径の分布を示した細孔分布曲線である。
FIG. 4 shows a layered silica porous material (FSM-23).
3 is a pore distribution curve showing the distribution of pore diameters of

【図5】この図は、層状シリカ多孔体(FSM−28)
の細孔直径の分布を示した細孔分布曲線である。
FIG. 5 shows a layered silica porous body (FSM-28).
3 is a pore distribution curve showing the distribution of pore diameters of

【図6】この図は、層状シリカ多孔体(FSM−48)
の細孔直径の分布を示した細孔分布曲線である。
FIG. 6 shows a layered silica porous body (FSM-48).
3 is a pore distribution curve showing the distribution of pore diameters of

【図7】この図は、層状シリカ多孔体(FSM−55)
の細孔直径の分布を示した細孔分布曲線である。
FIG. 7 shows a layered silica porous material (FSM-55).
3 is a pore distribution curve showing the distribution of pore diameters of

【図8】この図は、シリカゲル多孔体(540GM)の
細孔直径の分布を示した細孔分布曲線である。
FIG. 8 is a pore distribution curve showing the distribution of pore diameters of a silica gel porous body (540GM).

【図9】この図は、アルミナ多孔体(γ−アルミナ)の
細孔直径の分布を示した細孔分布曲線である。
FIG. 9 is a pore distribution curve showing the distribution of pore diameters of an alumina porous body (γ-alumina).

【図10】この図は、層状シリカ多孔体、シリカゲル多
孔体およびアルミナ多孔体を担体として白金を担持させ
加熱して得られた排ガス浄化用触媒の白金粒径を、加熱
における前処理温度に対して示した図である。
FIG. 10 is a graph showing the platinum particle diameter of an exhaust gas purifying catalyst obtained by loading and heating platinum using a layered silica porous material, silica gel porous material and alumina porous material as a carrier, with respect to the pretreatment temperature during heating. FIG.

【図11】この図は、層状シリカ多孔体(FSM−2
8)を担体として白金を担持させ加熱して得られた排ガ
ス浄化用触媒の最大NOX 浄化率を、排ガス浄化用触媒
に形成された白金粒子の平均粒径に対して示した図であ
る。
FIG. 11 shows a layered silica porous material (FSM-2).
FIG. 8 is a diagram showing the maximum NO x purification rate of an exhaust gas purifying catalyst obtained by supporting and heating platinum using 8) as a carrier, with respect to the average particle diameter of platinum particles formed in the exhaust gas purifying catalyst.

【図12】この図は、層状シリカ多孔体およびシリカゲ
ル多孔体を担体として白金を担持させ加熱して得られた
排ガス浄化用触媒の最大NOX 浄化率を、加熱における
前処理温度に対して示した図である。
FIG. 12 shows the maximum NO x purification rate of an exhaust gas purifying catalyst obtained by heating platinum with a layered silica porous material and a silica gel porous material as a carrier, against the pretreatment temperature during heating. It is a figure.

【図13】この図は、中心細孔直径の異なる層状シリカ
多孔体を担体として白金を担持させ加熱して得られた各
排ガス浄化用触媒の最大NOX 浄化率を、層状シリカ多
孔体の中心細孔直径に対して示した図である。
FIG. 13 shows the maximum NO x purification rate of each exhaust gas-purifying catalyst obtained by loading and heating platinum with a layered silica porous material having different central pore diameters as a carrier, and It is the figure shown with respect to the pore diameter.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102B (72)発明者 福嶋 喜章 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 高田 保夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location B01D 53/36 102B (72) Inventor Yoshiaki Fukushima Nagakute-cho, Aichi-gun, Aichi Naga 41 No. 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Yasuo Takada 41 Nagamite, Nagakute-cho, Aichi-gun, Aichi Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 多孔質の担体と、該担体に担持された貴
金属とよりなる排ガス浄化用触媒であって、 該担体は、該担体が有する細孔の直径のうち最も数の多
い細孔直径(以下、中心細孔直径と称する)が1〜10
nmの範囲内にあって、全細孔の60%以上の細孔が該
中心細孔直径の±5nmの範囲内の直径を有する多孔体
であり、かつ該貴金属は平均粒径が10〜30nmの範
囲内にある金属粒子であることを特徴とする排ガス浄化
用触媒。
1. A catalyst for exhaust gas purification comprising a porous carrier and a noble metal supported on the carrier, wherein the carrier has the largest number of pore diameters of the pores of the carrier. (Hereinafter referred to as central pore diameter) is 1 to 10
In the range of nm, 60% or more of all the pores are porous bodies having a diameter within the range of the central pore diameter of ± 5 nm, and the noble metal has an average particle diameter of 10 to 30 nm. An exhaust gas purifying catalyst, characterized in that it is a metal particle within the range.
【請求項2】 前記担体は層状シリカ多孔体あるいは層
状シリカ−金属酸化物多孔体からなる請求項1記載の排
ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the carrier comprises a layered silica porous body or a layered silica-metal oxide porous body.
【請求項3】 前記貴金属はPt、Rh、Pd、Irか
ら選ばれる少なくとも1種の貴金属である請求項1記載
の排ガス浄化用触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the noble metal is at least one noble metal selected from Pt, Rh, Pd, and Ir.
【請求項4】 前記貴金属にはAl、Mg、Tiから選
ばれる少なくとも1種の金属の酸化物が添加されている
請求項1記載の排ガス浄化用触媒。
4. The exhaust gas purifying catalyst according to claim 1, wherein an oxide of at least one metal selected from Al, Mg, and Ti is added to the noble metal.
【請求項5】 中心細孔直径が1〜10nmの範囲内に
あって、全細孔の60%以上の細孔が該中心細孔直径の
±5nmの範囲内の直径を有する担体に貴金属を担持さ
せる担持工程と、 貴金属が担持された該担体を、酸素・燃料比が4以上で
ある混合気体の雰囲気、又は炭化水素を含まず酸素を含
む雰囲気中で600〜1000℃に加熱する加熱工程
と、 からなることを特徴とする排ガス浄化用触媒の製造方
法。
5. A carrier having a central pore diameter in the range of 1 to 10 nm, and 60% or more of all the pores have a diameter within ± 5 nm of the central pore diameter. A supporting step of supporting and a heating step of heating the carrier on which the noble metal is supported to 600 to 1000 ° C. in an atmosphere of a mixed gas having an oxygen / fuel ratio of 4 or more, or an atmosphere not containing a hydrocarbon and containing oxygen. And a method for producing an exhaust gas-purifying catalyst, comprising:
【請求項6】 前記担体は層状シリカ多孔体あるいは層
状シリカ−金属酸化物多孔体からなる請求項5記載の排
ガス浄化用触媒の製造方法。
6. The method for producing an exhaust gas purifying catalyst according to claim 5, wherein the carrier is a layered silica porous body or a layered silica-metal oxide porous body.
【請求項7】 前記貴金属はPt、Rh、Pd、Irか
ら選ばれる少なくとも1種の貴金属である請求項5記載
の排ガス浄化用触媒の製造方法。
7. The method for producing an exhaust gas purifying catalyst according to claim 5, wherein the noble metal is at least one kind of noble metal selected from Pt, Rh, Pd and Ir.
【請求項8】 前記貴金属にはAl、Mg、Tiから選
ばれる少なくとも1種の金属の酸化物が添加されている
請求項5記載の排ガス浄化用触媒の製造方法。
8. The method for producing an exhaust gas purifying catalyst according to claim 5, wherein an oxide of at least one metal selected from Al, Mg, and Ti is added to the noble metal.
JP04641196A 1996-03-04 1996-03-04 Exhaust gas purification catalyst and method for producing the same Expired - Fee Related JP3555712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04641196A JP3555712B2 (en) 1996-03-04 1996-03-04 Exhaust gas purification catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04641196A JP3555712B2 (en) 1996-03-04 1996-03-04 Exhaust gas purification catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09234378A true JPH09234378A (en) 1997-09-09
JP3555712B2 JP3555712B2 (en) 2004-08-18

Family

ID=12746420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04641196A Expired - Fee Related JP3555712B2 (en) 1996-03-04 1996-03-04 Exhaust gas purification catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3555712B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258075B2 (en) 2007-02-06 2012-09-04 Mitsubishi Heavy Industries, Ltd. Catalyst for treating exhaust gases, method for producing the same, and method for treating exhaust gases
JP2016511139A (en) * 2013-01-28 2016-04-14 ビーエーエスエフ コーポレーション Catalyst article, system and method for oxidizing nitric oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258075B2 (en) 2007-02-06 2012-09-04 Mitsubishi Heavy Industries, Ltd. Catalyst for treating exhaust gases, method for producing the same, and method for treating exhaust gases
US8501133B2 (en) 2007-02-06 2013-08-06 Mitsubishi Heavy Industries, Ltd. Catalyst for treating exhaust gases, method for producing the same, and method for treating exhaust gases
JP2016511139A (en) * 2013-01-28 2016-04-14 ビーエーエスエフ コーポレーション Catalyst article, system and method for oxidizing nitric oxide

Also Published As

Publication number Publication date
JP3555712B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US3565830A (en) Coated film of catalytically active oxide on a refractory support
Tang et al. Highly active monolith catalysts of LaKCoO3 perovskite-type complex oxide on alumina-washcoated diesel particulate filter and the catalytic performances for the combustion of soot
US4048098A (en) Catalyst for purification of exhaust gases and processes for its production and use
JP2014522308A (en) Platinum group (PGM) catalyst for treating exhaust gas
CN109759035B (en) NOxAdsorbent and preparation method and application thereof
JP4505046B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP5607131B2 (en) Exhaust gas purification catalyst
JPH01135541A (en) Catalyst for purifying exhaust gas
JPH08229404A (en) Exhaust gas purifying catalyst and apparatus
EP1249266B1 (en) Exhaust gas emission control catalyst
WO2011052676A1 (en) Exhaust cleaner for internal combustion engine
JP3555712B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH09234367A (en) Catalyst for purifying diesel engine exhaust gas
JP3794035B2 (en) Catalyst for exhaust gas purification of internal combustion engine
JPS63116742A (en) Catalyst for purifying exhaust gas
JPH0810619A (en) Ozone decomposing catalyst and decomposing method
JPH06198181A (en) Catalyst for purifying exhaust gas from diesel engine
JPH0663400A (en) Exhaust gas cleaning catalyst
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP3766984B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3669640B2 (en) Exhaust gas purification catalyst and method for producing the same
JP7238211B2 (en) Particles for exhaust gas purification catalyst
JPH10151325A (en) Method for purifying exhaust gas
JPH1176819A (en) Catalyst for cleaning of exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees