JPH09230239A - Zoom lens provided with camera shake correcting function - Google Patents

Zoom lens provided with camera shake correcting function

Info

Publication number
JPH09230239A
JPH09230239A JP8036814A JP3681496A JPH09230239A JP H09230239 A JPH09230239 A JP H09230239A JP 8036814 A JP8036814 A JP 8036814A JP 3681496 A JP3681496 A JP 3681496A JP H09230239 A JPH09230239 A JP H09230239A
Authority
JP
Japan
Prior art keywords
group
lens
camera shake
aberration
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8036814A
Other languages
Japanese (ja)
Other versions
JP3387305B2 (en
Inventor
Kenji Konno
賢治 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP03681496A priority Critical patent/JP3387305B2/en
Priority to US08/802,756 priority patent/US6266189B1/en
Priority to EP97102979A priority patent/EP0791845A3/en
Publication of JPH09230239A publication Critical patent/JPH09230239A/en
Priority to US09/689,531 priority patent/US6285502B1/en
Application granted granted Critical
Publication of JP3387305B2 publication Critical patent/JP3387305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To excellently correct aberration both in a normal state and in a correcting state and to make entire length short so that the lens may be compact by constituting the lens to satisfy specified conditional expressions. SOLUTION: This zoom lens is constituted of a 1st group Gr1 having positive refractive power, a 2nd group Gr2 and a 3rd group Gr3 having negative refractive power, a 4th group Gr4 having the positive refractive power, and a 5th group Gr5 having the negative refractive power in order from an object side; and zooming is performed by changing an interval between the respective groups. Camera shake is corrected by decentering the 2nd group Gr2 in parallel (that means, by moving it in the direction perpendicular to an optical axis AX). In such a case, the following conditional expressions are satisfied: 0.2<|fL/fW|<0.4, 0.2<|f2/fW|<4.0. In the expressions, fL represents the focal distance of the final group, fW the focal distance of an entire optical system at a wide angle end, and f2 the focal distance of the 2nd group Gr2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、手ぶれ補正機能を
有するズームレンズに関するものであり、更に詳しく
は、手ぶれ(例えば、カメラの手持ち撮影時の振動)によ
る像のぶれを防ぐことができる、一眼レフカメラ用の望
遠ズームレンズとして好適なズームレンズに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens having a camera shake correction function, and more specifically, it is capable of preventing image blur caused by camera shake (for example, vibration during hand-held shooting of a camera). The present invention relates to a zoom lens suitable as a telephoto zoom lens for a reflex camera.

【0002】[0002]

【従来の技術】従来、写真撮影の失敗の原因は、そのほ
とんどが手ぶれとピンボケであった。ところが、近年、
カメラのほとんどにオートフォーカス機構が採用される
ようになり、また、オートフォーカス機構のピント精度
が向上するに従って、ピンボケによる写真撮影の失敗は
ほとんど解消されている。一方、カメラに標準装備され
ているレンズは、単焦点レンズからズームレンズへと移
行してきており、それと共に高倍率化,望遠化が図ら
れ、手ぶれの可能性が非常に高くなっている。この結
果、写真撮影の失敗は手ぶれによるものといっても過言
ではなく、そのため撮影光学系には手ぶれ補正機能が不
可欠となってきている。
2. Description of the Related Art Hitherto, most of the causes of failure in photographing have been camera shake and out of focus. However, in recent years,
As most cameras have adopted an autofocus mechanism and the focus accuracy of the autofocus mechanism has improved, the failure to take a photograph due to out-of-focus has been almost eliminated. On the other hand, the lens standardly equipped in the camera is shifting from a single focus lens to a zoom lens, and along with it, higher magnification and telephoto are achieved, and the possibility of camera shake is extremely high. As a result, it is no exaggeration to say that the failure to take a photograph is due to camera shake, and for this reason, a camera shake correction function has become indispensable in the taking optical system.

【0003】従来より手ぶれ補正機能を有する様々なズ
ームレンズが知られている。例えば、特開平6-337375号
公報では、正・負・負・正・負又は正・負・正・正・負
の5群構成において第2群全体を光軸に対して垂直方向
に移動させることによって手ぶれ補正を行う望遠ズーム
レンズが提案されている。特開平5-232410号公報では、
正・負・正・正の4群構成において第2群全体を光軸に
対して垂直方向に移動させることによって手ぶれ補正を
行う望遠ズームレンズが提案されている。また、市販さ
れている手ぶれ補正機能付きズームレンズには、正・負
・正・負・正・負の6群構成において第2群全体を光軸
に対して垂直方向に移動させることによって手ぶれ補正
を行うものが知られている。
Various zoom lenses having a camera shake correction function have been conventionally known. For example, in Japanese Patent Laid-Open No. 6-337375, the entire second group is moved in the direction perpendicular to the optical axis in a positive / negative / negative / positive / negative or positive / negative / positive / positive / negative five-group configuration. Therefore, a telephoto zoom lens has been proposed that compensates for camera shake. In JP-A-5-232410,
There has been proposed a telephoto zoom lens which has a positive, negative, positive, and positive four-group configuration and which performs camera shake correction by moving the entire second group in the direction perpendicular to the optical axis. In addition, the commercially available zoom lens with a shake correction function has a positive, negative, positive, negative, positive, and negative six-group configuration, and by moving the entire second group in the direction perpendicular to the optical axis Are known to do.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の手ぶれ補正機能を有するズームレンズには、広角端
での全長や望遠端での全長が大きすぎるといった問題が
ある。たとえ、手ぶれ補正機能付きのズームレンズであ
っても、手ぶれ補正機能なしのレンズに比べて大きくな
りすぎると、携帯性や扱いやすさの点で非常に不利にな
るため好ましくない。また、手ぶれ補正機能を有するズ
ームレンズは、通常状態(以下「偏心前状態」ともい
う。)で光学性能が良好であることは勿論、補正状態(以
下「偏心後状態」ともいう。)においてもレンズの偏心
による収差(以下「偏心収差」という。)の発生を抑え
て、光学性能が良好に保持される必要がある。
However, the above-described conventional zoom lens having a camera shake correction function has a problem that the total length at the wide-angle end and the total length at the telephoto end are too large. Even with a zoom lens having a camera shake correction function, if it is too large compared to a lens without a camera shake correction function, it is very disadvantageous in terms of portability and handleability, which is not preferable. Further, a zoom lens having a camera shake correction function has good optical performance in a normal state (hereinafter also referred to as “pre-eccentric state”), and also in a correction state (hereinafter also referred to as “post-eccentric state”). It is necessary to suppress the occurrence of aberration due to decentering of the lens (hereinafter referred to as “decentering aberration”) and maintain good optical performance.

【0005】本発明はこれらの点に鑑みてなされたもの
であって、その目的は、通常状態、補正状態のいずれに
おいても諸収差が良好に補正され、全長が短くコンパク
トな手ぶれ補正機能を有するズームレンズを提供するこ
とにある。
The present invention has been made in view of these points, and an object thereof is to have various functions in both a normal state and a corrected state, in which various aberrations are satisfactorily corrected, and a short length and a compact camera shake correction function are provided. It is to provide a zoom lens.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明の手ぶれ補正機能を有するズームレンズ
は、物体側から順に正の屈折力を有する第1群及び負の
屈折力を有する第2群を備え、かつ、負の屈折力を有す
る最終群を最も像側に備え、各群の間隔を変化させるこ
とによって変倍を行うズームレンズであって、広角端か
ら望遠端への変倍に際して前記第1群及び前記最終群が
物体側へ移動し、前記第2群を光軸に対して垂直方向に
移動させることによって手ぶれ補正を行い、以下の条件
を満足することを特徴とする。 0.2<|fL/fW|<0.4 …(1) 0.2<|f2/fW|<4.0 …(2) ただし、 fL:最終群の焦点距離、 fW:広角端での全系の焦点距離、 f2:第2群の焦点距離 である。
In order to achieve the above object, a zoom lens having an image stabilization function of the first invention has a first group having a positive refractive power and a negative refractive power in order from the object side. A zoom lens that includes a second lens unit and a final lens unit having a negative refractive power closest to the image side, and performs zooming by changing the interval between the lens units. When the magnification is doubled, the first group and the last group move to the object side, and the second group is moved in the direction perpendicular to the optical axis to perform camera shake correction, and the following conditions are satisfied. . 0.2 <| fL / fW | <0.4 (1) 0.2 <| f2 / fW | <4.0 (2) However, fL: focal length of the final lens group, fW: focal length of the entire system at the wide-angle end, f2: It is the focal length of the second lens group.

【0007】第2の発明の手ぶれ補正機能を有するズー
ムレンズは、物体側から順に、正の屈折力を有する第1
群と、負の屈折力を有する第2群と、正又は負の屈折力
を有する第3群と、正の屈折力を有する第4群と、負の
屈折力を有する第5群と、から成り、各群の間隔を変化
させることによって変倍を行う5群構成のズームレンズ
であって、広角端から望遠端への変倍に際して前記第1
群及び前記第5群が物体側へ移動し、前記第2群を光軸
に対して垂直方向に移動させることによって手ぶれ補正
を行い、以下の条件式(1a)及び前記条件式(2)を満足す
ることを特徴とする。 0.2<|f5/fW|<0.4 …(1a) ただし、 f5:第5群の焦点距離 である。
The zoom lens having the camera shake correction function of the second invention is the first lens having positive refractive power in order from the object side.
From a group, a second group having a negative refractive power, a third group having a positive or negative refractive power, a fourth group having a positive refractive power, and a fifth group having a negative refractive power A zoom lens having a five-group configuration, in which zooming is performed by changing the distance between the respective groups, wherein the zoom lens is the first lens when zooming from the wide-angle end to the telephoto end.
Group and the fifth group move to the object side, and camera shake correction is performed by moving the second group in the direction perpendicular to the optical axis, and the following conditional expressions (1a) and (2) are given. Characterized by satisfaction. 0.2 <| f5 / fW | <0.4 (1a) where f5 is the focal length of the fifth lens unit.

【0008】上記第1,第2の発明は、物体側から順
に、正の屈折力を有する第1群と負の屈折力を有する第
2群とを備え、最も像側に負の屈折力を有する最終群を
備えている。このようなタイプのズームレンズでは、ズ
ーム群の移動の自由度を収差補正に有効に利用すること
ができるため、ズーム域の全てにわたって良好な結像性
能を得ることができる。
The first and second inventions each include, in order from the object side, a first group having a positive refracting power and a second group having a negative refracting power, and the negative refracting power is closest to the image side. With the final group to have. In such a type of zoom lens, the degree of freedom of movement of the zoom group can be effectively used for aberration correction, so that good imaging performance can be obtained over the entire zoom range.

【0009】また、広角端から望遠端への変倍に際して
第1群及び最終群(すなわち、最も像側のレンズ群)が物
体側へ移動するため、充分なバックフォーカスを有し、
かつ、コンパクトなズーム光学系を達成することができ
る。特に、最終群が負の屈折力を有しているため、充分
なバックフォーカスとコンパクト性とを両立させること
ができる。さらに、広角端から望遠端への変倍に際して
第2群及び第3群が移動する構成とすれば、ズーム群の
移動の自由度が増えるため、収差補正上有利になるとと
もに全長の更に短い光学系を得ることができる。
Further, since the first lens group and the last lens group (that is, the lens group closest to the image side) move to the object side during zooming from the wide-angle end to the telephoto end, they have a sufficient back focus,
Moreover, a compact zoom optical system can be achieved. In particular, since the final lens group has a negative refractive power, it is possible to achieve both sufficient back focus and compactness. Further, if the second group and the third group are moved during zooming from the wide-angle end to the telephoto end, the degree of freedom of movement of the zoom group is increased, which is advantageous for aberration correction and has a shorter overall length. The system can be obtained.

【0010】第2の発明では、物体側から順に、正の屈
折力を有する第1群と、負の屈折力を有する第2群と、
正又は負の屈折力を有する第3群と、正の屈折力を有す
る第4群と、負の屈折力を有する第5群と、を備えた5
群構成のズームレンズにおいて、広角端から望遠端への
変倍に際して第1群及び第5群が物体側へ移動する構成
となっているので、非常にコンパクトな望遠ズームレン
ズを得ることができる。
In the second invention, a first group having a positive refractive power and a second group having a negative refractive power are arranged in this order from the object side.
5 comprising a third group having a positive or negative refractive power, a fourth group having a positive refractive power, and a fifth group having a negative refractive power
In the zoom lens having the group configuration, the first group and the fifth group are configured to move to the object side during zooming from the wide-angle end to the telephoto end, so that a very compact telephoto zoom lens can be obtained.

【0011】前記条件式(1),(1a)は、最終群の焦点距
離の大きさを規定している。条件式(1),(1a)の上限を
超えると、最終群の屈折力が弱くなって変倍に関与する
割合が小さくなるため、ズーム移動量が大きくなってし
まう。そして、ズーム移動量が大きくなると、全長が増
大するためコンパクト性が失われてしまう。条件式
(1),(1a)の上限を0.38にしてこれを満たすようにすれ
ば、更にコンパクトなズーム光学系を得ることができ
る。条件式(1),(1a)の下限を超えると、最終群の屈折
力が強くなりすぎて非常に大きな収差が発生するため、
他の群でその収差を抑えることが困難になる。条件式
(1),(1a)の下限を0.27にしてこれを満たすようにすれ
ば、更に結像性能の優れたズーム光学系を得ることがで
きる。
The conditional expressions (1) and (1a) define the size of the focal length of the final lens group. If the upper limits of the conditional expressions (1) and (1a) are exceeded, the refractive power of the final lens group becomes weak and the proportion of the lens that contributes to zooming becomes small, resulting in a large zoom movement amount. When the amount of zoom movement increases, the overall length increases, and compactness is lost. Conditional expression
If the upper limits of (1) and (1a) are set to 0.38 to satisfy this, a more compact zoom optical system can be obtained. If the lower limits of conditional expressions (1) and (1a) are exceeded, the refracting power of the final group becomes too strong, and a very large aberration occurs.
It becomes difficult to suppress the aberration in other groups. Conditional expression
If the lower limits of (1) and (1a) are set to 0.27 to satisfy this, it is possible to obtain a zoom optical system with even better imaging performance.

【0012】一般に、一眼レフカメラ用のズーム撮影光
学系では、第1群が最も大型のレンズ群であり、そのレ
ンズ重量も相当大きいものとなっている。第1,第2の
発明のように、物体側から順に正の屈折力を有する第1
群及び負の屈折力を有する第2群を備え、かつ、負の屈
折力を有する最終群を最も像側に備え、各群の間隔を変
化させることによって変倍を行い、広角端から望遠端へ
の変倍に際して第1群及び最終群が物体側へ移動するズ
ームレンズにおいても、第1群のレンズ重量は第2群以
降の群のレンズに比べて非常に大きくなっている。この
ため、第1群のレンズを光軸に対して垂直方向に移動さ
せること(すなわち、平行偏心させること)によって手ぶ
れ補正を行うことは、手ぶれ駆動系を大型化することに
なるので好ましくない。
Generally, in a zoom photographing optical system for a single-lens reflex camera, the first lens group is the largest lens group, and the lens weight is also considerably large. As in the first and second inventions, a first refracting power having a positive refracting power in order from the object side.
A group and a second group having negative refracting power, and a final group having negative refracting power is provided on the most image side, and zooming is performed by changing the interval between each group, from the wide-angle end to the telephoto end. Even in a zoom lens in which the first group and the last group move to the object side during zooming, the lens weight of the first group is much larger than the lenses of the second and subsequent groups. For this reason, it is not preferable to move the first lens group in the direction perpendicular to the optical axis (that is, to perform parallel eccentricity) to correct the camera shake because the camera shake drive system becomes large.

【0013】そのため第1,第2発明では、第2群を光
軸に対して垂直方向に移動させることによって手ぶれ補
正を行っている。第2群は第1群に比べるとレンズ径が
非常に小さくレンズの重量も軽量であるため、第2群を
手ぶれ補正に用いれば、手ぶれ駆動系に負担をかけるこ
となく手ぶれ補正を行うことができる。また、第2群
は、広角端から望遠端へのズーミングにおける移動量が
他の群に比べて小さいという特徴を有している。これ
は、手ぶれ補正を行う場合に非常に有利な条件であり、
その点においても第2群を手ぶれ補正に用いる優位性が
ある。また、後述する第4の実施の形態(実施例4)で
は、第2群がズーミングにおいて固定である。このよう
に、手ぶれ補正群である第2群がズーミング中に固定で
あると、手ぶれ駆動系を鏡胴内に配置するのに有利とな
るので望ましい。
Therefore, in the first and second inventions, camera shake correction is performed by moving the second group in the direction perpendicular to the optical axis. Since the lens diameter of the second group is much smaller and the weight of the lens is lighter than that of the first group, if the second group is used for camera shake correction, camera shake correction can be performed without burdening the camera shake drive system. it can. Further, the second group is characterized in that the amount of movement in zooming from the wide-angle end to the telephoto end is smaller than that of the other groups. This is a very advantageous condition when performing image stabilization,
Also in that respect, there is an advantage in using the second group for camera shake correction. In addition, in a fourth embodiment (Example 4) described later, the second group is fixed during zooming. In this way, it is preferable that the second lens group, which is the camera shake correction group, is fixed during zooming, because it is advantageous to arrange the camera shake drive system in the lens barrel.

【0014】前記条件式(2)は、第2群の焦点距離の大
きさを規定している。条件式(2)の上限を超えると、第
2群の屈折力が弱くなりすぎてしまい、その結果、第2
群の光軸に対して垂直方向の移動が像点を移動させる感
度は弱くなりすぎてしまう。このため、手ぶれ時の第2
群の移動量が大きくなってしまう。条件式(2)の上限を
2.0にしてこれを満たすようにすれば、手ぶれ時の第2
群の移動量を更に小さくすることができる。逆に、条件
式(2)の下限を超えると、第2群の屈折力が強くなりす
ぎるため、通常状態及び手ぶれ時の補正状態での収差量
が共に大きくなり、その収差を他の群で抑えることが困
難になる。条件式(2)の下限を0.3にしてこれを満たすよ
うにすれば、より優れた結像性能を得ることができる。
Conditional expression (2) defines the size of the focal length of the second lens unit. If the upper limit of conditional expression (2) is exceeded, the refractive power of the second lens unit will become too weak, and as a result,
The movement in the direction perpendicular to the optical axis of the group makes the sensitivity of moving the image point too weak. Therefore, the second
The amount of movement of the group becomes large. The upper limit of conditional expression (2)
If you set it to 2.0 and meet this, the second
The amount of movement of the group can be further reduced. On the other hand, if the lower limit of conditional expression (2) is exceeded, the refractive power of the second lens unit will become too strong, and the amount of aberration in both the normal state and the corrected state of camera shake will increase. It becomes difficult to hold down. By setting the lower limit of conditional expression (2) to 0.3 and satisfying the lower limit, more excellent imaging performance can be obtained.

【0015】前記第1,第2の発明において、更に以下
の条件式(3)を満足することが望ましい。 f1/fW<1.10 …(3) ただし、 f1:第1群の焦点距離 である。
In the first and second inventions, it is desirable that the following conditional expression (3) is further satisfied. f1 / fW <1.10 (3) where f1: is the focal length of the first lens unit.

【0016】条件式(3)は、第1群の焦点距離の大きさ
を規定している。条件式(3)の上限を超えると、第1群
の屈折力が弱くなるため、ズーミング時の移動量が増大
する。そのため、全長が大きくなりレンズ径も増大する
ので、コンパクト性が失われてしまう。条件式(3)の上
限を1.00にしてこれを満たすようにすれば、更にコンパ
クトなズーム光学系を得ることができる。
Conditional expression (3) defines the size of the focal length of the first lens unit. If the upper limit of conditional expression (3) is exceeded, the refractive power of the first lens unit becomes weak, and the amount of movement during zooming increases. Therefore, the overall length becomes large and the lens diameter also increases, so that compactness is lost. If the upper limit of conditional expression (3) is set to 1.00 to satisfy this condition, a more compact zoom optical system can be obtained.

【0017】手ぶれ補正のためにレンズ群を光軸に対し
て垂直方向に移動させると、通常状態(偏心前状態)では
光線の通らない所を、手ぶれ補正状態(偏心後状態)では
光線が通ることになる。この光線が有害光線となって結
像性能を低下させてしまうおそれがある。そのため、手
ぶれ補正群である第2群の物体側、第2群中、又は第2
群の像側に固定絞りを設けることによって、手ぶれ補正
時の有害光線を遮断するのが望ましい。これにより、手
ぶれ補正状態においても良好な結像性能を得ることがで
きる。
When the lens group is moved in the direction perpendicular to the optical axis for camera shake correction, the light beam passes where the light beam does not pass in the normal state (pre-eccentric state) and in the camera shake correction state (post-eccentric state). It will be. This light beam may be harmful and degrade the imaging performance. Therefore, the object side of the second group that is the image stabilization group, the second group, or the second group.
It is desirable to block a harmful ray at the time of camera shake correction by providing a fixed diaphragm on the image side of the group. As a result, good imaging performance can be obtained even in the camera shake correction state.

【0018】また、近接物体へのフォーカシングを、手
ぶれ補正群である第2群で行うのが望ましい。これによ
ると、フォーカシング用の駆動系と手ぶれ補正用の手ぶ
れ駆動系とを共通の駆動部材を用いて実現することが可
能になり、コスト面で非常に有利になる。
Further, it is desirable that focusing on a near object is performed by the second group which is a camera shake correction group. This makes it possible to realize the focusing drive system and the camera shake drive system for camera shake correction by using a common drive member, which is very advantageous in terms of cost.

【0019】手ぶれ時の手ぶれ補正群(すなわち、第2
群)の移動量(以下「手ぶれ補正移動量」という。)は、
ズームの広角端と望遠端とであまり変化しないことが好
ましい。この点で、前記第1,第2の発明において、更
に以下の条件式(4)を満足することが望ましい。 0.4<MT/MW<2.5 …(4) ただし、 MT:望遠端での手ぶれ補正移動量、 MW:広角端での手ぶれ補正移動量 である。
Image stabilization group at the time of camera shake (that is, the second
The amount of movement of the group) (hereinafter referred to as “image stabilization movement amount”) is
It is preferable that the wide-angle end and the telephoto end of the zoom do not change much. In this respect, it is desirable in the first and second inventions that the following conditional expression (4) is further satisfied. 0.4 <MT / MW <2.5 (4) However, MT: shake compensation movement amount at the telephoto end, MW: shake compensation movement amount at the wide-angle end.

【0020】条件式(4)の上限又は下限を超えると、手
ぶれ補正移動量がズームの広角端と望遠端とで大きく異
なることになり、任意の焦点距離で手ぶれ補正量を演算
する際に、計算誤差が生じやすくなる。
When the upper limit or the lower limit of the conditional expression (4) is exceeded, the amount of camera shake correction movement greatly differs between the wide-angle end and the telephoto end of the zoom. When calculating the amount of camera shake correction at any focal length, Calculation errors are likely to occur.

【0021】手ぶれ時に手ぶれ補正群を平行偏心させる
と、偏心収差の一つである軸上横色収差が発生するが、
これを抑えるためには、手ぶれ補正群である第2群が色
補正されていることが望ましい。そのためには、例え
ば、以下の条件式(5)を満足することが望ましい。 νp>νn …(5) ただし、 νp:手ぶれ補正群(第2群)中の正レンズのアッベ数、 νn:手ぶれ補正群(第2群)中の負レンズのアッベ数 である。
When the camera shake correction group is decentered in parallel during camera shake, axial lateral chromatic aberration, which is one of the eccentric aberrations, occurs,
In order to suppress this, it is desirable that the second group, which is the camera shake correction group, be color-corrected. For that purpose, for example, it is desirable to satisfy the following conditional expression (5). νp> νn (5) where νp is the Abbe number of the positive lens in the camera shake correction group (second group), and νn is the Abbe number of the negative lens in the camera shake correction group (second group).

【0022】《偏心収差及び偏心収差係数》次に、本発
明に係るズームレンズのような手ぶれ補正機能を有する
光学系(以下「手ぶれ補正光学系」という。)の収差劣化
の定義を、図17に基づいて説明する。同図に示す偏心
収差(軸外像点移動誤差,片ボケ,軸上コマ及び軸上横
色収差)は、手ぶれ補正光学系の像劣化の要因となる。
<< Eccentric Aberration and Eccentric Aberration Coefficient >> Next, the definition of aberration deterioration of an optical system having a camera shake correction function (hereinafter referred to as “camera shake correction optical system”) like the zoom lens according to the present invention is defined in FIG. It will be described based on. The decentration aberrations (off-axis image point movement error, one-sided blur, axial coma and axial lateral chromatic aberration) shown in the same figure cause image deterioration of the image stabilizing optical system.

【0023】[軸外像点移動誤差]{図17(A)} 偏心した光学系では、通常の歪曲収差に加えて偏心によ
る歪曲誤差が発生する。このため、手ぶれ補正光学系に
おいては、軸上(つまり、画面中心)の像点が完全に止ま
るように補正したとき、軸外の像点が完全に止まらずに
像ぶれが発生する。図17(A)中、1はフィルム面、2
は補正状態(偏心後状態)の像点、3は通常状態(偏心前
状態)の像点、4は手ぶれ補正方向を表す。
[Off-axis image point movement error] {Fig. 17 (A)} In a decentered optical system, a distortion error due to decentering occurs in addition to the normal distortion aberration. For this reason, in the image stabilization optical system, when the image point on the axis (that is, the center of the screen) is corrected to completely stop, the image point off-axis does not completely stop, and an image blur occurs. In FIG. 17 (A), 1 is the film surface, 2
Represents an image point in a corrected state (post-eccentric state), 3 represents an image point in a normal state (pre-eccentric state), and 4 represents a camera shake correction direction.

【0024】ここで、光軸をx軸方向、手ぶれ方向をy軸
方向(すなわち、手ぶれ補正方向4もy軸方向)とし、Y
(y',z',θ)を近軸像点が(y',z')である光線の手ぶれ補
正角θでの実際の像点のY座標{軸上の像点が完全に止ま
るように補正するので、常にY(0,0,θ)=0である。}とす
ると、次の式(a)が成り立つ。 ΔY(y',z',θ)=Y(y',z',θ)-Y(y',z',0) ……(a)
Here, the optical axis is the x-axis direction, the camera shake direction is the y-axis direction (that is, the camera shake correction direction 4 is also the y-axis direction), and Y
(y ', z', θ) is the Y coordinate of the actual image point at the image stabilization angle θ of the ray whose paraxial image point is (y ', z') (so that the image point on the axis stops completely Since Y is corrected to Y (0,0, θ) = 0. }, The following expression (a) is established. ΔY (y ', z', θ) = Y (y ', z', θ) -Y (y ', z', 0) …… (a)

【0025】特に指定しない限り、y軸上の像点につい
ての軸外像点移動誤差ΔYY'及びz軸上の像点についての
軸外像点移動誤差ΔYZ'は、それぞれ以下の式(b)及び式
(c)で表される。なお、0.7fieldは新写真規格の24mmフ
ィルムでは約12mmである。 ΔYY'={ΔY(0.7field,0,0.7゜)+ΔY(-0.7field,0,0.7゜)}/2 ……(b) ΔYZ'=ΔY(0,0.7field,0.7゜) ……(c)
[0025] Unless otherwise specified, 'off-axial image point movement error [Delta] Y Z on and an image point on the z-axis' axial image point movement error [Delta] Y Y for an image point on the y-axis, each of the following formula ( b) and the formula
It is represented by (c). The 0.7 field is about 12 mm for the new photographic standard 24 mm film. ΔY Y '= {ΔY (0.7field, 0,0.7 °) + ΔY (-0.7field, 0,0.7 °)} / 2 …… (b) ΔY Z ' = ΔY (0,0.7field, 0.7 °)… … (C)

【0026】[片ボケ]{図17(B)} 図17(B)中、5は光軸AXに非対称な像面を表し、6
は光軸に対称な像面を表す。光学系の非対称性によっ
て、像面5は光軸AXに対し非対称となる。これによ
り、生じるメリディオナル片ボケΔM'及びサジタル片ボ
ケΔS'は、それぞれ以下の式(d)及び式(e)で表される。 ΔM'={メリテ゛ィオナル値(y'=0.7field,z=0,θ=0.7゜)-メリテ゛ィオナル値(y'=-0.7field,z =0,θ=0.7゜)}/2 ……(d) ΔS'={サシ゛タル値(y'=0.7field, z=0,θ=0.7゜)-サシ゛タル値(y'=-0.7field,z=0,θ =0.7゜)}/2 ……(e)
[One-sided blur] {FIG. 17 (B)} In FIG. 17 (B), 5 represents an image plane asymmetric with respect to the optical axis AX, and 6
Represents an image plane symmetrical to the optical axis. Due to the asymmetry of the optical system, the image plane 5 is asymmetric with respect to the optical axis AX. As a result, the generated meridional one-sided blur ΔM ′ and the sagittal one-sided blur ΔS ′ are represented by the following equations (d) and (e), respectively. ΔM '= {meridional value (y' = 0.7field, z = 0, θ = 0.7 °) -meridional value (y '=-0.7field, z = 0, θ = 0.7 °)} / 2 (d) ΔS '= {Sagittal value (y' = 0.7field, z = 0, θ = 0.7 °) -Sagittal value (y '=-0.7field, z = 0, θ = 0.7 °)} / 2 ...... (e)

【0027】[軸上コマ]{図17(C)} 図17(C)中、7は軸上光束を表し、8は軸上主光線を
表す。図示のように、軸上の光束7が軸上主光線8に対
して対称とならずにコマ収差が発生する。軸上光束7に
おいて生じる軸上コマAXCMは、次の式(f)で表される。 AXCM={Y(Upper Zornal,θ=0.7゜)+Y(Lower Zornal,θ=0.7゜)}/2 ……(f)
[On-axis coma] {FIG. 17 (C)} In FIG. 17 (C), 7 represents an axial luminous flux and 8 represents an axial chief ray. As shown in the figure, the axial light beam 7 is not symmetrical with respect to the axial principal ray 8, and coma aberration occurs. The axial coma AXCM generated in the axial luminous flux 7 is expressed by the following equation (f). AXCM = {Y (Upper Zornal, θ = 0.7 °) + Y (Lower Zornal, θ = 0.7 °)} / 2 …… (f)

【0028】[軸上横色収差]{図17(D)} 像点は波長の違いによってずれるため、光学系が非対称
のとき軸上光でもずれが生じる。軸上主光線において生
じる軸上横色収差は、次の式(g)で表される。 (軸上横色収差)={Y(g線,θ=0.7゜)-Y(d線,θ=0.7゜)} ……(g)
[Axial lateral chromatic aberration] {FIG. 17 (D)} Since the image point shifts due to the difference in wavelength, when the optical system is asymmetric, a shift occurs even in the axial light. The axial lateral chromatic aberration that occurs in the axial chief ray is represented by the following equation (g). (Axial lateral chromatic aberration) = {Y (g line, θ = 0.7 °) -Y (d line, θ = 0.7 °)} …… (g)

【0029】上記偏心収差については、松居吉哉氏の論
文「偏心の存在する光学系の3次の収差論」(1990年6月
JOEM)に、その応用方法が示されている。その方法は通
常の撮影レンズが取付誤差により偏心した場合等には適
しているが、物体平面と撮影レンズ及び像平面との共軸
関係がずれる手ぶれ補正光学系には、これを直接適用す
ることができない。そこで、上記論文の方法を手ぶれ補
正光学系に直接適用できるようにするため、以下に説明
する式の変換等を行うことによって、実際の手ぶれ補正
光学系の収差を通常の3次の収差係数で表現する。
Regarding the above-mentioned eccentric aberration, Yoshiya Matsui's paper "Third-order aberration theory of an optical system having eccentricity" (June 1990)
JOEM) shows its application method. This method is suitable when the photographic lens is decentered due to mounting error, but it should be applied directly to the image stabilization optical system where the coaxial relationship between the object plane and the photographic lens and image plane is misaligned. I can't. Therefore, in order to enable the method of the above paper to be directly applied to the image stabilization optical system, the aberration of the actual image stabilization optical system is converted into a normal third-order aberration coefficient by performing conversion of the equations described below. Express.

【0030】[手ぶれ補正光学系への偏心収差係数の応
用]光学系と座標との関係を示す図18に基づいて、以
下に偏心収差係数の求め方を説明する。まず、次のよう
に式を定義する。 tanω・cosφω=Y/g$ tanω・sinφω=Z/g$ R・cosφR=(g$/g)・Y* R・sinφR=(g$/g)・Z* g,g$はそれぞれ入射瞳面,物体側主平面から物体平面
(物面)OSまでの距離、ωは物点と物体側主点Hとを結ぶ
直線が基準軸となす角で、φωがそのazimuth、また、R
は物体側主平面上に換算した入射瞳半径でφRがそのazi
muthである。
[Application of Eccentric Aberration Coefficient to Shake Correction Optical System] A method of obtaining the eccentric aberration coefficient will be described below with reference to FIG. 18 showing the relationship between the optical system and the coordinates. First, the formula is defined as follows. tanω ・ cosφω = Y / g $ tanω ・ sinφω = Z / g $ R ・ cosφR = (g $ / g) ・ Y * R ・ sinφR = (g $ / g) ・ Z * g and g $ are entrance pupils Surface, object side principal plane to object plane
(Object surface) The distance to the OS, ω is the angle formed by the straight line connecting the object point and the object-side principal point H with the reference axis, and φω is its azimuth, and R
Is the entrance pupil radius converted on the object-side principal plane and φR is the azimuth.
It's muth.

【0031】物体側からν番目の面が基準軸に対してY
方向に微小量Eνだけ平行偏心したときの像平面(像面)I
S上での像点移動量ΔY,ΔZは、次の式(1A),(1B)で表
される。 ΔY=-(Eν/2αk')・[(ΔE)ν+(N・tanω)2・{(2+cos2φω)・(VE1)ν-(VE2)ν} +2R・(N・tanω)・{(2cos(φR-φω)+cos(φR+φω))・(IIIE)ν+cosφR・cosφω・(P E)ν}+R2・(2+cos2φR)・(IIE)ν] ……(1A) ΔZ=-(Eν/2αk')・[(N・tanω)2・sin2φω・(VE1)ν+2R・(N・tanω)・{sin(φR +φω)・(IIIE)ν+sinφR・sinφω・(PE)ν}+R2・sin2φR・(IIE)ν] ……(1B)
The νth surface from the object side is Y with respect to the reference axis.
Image plane (image plane) I when decentered by a small amount Eν
The image point movement amounts ΔY and ΔZ on S are expressed by the following equations (1A) and (1B). ΔY =-(Eν / 2α k ') ・ [(ΔE) ν + (N ・ tanω) 2・ {(2 + cos2φω) ・ (VE1) ν- (VE2) ν} + 2R ・ (N ・ tanω) ・((2cos (φR-φω) + cos (φR + φω)) ・ (IIIE) ν + cosφR ・ cosφω ・ (PE) ν} + R 2・ (2 + cos2φR) ・ (IIE) ν] …… (1A ) ΔZ =-(Eν / 2α k ') ・ [(N ・ tanω) 2・ sin2φω ・ (VE1) ν + 2R ・ (N ・ tanω) ・ (sin (φR + φω) ・ (IIIE) ν + sinφR ・sinφω ・ (PE) ν} + R 2・ sin2φR ・ (IIE) ν] …… (1B)

【0032】ここに、 (ΔE)ν:プリズム作用(像の横ずれ) (VE1)ν,(VE2)ν:回転非対称な歪曲 (IIIE)ν,(PE)ν:回転非対称な非点収差,像面の傾き (IIE)ν:軸上にも表れる回転非対称なコマ収差 とすると、偏心による影響を表す各偏心収差係数も、ν
番目の面から像面までのレンズ面の収差係数により、以
下の式(1C)〜(1H)で表される(#:物面上を示す添え
字。)。なお、回転偏心の場合も式(1A)〜(1H)と同様の
形の式で表現される。 (ΔE)ν=-2(αν'-αν) ……(1C) (VE1)ν=[{αν'・(μ=ν+1→k)ΣVμ}-{αν・(μ=ν→k)ΣVμ}]-[{αν'#・ (μ=ν+1→k)ΣIIIμ}-{αν#・(μ=ν→k)ΣIIIμ}] ……(1D) (VE2)ν={αν'#・(μ=ν+1→k)ΣPμ}-{αν#・(μ=ν→k)ΣPμ} ……(1E ) (IIIE)ν=[{αν'・(μ=ν+1→k)ΣIIIμ}-{αν・(μ=ν→k)ΣIIIμ}]-[{ αν'#・(μ=ν+1→k)ΣIIμ}-{αν#・(μ=ν→k)ΣIIμ}] ……(1F) (PE)ν={αν'・(μ=ν+1→k)ΣPμ}-{αν・(μ=ν→k)ΣPμ} ……(1G) (IIE)ν=[{αν'・(μ=ν+1→k)ΣIIμ}-{αν・(μ=ν→k)ΣIIμ}]-[{αν '#・(μ=ν+1→k)ΣIμ}-{αν#・(μ=ν→k)ΣIμ}] ……(1H)
Where (ΔE) ν: prism action (image lateral deviation) (VE1) ν, (VE2) ν: rotationally asymmetric distortion (IIIE) ν, (PE) ν: rotationally asymmetric astigmatism, image Surface inclination (IIE) ν: If the rotationally asymmetric coma aberration also appears on the axis, each decentering aberration coefficient that represents the effect of decentering is also ν
It is expressed by the following equations (1C) to (1H) according to the aberration coefficient of the lens surface from the second surface to the image surface (#: subscript indicating the object surface). In the case of rotational eccentricity, it is expressed by the same formula as the formulas (1A) to (1H). (ΔE) ν = -2 (αν'-αν) …… (1C) (VE1) ν = [{αν '・ (μ = ν + 1 → k) ΣVμ}-{αν ・ (μ = ν → k) ΣVμ}]-[{αν '# ・ (μ = ν + 1 → k) ΣIIIμ}-{αν # ・ (μ = ν → k) ΣIIIμ}] …… (1D) (VE2) ν = {αν'#・ (Μ = ν + 1 → k) ΣPμ}-{αν # ・ (μ = ν → k) ΣPμ} …… (1E) (IIIE) ν = [{αν '・ (μ = ν + 1 → k) ΣIIIμ}-{αν ・ (μ = ν → k) ΣIIIμ}]-[{αν '# ・ (μ = ν + 1 → k) ΣIIμ}-{αν # ・ (μ = ν → k) ΣIIμ}]… … (1F) (PE) ν = {αν '・ (μ = ν + 1 → k) ΣPμ}-{αν ・ (μ = ν → k) ΣPμ} …… (1G) (IIE) ν = [{αν '・ (Μ = ν + 1 → k) ΣIIμ}-{αν ・ (μ = ν → k) ΣIIμ}]-[{αν'# ・ (μ = ν + 1 → k) ΣIμ}-{αν # ・(μ = ν → k) ΣIμ}] …… (1H)

【0033】ところが、手ぶれ補正光学系に偏心収差係
数を応用するには、光学系の反転により像面ISを物面OS
に置き換えて、像面ISからの収差係数を用いる必要があ
る。つまり、像点移動量を物面OS上のものに変換しなけ
ればならない。その理由を以下に説明する。
However, in order to apply the decentering aberration coefficient to the image stabilization optical system, the image plane IS is changed to the object plane OS by reversing the optical system.
It is necessary to replace with, and use the aberration coefficient from the image plane IS. In other words, the image point movement amount must be converted to that on the object plane OS. The reason will be described below.

【0034】第1の理由は、偏心によって光線通過位置
に違いが生じることにある。図19(A)に示すように(L
1:偏心前の光線,L2:偏心後の光線)、上述の松居吉哉
氏の論文の方法においては、偏心レンズLSより像面IS側
の光線の通過位置が偏心レンズLSによって変わってしま
う。従って、偏心レンズLSと偏心レンズLS〜像面ISの収
差係数が偏心収差係数に関係することになる。これに対
し、図19(B)に示すように(M1:手ぶれ補正前の光
線,M2:手ぶれ補正後の光線)、手ぶれ補正光学系では
(理想的には)、偏心レンズLSより物体側の光線の通過位
置が手ぶれ補正前と手ぶれ補正後とで変わってしまう。
従って、偏心レンズLSと偏心レンズLSより物体側の収差
係数が偏心収差係数に関係することになる。
The first reason is that there is a difference in the light beam passage position due to eccentricity. As shown in FIG.
(1 : before decentering, L 2 : after decentering), and in the method of the above-mentioned article by Yoshiya Matsui, the passing position of the ray on the image plane IS side of the decentering lens LS changes depending on the decentering lens LS. Therefore, the aberration coefficients of the eccentric lens LS and the eccentric lens LS to the image plane IS are related to the eccentric aberration coefficient. On the other hand, as shown in FIG. 19B (M 1 : light beam before image stabilization, M 2 : light beam after image stabilization), the image stabilization optical system
(Ideally), the passing position of the light beam on the object side of the decentering lens LS changes between before and after the image stabilization.
Therefore, the eccentric lens LS and the aberration coefficient on the object side of the eccentric lens LS are related to the eccentric aberration coefficient.

【0035】第2の理由は、物面の回転変換に起因して
収差劣化が生じることにある。上述の松居吉哉氏の論文
の方法においては、物面OS1,像面ISは共に動かない
が、手ぶれ補正光学系では、物面OS1が図20に示すよ
うに回転する。そのため、軸外像点移動誤差や片ボケ
は、回転がない場合と比べて大きく異なってしまう。図
20中、OS1は手ぶれ補正前の物面を表し、OS2は手ぶれ
補正後の物面を表す。
The second reason is that the aberration is deteriorated due to the rotational conversion of the object surface. In the method described by Yoshiya Matsui, both the object plane OS 1 and the image plane IS do not move, but in the image stabilization optical system, the object plane OS 1 rotates as shown in FIG. Therefore, the off-axis image point movement error and the one-sided blur greatly differ from those when there is no rotation. In FIG. 20, OS 1 represents the object surface before camera shake correction, and OS 2 represents the object surface after camera shake correction.

【0036】[反転系の収差係数と非反転系の収差係
数]上記した理由から、像点移動量を物面上のものに変
換しなければならないので、式(1A)〜(1H)の各係数を、
図21(非反転系)に基づいて表される以下の式(2A)〜(2
J)に従って変換する。なお、R( )は反転系の記号、N
は屈折率を表すものとする。R α=RN/Rg$=-α' ……(2A)R α#=α'# ……(2B)R αμ'=-αν ……(2C)R αμ'#=αν# ……(2D)R Pμ=Pν ……(2E) …同R φμ=φν ……(2F) …同R Iμ=Iν ……(2G) …同R IIμ=-IIν ……(2H) …逆R IIIμ=IIIν ……(2I) …同R Vμ=-Vν ……(2J) …逆
[Aberration Coefficient of Inverted System and Aberration Coefficient of Non-Inverted System] From the above reason, the image point movement amount must be converted to that on the object surface. Therefore, each of the formulas (1A) to (1H) The coefficient
The following formulas (2A) to (2) represented based on FIG. 21 (non-inverting system)
Convert according to J). In addition, R () is an inversion symbol, N
Represents the refractive index. R α = R N / R g $ = -α '…… (2A) R α # = α'# …… (2B) R αμ '=-αν …… (2C) R αμ'# = αν # …… (2D) R Pμ = Pν …… (2E)… Same R φμ = φν …… (2F)… Same R Iμ = Iν …… (2G)… Same R IIμ = -IIν …… (2H)… Inverse R IIIμ = IIIν …… (2I)… Same R Vμ = -Vν …… (2J)… Inverse

【0037】[手ぶれ補正群が平行偏心するときの偏心
収差係数と手ぶれ収差係数]前述の式(1A)〜(1H)は、た
だ1つの面νだけが偏心した場合を示している。そこで
さらに、式(1A)〜(1H)を複数の面i〜jが偏心した場合の
式に変形する。なお、手ぶれ補正群が平行偏心すると
き、偏心する各面i〜jの偏心量Ei〜Ejは等しいので、
式: (ΔE)i〜j=(ν=i→j)Σ{-2・(αν'-αν)} で示すように、収差係数を和として扱うことができる。
そして、αν'=αν+1より、式: (ΔE)i〜j=-2・(αj'-αi) が得られる。
[Eccentric Aberration Coefficient and Camera Shake Aberration Coefficient When Parallel Shake Correction Group is Decentered] The above equations (1A) to (1H) show the case where only one surface ν is eccentric. Therefore, equations (1A) to (1H) are further transformed into equations when a plurality of surfaces i to j are eccentric. When the camera shake correction group is decentered in parallel, the eccentric amounts Ei to Ej of the decentered surfaces i to j are equal,
The aberration coefficient can be treated as the sum as shown by the formula: (ΔE) i to j = (ν = i → j) Σ {-2 · (αν'-αν)}.
Then, from αν ′ = αν + 1, the formula: (ΔE) i to j = −2 · (αj′-αi) is obtained.

【0038】その他の収差係数についても、同様にΣの
途中の項が消える。例えば、 (PE)i〜j=(μ=i→j)Σ{αν'・(μ=ν+1→k)ΣPμ-αν・(μ=ν→k)ΣPμ} =αj'・(μ=j+1→k)ΣPμ-αi・(μ=i→k)ΣPμ 更に変形して、 (PE)i〜j=(αj'-αi)・(μ=j+1→k)ΣPμ-αi・(μ=i→
j)ΣPμ ここで、 (μ=j+1→k)ΣPμ:手ぶれ補正群より後のPの和(ペッツ
バール和) (μ=i→j)ΣPμ:手ぶれ補正群のPの和 である。 (PE)i〜j=(αj'-αi)PR-αi・PD ただし、 ( )R:手ぶれ補正群より後の収差係数の和 ( )D:手ぶれ補正群の収差係数の和 である。
With respect to the other aberration coefficients, the terms in the middle of Σ similarly disappear. For example, (PE) i ~ j = (μ = i → j) Σ {αν '・ (μ = ν + 1 → k) ΣPμ-αν ・ (μ = ν → k) ΣPμ} = αj' ・ (μ = j + 1 → k) ΣPμ-αi ・ (μ = i → k) ΣPμ Further transformation, (PE) i〜j = (αj'-αi) ・ (μ = j + 1 → k) ΣPμ-αi ・(μ = i →
j) ΣPμ where (μ = j + 1 → k) ΣPμ: Sum of P after the camera shake correction group (Petzval sum) (μ = i → j) ΣPμ: Sum of P of the camera shake correction group. (PE) i to j = (αj'-αi) P R -αi ・ P D where () R is the sum of aberration coefficients after the image stabilization group () D : Is the sum of aberration coefficients of the image stabilization group .

【0039】上記のように、像点移動量の物面上のもの
への変換と、複数の面i〜jが偏心した場合の式への変形
とによって、次の式(3A)〜(3F)で表される偏心収差係数
が得られる。そして、各偏心収差係数を式(3A)〜(3F)の
通りに定義し直すと、式(1A)〜(1H)を物面上の像点移動
量を表す式として、そのまま用いることができる。 (ΔE)i〜j=-2・(αj'-αi) ……(3A) (VE1)i〜j=(αj'-αi)・VR-(αj'#-αi#)・IIIR-(αi・VD-αi#・IIID) ……( 3B) (VE2)i〜j=(αj#-αi#)・PR-αi#・PD …(3C) (IIIE)i〜j=(αj'-αi)・IIIR-(αj'#-αi#)・IIR-(αi・IIID-αi#・IID) … …(3D) (PE)i〜j=(αj'-αi)・PR-αi・PD ……(3E) (IIE)i〜j=(αj'-αi)・IIR-(αj'#-αi#)・IR-(αi・IID-αi#・ID) ……(3F )
As described above, the following equations (3A) to (3F) are obtained by converting the image point movement amount into that on the object plane and transforming it into the equation when a plurality of surfaces i to j are eccentric. The decentering aberration coefficient represented by) is obtained. Then, by redefining each eccentric aberration coefficient as in equations (3A) to (3F), equations (1A) to (1H) can be used as they are as an equation representing the image point movement amount on the object surface. . (ΔE) i~j = -2 · ( αj'-αi) ...... (3A) (VE1) i~j = (αj'-αi) · V R - (αj '# - αi #) · III R - (αi ・ V D -αi # ・ III D ) …… (3B) (VE2) i〜j = (αj # -αi #) ・ P R -αi # ・ P D … (3C) (IIIE) i〜j = (αj'-αi) ・ III R- (αj '#-αi #) ・ II R- (αi ・ III D -αi # ・ II D ) ...… (3D) (PE) i〜j = (αj' -αi) · P R -αi · P D ...... (3E) (IIE) i~j = (αj'-αi) · II R - (αj '# - αi #) · I R - (αi · II D -αi # ・ I D ) …… (3F)

【0040】[軸外像点移動誤差]次に、軸外像点移動
誤差を説明する。(反転した系の)偏心収差係数をΔE,V
E1,VE2,IIIE,PE,IIEとする。物面上での偏心による
像点移動(物面上回転変換前)は{主光線(R=0)において
は}、次の式(4A),(4B)で表される。なお、式(4A),(4
B)は、式(1A),(1B)のRをR=0としたものである。 ΔY#=-(E/2α'k)・[ΔE+(N・tanω)2・{(2+cos2φω)VE1-VE2}] ……(4A) ΔZ#=-(E/2α')・{(N・tanω)2・sin2φω)・VE1} ……(4B)
[Off-axis image point movement error] Next, the off-axis image point movement error will be described. The eccentric aberration coefficient (of the inverted system) is ΔE, V
E1, VE2, IIIE, PE, IIE. The image point movement due to eccentricity on the object surface (before rotation conversion on the object surface) is {in the principal ray (R = 0)} and expressed by the following equations (4A) and (4B). Note that equations (4A), (4
In B), R in the equations (1A) and (1B) is set to R = 0. ΔY # =-(E / 2α ' k ) ・ [ΔE + (N ・ tanω) 2・ {(2 + cos 2 φω) VE1-VE2}] …… (4A) ΔZ # =-(E / 2α') ・{(N ・ tanω) 2・ sin2φω) ・ VE1} …… (4B)

【0041】上記式(4A),(4B)に基づいて、次の式(4
C),(4D)が得られる(軸上光、tanω=0)。 ΔY0#=-(E/2α'k)・ΔE ……(4C) ΔZ0#=0 ……(4D)
Based on the above equations (4A) and (4B), the following equation (4
C) and (4D) are obtained (axial light, tan ω = 0). ΔY 0 # =-(E / 2α ' k ) ・ ΔE …… (4C) ΔZ 0 # = 0 …… (4D)

【0042】次に、図22に基づいて回転変換を説明す
る。図22(A)から式: Y#=g$k・tanω が成り立つ。正弦定理により、 Y'#/{sin(π/2-ω')}=(Y#+ΔY#-ΔY0#)/{sin(π/2+ω'
-θ)} となり、回転変換後のΔY’#は、次の式: ΔY'#=(Y'#)-(Y#) =[Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・cos(ω'-θ)]/cos(ω'-θ )で表される。この式の分子のみを変形する。 [Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・cos(ω'-θ)] =Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・cosθ・cosω'-Y#・sinθ・si nω' =(1-cosθ)・Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・sinθ・sinω' ここで、θは小さく他の2項に比べて無視できるので、
(1-cosθ)≒θ2/2,sinθ≒θである。また、cosω'/{c
os(ω'-θ)}≒1,sinω'/{cos(ω'-θ)}≒tanωであ
る。
Next, the rotation conversion will be described with reference to FIG. From FIG. 22 (A), the equation: Y # = g $ k · tanω holds. According to the sine theorem, Y '# / {sin (π / 2-ω')} = (Y # + ΔY # -ΔY 0 #) / {sin (π / 2 + ω '
-θ)}, and ΔY '# after rotation conversion becomes the following formula: ΔY'# = (Y '#)-(Y #) = [Y # ・ cosω' + {(ΔY #)-(ΔY 0 #)} ・ Cosω'-Y # ・ cos (ω'-θ)] / cos (ω'-θ) Only the numerator of this equation is transformed. [Y # ・ cosω '+ {(ΔY #)-(ΔY 0 #)} ・ cosω'-Y # ・ cos (ω'-θ)] = Y # ・ cosω' + {(ΔY #)-(ΔY 0 #)} ・ Cosω'-Y # ・ cosθ ・ cosω'-Y # ・ sinθ ・ sin nω '= (1-cosθ) ・ Y # ・ cosω' + {(ΔY #)-(ΔY 0 #)} ・ cosω '-Y # ・ sin θ ・ sin ω' where θ is small and can be ignored compared to the other two terms,
(1-cosθ) ≒ θ 2 /2, a sin [theta ≒ theta. Also, cosω '/ {c
os (ω'-θ)} ≈ 1 and sin ω '/ {cos (ω'-θ)} ≈ tanω.

【0043】従って、式: ΔY'#≒(ΔY#-ΔY0#)-Y#・θ・tanω が得られる。(ΔY#-ΔY0#)は平行偏心の軸外像点移動誤
差を表し、Y#・θ・tanωは回転による付加項(収差係数と
は関係ない)を表す。ただし、このときのωはXY断面上
なので、 ΔY'#≒(ΔY#-ΔY0#)-Y#・θ・tanω・cosφω ……(5A) となる。
Therefore, the equation: ΔY '# ≈ (ΔY # -ΔY 0 #)-Y # · θ · tanω is obtained. (ΔY # −ΔY 0 #) represents the parallel decentering off-axis image point movement error, and Y # · θ · tan ω represents the additional term due to rotation (not related to the aberration coefficient). However, since ω at this time is on the XY cross section, ΔY '# ≈ (ΔY # -ΔY 0 #)-Y # ・ θ ・ tanω ・ cosφω ...... (5A).

【0044】ついで、図23に基づいて像面ISへの変換
を説明する。倍率βは、式: β=g$1/g$k=αk'/α1 で表される。ここで、α1=1/g$1である。一方、像面IS
と物面OSとには、式: Y=β・Y# の関係があり、また、Y#やΔY#は1/αk'×( )の形とな
っているので、次のように変形する。 Y=β・Y# =(αk'/α1)・(1/αk')×( ) =g$1×( ) ここで、g$k'→∞とすると、g$1=-Flとなる。従って、
式: Y=-Fl×( ) =-Fl×αk'×Y# が成り立つ。
Next, the conversion to the image plane IS will be described with reference to FIG. The scaling factor β is represented by the formula: β = g $ 1 / g $ k = α k ′ / α 1 . Here, α 1 = 1 / g $ 1 . On the other hand, the image plane IS
And the object surface OS are related by the formula: Y = β ・ Y #, and Y # and ΔY # are in the form of 1 / α k '× (), so they are transformed as follows. To do. Y = β ・ Y # = (α k '/ α 1 ) ・ (1 / α k ') × () = g $ 1 × () where g $ k ′ → ∞, g $ 1 =- It becomes Fl. Therefore,
Formula: Y = -Fl × () =-Fl × α k '× Y # holds.

【0045】次に、像面上の軸外像点移動誤差を説明す
る。偏心量Eは、式(4C)及びαk'=1/gk'$より、以下の
式: θ=ΔY0#/g$k'=E・ΔE/2 E=2・θ/ΔE で表される。この手ぶれ補正角θが一定となるように規
格化する(0.7deg=0.0122173rad)。
Next, the off-axis image point movement error on the image plane will be described. The eccentricity E can be calculated from the equation (4C) and α k '= 1 / g k ' $ by the following equation: θ = ΔY 0 # / g $ k '= E ・ ΔE / 2 E = 2 ・ θ / ΔE expressed. The camera shake correction angle θ is normalized so as to be constant (0.7 deg = 0.0122173 rad).

【0046】平行偏心(回転変換しない)により、ΔY=
(ΔY#-ΔY0#)を像面変換すると(ここで、N・tanω=Φ/F
l,Φ2=Y2+Z2)、以下の式(6A)〜(6D)が得られる。 ΔY=(θ・Φ2/Fl)・[{(2+cos2・φω)・VE1-VE2}/ΔE] ……(6A) ΔZ=(θ・Φ2/Fl)・[{(sin2・φω)・VE1-VE2}/ΔE] ……(6B) Y+像点,Y-像点{式(6A),(6B)のφω=0,π}: ΔYY=(θ・Y2/Fl)・{(3・VE1-VE2)/ΔE} ……(6C) Z像点{式(6A),(6B)のφω=π/2}: ΔYZ=(θ・Z2/Fl)・{(VE1-VE2)/ΔE} ……(6D)
Due to parallel eccentricity (no rotation conversion), ΔY =
When (ΔY # -ΔY 0 #) is converted to the image plane, (where N ・ tanω = Φ / F
l, Φ 2 = Y 2 + Z 2 ) and the following equations (6A) to (6D) are obtained. ΔY = (θ ・ Φ 2 / Fl) ・ [{(2 + cos2 ・ φω) ・ VE1-VE2} / ΔE] …… (6A) ΔZ = (θ ・ Φ 2 / Fl) ・ [{(sin2 ・ φω ) ・ VE1-VE2} / ΔE] …… (6B) Y + image point, Y image point {φω = 0, π} in equations (6A) and (6B): ΔY Y = (θ ・ Y 2 / Fl ) ・ {(3 ・ VE1-VE2) / ΔE} …… (6C) Z image point {φω = π / 2} of formulas (6A) and (6B): ΔY Z = (θ ・ Z 2 / Fl) ・{(VE1-VE2) / ΔE} ...... (6D)

【0047】次に、回転変換を行う。Y#=-Y/(Fl×
αk')であるので、式(5A)中の-Y#・θ・tanω・cosφωに
関し、式: -Y#・θ・tanω・cosφω=Y/(Fl×αk')・θ・tanω・cosφ
ω が成り立つ。Y+像点,Y-像点では、φω=0,π、また、
tanω/αk'=Yであるので、像面での-Y#・θ・tanω・cosφ
ω=Y2・θ/Flである。これを式(6C)に加えると、次の式
(6E)が得られる。一方、Z像点では、φω=π/2である
ので、像面での-Y#・θ・tanω・cosφω=0である。これ
を式(6D)に加えると、次の式(6F)が得られる。 ΔYY'=(θ・Y2/Fl)・{(3・VE1-VE2-ΔE)/ΔE} ……(6E) ΔYZ'=ΔYZ ……(6F)
Next, rotation conversion is performed. Y # =-Y / (Fl ×
α k '), so -Y # ・ θ ・ tanω ・ cosφω in formula (5A) is expressed as: -Y # ・ θ ・ tanω ・ cosφω = Y / (Fl × α k ') ・ θ ・ tanω・ Cosφ
ω holds. At Y + image point and Y - image point, φω = 0, π, and
tanω / α k '= Y, so -Y # ・ θ ・ tanω ・ cosφ at the image plane
ω = Y 2 · θ / Fl. Adding this to equation (6C) gives
(6E) is obtained. On the other hand, at the Z image point, since φω = π / 2, -Y # · θ · tanω · cos φω = 0 on the image plane. By adding this to the equation (6D), the following equation (6F) is obtained. ΔY Y '= (θ ・ Y 2 / Fl) ・ {(3 ・ VE1-VE2-ΔE) / ΔE} …… (6E) ΔY Z ' = ΔY Z …… (6F)

【0048】[片ボケ]次に、片ボケを説明する。式(1
A),(1B)から、ΔMは{ΔYの(Rの1次の項)φR=0}×g$k'
であり、ΔSは{ΔZの(Rの1次の項)φR=π/2}×g$k'で
ある。まず、回転前の物面OS上では(ここで、αk'=Nk'/
g$k',E/2=θ/ΔEを用いる。)、式: ΔM#=(-g$k'2・θ/Nk')×2・R・(N・tanω)・cosφω・{(3・I
IIE+PE)/ΔE} が成り立つ。そして、回転後は式: ΔM'#≒ΔM#+θY# が成り立つ。
[One-sided blur] Next, one-sided blur will be described. Expression (1
From (A) and (1B), ΔM is {(first order term of R) φR = 0} × g $ k 'of ΔY
And ΔS is {(first-order term of R) φR = π / 2} × g $ k 'of ΔZ. First, on the object OS before rotation (where α k '= N k ' /
g $ k ', E / 2 = θ / ΔE is used. ), Formula: ΔM # = (-g $ k ' 2・ θ / N k ') × 2 ・ R ・ (N ・ tanω) ・ cosφω ・ {(3 ・ I
IIE + PE) / ΔE} holds. Then, after rotation, the formula: ΔM '# ≈ΔM # + θY # holds.

【0049】像面上に変換すると共に、Nk'=1,N=1とす
ると、式: ΔM'=β2・ΔM'# =-g$1 2・θ×2・R・tanω・cosφω・{(3・IIIE+PE)/ΔE}+β・Y・θ が得られ、物面OSを∞とすると(ここで、g$1=-Fl,β→
0,tanω=Y/Fl,φω=0とする。)、メリディオナル片ボ
ケΔM'を表す式(7A)が得られる。同様にして、サジタル
片ボケΔS'を表す式(7B)が得られる。 ΔM'=-2・Fl・Y・θ・R・{(3・IIIE+PE)/ΔE} ……(7A) ΔS'=-2・Fl・Y・θ・R・{(IIIE+PE)/ΔE} ……(7B)
When converting on the image plane and setting N k '= 1 and N = 1, the equation: ΔM' = β 2 · ΔM '# = -g $ 1 2 · θ × 2 · R · tanω · cosφω・ {(3 ・ IIIE + PE) / ΔE} + β ・ Y ・ θ is obtained, and the object surface OS is ∞ (where g $ 1 = -Fl, β →
0, tanω = Y / Fl, φω = 0. ), A formula (7A) expressing the meridional half-blurred ΔM ′ is obtained. Similarly, the equation (7B) expressing the sagittal one-sided blur ΔS ′ is obtained. ΔM '=-2 ・ Fl ・ Y ・ θ ・ R ・ {(3 ・ IIIE + PE) / ΔE} …… (7A) ΔS' =-2 ・ Fl ・ Y ・ θ ・ R ・ {(IIIE + PE) / ΔE} ...... (7B)

【0050】[軸上コマ]次に、軸上コマを説明する。
式(1A)に基づき、ω=0,Upperの偏心によるコマは、
式: ΔYUpper#=ΔY#(ω=0,φR=0)−ΔY#(ω=0,R=0) =-E/(2・α')×R2×3・IIE で表され、ω=0、Lowerの偏心によるコマ(ΔYUpper#と
符号を含めて同じである。)は、式: ΔYLower#=ΔY#(ω=0,φR=π)−ΔY#(ω=0,R=0) =-E/(2・α')×R2×3・IIE で表される。
[On-axis coma] Next, the on-axis coma will be described.
Based on equation (1A), the coma due to eccentricity of ω = 0, Upper is
Formula: ΔY Upper # = ΔY # (ω = 0, φ R = 0) −ΔY # (ω = 0, R = 0) =-E / (2 ・ α ') × R 2 × 3 ・ IIE , Ω = 0, the coma due to the eccentricity of Lower (same as ΔY Upper # including the sign) is expressed by the formula: ΔY Lower # = ΔY # (ω = 0, φ R = π) −ΔY # (ω = 0, R = 0) =-E / (2 · α ′) × R 2 × 3 · IIE

【0051】ω=0なので、軸上コマは回転変換に対して
ほとんど変化しない。物面OSから像面ISへの変換により
(ΔY=β・ΔY#,E/2=θ/ΔE)、式: ΔYUpper=Fl×θ×R2×(3・IIE/ΔE)=ΔYLower が得られ、軸上コマAXCMは、次の式(8A)で表される。 AXCM=(ΔYUpper+ΔYLower)/2 =ΔYUpper ……(8A)
Since ω = 0, the axial coma hardly changes with rotation conversion. By converting from the object surface OS to the image surface IS
(ΔY = β ・ ΔY #, E / 2 = θ / ΔE), formula: ΔY Upper = Fl × θ × R 2 × (3 ・ IIE / ΔE) = ΔY Lower , and the on-axis coma AXCM is It is represented by the equation (8A). AXCM = (ΔY Upper + ΔY Lower ) / 2 = ΔY Upper ...... (8A)

【0052】以上のようにして得られた式(6E),(6F),
(7A),(7B),(8A)中の一部を、新たに以下の式(9A)〜(9
E)で表す手ぶれ収差係数として定義する。 y軸上像点の軸外像点移動誤差… VEY={(3・VE1-VE2-ΔE)/ΔE} …(9A) z軸上像点の軸外像点移動誤差… VEZ={(VE1-VE2)/ΔE} …(9B) メリディオナル片ボケ…………… IIIEM={(3・IIIE+PE)/ΔE} …(9C) サジタル片ボケ…………………… IIIES={(IIIE+PE)/ΔE} …(9D) 軸上コマ…………………………… IIEA={(3・IIE)/ΔE} …(9E)
Equations (6E), (6F), obtained as described above,
A part of (7A), (7B), and (8A) is newly added by the following formulas (9A) to (9A).
It is defined as the camera shake aberration coefficient represented by E). Off-axis image point movement error of y-axis image point VE Y = {(3 ・ VE1-VE2-ΔE) / ΔE} (9A) Off-axis image point movement error of z-axis image point VE Z = { (VE1-VE2) / ΔE}… (9B) Meridional one-sided blur ……………… IIIE M = {(3 ・ IIIE + PE) / ΔE}… (9C) Sagittal one-sided blur …………………… IIIE S = {(IIIE + PE) / ΔE}… (9D) On-axis coma ……………………………… IIE A = {(3 ・ IIE) / ΔE}… (9E)

【0053】上記手ぶれ収差係数を表す式(9A)〜(9E)に
式(3A)〜(3F)を代入して整理すると、手ぶれ収差係数を
表す以下の式(10A)〜(10E)が得られる。 VEY=-1/2・{3VR-3VD・A+2-(3・IIIR+PR)・H#+(3・IIID+PD)・A#} ……(10A) VEZ=-1/2・{VR-VD・A-(IIIR+PR)・H#+(IIID+PD)・A#} ……(10B) IIIEM=-1/2・{(3・IIIR+PR)-(3・IIID+PD)・A-3・IIR・H#+3・IID・A#} ……(10C) IIIES=-1/2・{(IIIR+PR)-(IIID+PD)・A-IIR・H#+IID・A#} ……(10D) IIEA=-3/2・(IIR+IID・A-IR・H#+ID・A#) ……(10E) ただし、 ( )D:手ぶれ補正群の収差係数の和 ( )R:手ぶれ補正群より後(物体側)の収差係数の和 A=αi/(αj'-αi) (ここで、手ぶれ補正群をi〜jとす
る。) A#=αi#/(αj'-αi) H#=(αi'#-αi#)/(αj'-αi) である。
By substituting equations (3A) to (3F) into equations (9A) to (9E) representing the above-mentioned camera shake aberration coefficient and rearranging, the following equations (10A) to (10E) representing the camera shake aberration coefficient are obtained. To be VE Y = -1 / 2 ・ {3V R -3V D・ A + 2- (3 ・ III R + P R ) ・ H # + (3 ・ III D + P D ) ・ A #} …… (10A) VE Z = -1 / 2 ・ {V R -V D・ A- (III R + P R ) ・ H # + (III D + P D ) ・ A #} ...... (10B) IIIE M = -1 / 2 ・{(3 · III R + P R) - (3 · III D + P D) · A-3 · II R · H # + 3 · II D · A #} ...... (10C) IIIE S = -1 / 2・ {(III R + P R )-(III D + P D ) ・ A-II R・ H # + II D・ A #} …… (10D) IIE A = -3/2 ・ (II R + II D・ AI R・ H # + I D・ A #) (10E) However, () D : Sum of aberration coefficients of the image stabilization group () R : Sum of aberration coefficients after (object side) the image stabilization group A = Αi / (αj'-αi) (Here, the camera shake correction groups are i to j.) A # = αi # / (αj'-αi) H # = (αi '#-αi #) / (αj' -αi).

【0054】ΔE=-2・(αj'-αi)は{ここで、(αj'-αi)
は0.7°/mmのとき±0.0122173である。}、(手ぶれ補正
角)/(レンズ偏心量)の係数なので、ほぼ所定の値を目指
す(ただし、手ぶれ補正群が正か負かで符号が異な
る。)。従って、Aは(像側から見た)手ぶれ補正群へのマ
ージナル光線の入射角であり、A#は主光線の入射角に比
例する。手ぶれ補正群中でh#やhがあまり変化しない場
合、H#は主光線のh#とマージナル光線のhとの比を表
す。
ΔE = -2 · (αj'-αi) is {where (αj'-αi)
Is ± 0.0122173 at 0.7 ° / mm. }, (Camera shake correction angle) / (lens eccentricity) coefficient, so aim at almost a predetermined value (however, the sign differs depending on whether the camera shake correction group is positive or negative). Therefore, A is the angle of incidence of the marginal ray on the image stabilization group (as seen from the image side), and A # is proportional to the angle of incidence of the chief ray. When h # and h do not change much in the image stabilization group, H # represents the ratio between the chief ray h # and the marginal ray h.

【0055】上記式(10A)〜(10E)内の各偏心収差係数は
反転系で定義されているので、これらを再度、非反転系
に戻さなければならない。そこで、式(10A)〜(10E)内の
各係数を上述の式(2A)〜(2J)を使って非反転系に戻す
と、以下の式(11A)〜(11E)が得られる。 VEY=+1/2・{3VF-3VD・A-2+(3・IIIF+PF)H#-(3・IIID+PD)・A#} ……(11A) VEZ=+1/2・{VF-VD・A+(IIIF+PF)H#-(IIID+PD)・A#} ……(11B) IIIEM=-1/2・{(3・IIIF+PF)-(3・IIID+PD)・A+3・IIF・H#-3・IID・A#} ……(11C) IIIES=-1/2・{(IIIF+PF)-(IIID+PD)・A+IIF・H#-IID・A#} ……(11D) IIEA=+3/2・(IIF-IID・A+IF・H#-ID・A#) ……(11E) ただし、 ( )D:手ぶれ補正群、非反転系の収差係数の和 ( )F:手ぶれ補正群より前の収差係数の和 A=-αn'/(αn'-αm) A#=αn'#/(αn'-αm) H=-(αn'#-αm#)/(αn'-αm)=-(Σhμ#・φμ)/(Σhμ
・φμ) ΔE=-2(αn'-αm) である(手ぶれ補正群をm→n,反転j←i)。
Since each eccentric aberration coefficient in the above equations (10A) to (10E) is defined in the inversion system, these must be returned to the non-inversion system again. Therefore, when the coefficients in the equations (10A) to (10E) are returned to the non-inversion system using the above equations (2A) to (2J), the following equations (11A) to (11E) are obtained. VE Y = + 1/2 ・ {3V F -3V D・ A-2 + (3 ・ III F + P F ) H #-(3 ・ III D + P D ) ・ A #} …… (11A) VE Z = + 1/2 ・ {V F -V D・ A + (III F + P F ) H #-(III D + P D ) ・ A #} …… (11B) IIIE M = -1 / 2 ・ {(3 · III F + P F) - (3 · III D + P D) · A + 3 · II F · H # -3 · II D · A #} ...... (11C) IIIE S = -1 / 2 · {( III F + P F )-(III D + P D ) ・ A + II F・ H # -II D・ A #} …… (11D) IIE A = + 3/2 ・ (II F -II D・ A + I F / H # -I D / A #) (11E) However, () D : Sum of aberration coefficients of camera shake correction group and non-inversion system () F : Sum of aberration coefficients before camera shake correction group A = -αn '/ (αn'-αm) A # = αn'# / (αn'-αm) H =-(αn '#-αm #) / (αn'-αm) =-(Σhμ # ・ φμ) / ( Σhμ
・ Φμ) ΔE = -2 (αn'-αm) (m → n for image stabilization group, inversion j ← i).

【0056】上記式(11A)〜(11E)から以下のことが分か
る。第1に、前述したように、松居吉哉氏の上記論文の
方法では手ぶれ補正群(すなわち、偏心レンズLS)とそれ
より後の光学系とが光学性能に関係するが、式(11A)〜
(11E)では手ぶれ補正群とそれより前の光学系とが光学
性能に関係する。第2に、軸外像点移動誤差は広角系
(手ぶれ補正群の焦点距離Flが分母)で大きくなり、片ボ
ケ,軸上コマは望遠系で大きくなる傾向がある。
From the above equations (11A) to (11E), the following can be understood. First, as described above, in the method of Yoshiya Matsui, the image stabilization group (that is, the decentering lens LS) and the optical system after that are related to the optical performance.
In (11E), the image stabilization group and the optical system before it are related to the optical performance. Second, the off-axis image point movement error is wide-angle system.
The focal length Fl of the image stabilization group becomes larger in the denominator, and one-sided blur and axial coma tend to become larger in the telephoto system.

【0057】第3に、手ぶれ補正群とそれより前の群の
収差係数を小さくすれば、偏心時の収差劣化は小さくな
るが、軸外像点移動誤差ΔYY’の係数VEYには、定数(式
(11A)中の{ }内の-2)が残る。これは、物面OSと像面IS
とが、回転ブレによって傾いた関係になるため発生する
項である。この定数項(-2)による軸外像点移動誤差は、
広角系で非常に大きくなる。例えば、焦点距離Fl=38mm
では、軸外像点移動誤差ΔYY'=-72μmになり、無視で
きない。また、この定数項(-2)による軸外像点移動誤差
は、各収差係数を"0"にしても残ってしまう。従って、
定数項(-2)を相殺するように各収差係数を設定すること
が望ましい。
Thirdly, if the aberration coefficient of the camera shake correction group and the group before it are reduced, the aberration deterioration at the time of decentering is reduced, but the coefficient VE Y of the off-axis image point movement error ΔY Y 'is Constant (expression
-2 in {} in (11A) remains. This is the object plane OS and the image plane IS
And are terms that occur because of a tilted relationship due to rotational blur. The off-axis image point movement error due to this constant term (-2) is
It becomes very large in wide-angle systems. For example, focal length Fl = 38mm
Then, the off-axis image point movement error ΔY Y '= -72 μm, which cannot be ignored. Further, the off-axis image point movement error due to the constant term (-2) remains even if each aberration coefficient is "0". Therefore,
It is desirable to set each aberration coefficient so as to cancel the constant term (-2).

【0058】第4に、偏心時の収差劣化を小さくするた
めには、各収差係数を小さくするとともに、収差係数に
かかる係数A,A#,H#等を小さくする必要がある。A,A#
については、分母のαn'-αmを大きくすればよいが、こ
れはΔE=-2(αn'-αm)に直結するため、大きすぎるとブ
レ補正感度(何mmレンズを偏心させると光束を何度曲げ
るか)が高くなりすぎ、メカ的な駆動精度が必要にな
る。H#については、手ぶれ補正群が絞りに近い方が、各
面のh#が小さくなり、H#も小さくなる。
Fourthly, in order to reduce the deterioration of aberration upon decentering, it is necessary to reduce each aberration coefficient and also reduce the coefficients A, A #, H #, etc. related to the aberration coefficient. A, A #
As for, the denominator α n '-α m should be increased, but this is directly connected to ΔE = -2 (α n ' -α m ), so if it is too large, the blur correction sensitivity (how many mm the lens decenters) And how many times the light beam is bent) becomes too high, and mechanical driving accuracy is required. Regarding H #, the closer the image stabilization group is to the aperture, the smaller h # on each surface and the smaller H #.

【0059】[0059]

【発明の実施の形態】以下、本発明を実施した手ぶれ補
正機能を有するズームレンズを、図面を参照しつつ説明
する。図1,図5,図9,図13は、第1〜第4の実施
の形態にそれぞれ対応する通常状態(偏心前状態)でのレ
ンズ構成図であり、広角端[W]でのレンズ配置を示して
いる。また、各レンズ構成図中、ri(i=1,2,3,...)は物
体側から数えてi番目の面の曲率半径、di(i=1,2,3,...)
は物体側から数えてi番目の軸上面間隔を示している。
図1,図5,図9,図13中の矢印m1,m2,m3,
m4,m5は、第1群Gr1,第2群Gr2,第3群G
r3,絞りS及び第4群Gr4,並びに第5群Gr5の
広角端[W]から望遠端[T]にかけてのズーム移動をそれ
ぞれ模式的に示している。
BEST MODE FOR CARRYING OUT THE INVENTION A zoom lens having an image stabilization function according to the present invention will be described below with reference to the drawings. FIG. 1, FIG. 5, FIG. 9, and FIG. 13 are lens configuration diagrams in a normal state (pre-eccentric state) corresponding to the first to fourth embodiments, respectively, and the lens arrangement at the wide-angle end [W]. Is shown. Also, in each lens configuration diagram, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, and di (i = 1,2,3, ...).
Indicates the i-th axial upper surface distance counted from the object side.
Arrows m1, m2, m3 in FIG. 1, FIG. 5, FIG. 9, and FIG.
m4 and m5 are the first group Gr1, the second group Gr2, and the third group G
The zoom movements from the wide-angle end [W] to the telephoto end [T] of r3, the aperture stop S, the fourth lens unit Gr4, and the fifth lens unit Gr5 are schematically shown.

【0060】第1の実施の形態は、物体側から順に、正
の屈折力を有する第1群Gr1と、負の屈折力を有する
第2群Gr2と、負の屈折力を有する第3群Gr3と、
正の屈折力を有する第4群Gr4と、負の屈折力を有す
る第5群Gr5と、から成り、各群の間隔を変化させる
ことによりズーミングを行うズームレンズである。そし
て、手ぶれ補正は第2群Gr2を平行偏心させること
(つまり、光軸AXに対して垂直方向に移動させること)
によって行われる。
In the first embodiment, in order from the object side, the first group Gr1 having a positive refractive power, the second group Gr2 having a negative refractive power, and the third group Gr3 having a negative refractive power. When,
The zoom lens includes a fourth group Gr4 having a positive refracting power and a fifth group Gr5 having a negative refracting power, and performs zooming by changing the interval between the groups. Then, the camera shake correction is to decenter the second group Gr2 in parallel.
(That is, move in the direction perpendicular to the optical axis AX)
Done by

【0061】第2〜第4の実施の形態は、物体側から順
に、正の屈折力を有する第1群Gr1と、負の屈折力を
有する第2群Gr2と、正の屈折力を有する第3群Gr
3と、正の屈折力を有する第4群Gr4と、負の屈折力
を有する第5群Gr5と、から成り、各群の間隔を変化
させることによりズーミングを行うズームレンズであ
る。そして、手ぶれ補正は第2群Gr2を平行偏心させ
ることによって行われる。
In the second to fourth embodiments, in order from the object side, the first group Gr1 having a positive refractive power, the second group Gr2 having a negative refractive power, and the first group Gr2 having a positive refractive power. Group 3 Gr
3, a fourth group Gr4 having a positive refracting power and a fifth group Gr5 having a negative refracting power, and is a zoom lens which performs zooming by changing the interval between the groups. Then, the camera shake correction is performed by decentering the second lens unit Gr2 in parallel.

【0062】各実施の形態には、レンズ径が小さく軽量
の第2群Gr2が手ぶれ補正に用いられているため、手
ぶれ駆動系にかかる負担も軽くなっている。しかも、各
群のズーム移動,パワー配置及び各条件式を満たした構
成は、全長を短くしコンパクト化すると共に優れた結像
性能を得る上で効果的なものとなっている。なお、第4
の実施の形態では、手ぶれ補正群である第2群Gr2が
ズーミングにおいて固定であるため、手ぶれ駆動系を鏡
胴内に配置する上で有利である。
In each embodiment, since the second lens unit Gr2 having a small lens diameter and a light weight is used for camera shake correction, the burden on the camera shake drive system is also reduced. Moreover, the zoom movement of each group, the power arrangement, and the configuration satisfying each conditional expression are effective in shortening the overall length and making it compact and obtaining excellent imaging performance. The fourth
In the embodiment, the second lens unit Gr2, which is a camera shake correction unit, is fixed during zooming, which is advantageous in disposing the camera shake drive system in the lens barrel.

【0063】[0063]

【実施例】以下、本発明を実施した手ぶれ補正機能を有
するズームレンズの構成を、コンストラクションデー
タ,収差性能等を挙げて更に具体的に説明する。ここで
例として挙げる実施例1〜実施例4は、前述した第1〜
第4の実施の形態(図1,図5,図9,図13)にそれぞ
れ対応する実施例である。そして、各実施例のコンスト
ラクションデータにおいて、ri(i=1,2,3,...)は物体側
から数えてi番目の面の曲率半径、di(i=1,2,3,...)は物
体側から数えてi番目の軸上面間隔(ここでは、偏心前状
態について示す。)を示しており、Ni(i=1,2,3,...),νi
(i=1,2,3,...)は物体側から数えてi番目のレンズのd線
に対する屈折率(Nd),アッベ数(νd)を示している。
また、コンストラクションデータ中、ズーミングにより
変化する軸上面間隔は、広角端[W]〜ミドル(中間焦点
距離状態)[M]〜望遠端[T]での各群間の実際の面間隔
であり、各状態に対応する全系の焦点距離f及びFナン
バーFNOを併せて示す。さらに、表1に、各実施例にお
ける条件式(1)〜(4)の対応値を示す。
EXAMPLES The structure of a zoom lens having a camera shake correction function embodying the present invention will be described more specifically below with reference to construction data, aberration performance and the like. Examples 1 to 4 given as examples here are the first to first examples described above.
These are examples corresponding to the fourth embodiment (FIGS. 1, 5, 5, 9 and 13). Then, in the construction data of each example, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, di (i = 1,2,3 ,. .) Indicates the i-th shaft upper surface distance (here, the state before eccentricity is shown) counted from the object side, and Ni (i = 1,2,3, ...), νi
(i = 1,2,3, ...) Indicates the refractive index (Nd) and Abbe number (νd) of the i-th lens with respect to the d-line counting from the object side.
Also, in the construction data, the axial upper surface spacing that changes due to zooming is the actual surface spacing between each group at the wide-angle end [W] -middle (intermediate focal length state) [M] -telephoto end [T], The focal length f and the F number FNO of the entire system corresponding to each state are also shown. Further, Table 1 shows corresponding values of the conditional expressions (1) to (4) in each example.

【0064】《実施例1》 f=83.0〜160.0〜234.0 FNO=4.60〜5.81〜5.78 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 97.345 d1 1.700 N1 1.61293 ν1 36.96 r2 48.265 d2 6.460 N2 1.49310 ν2 83.58 r3 -1091.036 d3 0.100 r4 57.984 d4 3.820 N3 1.49310 ν3 83.58 r5 810.051 d5 3.300〜26.272〜39.846 〈第2群Gr2 …負〉 r6 -73.346 d6 1.830 N4 1.71300 ν4 53.93 r7 34.239 d7 3.000 r8 39.600 d8 2.750 N5 1.67339 ν5 29.25 r9 -3349.859 d9 2.000 r10 -35.714 d10 1.215 N6 1.51728 ν6 69.43 r11 -29.097 d11 2.000〜4.000〜6.000 〈第3群Gr3 …負〉 r12 -24.999 d12 1.215 N7 1.51728 ν7 69.43 r13 -30.588 d13 20.453〜4.949〜1.000 〈絞りS,第4群Gr4 …正〉 r14 ∞(絞りS) d14 1.380 r15 60.430 d15 1.300 N8 1.84666 ν8 23.82 r16 26.308 d16 2.460 r17 41.552 d17 2.840 N9 1.51680 ν9 64.20 r18 -115.365 d18 0.400 r19 36.133 d19 4.550 N10 1.51680 ν10 64.20 r20 -42.506 d20 19.811〜9.140〜0.900 〈第5群Gr5 …負〉 r21 214.395 d21 1.080 N11 1.71300 ν11 53.93 r22 23.976 d22 1.540 r23 -181.698 d23 3.480 N12 1.67339 ν12 29.25 r24 -18.797 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd= 89.815〜88.611〜91.997Example 1 f = 83.0 to 160.0 to 234.0 FNO = 4.60 to 5.81 to 5.78 [curvature radius] [axis upper surface interval] [refractive index] [Abbe number] <first group Gr1 ... Positive> r1 97.345 d1 1.700 N1 1.61293 ν1 36.96 r2 48.265 d2 6.460 N2 1.49310 ν2 83.58 r3 -1091.036 d3 0.100 r4 57.984 d4 3.820 N3 1.49310 ν3 83.58 r5 810.051 d5 3.300 to 26.272 to 39.846 <2nd group Gr2… Negative> r6 -830 N4 r6 -73.4. 53.93 r7 34.239 d7 3.000 r8 39.600 d8 2.750 N5 1.67339 ν5 29.25 r9 -3349.859 d9 2.000 r10 -35.714 d10 1.215 N6 1.51728 ν6 69.43 r11 -29.097 d11 2.000 ~ 4.000 ~ 6.000 <3rd group Gr3 ... negative> r12 15-24.999 d12. 1.51728 ν7 69.43 r13 -30.588 d13 20.453 ~ 4.949 ~ 1.000 <Aperture S, 4th group Gr4 ... Positive> r14 ∞ (Aperture S) d14 1.380 r15 60.430 d15 1.300 N8 1.84666 ν8 23.82 r16 26.308 d16 2.460 r17 41.552 d17 2.840 N9 1.51680 ν 64.20 r18 -115.365 d18 0.400 r19 36.133 d19 4.550 N10 1.51680 ν10 64.20 r20 -42.506 d20 19.811 to 9.140 to 0.900 <No. 5th group Gr5 ... Negative> r21 214.395 d21 1.080 N11 1.71300 ν11 53.93 r22 23.976 d22 1.540 r23 -181.698 d23 3.480 N12 1.67339 ν12 29.25 r24 -18.797 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd = 89.815 to 88.611〜

【0065】《実施例2》 f=82.6〜160.0〜234.0 FNO=4.60〜5.81〜6.83 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 97.792 d1 1.700 N1 1.61293 ν1 36.96 r2 46.299 d2 6.460 N2 1.49310 ν2 83.58 r3 -184.667 d3 0.100 r4 50.563 d4 3.820 N3 1.49310 ν3 83.58 r5 241.312 d5 3.300〜23.941〜31.837 〈第2群Gr2 …負〉 r6 -71.122 d6 1.830 N4 1.71300 ν4 53.93 r7 33.113 d7 1.000 r8 20.179 d8 2.000 N5 1.51728 ν5 69.43 r9 24.487 d9 2.000〜4.000〜6.000 〈第3群Gr3 …正〉 r10 30.032 d10 1.215 N6 1.51728 ν6 69.43 r11 19.448 d11 1.000 r12 26.836 d12 2.750 N7 1.67339 ν7 29.25 r13 117.377 d13 23.629〜8.887〜1.306 〈絞りS,第4群Gr4 …正〉 r14 ∞(絞りS) d14 1.380 r15 73.885 d15 1.300 N8 1.84666 ν8 23.82 r16 28.089 d16 2.460 r17 46.118 d17 2.840 N9 1.51680 ν9 64.20 d18 0.400 r19 34.079 d19 4.550 N10 1.51680 ν10 64.20 r20 -44.058 d20 17.850〜6.911〜0.874 〈第5群Gr5 …負〉 r21 512.839 d21 1.080 N11 1.71300 ν11 53.93 r22 24.541 d22 1.540 r23 -133.326 d23 3.480 N12 1.67339 ν12 29.25 r24 -17.645 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd= 88.815〜85.775〜82.052Example 2 f = 82.6 to 160.0 to 234.0 FNO = 4.60 to 5.81 to 6.83 [curvature radius] [axial upper surface spacing] [refractive index] [Abbe number] <first group Gr1 ... Positive> r1 97.792 d1 1.700 N1 1.61293 ν1 36.96 r2 46.299 d2 6.460 N2 1.49310 ν2 83.58 r3 -184.667 d3 0.100 r4 50.563 d4 3.820 N3 1.49310 ν3 83.58 r5 241.312 d5 3.300 ~ 23.941 ~ 31.837 〈2nd group Gr2… Negative〉 r6 -830.4 53.93 r7 33.113 d7 1.000 r8 20.179 d8 2.000 N5 1.51728 ν5 69.43 r9 24.487 d9 2.000〜4.000〜6.000 〈3rd group Gr3 …… positive〉 r10 30.032 d10 1.215 N6 1.51728 ν6 69.43 r11 19.448 d11 1.000 r12 26.836.67 r12 2.750 N7 117.377 d13 23.629 ~ 8.887 ~ 1.306 <Aperture S, 4th group Gr4 ... Positive> r14 ∞ (Aperture S) d14 1.380 r15 73.885 d15 1.300 N8 1.84666 ν8 23.82 r16 28.089 d16 2.460 r17 46.118 d17 2.840 N9 1.51680 ν9 64.20 d18 0.400 r19 34. d19 4.550 N10 1.51680 ν10 64.20 r20 -44.058 d20 17.850 ~ 6.911 ~ 0.874 <5th group Gr5 ... > R21 512.839 d21 1.080 N11 1.71300 ν11 53.93 r22 24.541 d22 1.540 r23 -133.326 d23 3.480 N12 1.67339 ν12 29.25 r24 -17.645 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd = 88.815~85.775~82.052

【0066】《実施例3》 f=82.6〜160.0〜234.0 FNO=4.60〜5.81〜5.95 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 58.900 d1 1.700 N1 1.61293 ν1 36.96 r2 34.284 d2 6.460 N2 1.49310 ν2 83.58 r3 -300.890 d3 0.100 r4 63.185 d4 3.820 N3 1.49310 ν3 83.58 r5 98.931 d5 3.300〜28.301〜41.700 〈第2群Gr2 …負〉 r6 -74.716 d6 1.830 N4 1.71300 ν4 53.93 r7 29.553 d7 1.000 r8 23.424 d8 1.215 N5 1.51728 ν5 69.43 r9 39.791 d9 2.500〜4.000〜7.500 〈第3群Gr3 …正〉 r10 36.855 d10 1.215 N6 1.51728 ν6 69.43 r11 21.931 d11 1.000 r12 29.252 d12 2.750 N7 1.67339 ν7 29.25 r13 212.765 d13 29.756〜11.469〜1.306 〈絞りS,第4群Gr4 …正〉 r14 ∞(絞りS) d14 1.380 r15 62.924 d15 1.300 N8 1.84666 ν8 23.82 r16 28.043 d16 2.460 d17 2.840 N9 1.51680 ν9 64.20 r18 -86.763 d18 0.400 r19 32.661 d19 4.550 N10 1.51680 ν10 64.20 r20 -50.825 d20 18.926〜8.308〜0.874 〈第5群Gr5 …負〉 r21 149.097 d21 1.080 N11 1.71300 ν11 53.93 r22 24.519 d22 1.540 r23 -121.815 d23 3.480 N12 1.67339 ν12 29.25 r24 -18.056 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd= 95.733〜93.328〜92.631Example 3 f = 82.6 to 160.0 to 234.0 FNO = 4.60 to 5.81 to 5.95 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] <first group Gr1 ... Positive> r1 58.900 d1 1.700 N1 1.61293 ν1 36.96 r2 34.284 d2 6.460 N2 1.49310 ν2 83.58 r3 -300.890 d3 0.100 r4 63.185 d4 3.820 N3 1.49310 ν3 83.58 r5 98.931 d5 3.300 to 28.301 to 41.700 <second group Gr2… Negative> r6 -830 N4 r6 -74.4 7.74 53.93 r7 29.553 d7 1.000 r8 23.424 d8 1.215 N5 1.51728 ν5 69.43 r9 39.791 d9 2.500 to 4.000 〜 7.500 〈3rd group Gr3… positive〉 r10 36.855 d10 1.215 N6 1.51728 ν6 69.43 r11 21.931 d11 1.000 r12 29.252 r3 237 2.75 d12 2.750 2. 212.765 d13 29.756 ~ 11.469 ~ 1.306 <Aperture S, 4th group Gr4 ... Positive> r14 ∞ (Aperture S) d14 1.380 r15 62.924 d15 1.300 N8 1.84666 ν8 23.82 r16 28.043 d16 2.460 d17 2.840 N9 1.51680 ν9 64.20 r18 -8619 63d18 0.400 r 32.661 d19 4.550 N10 1.51680 ν10 64.20 r20 -50.825 d20 18.926 ~ 8.308 ~ 0.874 <5th group Gr5 ... Negative> r21 149.097 d21 1.080 N11 1.71300 ν11 53.93 r22 24.519 d22 1.540 r23 -121.815 d23 3.480 N12 1.67339 ν12 29.25 r24 -18.056 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd = 95.733 to 93.328 to 92.631

【0067】《実施例4》 f=82.6〜160.0〜234.0 FNO=4.60〜5.90〜6.00 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 61.148 d1 1.700 N1 1.61293 ν1 36.96 r2 34.001 d2 7.500 N2 1.49310 ν2 83.58 r3 -253.109 d3 0.100 r4 60.899 d4 4.200 N3 1.49310 ν3 83.58 r5 95.792 d5 3.300〜25.514〜41.021 〈第2群Gr2 …負〉 r6 -85.359 d6 1.830 N4 1.71300 ν4 53.93 r7 26.983 d7 1.000 r8 22.823 d8 1.215 N5 1.51728 ν5 69.43 r9 40.300 d9 2.500〜4.000〜7.500 〈第3群Gr3 …正〉 r10 35.792 d10 1.215 N6 1.51728 ν6 69.43 r11 21.684 d11 1.000 r12 29.241 d12 2.750 N7 1.67339 ν7 29.25 r13 217.960 d13 29.529〜12.908〜1.306 〈絞りS,第4群Gr4 …正〉 r14 ∞(絞りS) d14 1.380 r15 55.422 d15 1.300 N8 1.84666 ν8 23.82 d16 2.460 r17 47.314 d17 2.840 N9 1.51680 ν9 64.20 r18 -83.181 d18 0.400 r19 34.948 d19 4.550 N10 1.51680 ν10 64.20 r20 -47.390 d20 17.734〜8.310〜0.874 〈第5群Gr5 …負〉 r21 198.738 d21 1.080 N11 1.71300 ν11 53.93 r22 24.489 d22 1.540 r23 -114.315 d23 3.480 N12 1.67339 ν12 29.25 r24 -17.995 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd= 95.734〜93.403〜93.372Example 4 f = 82.6 to 160.0 to 234.0 FNO = 4.60 to 5.90 to 6.00 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] <first group Gr1 ... Positive> r1 61.148 d1 1.700 N1 1.61293 ν1 36.96 r2 34.001 d2 7.500 N2 1.49310 ν2 83.58 r3 -253.109 d3 0.100 r4 60.899 d4 4.200 N3 1.49310 ν3 83.58 r5 95.792 d5 3.300 to 25.514 to 41.021 <second group Gr2… Negative> r6 -85.4 r6 -85.4 53.93 r7 26.983 d7 1.000 r8 22.823 d8 1.215 N5 1.51728 ν5 69.43 r9 40.300 d9 2.500〜4.000〜7.500 〈3rd group Gr3… positive〉 r10 35.792 d10 1.215 N6 1.51728 ν6 69.43 r11 21.684 d11 1.000 r12 29.241 r12 2.750 2. 217.960 d13 29.529 to 12.908 to 1.306 <Aperture S, 4th group Gr4 ... Positive> r14 ∞ (Aperture S) d14 1.380 r15 55.422 d15 1.300 N8 1.84666 ν8 23.82 d16 2.460 r17 47.314 d17 2.840 N9 1.51680 ν9 64.20 r18 -83.181 d18 0.4 34.948 d19 4.550 N10 1.51680 ν10 64.20 r20 -47.390 d20 17.734〜8.310〜0.874 〈5th group Gr5 Negative> r21 198.738 d21 1.080 N11 1.71300 ν11 53.93 r22 24.489 d22 1.540 r23 -114.315 d23 3.480 N12 1.67339 ν12 29.25 r24 -17.995 d24 1.130 N13 1.75450 ν13 51.57 r25 ∞ Σd = 95.734~93.403~93.372

【0068】[0068]

【表1】 [Table 1]

【0069】図2,図6,図10,図14は、それぞれ
実施例1〜実施例4に対応する縦収差図である。各図
中、[W]は広角端,[M]は中間焦点距離状態(ミドル),
[T]は望遠端における通常状態(偏心前状態)での収差を
示している。また、実線(d)はd線に対する収差を表わ
し、破線(SC)は正弦条件を表わす。さらに、破線(D
M)と実線(DS)はメリディオナル面とサジタル面での
非点収差をそれぞれ表わしている。
2, FIG. 6, FIG. 10 and FIG. 14 are longitudinal aberration diagrams corresponding to Examples 1 to 4, respectively. In each figure, [W] is the wide-angle end, [M] is the intermediate focal length state (middle),
[T] indicates the aberration in the normal state (pre-eccentric state) at the telephoto end. Further, the solid line (d) represents the aberration with respect to the d line, and the broken line (SC) represents the sine condition. In addition, the broken line (D
M) and the solid line (DS) represent astigmatism on the meridional surface and the sagittal surface, respectively.

【0070】図3及び図4,図7及び図8,図11及び
図12,図15及び図16は、実施例1〜実施例4の広
角端[W]及び望遠端[T]に対応する横収差図であり、そ
れぞれ第2群Gr2の偏心前[A]と偏心後[B]のメリデ
ィオナル面の光束についての横収差を示している。各偏
心後の収差図[B]は、第2群Gr2の手ぶれ補正角θ=
0.7°(=0.0122173rad)の補正状態での収差を示してい
る。
FIGS. 3 and 4, FIG. 7 and FIG. 8, FIG. 11 and FIG. 12, FIG. 15 and FIG. 16 correspond to the wide-angle end [W] and the telephoto end [T] of the first to fourth embodiments. It is a lateral-aberration figure, and shows the lateral-aberration about the light flux of the meridional surface before decentering [A] and after decentering [B] of the 2nd group Gr2, respectively. The aberration diagram [B] after each decentering shows that the camera shake correction angle θ of the second group Gr2 is
The aberration in the corrected state of 0.7 ° (= 0.0122173rad) is shown.

【0071】[0071]

【発明の効果】以上説明したように本発明によれば、通
常状態、補正状態のいずれにおいても諸収差が良好に補
正され、全長が短くコンパクトな手ぶれ補正機能を有す
るズームレンズを実現することができる。
As described above, according to the present invention, it is possible to realize a zoom lens which has a small length and is compact in size and which is capable of properly correcting various aberrations in both a normal state and a corrected state. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態(実施例1)のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment (Example 1).

【図2】実施例1の偏心前の縦収差図。FIG. 2 is a longitudinal aberration diagram of Example 1 before decentering.

【図3】実施例1の広角端における偏心前後のメリディ
オナル横収差を示す収差図。
FIG. 3 is an aberration diagram showing meridional lateral aberration before and after decentering at the wide-angle end in Example 1.

【図4】実施例1の望遠端における偏心前後のメリディ
オナル横収差を示す収差図。
FIG. 4 is an aberration diagram showing meridional lateral aberrations before and after decentering at the telephoto end according to Example 1;

【図5】第2の実施の形態(実施例2)のレンズ構成図。FIG. 5 is a lens configuration diagram of a second embodiment (Example 2).

【図6】実施例2の偏心前の縦収差図。FIG. 6 is a longitudinal aberration diagram of Example 2 before decentering.

【図7】実施例2の広角端における偏心前後のメリディ
オナル横収差を示す収差図。
FIG. 7 is an aberration diagram showing meridional lateral aberration before and after decentering at the wide-angle end in Example 2;

【図8】実施例2の望遠端における偏心前後のメリディ
オナル横収差を示す収差図。
FIG. 8 is an aberration diagram showing meridional lateral aberration before and after decentering at the telephoto end according to Example 2;

【図9】第3の実施の形態(実施例3)のレンズ構成図。FIG. 9 is a lens configuration diagram of a third embodiment (Example 3).

【図10】実施例3の偏心前の縦収差図。FIG. 10 is a longitudinal aberration diagram for Example 3 before decentering.

【図11】実施例3の広角端における偏心前後のメリデ
ィオナル横収差を示す収差図。
FIG. 11 is an aberration diagram showing meridional lateral aberration before and after decentering at the wide-angle end in Example 3;

【図12】実施例3の望遠端における偏心前後のメリデ
ィオナル横収差を示す収差図。
FIG. 12 is an aberration diagram showing meridional lateral aberration before and after decentering at the telephoto end in Example 3;

【図13】第4の実施の形態(実施例4)のレンズ構成
図。
FIG. 13 is a lens configuration diagram of a fourth embodiment (Example 4).

【図14】実施例4の偏心前の縦収差図。14 is a longitudinal aberration diagram of Example 4 before decentering. FIG.

【図15】実施例4の広角端における偏心前後のメリデ
ィオナル横収差を示す収差図。
FIG. 15 is an aberration diagram showing meridional lateral aberration before and after decentering at the wide angle end in Example 4;

【図16】実施例4の望遠端における偏心前後のメリデ
ィオナル横収差を示す収差図。
FIG. 16 is an aberration diagram showing meridional lateral aberration before and after decentering at the telephoto end according to Example 4;

【図17】手ぶれ補正光学系の像劣化の要因を説明する
ための図。
FIG. 17 is a diagram for explaining a factor of image deterioration of the image stabilizing optical system.

【図18】光学系と座標との関係を説明するための図。FIG. 18 is a diagram for explaining the relationship between the optical system and coordinates.

【図19】偏心による光線通過位置の違いを説明するた
めの図。
FIG. 19 is a diagram for explaining a difference in light beam passing position due to eccentricity.

【図20】物面の回転変換を説明するための図。FIG. 20 is a diagram for explaining rotation conversion of an object surface.

【図21】反転系・非反転系の収差係数を説明するため
の図。
FIG. 21 is a diagram for explaining aberration coefficients of inverted and non-inverted systems.

【図22】回転変換を説明するための図。FIG. 22 is a diagram for explaining rotation conversion.

【図23】像面への変換を説明するための図。FIG. 23 is a diagram for explaining conversion to an image plane.

【符号の説明】[Explanation of symbols]

Gr1 …第1群 Gr2 …第2群 Gr3 …第3群 Gr4 …第4群 Gr5 …第5群 S …絞り AX …光軸 Gr1 ... 1st group Gr2 ... 2nd group Gr3 ... 3rd group Gr4 ... 4th group Gr5 ... 5th group S ... Aperture AX ... Optical axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に正の屈折力を有する第1
群及び負の屈折力を有する第2群を備え、かつ、負の屈
折力を有する最終群を最も像側に備え、各群の間隔を変
化させることによって変倍を行うズームレンズであっ
て、 広角端から望遠端への変倍に際して前記第1群及び前記
最終群が物体側へ移動し、前記第2群を光軸に対して垂
直方向に移動させることによって手ぶれ補正を行い、以
下の条件を満足することを特徴とする手ぶれ補正機能を
有するズームレンズ; 0.2<|fL/fW|<0.4 0.2<|f2/fW|<4.0 ただし、 fL:最終群の焦点距離、 fW:広角端での全系の焦点距離、 f2:第2群の焦点距離 である。
1. A first lens element having a positive refractive power in order from the object side.
A zoom lens comprising a group and a second group having a negative refractive power, and a final group having a negative refractive power on the most image side, and performing zooming by changing the distance between the groups. Upon zooming from the wide-angle end to the telephoto end, the first group and the final group move to the object side, and the second group moves vertically to perform optical image stabilization, and A zoom lens with an image stabilization function characterized by satisfying the following condition; 0.2 <| fL / fW | <0.4 0.2 <| f2 / fW | <4.0, where fL: focal length of the final lens group, fW: at wide-angle end The focal length of the entire system, f2: focal length of the second lens group.
【請求項2】 物体側から順に、正の屈折力を有する第
1群と、負の屈折力を有する第2群と、正又は負の屈折
力を有する第3群と、正の屈折力を有する第4群と、負
の屈折力を有する第5群と、から成り、各群の間隔を変
化させることによって変倍を行う5群構成のズームレン
ズであって、 広角端から望遠端への変倍に際して前記第1群及び前記
第5群が物体側へ移動し、前記第2群を光軸に対して垂
直方向に移動させることによって手ぶれ補正を行い、以
下の条件を満足することを特徴とする手ぶれ補正機能を
有するズームレンズ; 0.2<|f5/fW|<0.4 0.2<|f2/fW|<4.0 ただし、 f5:第5群の焦点距離、 fW:広角端での全系の焦点距離、 f2:第2群の焦点距離 である。
2. A first group having a positive refracting power, a second group having a negative refracting power, a third group having a positive or negative refracting power, and a positive refracting power in order from the object side. A zoom lens of a five-group configuration that includes a fourth group that has and a fifth group that has negative refractive power, and that performs zooming by changing the distance between each group. Upon zooming, the first group and the fifth group move to the object side, and the second group moves in the direction perpendicular to the optical axis to perform camera shake correction, and the following conditions are satisfied. And a zoom lens with a camera shake correction function; 0.2 <| f5 / fW | <0.4 0.2 <| f2 / fW | <4.0, where f5 is the focal length of the fifth lens group, and fW is the focal length of the entire system at the wide-angle end. , F2: focal length of the second lens group.
JP03681496A 1996-02-23 1996-02-23 Zoom lens with camera shake correction function Expired - Fee Related JP3387305B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03681496A JP3387305B2 (en) 1996-02-23 1996-02-23 Zoom lens with camera shake correction function
US08/802,756 US6266189B1 (en) 1996-02-23 1997-02-20 Zoom lens system having an image blur compensating function
EP97102979A EP0791845A3 (en) 1996-02-23 1997-02-24 Zoom lens system having an image blur compensating function
US09/689,531 US6285502B1 (en) 1996-02-23 2000-10-12 Zoom lens system having an image blur compensation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03681496A JP3387305B2 (en) 1996-02-23 1996-02-23 Zoom lens with camera shake correction function

Publications (2)

Publication Number Publication Date
JPH09230239A true JPH09230239A (en) 1997-09-05
JP3387305B2 JP3387305B2 (en) 2003-03-17

Family

ID=12480243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03681496A Expired - Fee Related JP3387305B2 (en) 1996-02-23 1996-02-23 Zoom lens with camera shake correction function

Country Status (1)

Country Link
JP (1) JP3387305B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221398A (en) * 1999-02-01 2000-08-11 Tamron Co Ltd Inner focus zoom lens
JP2009251114A (en) * 2008-04-02 2009-10-29 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
US8023814B2 (en) 2009-01-30 2011-09-20 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8120850B2 (en) 2009-01-30 2012-02-21 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8130453B2 (en) 2009-01-30 2012-03-06 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP2012088366A (en) * 2010-10-15 2012-05-10 Sigma Corp Telephoto zoom lens
US8190011B2 (en) 2009-01-30 2012-05-29 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP2012225987A (en) * 2011-04-15 2012-11-15 Canon Inc Zoom lens and imaging device having the same
CN102819104A (en) * 2009-12-22 2012-12-12 佳能株式会社 Zoom lens
JP2013011915A (en) * 2012-10-18 2013-01-17 Canon Inc Zoom lens and imaging apparatus with the same
JP2013011914A (en) * 2012-10-18 2013-01-17 Canon Inc Zoom lens and imaging apparatus with the same
US8471946B2 (en) 2009-01-30 2013-06-25 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
WO2014192507A1 (en) * 2013-05-30 2014-12-04 オリンパス株式会社 Zoom lens and image capture device comprising same
JP2016151664A (en) * 2015-02-17 2016-08-22 株式会社タムロン Optical system and imaging apparatus
JP2020086357A (en) * 2018-11-30 2020-06-04 株式会社リコー Zoom lens system and image capturing device having the same
JPWO2021131369A1 (en) * 2019-12-23 2021-07-01
JP2021117351A (en) * 2020-01-27 2021-08-10 キヤノン株式会社 Zoom lens, image capturing device and image capturing system having the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221398A (en) * 1999-02-01 2000-08-11 Tamron Co Ltd Inner focus zoom lens
JP2009251114A (en) * 2008-04-02 2009-10-29 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
US8471946B2 (en) 2009-01-30 2013-06-25 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8023814B2 (en) 2009-01-30 2011-09-20 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8120850B2 (en) 2009-01-30 2012-02-21 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8130453B2 (en) 2009-01-30 2012-03-06 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
US8190011B2 (en) 2009-01-30 2012-05-29 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
CN102819104A (en) * 2009-12-22 2012-12-12 佳能株式会社 Zoom lens
JP2012088366A (en) * 2010-10-15 2012-05-10 Sigma Corp Telephoto zoom lens
US8760771B2 (en) 2011-04-15 2014-06-24 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2012225987A (en) * 2011-04-15 2012-11-15 Canon Inc Zoom lens and imaging device having the same
JP2013011914A (en) * 2012-10-18 2013-01-17 Canon Inc Zoom lens and imaging apparatus with the same
JP2013011915A (en) * 2012-10-18 2013-01-17 Canon Inc Zoom lens and imaging apparatus with the same
JPWO2014192507A1 (en) * 2013-05-30 2017-02-23 オリンパス株式会社 Zoom lens and image pickup apparatus including the same
JP5977888B2 (en) * 2013-05-30 2016-08-24 オリンパス株式会社 Zoom lens and image pickup apparatus including the same
WO2014192507A1 (en) * 2013-05-30 2014-12-04 オリンパス株式会社 Zoom lens and image capture device comprising same
US9588324B2 (en) 2013-05-30 2017-03-07 Olympus Corporation Zoom lens and image pickup apparatus using the same
JP2016151664A (en) * 2015-02-17 2016-08-22 株式会社タムロン Optical system and imaging apparatus
JP2020086357A (en) * 2018-11-30 2020-06-04 株式会社リコー Zoom lens system and image capturing device having the same
JPWO2021131369A1 (en) * 2019-12-23 2021-07-01
WO2021131369A1 (en) * 2019-12-23 2021-07-01 株式会社ニコン Variable-power optical system, optical instrument, and method for manufacturing variable-power optical system
CN114868067A (en) * 2019-12-23 2022-08-05 株式会社尼康 Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
CN114868067B (en) * 2019-12-23 2024-03-22 株式会社尼康 Variable magnification optical system and optical device
JP2021117351A (en) * 2020-01-27 2021-08-10 キヤノン株式会社 Zoom lens, image capturing device and image capturing system having the same

Also Published As

Publication number Publication date
JP3387305B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
JP4950630B2 (en) Zoom lens and imaging apparatus having the same
EP2000839B1 (en) Zoom lens and image projection apparatus having the same
JP3387305B2 (en) Zoom lens with camera shake correction function
US6266189B1 (en) Zoom lens system having an image blur compensating function
JP4902240B2 (en) Zoom lens and imaging apparatus having the same
JP2017078763A (en) Zoom lens and imaging device having the same
JP2008070519A (en) Zoom lens and imaging apparatus having the same
JP2007322635A (en) Zoom lens and imaging apparatus having the same
US7075730B2 (en) Zoom lens system and image pickup apparatus including the same
JPH09265042A (en) Photographing optical system provided with camera shake correcting function
JPH0882769A (en) Zoom lens having function to correct hand shake
JP2016126226A (en) Zoom lens and image capturing device having the same
JPH1164728A (en) Zoom lens having camera shake correction function
JP3365087B2 (en) Optical system with camera shake correction function
JP2001296476A (en) Zoom lens and optical equipment using the same
JP3417192B2 (en) Optical system and zoom lens having camera shake correction function
JP3387307B2 (en) Zoom lens with camera shake correction function
JP5295339B2 (en) Zoom lens and imaging apparatus having the same
US20080151383A1 (en) Zoom lens system and image pickup apparatus having the same
JPH09230240A (en) Zoom lens having camera shake correcting function
JPH09230241A (en) Zoom lens having camera shake correcting function
JP6627220B2 (en) Zoom lens and optical equipment
JPH09230235A (en) Zoom lens having camera shake correcting function
JP2000214380A (en) Photographing lens
JPH1164729A (en) Zoom lens having camera shake correction function

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees