JPH09232536A - Manufacture of semiconductor memory device - Google Patents

Manufacture of semiconductor memory device

Info

Publication number
JPH09232536A
JPH09232536A JP8039199A JP3919996A JPH09232536A JP H09232536 A JPH09232536 A JP H09232536A JP 8039199 A JP8039199 A JP 8039199A JP 3919996 A JP3919996 A JP 3919996A JP H09232536 A JPH09232536 A JP H09232536A
Authority
JP
Japan
Prior art keywords
annealing
capacitor
atmosphere
ferroelectric
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8039199A
Other languages
Japanese (ja)
Inventor
Kazushi Amanuma
一志 天沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8039199A priority Critical patent/JPH09232536A/en
Publication of JPH09232536A publication Critical patent/JPH09232536A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve reliability of a ferroelectric capacitor without causing any increase in contact resistance or wiring resistance, by forming a second interlayer insulating film, opening a contact hole, and then performing annealing in a non-oxygen atmosphere. SOLUTION: After a contact hole 13 in a second interlayer insulating film 10 is etched, annealing is performed in a non-oxygen atmosphere. The annealing temperature is preferably not lower than 400 deg.C and not higher than 800 deg.C. The non-oxygen atmosphere is preferably a vacuum state, a nitrogen atmosphere, or an inert gas atmosphere, such as, Ar. Such atmosphere is used for the purpose of preventing secondary reaction between the atmosphere gas and the contact aperture or the ferroelectric material. A wiring layer is formed after this annealing. Thus, the leak current of the capacitor is reduced and reliability of the memory cell is improved. Also, the quantity of charges readable from the capacitor is increased and the read margin is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体記憶装置の製
造方法、特に電荷蓄積用キャパシタとして強誘電体キャ
パシタを用いた半導体記憶装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor memory device, and more particularly to a method for manufacturing a semiconductor memory device using a ferroelectric capacitor as a charge storage capacitor.

【0002】[0002]

【従来の技術】従来よりSrBi2 Ta2 9 ,Pb
(Zr,Ti)O3 ,(Ba,Sr)TiO3 等の強誘
電体を用いた不揮発性半導体メモリ、およびダイナミッ
クランダムアクセスメモリ(DRAM)が研究開発され
ている。これらの強誘電体は電荷を蓄積する薄膜キャパ
シタとして利用される。図6は強誘電体キャパシタを用
いた不揮発性半導体メモリのメモリセルの一例である。
このメモリセルは強誘電体キャパシタ25と該キャパシ
タ25の一方の電極に接続された選択トランジスタ24
よりなる。図7はこのようなメモリセルを持つメモリの
製造プロセスの一例である。まず図7(a)に示したよ
うに、通常のLSIプロセスによりメモリセル部および
周辺回路部のトランジスタを形成する。次に図7(b)
のように、第1層間絶縁膜6、強誘電体キャパシタの下
部電極7、強誘電体層8、上部電極層9を順に形成後、
上部電極層9、強誘電体層8、下部電極層7をエッチン
グにより加工しキャパシタとする。次に図7(c)のよ
うに、第2層間絶縁膜10を形成し、コンタクト孔13
を開口する。次に図7(d)のように、Al等の配線層
14を成膜・エッチングする。強誘電体薄膜の製造方法
としてはゾル・ゲル法,CVD法,スパッタリング法が
開発されている。これらの製造方法による強誘電体薄膜
の製造は強誘電体が酸化物であるため酸素または酸素を
含んだ雰囲気で行われる。これは強誘電体に酸素欠損が
生じると、例えば1990年12月、ジャーナル・オブ
・アプライド・フィジクス、第68巻、5783頁(J
ournal of Applied Physic
s,Vol.68,p.5783,1990)に述べら
れているように、リーク電流の増加等電気的特性の劣化
を生じるためである。また例えば1990年4月、マテ
リアルズ・リサーチ・ソサイティー・シンポジウム・プ
ロシーディングス、第200号243頁(Materi
als Research Society Symp
osium Proceedings,Vol.20
0,p.243,April,1990)に述べられて
いるように強誘電体薄膜成膜後に酸素雰囲気中でアニー
ルし、電気的特性を改善することも一般に行われてい
る。
2. Description of the Related Art Conventionally, SrBi 2 Ta 2 O 9 , Pb has been used.
Non-volatile semiconductor memories using ferroelectrics such as (Zr, Ti) O 3 and (Ba, Sr) TiO 3 and dynamic random access memories (DRAM) have been researched and developed. These ferroelectrics are used as thin film capacitors that store charges. FIG. 6 is an example of a memory cell of a non-volatile semiconductor memory using a ferroelectric capacitor.
This memory cell comprises a ferroelectric capacitor 25 and a selection transistor 24 connected to one electrode of the capacitor 25.
Consists of. FIG. 7 shows an example of a manufacturing process of a memory having such a memory cell. First, as shown in FIG. 7A, the transistors of the memory cell portion and the peripheral circuit portion are formed by a normal LSI process. Next, FIG.
As described above, after the first interlayer insulating film 6, the lower electrode 7 of the ferroelectric capacitor, the ferroelectric layer 8, and the upper electrode layer 9 are sequentially formed,
The upper electrode layer 9, the ferroelectric layer 8 and the lower electrode layer 7 are processed by etching to form a capacitor. Next, as shown in FIG. 7C, the second interlayer insulating film 10 is formed, and the contact hole 13 is formed.
Open. Next, as shown in FIG. 7D, the wiring layer 14 of Al or the like is formed and etched. A sol-gel method, a CVD method, and a sputtering method have been developed as a method for manufacturing a ferroelectric thin film. The ferroelectric thin film is manufactured by these manufacturing methods in an atmosphere containing oxygen or oxygen because the ferroelectric is an oxide. This is because when oxygen deficiency occurs in a ferroelectric substance, for example, December 1990, Journal of Applied Physics, 68, 5783 (J.
own of Applied Physic
s, Vol. 68, p. 5783, 1990), which causes deterioration of electrical characteristics such as increase of leak current. Also, for example, April, 1990, Materials Research Society Symposium Proceedings, No. 200, p. 243 (Materiali).
ars Research Society Symp
osm Proceedings, Vol. 20
0, p. 243, April, 1990), it is also common practice to improve the electrical characteristics by annealing in a oxygen atmosphere after forming the ferroelectric thin film.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記に
述べたような方法で強誘電体キャパシタを利用したメモ
リを製造した場合、以下に述べるような問題点がある。
まず強誘電体キャパシタを形成後の複数の工程により強
誘電体薄膜の電気的特性が著しく劣化する。図8は強誘
電体としてSrBi2 Ta2 9 を用いた場合の、キャ
パシタ形成後(図8(a))およびコンタクト孔開口後
(図8(b))のキャパシタのI−V特性である。この
ようにキャパシタ形成後に比べ、コンタクト孔開口後は
著しくリーク電流が増加している。これは第2層間絶縁
膜の形成およびコンタクト孔のエッチング工程により強
誘電体が劣化したためである。このように劣化した強誘
電体キャパシタの特性を回避するには、上記工程による
劣化後に強誘電体薄膜成膜方法と同様に酸素中でアニー
ルすることが考えられる。ところが酸素を含んだ雰囲気
でアニールを行うと、以下のような問題点がある。つま
り第1にコンタクト孔のエッチング後は配線と接続され
るSi基板拡散層、ポリシリコン、シリサイド等が露出
している。このような状態で酸素雰囲気中でアニールを
行うと、上記拡散層、ポリシリコン、シリサイド等の酸
化を招きコンタクト抵抗が増大する。甚だしい場合は全
く絶縁してしまう。第2にAl等により配線層を形成し
た後に酸素雰囲気中でアニールを行うと、Al等の配線
金属が酸化され、配線抵抗が増加する。またAlの流動
により微細な形状が変化するという問題もある。
However, when a memory using a ferroelectric capacitor is manufactured by the method described above, there are the following problems.
First, the electrical characteristics of the ferroelectric thin film are significantly deteriorated by a plurality of steps after forming the ferroelectric capacitor. FIG. 8 shows the IV characteristics of the capacitor after forming the capacitor (FIG. 8A) and after opening the contact hole (FIG. 8B) when using SrBi 2 Ta 2 O 9 as the ferroelectric substance. . As described above, the leakage current is significantly increased after the contact hole is opened as compared with after the capacitor is formed. This is because the ferroelectric substance deteriorated due to the formation of the second interlayer insulating film and the contact hole etching process. In order to avoid the characteristics of the ferroelectric capacitor thus deteriorated, it is conceivable to anneal in oxygen as in the ferroelectric thin film forming method after the deterioration in the above steps. However, when annealing is performed in an atmosphere containing oxygen, there are the following problems. That is, first, after etching the contact hole, the Si substrate diffusion layer, polysilicon, silicide, etc. connected to the wiring are exposed. If annealing is performed in an oxygen atmosphere in such a state, the diffusion layer, polysilicon, silicide, etc. are oxidized and the contact resistance increases. In extreme cases, it will completely insulate. Secondly, if annealing is performed in an oxygen atmosphere after forming a wiring layer of Al or the like, the wiring metal such as Al is oxidized and the wiring resistance increases. There is also a problem that the fine shape changes due to the flow of Al.

【0004】本発明の目的は、上記のようなコンタクト
抵抗や配線抵抗の増加を招くことなく強誘電体キャパシ
タの信頼性を向上させた、半導体記憶装置の高歩留まり
の製造方法を提供することである。
An object of the present invention is to provide a method for manufacturing a semiconductor memory device with high yield, which improves the reliability of a ferroelectric capacitor without increasing the contact resistance and wiring resistance as described above. is there.

【0005】[0005]

【課題を解決するための手段】上述した問題点を解決す
るため、本発明では第2層間絶縁膜を形成しコンタクト
孔を開口した後に非酸素雰囲気中でアニールを行う。
In order to solve the above-mentioned problems, in the present invention, annealing is performed in a non-oxygen atmosphere after forming a second interlayer insulating film and opening a contact hole.

【0006】非酸素雰囲気でアニールを行うことによ
り、コンタクト孔開口部の酸化、配線層の酸化等の問題
が発生せず、強誘電体の特性を向上させることができ
る。また強誘電体キャパシタは第2層間膜で覆われてい
るため、非酸素雰囲気でアニールを行っても酸素欠陥を
生じることによる劣化もない。
By performing the annealing in a non-oxygen atmosphere, problems such as oxidation of the contact hole opening and oxidation of the wiring layer do not occur, and the characteristics of the ferroelectric substance can be improved. Further, since the ferroelectric capacitor is covered with the second interlayer film, even if the ferroelectric capacitor is annealed in a non-oxygen atmosphere, there is no deterioration caused by oxygen defects.

【0007】[0007]

【発明の実施の形態】次に本発明の第1の実施の形態に
ついて図面を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a first embodiment of the present invention will be described in detail with reference to the drawings.

【0008】図1は、第2層間絶縁膜10のコンタクト
孔13をエッチングした後の断面図である。この後非酸
素雰囲気中でアニールを行う。アニール温度としては4
00℃以上800℃以下が望ましい。400℃以下では
アニールによる効果が小さく、800℃以上では第2層
間絶縁膜と強誘電体の反応による強誘電体の劣化やトラ
ンジスタの劣化を招くからである。非酸素雰囲気として
は真空、窒素雰囲気、Ar等非活性ガス雰囲気が好まし
い。これらの雰囲気では雰囲気ガスとコンタクト開口部
や強誘電体との副次的な反応を引き起こさないためであ
る。このアニールを行った後、配線層を形成する。
FIG. 1 is a cross-sectional view after etching the contact hole 13 of the second interlayer insulating film 10. After that, annealing is performed in a non-oxygen atmosphere. 4 as annealing temperature
The temperature is preferably 00 ° C or higher and 800 ° C or lower. This is because the effect of annealing is small at 400 ° C. or lower, and the deterioration of the ferroelectric or the transistor due to the reaction between the second interlayer insulating film and the ferroelectric is caused at 800 ° C. or higher. The non-oxygen atmosphere is preferably vacuum, nitrogen atmosphere, or inert gas atmosphere such as Ar. This is because in these atmospheres, a secondary reaction between the atmospheric gas and the contact openings or the ferroelectric is not caused. After performing this annealing, a wiring layer is formed.

【0009】次に本発明の第2の実施の形態について図
面を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to the drawings.

【0010】図2は、第2層間絶縁膜10のコンタクト
孔13をエッチングし、バリアメタル層12を形成した
後の断面図である。この後第1の実施の形態と同様に非
酸素雰囲気中でアニールを行う。バリアメタル層として
はTi,TiN等が用いられる。これらのバリアメタル
は融点が高いため、高温でアニールを行っても形状が変
化するという問題を生じない。
FIG. 2 is a cross-sectional view after etching the contact hole 13 of the second interlayer insulating film 10 to form the barrier metal layer 12. After that, annealing is performed in a non-oxygen atmosphere as in the first embodiment. Ti, TiN or the like is used as the barrier metal layer. Since these barrier metals have high melting points, there is no problem that their shapes change even if they are annealed at a high temperature.

【0011】次に本発明の第3の実施の形態について図
面を参照して説明する。
Next, a third embodiment of the present invention will be described with reference to the drawings.

【0012】図3は、第1の実施の形態と異なりメモリ
セル構造としてDRAMにおいて一般的なスタック形の
キャパシタを用いた場合の、第2層間絶縁膜10のコン
タクト孔13をエッチングした後の断面図である。この
場合プレート線は強誘電体キャパシタの上部電極9とな
り、第2層間絶縁膜10のコンタクト孔13はメモリセ
ル部には存在しないが、周辺回路部にコンタクト孔13
を形成する。このように第2層間絶縁膜10のコンタク
ト孔13をエッチングした後、第1の実施の形態と同様
に非酸素雰囲気中でアニールを行う。
FIG. 3 is a cross-sectional view after etching the contact hole 13 of the second interlayer insulating film 10 in the case where a stack type capacitor, which is generally used in DRAM as a memory cell structure, is used unlike the first embodiment. It is a figure. In this case, the plate line serves as the upper electrode 9 of the ferroelectric capacitor, and the contact hole 13 of the second interlayer insulating film 10 does not exist in the memory cell portion, but the contact hole 13 in the peripheral circuit portion.
To form After etching the contact hole 13 of the second interlayer insulating film 10 as described above, annealing is performed in a non-oxygen atmosphere as in the first embodiment.

【0013】[0013]

【実施例】図1を用いて本発明の実施例を説明する。強
誘電体層としてSrBi2 Ta29 、上部電極・下部
電極としてPt、第2層間絶縁膜としてSiO2 スパッ
タ膜を用いた。コンタクト孔をドライ・エッチングによ
り開口した後、N2 中500℃または800℃で5mi
nアニールした。図4(a)はアニール前のキャパシタ
の電流−電圧図で、図4(b)(c)はそれぞれ500
℃および800℃アニール後の電流−電圧図である。図
4に示したようにアニールによりキャパシタのリーク電
流は大幅に減少した。図5はアニール前および500℃
アニール後の2Pr測定値を示す。アニールにより2P
rは増加し、ばらつきも減少した。強誘電体不揮発メモ
リにおけるメモリセルの信号電荷量は2Prに比例する
ため、アニールにより読みだしマージンが増加し、メモ
リセル間の読みだし電荷のばらつきも減少した。
Embodiment An embodiment of the present invention will be described with reference to FIG. SrBi 2 Ta 2 O 9 was used as the ferroelectric layer, Pt was used as the upper and lower electrodes, and a SiO 2 sputtered film was used as the second interlayer insulating film. After opening the contact holes by dry etching, in N 2 at 500 ° C. or 800 ° C., 5 mi
n annealed. FIG. 4A is a current-voltage diagram of the capacitor before annealing, and FIGS.
FIG. 7 is a current-voltage diagram after annealing at 800 ° C. and 800 ° C. As shown in FIG. 4, the leakage current of the capacitor was significantly reduced by the annealing. FIG. 5 shows before annealing and 500 ° C.
The measured value of 2Pr after annealing is shown. 2P by annealing
The r was increased and the variation was decreased. Since the signal charge amount of the memory cell in the ferroelectric non-volatile memory is proportional to 2Pr, the read margin is increased by annealing and the variation in the read charge between the memory cells is also reduced.

【0014】[0014]

【発明の効果】以上、本発明により、以下のような効果
が得られる。
As described above, according to the present invention, the following effects can be obtained.

【0015】第1の効果として、キャパシタのリーク電
流が低減するため、メモリセルの信頼性が向上する。
As a first effect, the leakage current of the capacitor is reduced, so that the reliability of the memory cell is improved.

【0016】第2の効果として、キャパシタから読み出
せる電荷量が増加し、読みだしマージンが増加する。
As a second effect, the amount of charge that can be read from the capacitor is increased and the read margin is increased.

【0017】第3の効果として、キャパシタ特性のばら
つきが低減するため歩留まりが向上する。
As a third effect, the variation in capacitor characteristics is reduced, so that the yield is improved.

【0018】第4の効果として、メモリのチップ当たり
のコストを低減できる。その理由はキャパシタから読み
出せる電荷量の増加によりキャパシタ面積を小さくでき
るため、セル面積も小さくできるからである。
As a fourth effect, the cost per memory chip can be reduced. The reason is that the cell area can be reduced because the capacitor area can be reduced by increasing the amount of charge that can be read from the capacitor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態を示す半導体記憶装
置の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor memory device showing a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を示す半導体記憶装
置の断面図である。
FIG. 2 is a cross-sectional view of a semiconductor memory device showing a second embodiment of the present invention.

【図3】本発明の第3の実施の形態を示す半導体記憶装
置の断面図である。
FIG. 3 is a cross-sectional view of a semiconductor memory device showing a third embodiment of the present invention.

【図4】本発明の実施例による強誘電体キャパシタの電
流−電圧図である。
FIG. 4 is a current-voltage diagram of a ferroelectric capacitor according to an embodiment of the present invention.

【図5】本発明の実施例による強誘電体キャパシタの2
Prの測定値の分布図である。
FIG. 5 shows a ferroelectric capacitor 2 according to an embodiment of the present invention.
It is a distribution diagram of the measured value of Pr.

【図6】強誘電体キャパシタを用いた不揮発性半導体メ
モリのメモリセルを示す回路図である。
FIG. 6 is a circuit diagram showing a memory cell of a nonvolatile semiconductor memory using a ferroelectric capacitor.

【図7】強誘電体キャパシタを用いた不揮発性半導体メ
モリの製造工程図。
FIG. 7 is a manufacturing process diagram of a nonvolatile semiconductor memory using a ferroelectric capacitor.

【図8】図7の工程による強誘電体キャパシタの電流−
電圧図。
8 is a diagram illustrating a current of a ferroelectric capacitor according to the process of FIG.
Voltage diagram.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 素子間分離酸化膜 3 ゲート酸化膜 4 ゲート電極 5 不純物拡散層 6 第1層間絶縁膜 7 下部電極層 8 強誘電体層 9 上部電極層 10 第2層間絶縁膜 11 コンタクト・プラグ 12 配線バリアメタル層 13 コンタクト孔 14 配線層 21 ワード線 22 プレート線 23 ビット線 24 選択トランジスタ 25 強誘電体キャパシタ DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Inter-element isolation oxide film 3 Gate oxide film 4 Gate electrode 5 Impurity diffusion layer 6 First interlayer insulating film 7 Lower electrode layer 8 Ferroelectric layer 9 Upper electrode layer 10 Second interlayer insulating film 11 Contact plug 12 Wiring barrier metal layer 13 Contact hole 14 Wiring layer 21 Word line 22 Plate line 23 Bit line 24 Select transistor 25 Ferroelectric capacitor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/8247 29/788 29/792 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location H01L 21/8247 29/788 29/792

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電荷蓄積用キャパシタとして強誘電体キャ
パシタを用いた半導体記憶装置の製造方法において、上
記強誘電体キャパシタを覆う層間絶縁膜を形成し、その
後、上記層間絶縁膜をエッチングしコンタクト孔を開口
する工程の後に、非酸素雰囲気中でアニールする工程を
含むことを特徴とする半導体記憶装置の製造方法。
1. A method of manufacturing a semiconductor memory device using a ferroelectric capacitor as a charge storage capacitor, wherein an interlayer insulating film covering the ferroelectric capacitor is formed, and then the interlayer insulating film is etched to form a contact hole. A method of manufacturing a semiconductor memory device, comprising a step of annealing in a non-oxygen atmosphere after the step of opening the.
【請求項2】上記コンタクト孔を開口し、その後配線バ
リアメタルを形成する工程の後に、非酸素雰囲気中でア
ニールする工程を含むことを特徴とする請求項1記載の
半導体記憶装置の製造方法。
2. The method of manufacturing a semiconductor memory device according to claim 1, further comprising a step of annealing in a non-oxygen atmosphere after the step of forming the contact hole and thereafter forming a wiring barrier metal.
JP8039199A 1996-02-27 1996-02-27 Manufacture of semiconductor memory device Pending JPH09232536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8039199A JPH09232536A (en) 1996-02-27 1996-02-27 Manufacture of semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8039199A JPH09232536A (en) 1996-02-27 1996-02-27 Manufacture of semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH09232536A true JPH09232536A (en) 1997-09-05

Family

ID=12546464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8039199A Pending JPH09232536A (en) 1996-02-27 1996-02-27 Manufacture of semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH09232536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297964A (en) * 1998-03-26 1999-10-29 Samsung Electronics Co Ltd Method for manufacturing capacitance of semiconductor device with dielectric film having high dielectric constant
KR100331259B1 (en) * 1998-12-30 2002-11-23 주식회사 하이닉스반도체 Method for formation of capacitor of semiconductor device
JP2006066414A (en) * 2004-08-24 2006-03-09 Oki Electric Ind Co Ltd Method of manufacturing ferroelectric memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297964A (en) * 1998-03-26 1999-10-29 Samsung Electronics Co Ltd Method for manufacturing capacitance of semiconductor device with dielectric film having high dielectric constant
KR100331259B1 (en) * 1998-12-30 2002-11-23 주식회사 하이닉스반도체 Method for formation of capacitor of semiconductor device
JP2006066414A (en) * 2004-08-24 2006-03-09 Oki Electric Ind Co Ltd Method of manufacturing ferroelectric memory
JP4593204B2 (en) * 2004-08-24 2010-12-08 Okiセミコンダクタ株式会社 Ferroelectric memory manufacturing method

Similar Documents

Publication Publication Date Title
JP3319994B2 (en) Semiconductor storage element
US6180974B1 (en) Semiconductor storage device having a capacitor electrode formed of at least a platinum-rhodium oxide
US5905278A (en) Semiconductor device having a dielectric film and a fabrication process thereof
US6281543B1 (en) Double layer electrode and barrier system on hemispherical grain silicon for use with high dielectric constant materials and methods for fabricating the same
US6278150B1 (en) Conductive layer connecting structure and method of manufacturing the same
US20010015453A1 (en) Capacitor forming methods
CN1140925C (en) Semiconductor device and method for fabricating thereof
KR19990037319A (en) Semiconductor memory device with less deterioration of dielectric thin film
US6908802B2 (en) Ferroelectric circuit element that can be fabricated at low temperatures and method for making the same
US6150183A (en) Method for manufacturing metal oxide capacitor and method for manufacturing semiconductor memory device
JP3570153B2 (en) Electronic material, manufacturing method thereof, dielectric capacitor, nonvolatile memory, and semiconductor device
KR100519240B1 (en) Manufacturing method of capacitor electrode made of platinum metal
JPH10242409A (en) Electronic material and its manufacturing method, dielectric capacitor, non-volatile memory, and semiconductor device
US6503792B2 (en) Method for fabricating a patterned metal-oxide-containing layer
US6833605B2 (en) Method of making a memory cell capacitor with Ta2O5 dielectric
US6066540A (en) Method for manufacturing a capacitor of a semiconductor device
JPH09232536A (en) Manufacture of semiconductor memory device
JP4296375B2 (en) Ferroelectric memory device manufacturing method and ferroelectric memory device
JPH10242408A (en) Dielectric capacitor, non-volatile memory and semiconductor device
JP3225913B2 (en) Method for manufacturing semiconductor device
US20020125523A1 (en) FeRAM having bottom electrode connected to storage node and method for forming the same
US6417012B1 (en) Method of forming ferroelectric capacitor in semiconductor device
JPH08236719A (en) Platinum thin film and semiconductor device, and method of their fabrication
JPH0563157A (en) Semiconductor device
JPH10189886A (en) Dielectric capacitor and ferroelectric memory

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990622