JPH0923249A - Digital afc circuit and fsk receiver using the circuit - Google Patents

Digital afc circuit and fsk receiver using the circuit

Info

Publication number
JPH0923249A
JPH0923249A JP7172002A JP17200295A JPH0923249A JP H0923249 A JPH0923249 A JP H0923249A JP 7172002 A JP7172002 A JP 7172002A JP 17200295 A JP17200295 A JP 17200295A JP H0923249 A JPH0923249 A JP H0923249A
Authority
JP
Japan
Prior art keywords
phase
fsk
circuit
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7172002A
Other languages
Japanese (ja)
Inventor
Osamu Sato
佐藤  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP7172002A priority Critical patent/JPH0923249A/en
Publication of JPH0923249A publication Critical patent/JPH0923249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the phase error not completely corrected by executing suitable AFC even when C/N is low to extend the frequency correction range. SOLUTION: An arc tangent arithmetic circuit 24 obtains a phase θof quadrature signal (I, Q) obtained by quadrature detection circuit 10 and a regression line f×t+Φ with respect to the phase θ is obtained as to a time (t). Since the phase θ is the information relating to a difference between a phase of a carrier frequency and a phase of a local oscillating frequency, the carrier frequency (f) and the phase Φ are estimated by obtaining the regression line. The AGC relating to a local oscillating signal is realized without causing a phase error over a wide frequency range principally by controlling the oscillating frequency and phase of a DDS(digital direct synthesizer) 32 based on the result even when the C/N is low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、FSK(周波数シ
フトキーイング)受信機において使用されるディジタル
AFC(周波数自動調整)回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital AFC (frequency automatic adjustment) circuit used in an FSK (frequency shift keying) receiver.

【0002】[0002]

【従来の技術】FSK受信機において使用されるAFC
回路としては、例えば図3に示される構成の回路があ
る。この図に示される回路は、直交検波回路10により
FSK変調波を直交信号に変換する際、極座標変換回路
12の出力を用いディジタルフィルタ14を介し局部発
振器16の発振周波数及び位相を制御する構成を有して
いる。
AFC used in FSK receivers
As the circuit, for example, there is a circuit having the configuration shown in FIG. The circuit shown in this figure has a configuration in which, when the FSK modulated wave is converted into a quadrature signal by the quadrature detection circuit 10, the output of the polar coordinate conversion circuit 12 is used to control the oscillation frequency and phase of the local oscillator 16 via the digital filter 14. Have

【0003】まず、局部発振器16は、一般にFSK変
調波の搬送周波数と等しい周波数で発振し、その結果得
られる局部発振信号を直交検波回路10に供給する。直
交検波回路10においては、局部発振信号とFSK変調
波との混合により同相成分Iが、また局部発振信号をπ
/2移相させた信号とFSK変調波との混合により直交
成分Qが、それぞれ生成される。極座標変換回路12
は、直交座標形式で与えられるFSK変調波、すなわち
直交信号(I,Q)を極座標形式の信号(r,θ)に変
換する。得られた信号のうち直交信号の位相を示す位相
信号θは、ディジタルフィルタ14によって帯域通過瀘
波される。このディジタルフィルタ14は、例えば、ア
ナログPLL(位相ロックループ)回路等において用い
られているラグリードフィルタに相当する伝達関数を有
している。そして、ディジタルフィルタ14によって瀘
波された位相信号θを用い、局部発振器16の発振周波
数及び位相を制御することにより、局部発振信号の周波
数及び位相をFSK変調波の搬送波の周波数及び位相に
ほぼ同期させることができる。
First, the local oscillator 16 generally oscillates at a frequency equal to the carrier frequency of the FSK modulated wave, and supplies the resulting local oscillation signal to the quadrature detection circuit 10. In the quadrature detection circuit 10, the in-phase component I and the local oscillation signal are π by mixing the local oscillation signal and the FSK modulated wave.
The quadrature component Q is generated by mixing the / 2 phase-shifted signal and the FSK modulated wave. Polar coordinate conversion circuit 12
Converts an FSK modulated wave given in the rectangular coordinate format, that is, a rectangular signal (I, Q) into a signal (r, θ) in the polar coordinate format. The phase signal θ indicating the phase of the quadrature signal among the obtained signals is band-pass filtered by the digital filter 14. The digital filter 14 has, for example, a transfer function corresponding to a lag lead filter used in an analog PLL (phase locked loop) circuit or the like. Then, by controlling the oscillation frequency and phase of the local oscillator 16 using the phase signal θ filtered by the digital filter 14, the frequency and phase of the local oscillation signal are almost synchronized with the frequency and phase of the carrier wave of the FSK modulated wave. Can be made.

【0004】[0004]

【発明が解決しようとする課題】従来の構成は、FSK
変調波のC/N(搬送波対雑音比)が高い場合には有効
に機能し得るものの、C/Nが低い場合には十分な機能
を奏し得ないことがある。すなわち、位相信号を瀘波す
るディジタルフィルタの通過帯域を十分狭く設定すれ
ば、そのC/Nが低いFSK変調波に関してもAFCを
実施することができるものの、このAFCによって補正
することができる局部発振周波数誤差の範囲は小さくな
ってしまう。加えて、上述の方式では、搬送波対する局
部発振信号の位相誤差に加え雑音等による位相誤差を含
む位相信号に基づき局部発振周波数及び位相を制御して
いるから、原理上、位相誤差を0にすることはできな
い。
The conventional structure is FSK.
When the C / N (carrier-to-noise ratio) of the modulated wave is high, it can function effectively, but when the C / N is low, it may not function sufficiently. That is, if the pass band of a digital filter that filters a phase signal is set to be sufficiently narrow, AFC can be performed even for an FSK modulated wave having a low C / N, but local oscillation that can be corrected by this AFC The range of frequency error becomes small. In addition, in the above method, the local oscillation frequency and phase are controlled based on the phase signal including the phase error due to noise in addition to the phase error of the local oscillation signal with respect to the carrier wave, so that the phase error is set to 0 in principle. It is not possible.

【0005】本発明は、このような問題点を解決するこ
とを課題としてなされたものであり、局部発振信号の周
波数及び位相に関しその制御目標を設定する手段を改良
することにより、C/Nが低いFSK変調波であっても
広い周波数範囲に亘って補正を施すことが可能で、かつ
原理上位相誤差を0にすることが可能なAFC回路を実
現することを目的とする。本発明は、また、そのような
機能を有するAFC回路をその全体に亘ってディジタル
回路にて実現可能とし、ひいては装置の小型化、無調整
化を容易に実現することを目的とする。
The present invention has been made to solve the above problems, and the C / N is improved by improving the means for setting the control target for the frequency and phase of the local oscillation signal. An object of the present invention is to realize an AFC circuit capable of performing correction over a wide frequency range even with a low FSK modulated wave and theoretically reducing the phase error to zero. It is another object of the present invention to make it possible to realize an AFC circuit having such a function as a digital circuit over its entirety, and to easily realize miniaturization and no adjustment of the device.

【0006】[0006]

【課題を解決するための手段及び発明の効果】このよう
な目的を達成するために、本発明の第1の構成に係るデ
ィジタルAFC回路は、局部発振信号を利用して直交信
号に変換されたFSK変調波に関し、当該直交信号の位
相θを、直交信号中の同相成分I及び直交成分Qに基づ
き式θ=tan-1(Q/I)に従い求める手段と、時刻
tに関する位相θの回帰直線f×t+φを求めることに
よりFSK変調波の搬送周波数f及び位相φを推定する
手段と、推定結果に応じ局部発振信号の周波数及び位相
を制御する手段と、を備えることを特徴とする。
In order to achieve such an object, the digital AFC circuit according to the first configuration of the present invention is converted into a quadrature signal using a local oscillation signal. Regarding the FSK modulated wave, a means for obtaining the phase θ of the quadrature signal based on the in-phase component I and the quadrature component Q in the quadrature signal according to the equation θ = tan −1 (Q / I), and a regression line of the phase θ with respect to time t It is characterized by comprising means for estimating the carrier frequency f and phase φ of the FSK modulated wave by obtaining f × t + φ, and means for controlling the frequency and phase of the local oscillation signal according to the estimation result.

【0007】本構成においては、局部発振信号の周波数
及び位相に関する制御目標が、直交信号の位相θの回帰
直線を用いて設定される。ここに、C/Nが低い場合で
あっても、FSK変調波に含まれる雑音成分はその平均
値が0であると見なせるため、上述の回帰直線を用いる
ことにより、局部発振信号の周波数及び位相の誤差に関
する情報を得ることができる。従って、回帰直線を用い
てFSK変調波の搬送周波数f及び位相φを推定し、こ
れに基づき局部発振信号の周波数及び位相を制御するよ
うにすれば、FSK変調波のC/Nが低い場合であって
も、広い周波数範囲に亘り、局部発振信号の周波数を補
正することが可能になる。また、直交信号の位相θを局
部発振器に帰還する従来の構成と異なり、直交信号の位
相θの回帰直線からFSK変調波の搬送波の位相φを推
定しているため、雑音を排除でき、原理上、局部発振信
号の位相の制御誤差を0にすることも可能になる。
In this configuration, the control target regarding the frequency and phase of the local oscillation signal is set by using the regression line of the phase θ of the quadrature signal. Here, even when the C / N is low, the noise component included in the FSK modulated wave can be regarded as having an average value of 0. Therefore, by using the above regression line, the frequency and phase of the local oscillation signal are You can get information about the error of. Therefore, if the carrier frequency f and the phase φ of the FSK modulated wave are estimated using the regression line and the frequency and phase of the local oscillation signal are controlled based on this, in the case where the C / N of the FSK modulated wave is low, Even if there is, it is possible to correct the frequency of the local oscillation signal over a wide frequency range. Also, unlike the conventional configuration in which the phase θ of the quadrature signal is fed back to the local oscillator, the phase φ of the carrier wave of the FSK modulated wave is estimated from the regression line of the phase θ of the quadrature signal, so noise can be eliminated, and in principle It is also possible to reduce the phase control error of the local oscillation signal to zero.

【0008】本発明の第2の構成に係るFSK受信機
は、局部発振信号を発生させる局部発振器と、局部発振
信号を利用してFSK変調波を直交信号に変換する直交
検波回路と、本発明の第1の構成に係るディジタルAF
C回路と、位相θを微分することによりFSK変調に係
る周波数偏位を検出する手段と、検出した周波数偏位に
基づきデータを再生する手段と、を備えることを特徴と
する。本構成によれば、前述の第1の構成と同様の作用
及び効果を実現可能なFSK受信機が得られる。
An FSK receiver according to a second configuration of the present invention includes a local oscillator that generates a local oscillation signal, a quadrature detection circuit that converts the FSK modulated wave into a quadrature signal by using the local oscillation signal, and the present invention. AF according to the first configuration of
It is characterized by comprising a C circuit, means for detecting a frequency deviation related to FSK modulation by differentiating the phase θ, and means for reproducing data based on the detected frequency deviation. According to this configuration, it is possible to obtain the FSK receiver capable of realizing the same operation and effect as the first configuration described above.

【0009】本発明の第3の構成に係るFSK受信機
は、第2の構成に係るFSK受信機において、上記FS
K変調波が、周波数変調度が低い例えばMSK(ミニマ
シフトキーイング)、GMSK(ガウシアンフィルター
ドMSK)等のFSK変調方式に従い変調された波であ
ることを特徴とする。本構成によれば、これらのFSK
変調方式に好適に適用可能なFSK受信機を実現するこ
とができる。
The FSK receiver according to the third aspect of the present invention is the FSK receiver according to the second aspect, wherein
It is characterized in that the K-modulated wave is a wave having a low frequency modulation degree and is modulated according to an FSK modulation method such as MSK (minimum shift keying) or GMSK (Gaussian filtered MSK). According to this configuration, these FSK
It is possible to realize an FSK receiver that is suitably applicable to the modulation method.

【0010】本発明の第4の構成に係るFSK受信機
は、本発明の第2の構成に係るFSK受信機において、
求められた位相θが−π/2<θ<π/2の範囲を超え
る場合に、上記微分に先立ち、当該位相θの値が−π/
2<θ<π/2の範囲内で常に連続的に変化するよう、
位相θの範囲を変換する手段を備え、上記FSK変調波
が、周波数変調度が高いFSK変調方式に従い変調され
た波であることを特徴とする。本構成によれば、求めら
れた位相θが例えばπ/2から−π/2へジャンプする
といった不連続性が発生しなくなるため、位相θの微分
により周波数偏位を検出できる範囲が広がる結果、周波
数変調度が高いFSK変調方式に適するFSK受信機が
得られる。
An FSK receiver according to a fourth configuration of the present invention is the FSK receiver according to the second configuration of the present invention,
When the obtained phase θ exceeds the range of −π / 2 <θ <π / 2, the value of the phase θ is −π / prior to the differentiation.
In order to always change continuously within the range of 2 <θ <π / 2,
It is characterized in that it comprises means for converting the range of the phase θ, and that the FSK modulated wave is a wave modulated according to the FSK modulation method having a high frequency modulation degree. According to this configuration, since the obtained phase θ does not have a discontinuity such as jumping from π / 2 to −π / 2, the range in which the frequency deviation can be detected by the differentiation of the phase θ is widened. An FSK receiver suitable for the FSK modulation method having a high frequency modulation degree can be obtained.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて図面に基づき説明する。なお、図3に示される従
来例と同様の構成には同一の符号を付し説明を省略す
る。
Preferred embodiments of the present invention will be described below with reference to the drawings. The same components as those in the conventional example shown in FIG.

【0012】図1には、本発明の第1実施形態に係るF
SK受信機の構成が示されている。このFSK受信機に
おいては、アンテナ18により受信されたFSK変調波
がその後段のRF/IF回路20において増幅、フィル
タリング、周波数変換等の処理に供される。RF/IF
回路20に係る処理が施されたFSK変調波は、A/D
コンバータ回路22によりディジタル信号に変換され、
直交検波回路10に供給される。直交検波回路10によ
り得られる直交信号(I,Q)はその後段のアークタン
ジェント演算回路24に供給される。アークタンジェン
ト演算回路24は、直交信号(I,Q)に基づき、その
位相θ=tan-1(Q/I)を求め、求めた位相θを一
方では微分回路26に、他方では回帰直線演算回路28
に、それぞれ供給する。微分回路26は、位相θを微分
する。これにより、位相θの変化が求められる。判定回
路30は、微分回路26の出力に基づき、FSK変調に
係る変調データを再生し、これを後段の回路に出力す
る。
FIG. 1 shows an F according to the first embodiment of the present invention.
The configuration of the SK receiver is shown. In this FSK receiver, the FSK modulated wave received by the antenna 18 is subjected to processing such as amplification, filtering and frequency conversion in the RF / IF circuit 20 in the subsequent stage. RF / IF
The FSK modulated wave that has been subjected to the processing related to the circuit 20 is A / D
Converted into a digital signal by the converter circuit 22,
It is supplied to the quadrature detection circuit 10. The quadrature signal (I, Q) obtained by the quadrature detection circuit 10 is supplied to the arctangent calculation circuit 24 at the subsequent stage. The arctangent calculation circuit 24 calculates the phase θ = tan −1 (Q / I) based on the quadrature signal (I, Q), and the calculated phase θ is used by the differentiation circuit 26 on the one hand and the regression line calculation circuit on the other hand. 28
Respectively. The differentiating circuit 26 differentiates the phase θ. As a result, the change in the phase θ is obtained. The determination circuit 30 reproduces the modulation data relating to the FSK modulation based on the output of the differentiating circuit 26, and outputs this to the circuit in the subsequent stage.

【0013】本発明の特徴は、アークタンジェント演算
回路24の後段に設けられている回帰直線演算回路28
により、位相θの回帰直線f×t+φ(但しtは時刻)
を求め、求めた回帰直線の傾きからFSK変調波の搬送
周波数fを、また当該回帰直線の切片からFSK変調波
の位相φを、それぞれ推定し、推定の結果を用いてディ
ジタルダイレクトシンセサイザ(DDS)32を制御す
ることにある。DDS32は、回帰直線演算回路28に
より得られる推定結果、すなわち補正値に応じた周波数
及び位相で発振し、その発振出力を局部発振信号として
直交検波回路10に供給している。
A feature of the present invention is that a regression line calculation circuit 28 provided in a subsequent stage of the arctangent calculation circuit 24.
Therefore, the regression line of phase θ f × t + φ (where t is the time)
Then, the carrier frequency f of the FSK modulated wave is estimated from the slope of the obtained regression line, and the phase φ of the FSK modulated wave is estimated from the intercept of the regression line, and the digital direct synthesizer (DDS) is used by using the estimation result. To control 32. The DDS 32 oscillates at the frequency and phase according to the estimation result obtained by the regression line calculation circuit 28, that is, the correction value, and supplies the oscillation output to the quadrature detection circuit 10 as a local oscillation signal.

【0014】ここで、位相θに基づき回帰直線演算とい
う統計的な処理により搬送波の周波数及び位相を推定す
ることが可能であるのは、FSK変調波に重畳している
雑音成分の平均値を0と見なすことができることによ
る。この関係は、C/Nが低い状態でも成立しているか
ら、推定により得られた情報を利用してDDS32の発
振周波数及び位相を制御することにより、FSK変調波
の搬送波の周波数と局部発振信号の周波数との間に比較
的大きな相違が生じている場合であっても、これを補正
し、局部発振信号の発振周波数をFSK変調波の搬送波
の周波数に同期させることができ、また、位相φに関し
ても、低C/N下での補正を実行することが可能にな
る。特に、この図に示される構成は、MSK、GMSK
等、変調度が比較的低いFSK変調方式において有意で
ある。
Here, the frequency and phase of the carrier can be estimated by statistical processing called regression line calculation based on the phase θ, that the average value of the noise component superposed on the FSK modulated wave is 0. Can be regarded as. Since this relationship holds even when the C / N is low, the frequency of the carrier of the FSK modulated wave and the local oscillation signal are controlled by controlling the oscillation frequency and phase of the DDS 32 using the information obtained by the estimation. Even if there is a relatively large difference from the frequency of the FSK modulated wave, the oscillation frequency of the local oscillation signal can be synchronized with the frequency of the carrier wave of the FSK modulated wave, and the phase φ As for the above, it becomes possible to execute the correction under the low C / N. In particular, the configuration shown in this figure is MSK, GMSK
And the like, which is significant in the FSK modulation method in which the modulation degree is relatively low.

【0015】図2には、本発明の第2実施形態が示され
ている。この実施形態においては、アークタンジェント
演算回路24と微分回路26の間に復調範囲拡大回路3
4が設けられており、また、判定回路30に代えて、L
PF36が設けられている。復調範囲拡大回路34は、
アークタンジェント演算回路24により求められた位相
θが−π/2<θ<π/2の範囲を超える場合にこの位
相θの範囲を変換することにより、例えば位相θの値が
+π/2から−π/2へジャンプするといった状況を防
止している。従って、変調度が比較的大きなFSK変調
方式が採用されている場合であっても、位相θの不連続
変化が抑制される結果、位相θに関し復調可能な範囲が
拡大されることになる。また、LPF36は、微分回路
26の出力から不要波を除去している。このような構成
を採用する結果、不要波の少ない高品位な復調が可能に
なる。
FIG. 2 shows a second embodiment of the present invention. In this embodiment, the demodulation range expansion circuit 3 is provided between the arctangent calculation circuit 24 and the differentiation circuit 26.
4 is provided, and instead of the determination circuit 30, L
A PF 36 is provided. The demodulation range expansion circuit 34
When the phase θ obtained by the arc tangent calculation circuit 24 exceeds the range of −π / 2 <θ <π / 2, the range of the phase θ is converted so that, for example, the value of the phase θ changes from + π / 2 to −. It prevents the situation of jumping to π / 2. Therefore, even when the FSK modulation method having a relatively large modulation degree is adopted, the discontinuous change of the phase θ is suppressed, and as a result, the demodulatable range of the phase θ is expanded. Further, the LPF 36 removes unnecessary waves from the output of the differentiating circuit 26. As a result of adopting such a configuration, high-quality demodulation with few unnecessary waves becomes possible.

【0016】また、これらいずれの実施形態において
も、装置の小型化、無調整化を容易に実現することがで
きる。すなわち、A/Dコンバータ回路22以降の回路
構成は、いずれもディジタル的な処理を実行する回路で
あるから、アナログ信号を取り扱う回路のように、使用
にあたって調整を施す必要が低くなる。それは、装置の
安価化につながる。
Further, in any of these embodiments, it is possible to easily realize downsizing and no adjustment of the device. That is, since the circuit configurations after the A / D converter circuit 22 are circuits that execute digital processing, there is less need to make adjustments in use like circuits that handle analog signals. That leads to cost reduction of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施形態に係るFSK受信機
の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an FSK receiver according to a first embodiment of the present invention.

【図2】 本発明の第2の実施形態に係るFSK受信機
の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of an FSK receiver according to a second embodiment of the present invention.

【図3】 一従来例に係るFSK受信機、特にそのAF
C回路の構成を示すブロック図である。
FIG. 3 is an FSK receiver according to a conventional example, especially its AF
It is a block diagram showing a configuration of a C circuit.

【符号の説明】[Explanation of symbols]

10 直交検波回路、24 アークタンジェント演算回
路、26 微分回路、28 回帰直線演算回路、30
判定回路、32 DDS(ディジタルダイレクトシンセ
サイザ)、34 復調範囲拡大回路、36 LPF。
10 Quadrature detection circuit, 24 Arctangent calculation circuit, 26 Differentiation circuit, 28 Regression straight line calculation circuit, 30
Judgment circuit, 32 DDS (digital direct synthesizer), 34 demodulation range expansion circuit, 36 LPF.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 局部発振信号を利用して直交信号に変換
されたFSK変調波に関し、当該直交信号の位相θを、
直交信号中の同相成分I及び直交成分Qに基づき式θ=
tan-1(Q/I)に従い求める手段と、 時刻tに関する位相θの回帰直線f×t+φを求めるこ
とによりFSK変調波の搬送周波数f及び位相φを推定
する手段と、 推定結果に応じ局部発振信号の周波数及び位相を制御す
る手段と、 を備えることを特徴とするディジタルAFC回路。
1. Regarding an FSK modulated wave converted into a quadrature signal by using a local oscillation signal, a phase θ of the quadrature signal is
Based on the in-phase component I and the quadrature component Q in the quadrature signal, the equation θ =
tan −1 (Q / I), a means for estimating the carrier frequency f and the phase φ of the FSK modulated wave by obtaining a regression line f × t + φ of the phase θ with respect to the time t, and a local oscillation according to the estimation result. A digital AFC circuit comprising: means for controlling the frequency and phase of a signal.
【請求項2】 局部発振信号を発生させる局部発振器
と、局部発振信号を利用してFSK変調波を直交信号に
変換する直交検波回路と、を備えるFSK受信機におい
て、 請求項1記載のディジタルAFC回路と、 位相θを微分することによりFSK変調に係る周波数偏
位を検出する手段と、 検出した周波数偏位に基づきデータを再生する手段と、 を備えることを特徴とするFSK受信機。
2. The digital AFC receiver according to claim 1, wherein the FSK receiver includes a local oscillator that generates a local oscillation signal, and a quadrature detection circuit that converts the FSK modulated wave into a quadrature signal using the local oscillation signal. An FSK receiver comprising: a circuit; a means for detecting a frequency deviation related to FSK modulation by differentiating the phase θ; and a means for reproducing data based on the detected frequency deviation.
【請求項3】 請求項2記載のFSK受信機において、 上記FSK変調波が、周波数変調度が低いFSK変調方
式に従い変調された波であることを特徴とするFSK受
信機。
3. The FSK receiver according to claim 2, wherein the FSK modulated wave is a wave modulated according to an FSK modulation method having a low frequency modulation degree.
【請求項4】 請求項2記載のFSK受信機において、 求められた位相θが−π/2<θ<π/2の範囲を超え
る場合に、上記微分に先立ち、当該位相θの値が−π/
2<θ<π/2の範囲内で常に連続的に変化するよう、
位相θの範囲を変換する手段を備え、 上記FSK変調波が、周波数変調度が高いFSK変調方
式に従い変調された波であることを特徴とするFSK受
信機。
4. The FSK receiver according to claim 2, wherein when the obtained phase θ exceeds the range of −π / 2 <θ <π / 2, the value of the phase θ is − prior to the differentiation. π /
In order to always change continuously within the range of 2 <θ <π / 2,
An FSK receiver comprising means for converting the range of the phase θ, wherein the FSK modulated wave is a wave modulated according to an FSK modulation method having a high frequency modulation degree.
JP7172002A 1995-07-07 1995-07-07 Digital afc circuit and fsk receiver using the circuit Pending JPH0923249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7172002A JPH0923249A (en) 1995-07-07 1995-07-07 Digital afc circuit and fsk receiver using the circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7172002A JPH0923249A (en) 1995-07-07 1995-07-07 Digital afc circuit and fsk receiver using the circuit

Publications (1)

Publication Number Publication Date
JPH0923249A true JPH0923249A (en) 1997-01-21

Family

ID=15933704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7172002A Pending JPH0923249A (en) 1995-07-07 1995-07-07 Digital afc circuit and fsk receiver using the circuit

Country Status (1)

Country Link
JP (1) JPH0923249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003528A (en) * 2012-06-20 2014-01-09 Tokai Rika Co Ltd Fsk demodulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003528A (en) * 2012-06-20 2014-01-09 Tokai Rika Co Ltd Fsk demodulator

Similar Documents

Publication Publication Date Title
US7577215B2 (en) Angle demodulation apparatus, local oscillation apparatus, angle demodulation method, local oscillation signal generating method, recording medium and computer data signal
US20120300869A1 (en) Automatic frequency control circuit
JPH09298460A (en) Digital pll circuit and starting method therefor
JP2005517336A (en) Digital phase lock loop
JP2000022772A (en) Carrier recovery circuit and carrier recovery method
JP3206553B2 (en) Demodulator
JPH0923249A (en) Digital afc circuit and fsk receiver using the circuit
JPH07297872A (en) Demodulator
JP2002217992A (en) Modulation device and modulation method
JP2004023340A (en) Frequency control apparatus
JPH0541717A (en) Demodulator for digital modulated wave
JP2016140020A (en) Receiver and reception method thereof
JP3481486B2 (en) Digital demodulator
JP3410841B2 (en) Phase modulated wave carrier regeneration circuit
JP3185725B2 (en) Carrier recovery circuit
JP3578650B2 (en) Carrier synchronization circuit, quadrature demodulation circuit and interference wave canceller
JP3694639B2 (en) Digital PLL circuit and phase synchronization method
JPH06252963A (en) Demodulating circuit for phase modulated signal
JP3923354B2 (en) Automatic tracking antenna device
JP2004179805A (en) Frequency controlling apparatus
JPH0758794A (en) Phase comparator circuit
JP2002135345A (en) Psk synchronization method and psk synchronization device
JPH10178599A (en) Digital satellite broadcast receiver
JP2001086175A (en) Vsb demodulator
JP3274203B2 (en) Clock recovery circuit of MSK demodulator