JP5295339B2 - Zoom lens and imaging apparatus having the same - Google Patents

Zoom lens and imaging apparatus having the same Download PDF

Info

Publication number
JP5295339B2
JP5295339B2 JP2011250496A JP2011250496A JP5295339B2 JP 5295339 B2 JP5295339 B2 JP 5295339B2 JP 2011250496 A JP2011250496 A JP 2011250496A JP 2011250496 A JP2011250496 A JP 2011250496A JP 5295339 B2 JP5295339 B2 JP 5295339B2
Authority
JP
Japan
Prior art keywords
lens
lens group
lens unit
zoom
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011250496A
Other languages
Japanese (ja)
Other versions
JP2012032842A (en
Inventor
則廣 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011250496A priority Critical patent/JP5295339B2/en
Publication of JP2012032842A publication Critical patent/JP2012032842A/en
Application granted granted Critical
Publication of JP5295339B2 publication Critical patent/JP5295339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a compact-size zoom lens having high optical performance over an entire zoom range. <P>SOLUTION: A zoom lens includes, in order from an object side to an image side, a first lens group of positive refractive power, a second lens group of negative refractive power, a third lens group of positive refractive power, a fourth lens group of negative refractive power, and a fifth lens group of positive refractive power. While the second, third, and fifth lens groups move at the time of zooming, the first and fourth lens groups do not move for zooming. The third lens group is constituted by two positive lenses and one negative lens. When the focal distance of the fourth lens group is f4, the focal distance of the entire system at an wide angle end fw, the focal distance of the negative lens constituting the third lens group f3n, and the focal distance of the third lens group f3, the zoom lens satisfies conditions: 1.0&lt;¾f4¾/fw&lt;17.0 and 0.4&lt;¾f3n¾/f3&lt;1.0 <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、固体撮像素子を用いたデジタルカメラやビデオカメラ等の撮影装置に好適なズームレンズに関するものである。   The present invention relates to a zoom lens suitable for a photographing apparatus such as a digital camera or a video camera using a solid-state image sensor.

固体撮像素子を用いたデジタルカメラ、ビデオカメラ用のズームレンズとしてはレンズ系全体が小型でかつ高ズーム比なものが要求されている。最も物体側のレンズ群が正の屈折力であるポジティブリードタイプのズームレンズは、高ズーム比化が容易で特に、ズーム比10以上のズームレンズによく用いられている。ポジティブリードタイプにてレンズ系全体が小型で高ズーム比な構成として物体側から像側へ順に、正、負、正、負、正の屈折力のレンズ群より成る5群構成のズームレンズが知られている。   As a zoom lens for a digital camera or video camera using a solid-state imaging device, a lens system that is small in size and has a high zoom ratio is required. A positive lead type zoom lens in which the lens unit closest to the object side has a positive refractive power is easy to achieve a high zoom ratio, and is particularly often used for a zoom lens having a zoom ratio of 10 or more. As a positive lead type, the entire lens system is compact and has a high zoom ratio. A zoom lens with a five-group structure consisting of lens groups of positive, negative, positive, negative, and positive refractive power in order from the object side to the image side is known. It has been.

この5群構成のズームレンズにおいて、ズーミングに際して第1レンズ群と第4レンズ群を不動としたズームレンズが知られている(特許文献1〜4)。   Among these five-group zoom lenses, zoom lenses are known in which the first lens group and the fourth lens group are stationary during zooming (Patent Documents 1 to 4).

特許文献1、3、4では、広角端から望遠端へのズーミングに際して第3レンズ群を物体側に単調に移動させた実施例を開示している。   Patent Documents 1, 3, and 4 disclose examples in which the third lens unit is moved monotonously to the object side during zooming from the wide-angle end to the telephoto end.

また特許文献2では、ズーミングに際して第3レンズ群を不動とした実施例を開示している。   Patent Document 2 discloses an example in which the third lens unit is not moved during zooming.

又、前述の5群構成のズームレンズにおいて、ズーミングに際して、第1〜第5レンズ群の全てのレンズ群を移動させるズームレンズが知られている(特許文献5)。   Further, in the zoom lens having the above-described five-group configuration, a zoom lens that moves all the lens groups of the first to fifth lens groups during zooming is known (Patent Document 5).

特開平5−215967号公報JP-A-5-215967 特開平7−311341号公報JP 7-311341 A 特開2002−228931号公報JP 2002-228931 A 米国特許4991943号公報US Pat. No. 4,991,943 特開2002−365547号公報JP 2002-365547 A

近年、デジタルカメラやビデオカメラなどの撮像装置に用いるズームレンズには撮像素子の狭画素化に伴い、高い光学性能を有し、かつレンズ全長の短い小型のズームレンズが要望されている。   In recent years, as a zoom lens used in an image pickup apparatus such as a digital camera or a video camera, a small zoom lens having high optical performance and a short total lens length has been demanded as the image pickup element is narrowed.

特に、これらの要望を満足しようとするズームレンズには、カメラの厚みに強い影響を及ぼす前玉有効径(物体側の第1レンズ群の有効径)を小さくし、小型化を図ることが課題となっている。前玉有効径を小さくするためには、各レンズ群の屈折力を強めれば、レンズ系全体を小型化することが可能である。しかしながらこの方法は、少ないレンズ枚数にてズーム全域にわたり良好な光学性能を維持することが難しい。   In particular, a zoom lens that satisfies these demands has a problem of reducing the effective diameter of the front lens (effective diameter of the first lens unit on the object side), which has a strong effect on the thickness of the camera, and reducing the size. It has become. In order to reduce the effective diameter of the front lens, it is possible to reduce the size of the entire lens system by increasing the refractive power of each lens group. However, with this method, it is difficult to maintain good optical performance over the entire zoom range with a small number of lenses.

また前述した5群構成のズームレンズにおいて、第1レンズ群をズーミングに際して移動させて高ズーム比化を図る方法がある。しかしながら、この方法は、レンズ鏡筒機構が複雑になる、トルクの大きなアクチュエータが必要となる等の課題がある。   In addition, in the zoom lens having the above-described five-group configuration, there is a method of increasing the zoom ratio by moving the first lens group during zooming. However, this method has problems such as a complicated lens barrel mechanism and an actuator with a large torque.

本発明は、レンズ系全体が小型で、高いズーム比のズームレンズ及びそれを用いた撮像装置の提供を目的とする。   An object of the present invention is to provide a zoom lens having a small overall lens system and a high zoom ratio, and an imaging apparatus using the same.

本発明のズームレンズは、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群より構成され、前記第2レンズ群と前記第3レンズ群と前記第5レンズ群はズーミングに際して移動し、前記第1レンズ群と前記第4レンズ群はズーミングのためには不動であり、
前記第1レンズ群は、物体側より像側へ順に、負レンズと正レンズとを接合した接合レンズと、正レンズより構成され、
前記第3レンズ群は2枚の正レンズと1枚の負レンズより構成され、
前記第4レンズ群の焦点距離をf4、広角端における全系の焦点距離をfw、前記第3レンズ群を構成する負レンズの焦点距離をf3n、前記第3レンズ群の焦点距離をf3とするとき、
1.0<|f4|/fw<17.0
0.4<|f3n|/f3<1.0
なる条件を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens having a negative refractive power. The fourth lens group includes a fifth lens group having a positive refractive power, and the second lens group, the third lens group, and the fifth lens group move during zooming, and the first lens group and the fourth lens group move. The lens group is stationary for zooming,
The first lens group includes a cemented lens obtained by cementing a negative lens and a positive lens in order from the object side to the image side, and a positive lens.
The third lens group includes two positive lenses and one negative lens,
The focal length of the fourth lens group is f4, the focal length of the entire system at the wide angle end is fw, the focal length of the negative lens constituting the third lens group is f3n, and the focal length of the third lens group is f3. When
1.0 <| f4 | / fw <17.0
0.4 <| f3n | / f3 <1.0
It is characterized by satisfying the following conditions.

本発明によれば、小型で高ズーム比化のズームレンズが得られる。   According to the present invention, a small zoom lens with a high zoom ratio can be obtained.

実施例1のレンズ断面図Lens sectional view of Example 1 実施例1に対応する数値実施例の広角端における収差図Aberration diagram at the wide-angle end of the numerical example corresponding to Example 1. 実施例1に対応する数値実施例の中間のズーム位置における収差図Aberration diagram at the intermediate zoom position in the numerical value example corresponding to Example 1. 実施例1に対応する数値実施例の望遠端における収差図Aberration diagram at the telephoto end of a numerical example corresponding to Example 1. 実施例2のレンズ断面図Lens sectional view of Example 2 実施例2に対応する数値実施例の広角端における収差図Aberration diagram at the wide-angle end of a numerical example corresponding to Example 2. 実施例2に対応する数値実施例の中間のズーム位置における収差図Aberration diagram at the intermediate zoom position of the numerical example corresponding to Example 2 実施例2に対応する数値実施例の望遠端における収差図Aberration diagram at the telephoto end of a numerical example corresponding to Example 2. 実施例3のレンズ断面図Lens sectional view of Example 3 実施例3に対応する数値実施例の広角端における収差図Aberration diagram at the wide-angle end of the numerical value example corresponding to Example 3 実施例3に対応する数値実施例の中間のズーム位置における収差図Aberration diagram at the intermediate zoom position in the numerical value example corresponding to Example 3 実施例3に対応する数値実施例の望遠端における収差図Aberration diagram at the telephoto end of a numerical example corresponding to Example 3. 実施例4のレンズ断面図Lens sectional view of Example 4 実施例4に対応する数値実施例の広角端における収差図Aberration diagrams at the wide-angle end of the numerical value example corresponding to Example 4. 実施例4に対応する数値実施例の中間のズーム位置における収差図Aberration diagram at the intermediate zoom position in the numerical value example corresponding to Example 4 実施例4に対応する数値実施例の望遠端における収差図Aberration diagram at the telephoto end of a numerical example corresponding to Example 4. 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

[実施例1]
以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。
[Example 1]
Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.

図1(A)、(B)、(C)は本発明の実施例1のズームレンズの広角端(短焦点距離端)、中間のズーム位置、望遠端(長焦点距離端)におけるレンズ断面図である。図2、図3、図4はそれぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIGS. 1A, 1B, and 1C are sectional views of lenses at the wide-angle end (short focal length end), the intermediate zoom position, and the telephoto end (long focal length end) of the zoom lens according to Embodiment 1 of the present invention. It is. 2, 3 and 4 are aberration diagrams of the zoom lens of Example 1 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively.

図5(A)、(B)、(C)は本発明の実施例2のズームレンズの広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図6、図7、図8はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   5A, 5B, and 5C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end of the zoom lens according to Embodiment 2 of the present invention. 6, 7, and 8 are aberration diagrams of the zoom lens of Example 2 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively.

図9(A)、(B)、(C)は本発明の実施例3のズームレンズの広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図10、図11、図12はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIGS. 9A, 9B, and 9C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end of the zoom lens according to Embodiment 3 of the present invention. 10, 11 and 12 are aberration diagrams of the zoom lens of Example 3 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively.

図13(A)、(B)、(C)は本発明の実施例4のズームレンズの広角端、中間のズーム位置、望遠端におけるレンズ断面図である。図14、図15、図16はそれぞれ実施例4のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   13A, 13B, and 13C are lens cross-sectional views at the wide-angle end, the intermediate zoom position, and the telephoto end of the zoom lens according to the fourth exemplary embodiment of the present invention. FIGS. 14, 15, and 16 are aberration diagrams of the zoom lens of Example 4 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively.

図17は本発明のズームレンズを備えるデジタルカメラ(撮像装置)の要部概略図である。   FIG. 17 is a schematic diagram of a main part of a digital camera (imaging device) including the zoom lens of the present invention.

各実施例のズームレンズは撮像装置に用いられる撮影レンズ系であり、レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。レンズ断面図において、L1は正の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は負の屈折力の第4レンズ群、L5は正の屈折力の第5レンズ群である。   The zoom lens of each embodiment is a photographic lens system used in an imaging apparatus. In the lens cross-sectional view, the left side is the object side (front) and the right side is the image side (rear). In the lens cross-sectional view, L1 is a first lens group having a positive refractive power (optical power = reciprocal of focal length), L2 is a second lens group having a negative refractive power, and L3 is a third lens group having a positive refractive power. , L4 is a fourth lens group having a negative refractive power, and L5 is a fifth lens group having a positive refractive power.

SPは開口絞りであり、第3レンズ群L3の物体側又は第3レンズ群L3中に位置しており、ズーミングに際して、第3レンズ群L3とともに移動している。   SP is an aperture stop, which is located on the object side of the third lens unit L3 or in the third lens unit L3, and moves together with the third lens unit L3 during zooming.

Gは光学フィルター、フェースプレート等に相当する光学ブロックである。IPは像側であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に、銀塩フィルム用カメラのときはフィルム面に相当する。   G is an optical block corresponding to an optical filter, a face plate, or the like. IP is the image side, and when used as a photographing optical system for a video camera or a digital still camera, when the camera is for a silver salt film on the imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor. Corresponds to the film surface.

収差図において、FnoはFナンバー、d、g、C、Fは、順に、フラウンフォーファー線のd線、g線、C線、F線である。ωは半画角、ΔM、ΔSはメリディオナル像面、サジタル像面を表している。   In the aberration diagrams, Fno is the F number, d, g, C, and F are the d-line, g-line, C-line, and F-line of the Fraunhofer line in this order. ω represents a half field angle, and ΔM and ΔS represent a meridional image plane and a sagittal image plane.

尚、以下の各実施例において広角端と望遠端は変倍用レンズ群(第2レンズ群)L2が機構上光軸上移動可能な範囲の両端に位置したときのズーム位置をいう。   In the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the zoom lens unit (second lens unit) L2 is positioned at both ends of the range in which the mechanism can move on the optical axis.

各実施例のズームレンズでは、広角端から望遠端へのズーミングに際して、第2、第3、第5レンズ群L2、L3、L5を矢印のように移動させている。   In the zoom lens of each embodiment, the second, third, and fifth lens groups L2, L3, and L5 are moved as indicated by arrows during zooming from the wide-angle end to the telephoto end.

具体的には、第2レンズ群L2を像側へ単調に移動させて変倍を行っている。第3レンズ群L3を物体側に凸状の軌跡の一部を有しつつ移動させている。   Specifically, zooming is performed by moving the second lens unit L2 monotonously to the image side. The third lens unit L3 is moved while having a part of a convex locus on the object side.

第5レンズ群L5を変倍に伴う像点の変化を補正するように、非直線的に移動している。   The fifth lens unit L5 is moved non-linearly so as to correct the change of the image point due to zooming.

第1レンズ群L1と第4レンズ群L4は、ズーミングのためには不動である。   The first lens unit L1 and the fourth lens unit L4 do not move for zooming.

また、第5レンズ群L5を光軸上移動させてフォーカスを行うリアフォーカス式を採用している。   Further, a rear focus type is employed in which the fifth lens unit L5 is moved on the optical axis for focusing.

例えば望遠端において無限遠物体から近距離物体へのフォーカスは、同図の直線5cに示すように、第5レンズ群L5を前方へ繰り出すことにより行っている。また、同図に示す第5レンズ群L5の実線の移動軌跡である曲線5aと点線の曲線5bは、各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端へのズーミングに伴う像面変動を補正するための移動軌跡を示している。   For example, focusing from an infinitely distant object to a close object at the telephoto end is performed by extending the fifth lens unit L5 forward, as indicated by a straight line 5c in FIG. In addition, a curved line 5a and a dotted line 5b, which are solid line movement trajectories of the fifth lens unit L5 shown in the figure, are zoomed from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement locus | trajectory for correct | amending the image plane fluctuation | variation accompanying this is shown.

このように第5レンズ群L5のズーミングにおける移動軌跡は物体距離によって異なっている。   As described above, the movement locus in zooming of the fifth lens unit L5 differs depending on the object distance.

各実施例において、第3レンズ群L3の全部又は一部を光軸と垂直方向の成分を持つように移動させて光学系全体が振動したときの像ぶれ(像点位置の変動)を補正している。即ち防振を行っている。これにより可変頂角プリズム等の光学部材や防振のためのレンズ群を新たに付加することなく防振を効果的に行っている。   In each embodiment, all or part of the third lens unit L3 is moved so as to have a component in a direction perpendicular to the optical axis to correct image blur (fluctuation in image point position) when the entire optical system vibrates. ing. That is, vibration isolation is performed. As a result, image stabilization is effectively performed without adding a new optical member such as a variable apex angle prism or a lens group for image stabilization.

各実施例では、ズーミングに際して、第1レンズ群L1を不動とし、第3レンズ群L3を移動させている。   In each embodiment, during zooming, the first lens unit L1 is fixed and the third lens unit L3 is moved.

ズーミングに際して第1レンズ群L1を不動とすると鏡筒構成上、外部からの圧力に強い構成とすることができる。   If the first lens unit L1 is not moved during zooming, the structure of the lens barrel can be made strong against external pressure.

特に電動ズームとして第1レンズ群L1を動かす際は外部からの圧力に負けないように大きなトルクのアクチュエータが必要となる。このようなアクチュエータは小型化、静音化の面で課題を有することが多い。各実施例ではズーミングに際して第1レンズ群L1を不動として第2レンズ群L2以降のレンズ群を移動させることで比較的トルクの小さなアクチュエータのみで構成している。これにより、レンズ系の小型化、及びズーミングの際の静音化を図っている。   In particular, when the first lens unit L1 is moved as an electric zoom, an actuator with a large torque is required so as not to lose the pressure from the outside. Such an actuator often has problems in terms of miniaturization and noise reduction. In each of the embodiments, the first lens unit L1 is not moved during zooming, and the second lens unit L2 and subsequent lens units are moved so that only an actuator having a relatively small torque is used. As a result, the lens system is reduced in size and noise is reduced during zooming.

次にズーミングに際し、第3レンズ群L3を物体側に凸状の軌跡で移動させることにより前玉径の小型化を図っている。   Next, at the time of zooming, the front lens diameter is reduced by moving the third lens unit L3 along a locus convex toward the object side.

第3レンズ群L3を不動とすると前玉有効径はズーム位置における光線にて決まる。よって中間のズーム位置にて第1レンズ群L1と絞りSPとの距離を短縮するように配置すると前玉有効径が小型化される。   If the third lens unit L3 is fixed, the effective diameter of the front lens is determined by the light beam at the zoom position. Therefore, if the distance between the first lens unit L1 and the aperture stop SP is shortened at an intermediate zoom position, the effective diameter of the front lens is reduced.

そこで各実施例では、ズーミング中第3レンズ群L3と絞りSPとを一体で移動させ、さらにこれらと第1レンズ群L1との間隔が広角端よりも中間のズーム位置にて短縮する(短くなる)ように移動させ前玉有効径を小型化している。   Therefore, in each embodiment, the third lens unit L3 and the stop SP are moved together during zooming, and the distance between the third lens unit L3 and the first lens unit L1 is shortened (shortened) at an intermediate zoom position from the wide angle end. ) To reduce the effective diameter of the front lens.

また小型かつ高ズーム比とするには変倍作用を極力第2レンズ群に分担させるのがよい。そこで第2レンズ群L2のズーミングに伴う移動ストロークを確保するために、第3レンズ群L3を中間のズーム位置から望遠端に向かっては像側に移動させている。結果として第3レンズ群L3を物体側に凸形状の軌跡で移動させて前玉有効径の小型化と高ズーム比化を図っている。   Further, in order to achieve a small size and a high zoom ratio, it is preferable to share the zooming action to the second lens group as much as possible. Therefore, in order to ensure the movement stroke associated with the zooming of the second lens unit L2, the third lens unit L3 is moved to the image side from the intermediate zoom position toward the telephoto end. As a result, the third lens unit L3 is moved along a convex locus toward the object side to reduce the effective diameter of the front lens and increase the zoom ratio.

従来より小型で高ズーム比のズームレンズの構成として、物体側から像側へ順に、正、負、正、正の屈折力の第1〜第4レンズ群より成る4群構成のズームレンズが知られている。   As a conventional zoom lens having a small zoom ratio and a high zoom ratio, a zoom lens having a four-group configuration including first, second, and fourth lens groups having positive, negative, positive, and positive refractive power in order from the object side to the image side is known. It has been.

これに対して、本発明の各実施例では、物体側から像側へ順に、正、負、正、負、正の屈折力の第1〜第5レンズ群より成る5群構成としている。   In contrast, each embodiment of the present invention has a five-group configuration including first to fifth lens units having positive, negative, positive, negative, and positive refractive powers in order from the object side to the image side.

特に各実施例は、従来の4群ズームレンズに比べて、負の屈折力の第4レンズ群L4を有しているのが特徴である。   In particular, each embodiment is characterized by having a fourth lens unit L4 having a negative refractive power as compared with the conventional four-unit zoom lens.

4群構成のズームレンズと比べると負の屈折力の第4レンズ群L4がある分、正の屈折力の第3レンズ群L3の屈折力を強められる。これにより第3レンズ群L3の防振敏感度を高め、少ない移動量にて防振を容易としている。   Compared with a zoom lens having a four-group configuration, the fourth lens unit L4 having a negative refractive power can increase the refractive power of the third lens unit L3 having a positive refractive power. As a result, the sensitivity of vibration reduction of the third lens unit L3 is increased, and vibration reduction is facilitated with a small amount of movement.

結果として第3レンズ群L3の光学有効径が小さくなり、径方向の小型化が容易となる。   As a result, the effective optical diameter of the third lens unit L3 is reduced, and the size reduction in the radial direction is facilitated.

また防振のための駆動ユニットも小型化することができる。さらに負の屈折力の第4レンズ群L4の屈折力をある程度強めると第5レンズ群L5に入射する光束をアフォーカルに近づけられる。これにより第5レンズ群L5の横倍率が小さくなりフォーカス敏感度を高めることができる。結果として第5レンズ群L5の移動ストロークを短縮し、フォーカス時の収差変動を低減している。   Also, the drive unit for vibration isolation can be reduced in size. Further, when the refractive power of the fourth lens unit L4 having negative refractive power is increased to some extent, the light beam incident on the fifth lens unit L5 can be made afocal. Thereby, the lateral magnification of the fifth lens unit L5 is reduced, and the focus sensitivity can be increased. As a result, the moving stroke of the fifth lens unit L5 is shortened, and aberration fluctuations during focusing are reduced.

各実施例のズームレンズはレンズ系全体の小型化のために第1レンズ群L1と第2レンズ群L2の屈折力を強めている。このようにすると望遠側で第1レンズ群L1にて軸上色収差、倍率色収差の二次スペクトルが増大してくる。これに対して各実施例では、第1レンズ群L1の接合レンズを構成する正レンズの材料に低分散で部分分散比が高い材料(アッベ数70以上)を用いてこれら二次スペクトルを良好に補正している。   The zoom lens of each embodiment increases the refractive power of the first lens unit L1 and the second lens unit L2 in order to reduce the size of the entire lens system. This increases the secondary spectrum of axial chromatic aberration and lateral chromatic aberration in the first lens unit L1 on the telephoto side. On the other hand, in each embodiment, these secondary spectra are satisfactorily obtained by using a material having a low dispersion and a high partial dispersion ratio (above 70 or more) as the material of the positive lens constituting the cemented lens of the first lens unit L1. It is corrected.

各実施例のズームレンズではズーミングに伴い絞りSPの開口径を変化させている。具体的には、広角端において絞り径が最も大きく、中間のズーム位置から望遠側においては、絞り径がこれよりも小さくなるようにしている。これにより中間のズーム位置から望遠側において、軸外光束の前玉を通過する高さを下げて、前玉有効径の小型化を図っている。   In the zoom lens of each embodiment, the aperture diameter of the stop SP is changed with zooming. Specifically, the aperture diameter is the largest at the wide-angle end, and the aperture diameter is smaller than this at the telephoto side from the intermediate zoom position. Thereby, on the telephoto side from the intermediate zoom position, the height of the off-axis light beam passing through the front lens is lowered to reduce the effective diameter of the front lens.

開口絞りSPは第3レンズ群L3の物体側に又は第3レンズ群L3中に配置している。このようにすると望遠端にて第2レンズ群L2と第3レンズ群L3の間隔がさらにつめられ、レンズ全長の短縮が図れる。また第3レンズ群L3は正レンズ31と負レンズ32との間隔を隔てテレフォト配置しているため、この間に開口絞りSPを配置すると空間を有効活用することができる。   The aperture stop SP is disposed on the object side of the third lens unit L3 or in the third lens unit L3. In this way, the distance between the second lens unit L2 and the third lens unit L3 is further reduced at the telephoto end, and the total lens length can be shortened. In addition, since the third lens unit L3 is telephotoly arranged with a gap between the positive lens 31 and the negative lens 32, space can be effectively used by arranging the aperture stop SP therebetween.

尚、各実施例において、第1レンズ群L1の物体側や第5レンズ群L5の像側に光学フィルターや屈折力の小さなレンズ群を付加しても良い。   In each embodiment, an optical filter or a lens unit having a small refractive power may be added to the object side of the first lens unit L1 or the image side of the fifth lens unit L5.

又、テレコンバーターレンズやワイドコンバーターレンズ等を物体側や像側に配置しても良い。   A teleconverter lens, a wide converter lens, or the like may be disposed on the object side or the image side.

次に各レンズ群のレンズ構成について説明する。   Next, the lens configuration of each lens group will be described.

第1レンズ群L1は物体側から像側へ順に、負レンズと正レンズからなる接合レンズ、正レンズで構成している。これによって高ズーム比ながら軸上色収差と、倍率色収差の各色消しと、球面収差の補正を良好に行っている。   The first lens unit L1 includes, in order from the object side to the image side, a cemented lens including a negative lens and a positive lens, and a positive lens. This makes it possible to satisfactorily correct axial chromatic aberration, lateral chromatic aberration, and spherical aberration while maintaining a high zoom ratio.

第2レンズ群L2は物体側から像側へ順に、像側が凹面でメニスカス形状の負レンズ、両凹形状の負レンズ、正レンズで構成している。各実施例では正レンズを高分散材料(アッベ数20以下)より構成し、少ないレンズ枚数にてズーミングに伴う色収差の変動を良好に補正している。   The second lens unit L2 includes, in order from the object side to the image side, a negative meniscus lens having a concave surface on the image side, a biconcave negative lens, and a positive lens. In each embodiment, the positive lens is made of a high dispersion material (Abbe number of 20 or less), and the variation in chromatic aberration due to zooming is satisfactorily corrected with a small number of lenses.

第3レンズ群L3は物体側から像側へ順に、物体側が凸面の正レンズ31、像側が凹面でメニスカス形状の負レンズ32、両凸形状の正レンズ33で構成している。正レンズ31と負レンズ32をある程度の間隔を隔てて配置することにより第3レンズ群L3全体をテレフォト構成としている。これにより第2レンズ群L2と第3レンズ群L3の主点間隔を短縮しレンズ全長の短縮化を達成している。なおこのような負レンズ32を設けた場合、そのレンズ面で正の歪曲収差が発生し、これが防振時における偏心歪曲が大きくなる場合がある。このときの偏心歪曲を低減させるには第3レンズ群L3全体で発生する歪曲収差を少なくしてやればよい。各実施例では負レンズ32の像面側に正レンズ33を配置することによってテレフォト構成を維持しつつ、第3レンズ群L3内で歪曲収差を補正している。これにより第3レンズ群L3をシフトして防振を行う際に発生する偏心歪曲収差の発生を低減している。   The third lens unit L3 includes, in order from the object side to the image side, a positive lens 31 having a convex surface on the object side, a negative meniscus lens 32 having a concave surface on the image side, and a positive lens 33 having a biconvex shape. By arranging the positive lens 31 and the negative lens 32 at a certain distance, the entire third lens unit L3 has a telephoto configuration. As a result, the distance between the principal points of the second lens unit L2 and the third lens unit L3 is shortened, and the overall length of the lens is shortened. When such a negative lens 32 is provided, positive distortion occurs on the lens surface, and this may increase the eccentric distortion during vibration isolation. In order to reduce the eccentric distortion at this time, the distortion generated in the entire third lens unit L3 may be reduced. In each embodiment, the positive lens 33 is disposed on the image plane side of the negative lens 32 to correct the distortion aberration in the third lens unit L3 while maintaining the telephoto configuration. As a result, the occurrence of decentration distortion that occurs when the third lens unit L3 is shifted to perform image stabilization is reduced.

第4レンズ群L4は1枚の負レンズで構成している。各実施例において、第4レンズ群L4はズーミングに際し不動である。これによりズーミングに伴い第4レンズ群L4にて発生する色収差の変動が小さくなるようにして、特に、色消し構成としなくともよくしている。   The fourth lens unit L4 includes one negative lens. In each embodiment, the fourth lens unit L4 does not move during zooming. As a result, the variation in chromatic aberration generated in the fourth lens unit L4 due to zooming is reduced, and in particular, it is not necessary to use an achromatic structure.

なお第4レンズ群L4を少ないレンズ枚数にて屈折力を強めると球面収差が発生してくる。このときは第3レンズ群L3で発生する収差と補正することができるレンズ形状としている。   If the refractive power of the fourth lens unit L4 is increased with a small number of lenses, spherical aberration occurs. At this time, the lens shape can be corrected with the aberration generated in the third lens unit L3.

各実施例では、第3レンズ群L3の最終レンズ面と第4レンズ群L4の物体側のレンズ面で構成する空気レンズの屈折力がある程度弱くなるようにして互いの面で球面収差を補正している。   In each example, the spherical aberration is corrected on each surface so that the refractive power of the air lens formed by the final lens surface of the third lens unit L3 and the object-side lens surface of the fourth lens unit L4 is weakened to some extent. ing.

また第4レンズ群L4の負の屈折力を強めると像側のレンズ面にて糸巻き型の歪曲収差が発生してくる。このときは、第5レンズ群L5で発生する収差と補正するレンズ形状とするのが良い。   Further, when the negative refractive power of the fourth lens unit L4 is increased, a pincushion type distortion aberration is generated on the image side lens surface. In this case, it is preferable to use a lens shape that corrects the aberration generated in the fifth lens unit L5.

各実施例では第4レンズ群L4の像側のレンズ面と第5レンズ群L5の最も物体側レンズ面で構成する空気レンズの屈折力がある程度弱くなるようにして互いのレンズ面で歪曲収差を補正している。   In each example, the refractive power of the air lens formed by the image-side lens surface of the fourth lens unit L4 and the most object-side lens surface of the fifth lens unit L5 is weakened to some extent, and distortion aberration is generated on each lens surface. It is corrected.

第5レンズ群L5は正レンズと負レンズからなる全体として正の屈折力の接合レンズで構成している。これにより少ないレンズ枚数にて変倍に伴う像点変動の補正に伴う色収差の変動を抑えている。   The fifth lens unit L5 includes a cemented lens having a positive refractive power as a whole, which includes a positive lens and a negative lens. This suppresses fluctuations in chromatic aberration associated with correction of image point fluctuations accompanying zooming with a small number of lenses.

以上のような構成とすることで各実施例では、高ズーム比でありながらコンパクトなズームレンズを達成している。さらに以下の条件式の1以上を満足するようにして各条件式に対応した効果を得ている。   With the above-described configuration, each embodiment achieves a compact zoom lens with a high zoom ratio. Furthermore, the effect corresponding to each conditional expression is obtained so as to satisfy one or more of the following conditional expressions.

広角端と望遠端における全系の焦点距離を各々fw、ftとする。jを物体側から像側へ数えたレンズ群の順序を示し、第jレンズ群の焦点距離をfjとする。   The focal lengths of the entire system at the wide-angle end and the telephoto end are denoted by fw and ft, respectively. The order of the lens groups in which j is counted from the object side to the image side is shown.

第2レンズ群L2の広角端と、望遠端における横倍率を、各々β2w、β2tとする。第3レンズ群L3の広角端と、望遠端における横倍率を各々β3w、β3tとする。   The lateral magnifications of the second lens unit L2 at the wide-angle end and the telephoto end are β2w and β2t, respectively. The lateral magnifications of the third lens unit L3 at the wide-angle end and the telephoto end are β3w and β3t, respectively.

第4レンズ群L4、第5レンズ群L5の望遠端における横倍率を各々β4t、β5tとする。   The lateral magnifications at the telephoto end of the fourth lens unit L4 and the fifth lens unit L5 are β4t and β5t, respectively.

第3レンズ群L3は2枚の正レンズと1枚の負レンズより構成され、該負レンズの焦点距離をf3nとする。   The third lens unit L3 includes two positive lenses and one negative lens, and the focal length of the negative lens is f3n.

第4レンズ群L4は1枚の負レンズから構成され、該負レンズの物体側と像側のレンズ面の曲率半径を各々R4a、R4bとする。   The fourth lens unit L4 includes one negative lens, and the curvature radii of the object-side and image-side lens surfaces of the negative lens are R4a and R4b, respectively.

第1レンズ群L1は正レンズと負レンズからなる接合レンズを有し、該接合レンズを構成する正レンズの材料のアッベ数をνd1p、部分分散比をθgF1pとする。   The first lens unit L1 has a cemented lens composed of a positive lens and a negative lens. The Abbe number of the material of the positive lens constituting the cemented lens is νd1p, and the partial dispersion ratio is θgF1p.

広角端から望遠端へのズーミングに際して、第3レンズ群L3は、物体側に凸状の軌跡を有するように移動している。このとき第3レンズ群L3の広角端に対する中間のズーム位置での光軸方向の距離をM3wm、第3レンズ群L3の広角端に対する望遠端での光軸方向の距離をM3wtとする。   During zooming from the wide-angle end to the telephoto end, the third lens unit L3 moves so as to have a convex locus on the object side. At this time, the distance in the optical axis direction at the intermediate zoom position with respect to the wide-angle end of the third lens unit L3 is M3wm, and the distance in the optical axis direction at the telephoto end with respect to the wide-angle end of the third lens unit L3 is M3wt.

尚、中間のズーム位置Zaとは、ズーミングに際して、第3レンズ群L3が最も物体側に位置するズーム位置である。   The intermediate zoom position Za is a zoom position where the third lens unit L3 is located closest to the object side during zooming.

部分分散比θgFは、C線、F線、g線における屈折率をNC、NF、Ngとするとき、
θgF=(Ng−NF)/(NF−NC)
なる式で表される。
The partial dispersion ratio θgF is defined as NC, NF, and Ng when the refractive indexes of the C-line, F-line, and g-line are NC
θgF = (Ng−NF) / (NF−NC)
It is expressed by the following formula.

又、距離M3wm、M3wtの符号は、像側に比べて物体側に位置しているときをマイナス、物体側に比べ像側に位置しているときをプラスと定義する。   The signs of the distances M3wm and M3wt are defined as minus when the object is located on the object side compared to the image side and plus when the object is located on the image side compared with the object side.

このとき、
1.0<|f4|/fw<17.0 ・・・(1)
−0.8<M3wm/fw<−0.2 ・・・(2)
−0.40<M3wt/fw<0.20 ・・・(3)
0.70<(β2t/β2w)/(ft/fw)<2.00・・・(4)
0.01<(β3t/β3w)/(ft/fw)<0.20・・・(5)
1.00<(1−β3t)×β4t×β5t<2.00 ・・・(6)
0.4<|f3n|/f3<1.0 ・・・(7)
0.1<(R4a+R4b)/(R4a−R4b)<8.0・・・(8)
−0.0016νd1p+0.641<θgF1p ・・・(9)
2.0<f1/fw<6.0 ・・・(10)
1.00<|f2|/fw<1.50 ・・・(11)
1.5<f3/fw<3.0 ・・・(12)
1.5<f5/fw<3.0 ・・・(13)
なる条件のうち1以上を満足している。
At this time,
1.0 <| f4 | / fw <17.0 (1)
-0.8 <M3wm / fw <-0.2 (2)
-0.40 <M3wt / fw <0.20 (3)
0.70 <(β2t / β2w) / (ft / fw) <2.00 (4)
0.01 <(β3t / β3w) / (ft / fw) <0.20 (5)
1.00 <(1-β3t) × β4t × β5t <2.00 (6)
0.4 <| f3n | / f3 <1.0 (7)
0.1 <(R4a + R4b) / (R4a−R4b) <8.0 (8)
−0.0016νd1p + 0.641 <θgF1p (9)
2.0 <f1 / fw <6.0 (10)
1.00 <| f2 | / fw <1.50 (11)
1.5 <f3 / fw <3.0 (12)
1.5 <f5 / fw <3.0 (13)
One or more of the following conditions are satisfied.

各実施例では、それぞれの条件式を満足することによって、それに応じた効果を得ている。   In each embodiment, by satisfying each conditional expression, an effect corresponding to the conditional expression is obtained.

次に各条件式の技術的な意味について説明する。   Next, the technical meaning of each conditional expression will be described.

条件式(1)は第4レンズ群L4の焦点距離、すなわち屈折力を規定する式である。条件式(1)の下限を超えて屈折力が強くなりすぎると、ペッツバール和がマイナス側に大きくなり像面彎曲の発生が多くなる。ペッツバール和を小さくするために、第4レンズ群L4の構成レンズ枚数を増やすと、レンズ全長が増大してくるので良くない。条件式(1)の上限を超えて屈折力が弱すぎると、負の屈折力の第4レンズ群L4を配置した効果が弱まる。又、第3レンズ群L3の防振敏感度の低下により、第3レンズ群L3の径方向が増大してくる。   Conditional expression (1) defines the focal length of the fourth lens unit L4, that is, the refractive power. If the lower limit of the conditional expression (1) is exceeded and the refractive power becomes too strong, the Petzval sum increases on the negative side and the occurrence of field curvature increases. If the number of constituent lenses of the fourth lens unit L4 is increased in order to reduce the Petzval sum, the total lens length increases, which is not good. If the upper limit of conditional expression (1) is exceeded and the refractive power is too weak, the effect of disposing the fourth lens unit L4 having a negative refractive power is weakened. Further, the radial direction of the third lens unit L3 increases due to the decrease in the vibration proof sensitivity of the third lens unit L3.

また第4レンズ群L4から射出する光束が収斂光になりやすく第5レンズ群L5のフォーカス敏感度が低下し移動ストロークが増大してくるので良くない。   In addition, the luminous flux emitted from the fourth lens unit L4 tends to be convergent light, which is not good because the focus sensitivity of the fifth lens unit L5 decreases and the movement stroke increases.

条件式(2)は第3レンズ群L3の広角端に対する中間のズーム位置での光軸方向の距離に関し、ここでは広角端から中間のズーム位置への移動量に相当している。下限を超えて物体側への移動量が大きすぎると、中間のズーム位置にて第3レンズ群L3にて軸上色収差の発生がオーバーとなりすぎ、これを他のレンズ群にて補正することが困難となる。条件式(2)の上限を超えて物体側への移動量が小さすぎると、第3レンズ群L3のズーミングに伴う移動を凸形状の軌跡とする効果が弱まり前玉径が増大してくるので良くない。   Conditional expression (2) relates to the distance in the optical axis direction at the intermediate zoom position with respect to the wide angle end of the third lens unit L3, and here corresponds to the amount of movement from the wide angle end to the intermediate zoom position. If the lower limit is exceeded and the amount of movement toward the object side is too large, the axial chromatic aberration is excessively generated in the third lens unit L3 at the intermediate zoom position, and this can be corrected by other lens units. It becomes difficult. If the amount of movement toward the object side is too small beyond the upper limit of conditional expression (2), the effect of using the movement associated with zooming of the third lens unit L3 as a convex locus is weakened, and the front lens diameter increases. Not good.

条件式(3)は第3レンズ群L3の広角端に対する望遠端での光軸方向の距離を規定した式である。下限を超えて望遠端の位置が広角端より大きく物体側に位置すると、第2レンズ群L2の移動ストロークを確保するため、広角端における第1レンズ群L1と第3レンズ群L3の間隔を大きくしなければならず、この結果前玉径が増大してくる。   Conditional expression (3) defines the distance in the optical axis direction at the telephoto end with respect to the wide-angle end of the third lens unit L3. If the telephoto end position is larger than the wide-angle end and located on the object side beyond the lower limit, the distance between the first lens unit L1 and the third lens unit L3 at the wide-angle end is increased in order to ensure the movement stroke of the second lens unit L2. As a result, the front lens diameter increases.

条件式(3)の上限を超えて望遠端の位置が広角端より大きく像側に位置すると、望遠端にて第3レンズ群L3と第4レンズ群L4が干渉しないように広角側でこれらの間隔を広げる必要がある。このようにすると第4レンズ群L4以降の有効径が増大するので良くない。   If the position of the telephoto end exceeds the upper limit of conditional expression (3) and is positioned on the image side larger than the wide-angle end, the third lens unit L3 and the fourth lens unit L4 do not interfere with each other at the telephoto end. It is necessary to widen the interval. This is not good because the effective diameter after the fourth lens unit L4 increases.

条件式(4)は第2レンズ群L2の変倍分担を規定する式である。下限を超えて第2レンズ群L2の変倍分担が小さすぎると、第3レンズ群L3もしくは第5レンズ群L5の変倍作用を大きく強めなければならない。いずれの場合も移動ストロークが極端に増大し、レンズ全長が増大してくる。   Conditional expression (4) is an expression that prescribes the variable magnification sharing of the second lens unit L2. If the lower-limit variable magnification share of the second lens unit L2 is too small, the variable-magnification action of the third lens unit L3 or the fifth lens unit L5 must be greatly increased. In either case, the movement stroke is extremely increased and the total lens length is increased.

条件式(4)にて1を越えることは第2レンズ群L2より後のレンズ群の合成系(第3レンズ群L3から第5レンズ群L5までの合成系)における変倍比が1を下回ることを意味する。条件式(4)の上限を超えると、この合成系の変倍比が1を大きく下回るため第2レンズ群L2を必要以上に変倍させなければならず全系として効率よく変倍するのが難しくなる。この場合は所望のズーム比を得るために第2レンズ群L2の移動量が必要以上に大きくなりレンズ全長が増大してくる。条件式(4)を満たすことで第2レンズ群L2とこの後続レンズ群の変倍分担が最適化されレンズ全長の短縮と高ズーム比化が容易になる。   If the conditional expression (4) exceeds 1, the zoom ratio in the synthesis system of the lens group after the second lens group L2 (the synthesis system from the third lens group L3 to the fifth lens group L5) is less than 1. Means that. If the upper limit of conditional expression (4) is exceeded, the zoom ratio of this synthesis system is much less than 1, so the second lens unit L2 must be zoomed more than necessary, and the entire system can scale efficiently. It becomes difficult. In this case, in order to obtain a desired zoom ratio, the movement amount of the second lens unit L2 becomes larger than necessary, and the total lens length increases. By satisfying conditional expression (4), the variable magnification sharing between the second lens unit L2 and the subsequent lens unit is optimized, and shortening of the total lens length and high zoom ratio are facilitated.

条件式(5)は第3レンズ群L3の変倍分担を規定する式である。第3レンズ群L3の変倍比が1を大きく下回りゼロに近くなると条件式(5)もゼロに近づく。下限を超えてゼロに近づきすぎると第2レンズ群L2もしくは第5レンズ群L5の変倍作用を強めなければならない。いずれの場合も移動ストロークが極端に増大しレンズ全長が増大してくる。   Conditional expression (5) is an expression that defines the variable magnification sharing of the third lens unit L3. When the zoom ratio of the third lens unit L3 is significantly less than 1 and approaches zero, conditional expression (5) also approaches zero. If the value exceeds the lower limit and approaches zero, the zooming action of the second lens unit L2 or the fifth lens unit L5 must be strengthened. In either case, the movement stroke is extremely increased and the total lens length is increased.

条件式(5)の上限を超えて変倍分担が大きすぎると、第3レンズ群L3が広角端から望遠端に向かって物体側に大きく移動する。このときの移動量が大きくなると、広角端での第1レンズ群L1と第3レンズ群L3との距離を大きくとらなければならない。この結果第1レンズ群L1および第2レンズ群L2の有効径が増大してくる。   If the variable magnification sharing is too large exceeding the upper limit of conditional expression (5), the third lens unit L3 moves greatly toward the object side from the wide-angle end toward the telephoto end. If the amount of movement at this time increases, the distance between the first lens unit L1 and the third lens unit L3 at the wide-angle end must be increased. As a result, the effective diameters of the first lens unit L1 and the second lens unit L2 increase.

尚、条件式(4)と(5)を満たすと第2レンズ群L2より後続レンズ群の変倍分担も最適化されるのでより好ましい。   It should be noted that satisfying conditional expressions (4) and (5) is more preferable because the variable power sharing of the subsequent lens group is optimized than the second lens group L2.

条件式(6)は第3レンズ群L3の防振敏感度を規定した式である。(1−β3t)×β4t×β5tは第3レンズ群L3の光軸と垂直方向への移動量とこれに伴い発生する結像面上の像点移動量の比を表し、大きな値ほど少ない移動量で像点移動が可能となる。   Conditional expression (6) defines the anti-vibration sensitivity of the third lens unit L3. (1-β3t) × β4t × β5t represents the ratio of the amount of movement of the third lens unit L3 in the direction perpendicular to the optical axis and the amount of movement of the image point on the image plane generated thereby, and the larger the value, the smaller the movement. The image point can be moved by the amount.

条件式(6)の下限値を超えて防振敏感度が低すぎる場合は防振のための移動ストロークが増大し第3レンズ群L3の有効径が増大する。この結果、第3レンズ群L3を構成する各レンズ外径が大型化し、しいてはレンズホルダー、防振機構の大型化を招くので良くない。また防振敏感度が高いと防振制御を行う際、第3レンズ群L3を微小駆動させる必要があるが、上限を超えて防振敏感度が高すぎると精度良く制御することが困難となる。   If the lower limit of conditional expression (6) is exceeded and the image stabilization sensitivity is too low, the movement stroke for image stabilization increases and the effective diameter of the third lens unit L3 increases. As a result, the outer diameters of the lenses constituting the third lens unit L3 are increased, which leads to an increase in the size of the lens holder and the vibration isolation mechanism. Further, when anti-vibration sensitivity is high, it is necessary to finely drive the third lens unit L3 when performing anti-vibration control. However, if the anti-vibration sensitivity is too high exceeding the upper limit, it is difficult to control with high accuracy. .

条件式(7)は第3レンズ群L3を構成する負レンズの焦点距離すなわち屈折力を規定する式である。条件式(7)の下限を超えて屈折力が強すぎると、ペッツバール和がマイナス側に大きくなり像面彎曲が多く発生してくる。   Conditional expression (7) is an expression that defines the focal length, that is, refractive power of the negative lens constituting the third lens unit L3. If the lower limit of conditional expression (7) is exceeded and the refractive power is too strong, the Petzval sum will increase on the negative side and a lot of field curvature will occur.

条件式(7)の上限を超えて屈折力が弱すぎると、直前の正レンズとで構成するテレフォト構成が弱まり第2レンズ群L2と第3レンズ群L3の主点間隔を短縮しレンズ全長を短縮化するのが難しくなる。   If the upper limit of conditional expression (7) is exceeded and the refractive power is too weak, the telephoto configuration formed by the immediately preceding positive lens will be weakened, the distance between the principal points of the second lens unit L2 and the third lens unit L3 will be shortened, and the total lens length will be reduced. It becomes difficult to shorten.

条件式(8)は第4レンズ群L4の1枚の負レンズのレンズ形状因子を規定する式である。下限を超えて物体側のレンズ面の曲率が強まりすぎると球面収差がオーバー側に発生するので良くない。条件式(8)にて1を越えると像側に凹面を向けたメニスカス形状となる。   Conditional expression (8) is an expression defining the lens form factor of one negative lens of the fourth lens unit L4. If the curvature of the lens surface on the object side is too strong beyond the lower limit, spherical aberration occurs on the over side, which is not good. If the conditional expression (8) exceeds 1, a meniscus shape with a concave surface facing the image side is obtained.

条件式(8)の上限を超えてメニスカスの度合いが強まりすぎると第4レンズ群L4の前側主点位置が像側によりすぎ第3レンズ群L3との空気間隔を確保するのが困難となる。   If the upper limit of conditional expression (8) is exceeded and the degree of meniscus becomes too strong, the position of the front principal point of the fourth lens unit L4 will be too much on the image side, and it will be difficult to secure an air gap with the third lens unit L3.

条件式(9)は第1レンズ群L1の接合レンズを構成する正レンズの材料の部分分散比を規定する式である。   Conditional expression (9) defines the partial dispersion ratio of the material of the positive lens constituting the cemented lens of the first lens unit L1.

条件式(9)の下限を超えて部分分散比θgF1pがアッベ数νd1pに対して小さすぎると接合レンズを構成する負レンズで発生する二次スペクトルの補正が難しくなり、特
に望遠側において軸上色収差および軸外色収差における二次スペクトルが増大してくる。
If the partial dispersion ratio θgF1p is too small with respect to the Abbe number νd1p beyond the lower limit of the conditional expression (9), correction of the secondary spectrum generated in the negative lens constituting the cemented lens becomes difficult, and axial chromatic aberration is particularly generated on the telephoto side. And the secondary spectrum in off-axis chromatic aberration increases.

条件式(10)は第1レンズ群L1の焦点距離すなわち屈折力を規定する式である。条件式(1)の下限を超えて屈折力が強すぎると望遠側において球面収差が多く発生してくる。条件式(10)の上限を超えて屈折力が弱すぎると第2レンズ群L2を中間のズーム位置にて等倍とすることが難しくなる。第2レンズ群L2の横倍率が中間のズーム位置で等倍となるようにすると像点補正のための第5レンズ群L5の移動ストロークが抑えられる。条件式(10)の上限を超えると第5レンズ群L5の移動ストロークが増大してくるので良くない。   Conditional expression (10) defines the focal length, that is, the refractive power of the first lens unit L1. If the lower limit of conditional expression (1) is exceeded and the refractive power is too strong, a large amount of spherical aberration occurs on the telephoto side. If the upper limit of conditional expression (10) is exceeded and the refractive power is too weak, it is difficult to make the second lens unit L2 at the same zoom ratio at the intermediate zoom position. When the lateral magnification of the second lens unit L2 is made equal at the intermediate zoom position, the moving stroke of the fifth lens unit L5 for image point correction can be suppressed. If the upper limit of conditional expression (10) is exceeded, the moving stroke of the fifth lens unit L5 increases, which is not good.

条件式(11)は第2レンズ群L2の焦点距離すなわち屈折力を規定する式である。条件式(11)の下限を超えて屈折力が強すぎると第2レンズ群で発生する変倍に伴う収差変動が増大してくる。   Conditional expression (11) defines the focal length, that is, the refractive power of the second lens unit L2. If the lower limit of conditional expression (11) is exceeded and the refracting power is too strong, the aberration fluctuation accompanying the zooming generated in the second lens group will increase.

特に球面収差、コマ収差、像面彎曲の変動が増大してくる。条件式(11)の上限を超えて屈折力が弱すぎると所望のズーム比を得るために第2レンズ群L2の移動ストロークが増大するためレンズ全長及び前玉径が増大してくる。   In particular, variations in spherical aberration, coma, and field curvature increase. If the refractive power is too weak beyond the upper limit of conditional expression (11), the movement stroke of the second lens unit L2 increases in order to obtain a desired zoom ratio, and the total lens length and front lens diameter increase.

条件式(12)は第3レンズ群L3の焦点距離すなわち屈折力を規定する式である。条件式(12)の下限を超えて屈折力が強すぎると防振のために第3レンズ群L3を光軸垂直方向へ移動した際の収差変動が増大してくる。   Conditional expression (12) defines the focal length, that is, the refractive power of the third lens unit L3. If the lower limit of conditional expression (12) is exceeded and the refractive power is too strong, aberration fluctuations increase when the third lens unit L3 is moved in the direction perpendicular to the optical axis for image stabilization.

特に偏芯コマ収差、像面倒れの発生が多くなる。   In particular, the occurrence of decentration coma and image plane tilt increases.

条件式(12)の上限を超えて屈折力が弱すぎると防振のために第3レンズ群L3を光軸垂直方向へ移動する際のストロークが増大するため第3レンズ群の径方向が大型化してくる。   If the upper limit of conditional expression (12) is exceeded and the refracting power is too weak, the stroke when moving the third lens unit L3 in the direction perpendicular to the optical axis is increased for image stabilization, so the radial direction of the third lens unit is large. It will turn.

条件式(13)は第5レンズ群L5の焦点距離すなわち屈折力を規定する式である。条件式(13)の下限を超えて屈折力が強すぎるとフィルター等を挿入するために必要な長さのバックフォーカスを確保するのが困難となる。   Conditional expression (13) defines the focal length, that is, the refractive power of the fifth lens unit L5. If the lower limit of conditional expression (13) is exceeded and the refractive power is too strong, it will be difficult to secure a back focus of a length necessary for inserting a filter or the like.

条件式(13)の上限を超えて屈折力が弱すぎると変倍に伴うピント変動の補正およびフォーカシングのために移動するストロークが増大するので良くない。   If the upper limit of conditional expression (13) is exceeded and the refracting power is too weak, it is not good because the moving stroke increases for correction of focus variation accompanying focusing and focusing.

さらに好ましくは各条件式の数値範囲を次の如く設定するのが好ましい。   More preferably, the numerical range of each conditional expression is set as follows.

1.5<|f4|/fw<16.0 ・・・(1a)
−0.7<M3wm/fw<−0.2 ・・・(2a)
−0.35<M3wt/fw<0.18 ・・・(3a)
0.75<(β2t/β2w)/(ft/fw)<1.95・・・(4a)
0.03<(β3t/β3w)/(ft/fw)<0.17・・・(5a)
1.15<(1−β3t)×β4t×β5t<1.90 ・・・(6a)
0.5<|f3n|/f3<0.9 ・・・(7a)
0.2<(R4a+R4b)/(R4a−R4b)<7.6・・・(8a)
3.0<f1/fw<5.0 ・・・(10a)
1.05<|f2|/fw<1.40 ・・・(11a)
1.7<f3/fw<2.7 ・・・(12a)
1.7<f5/fw<2.8 ・・・(13a)
以上のように、各実施例によれば、第1レンズ群L1をズーミングの際に不動とした構成にて、10倍程度の高ズーム比を有し、前玉有効径の小型化を図った高性能なズームレンズが得られる。
1.5 <| f4 | / fw <16.0 (1a)
-0.7 <M3wm / fw <-0.2 (2a)
-0.35 <M3wt / fw <0.18 (3a)
0.75 <(β2t / β2w) / (ft / fw) <1.95 (4a)
0.03 <(β3t / β3w) / (ft / fw) <0.17 (5a)
1.15 <(1-β3t) × β4t × β5t <1.90 (6a)
0.5 <| f3n | / f3 <0.9 (7a)
0.2 <(R4a + R4b) / (R4a-R4b) <7.6 (8a)
3.0 <f1 / fw <5.0 (10a)
1.05 <| f2 | / fw <1.40 (11a)
1.7 <f3 / fw <2.7 (12a)
1.7 <f5 / fw <2.8 (13a)
As described above, according to each embodiment, the first lens unit L1 has a high zoom ratio of about 10 times with a configuration in which the first lens unit L1 is fixed during zooming, and the front lens effective diameter is reduced. A high-performance zoom lens can be obtained.

次に本発明のズームレンズの撮影光学系として用いたデジタルスチルカメラ(撮像装置)の実施例を図17を用いて説明する。   Next, an embodiment of a digital still camera (imaging device) used as a photographing optical system of the zoom lens of the present invention will be described with reference to FIG.

図17においては、20はカメラ本体、21は本発明のズームレンズによって構成された撮影光学系である。22はカメラ本体に内臓され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。23は撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリである。24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダである。   In FIG. 17, reference numeral 20 denotes a camera body, and 21 denotes a photographing optical system constituted by the zoom lens of the present invention. Reference numeral 22 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the photographing optical system 21 and is built in the camera body. A memory 23 records information corresponding to the subject image photoelectrically converted by the image sensor 22. Reference numeral 24 denotes a finder for observing a subject image formed on the solid-state image sensor 22, which includes a liquid crystal display panel or the like.

このように本発明のズームレンズをデジタルスチルカメラ等の撮像素子に適用することにより、高い光学性能を有する撮像装置を実現している。   As described above, by applying the zoom lens of the present invention to an image pickup device such as a digital still camera, an image pickup apparatus having high optical performance is realized.

以下に、本発明の数値実施例を示す。各数値実施例において、iは物体側からの面の順序を示し、Riはレンズ面の曲率半径、Diは第i面と第i+1面との間のレンズ肉厚および空気間隔、Ni、νiはそれぞれd線に対する屈折率、アッベ数を示す。また、もっとも像側の2面は光学ブロックの平面である。   The numerical examples of the present invention are shown below. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of the lens surface, Di is the lens thickness and the air space between the i-th surface and the i + 1-th surface, Ni, ν i represents the refractive index and Abbe number for the d-line, respectively. The two surfaces closest to the image side are the planes of the optical block.

また、B,C,D,Eは非球面係数である。非球面形状は光軸からの高さHの位置での光軸方向の変位を面頂点を基準にしてxとするとき   B, C, D, and E are aspheric coefficients. The aspherical shape is when the displacement in the optical axis direction at the position of the height H from the optical axis is x with respect to the surface vertex.

で表される。但しRは曲率半径、Kは円錐定数である。 It is represented by However, R is a radius of curvature and K is a conic constant.

前述の各条件式と数値実施例における諸数値との関係を表1に示す。   Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.


<数値実施例1>
f=6.65〜 64.60 Fno= 3.61 〜 5.67 2ω=53.5゜ 〜 5.9゜
R 1 = 34.046 D 1 = 1.30 N 1 = 1.805181 ν 1 = 25.4
R 2 = 21.362 D 2 = 4.00 N 2 = 1.496999 ν 2 = 81.5
R 3 = -222.504 D 3 = 0.10
R 4 = 19.848 D 4 = 2.40 N 3 = 1.603112 ν 3 = 60.6
R 5 = 54.761 D 5 = 可変
R 6 = 46.607 D 6 = 0.70 N 4 = 1.882997 ν 4 = 40.8
R 7 = 5.978 D 7 = 2.85
R 8 = -32.488 D 8 = 0.60 N 5 = 1.696797 ν 5 = 55.5
R 9 = 18.150 D 9 = 0.40
R10 = 10.973 D10 = 1.70 N 6 = 1.922860 ν 6 = 18.9
R11 = 29.933 D11 = 可変
R12 = 絞り D12 = 1.50
R13 = 10.521 D13 = 2.00 N 7 = 1.693500 ν 7 = 53.2
R14 = -36.903 D14 = 3.46
R15 = 72.561 D15 = 0.60 N 8 = 1.846660 ν 8 = 23.9
R16 = 8.320 D16 = 0.27
R17 = 11.308 D17 = 2.10 N 9 = 1.603112 ν 9 = 60.6
R18 = -20.621 D18 = 可変
R19 = -29.577 D19 = 0.70 N10 = 1.487490 ν10 = 70.2
R20 = 13.248 D20 = 可変
R21 = 14.526 D21 = 2.90 N11 = 1.804000 ν11 = 46.6
R22 = -17.609 D22 = 0.60 N12 = 1.846660 ν12 = 23.9
R23 = -65.759 D23 = 可変
R24 = ∞ D24 = 1.28 N13 = 1.516330 ν13 = 64.1
R25 = ∞

\焦点距離 6.65 19.43 64.60
可変間隔\
D 5 0.70 10.00 19.30
D11 20.08 7.53 1.48
D18 1.50 4.75 1.50
D20 5.92 3.67 9.26
D23 7.13 9.39 3.79

非球面係数
R14 k=-1.43239e+02 B=-1.80347e-04 C=1.55168e-05 D=-4.23854e-07
E=0.00000e+00

<Numerical Example 1>
f = 6.65 to 64.60 Fno = 3.61 to 5.67 2ω = 53.5 ° to 5.9 °
R 1 = 34.046 D 1 = 1.30 N 1 = 1.805181 ν 1 = 25.4
R 2 = 21.362 D 2 = 4.00 N 2 = 1.496999 ν 2 = 81.5
R 3 = -222.504 D 3 = 0.10
R 4 = 19.848 D 4 = 2.40 N 3 = 1.603112 ν 3 = 60.6
R 5 = 54.761 D 5 = Variable
R 6 = 46.607 D 6 = 0.70 N 4 = 1.882997 ν 4 = 40.8
R 7 = 5.978 D 7 = 2.85
R 8 = -32.488 D 8 = 0.60 N 5 = 1.696797 ν 5 = 55.5
R 9 = 18.150 D 9 = 0.40
R10 = 10.973 D10 = 1.70 N 6 = 1.922860 ν 6 = 18.9
R11 = 29.933 D11 = variable
R12 = Aperture D12 = 1.50
R13 = 10.521 D13 = 2.00 N 7 = 1.693500 ν 7 = 53.2
R14 = -36.903 D14 = 3.46
R15 = 72.561 D15 = 0.60 N 8 = 1.846660 ν 8 = 23.9
R16 = 8.320 D16 = 0.27
R17 = 11.308 D17 = 2.10 N 9 = 1.603112 ν 9 = 60.6
R18 = -20.621 D18 = variable
R19 = -29.577 D19 = 0.70 N10 = 1.487490 ν10 = 70.2
R20 = 13.248 D20 = variable
R21 = 14.526 D21 = 2.90 N11 = 1.804000 ν11 = 46.6
R22 = -17.609 D22 = 0.60 N12 = 1.846660 ν12 = 23.9
R23 = -65.759 D23 = variable
R24 = ∞ D24 = 1.28 N13 = 1.516330 ν13 = 64.1
R25 = ∞

\ Focal length 6.65 19.43 64.60
Variable interval \
D 5 0.70 10.00 19.30
D11 20.08 7.53 1.48
D18 1.50 4.75 1.50
D20 5.92 3.67 9.26
D23 7.13 9.39 3.79

Aspheric coefficient
R14 k = -1.43239e + 02 B = -1.80347e-04 C = 1.55168e-05 D = -4.23854e-07
E = 0.00000e + 00

<数値実施例2>
f=6.61〜 64.78 Fno= 3.60 〜 5.67 2ω=53.7゜ 〜 5.9゜
R 1 = 33.513 D 1 = 1.30 N 1 = 1.846660 ν 1 = 23.9
R 2 = 21.293 D 2 = 4.00 N 2 = 1.487490 ν 2 = 70.2
R 3 = -221.076 D 3 = 0.10
R 4 = 20.037 D 4 = 2.40 N 3 = 1.603112 ν 3 = 60.6
R 5 = 61.171 D 5 = 可変
R 6 = 41.723 D 6 = 0.70 N 4 = 1.882997 ν 4 = 40.8
R 7 = 5.814 D 7 = 3.01
R 8 = -28.688 D 8 = 0.60 N 5 = 1.696797 ν 5 = 55.5
R 9 = 17.684 D 9 = 0.40
R10 = 10.908 D10 = 1.70 N 6 = 1.922860 ν 6 = 18.9
R11 = 33.976 D11 = 可変
R12 = 絞り D12 = 0.50
R13 = 9.977 D13 = 2.00 N 7 = 1.693500 ν 7 = 53.2
R14 = -37.158 D14 = 3.51
R15 = 387.649 D15 = 0.60 N 8 = 1.846660 ν 8 = 23.9
R16 = 8.113 D16 = 0.29
R17 = 11.247 D17 = 2.10 N 9 = 1.603112 ν 9 = 60.6
R18 = -639.500 D18 = 可変
R19 = 14.054 D19 = 0.70 N10 = 1.487490 ν10 = 70.2
R20 = 10.731 D20 = 可変
R21 = 14.536 D21 = 2.90 N11 = 1.804000 ν11 = 46.6
R22 = -37.028 D22 = 0.60 N12 = 1.846660 ν12 = 23.9
R23 = -251.285 D23 = 可変
R24 = ∞ D24 = 1.28 N13 = 1.516330 ν13 = 64.1
R25 = ∞

\焦点距離 6.61 26.05 64.78
可変間隔\
D 5 0.70 13.72 19.30
D11 21.03 6.60 1.43
D18 0.50 1.91 1.50
D20 6.92 2.43 9.60
D23 7.40 11.88 4.72

非球面係数
R14 k=-2.14372e+02 B=-3.53656e-04 C=3.48279e-05 D=-1.39789e-06
E=0.00000e+00
<Numerical Example 2>
f = 6.61 ~ 64.78 Fno = 3.60 ~ 5.67 2ω = 53.7 ° ~ 5.9 °
R 1 = 33.513 D 1 = 1.30 N 1 = 1.846660 ν 1 = 23.9
R 2 = 21.293 D 2 = 4.00 N 2 = 1.487490 ν 2 = 70.2
R 3 = -221.076 D 3 = 0.10
R 4 = 20.037 D 4 = 2.40 N 3 = 1.603112 ν 3 = 60.6
R 5 = 61.171 D 5 = variable
R 6 = 41.723 D 6 = 0.70 N 4 = 1.882997 ν 4 = 40.8
R 7 = 5.814 D 7 = 3.01
R 8 = -28.688 D 8 = 0.60 N 5 = 1.696797 ν 5 = 55.5
R 9 = 17.684 D 9 = 0.40
R10 = 10.908 D10 = 1.70 N 6 = 1.922860 ν 6 = 18.9
R11 = 33.976 D11 = variable
R12 = Aperture D12 = 0.50
R13 = 9.977 D13 = 2.00 N 7 = 1.693500 ν 7 = 53.2
R14 = -37.158 D14 = 3.51
R15 = 387.649 D15 = 0.60 N 8 = 1.846660 ν 8 = 23.9
R16 = 8.113 D16 = 0.29
R17 = 11.247 D17 = 2.10 N 9 = 1.603112 ν 9 = 60.6
R18 = -639.500 D18 = variable
R19 = 14.054 D19 = 0.70 N10 = 1.487490 ν10 = 70.2
R20 = 10.731 D20 = variable
R21 = 14.536 D21 = 2.90 N11 = 1.804000 ν11 = 46.6
R22 = -37.028 D22 = 0.60 N12 = 1.846660 ν12 = 23.9
R23 = -251.285 D23 = variable
R24 = ∞ D24 = 1.28 N13 = 1.516330 ν13 = 64.1
R25 = ∞

\ Focal length 6.61 26.05 64.78
Variable interval \
D 5 0.70 13.72 19.30
D11 21.03 6.60 1.43
D18 0.50 1.91 1.50
D20 6.92 2.43 9.60
D23 7.40 11.88 4.72

Aspheric coefficient
R14 k = -2.14372e + 02 B = -3.53656e-04 C = 3.48279e-05 D = -1.39789e-06
E = 0.00000e + 00

<数値実施例3>
f=6.50〜 64.60 Fno= 3.61 〜 5.67 2ω=54.5゜ 〜 5.9゜
R 1 = 36.036 D 1 = 1.30 N 1 = 1.728250 ν 1 = 28.5
R 2 = 20.572 D 2 = 4.00 N 2 = 1.438750 ν 2 = 95.0
R 3 = -108.255 D 3 = 0.10
R 4 = 18.755 D 4 = 2.40 N 3 = 1.603112 ν 3 = 60.6
R 5 = 53.640 D 5 = 可変
R 6 = 46.108 D 6 = 0.70 N 4 = 1.882997 ν 4 = 40.8
R 7 = 6.024 D 7 = 2.73
R 8 = -41.506 D 8 = 0.60 N 5 = 1.696797 ν 5 = 55.5
R 9 = 17.655 D 9 = 0.40
R10 = 10.769 D10 = 1.50 N 6 = 1.922860 ν 6 = 18.9
R11 = 27.978 D11 = 可変
R12 = 絞り D12 = 1.50
R13 = 10.777 D13 = 2.00 N 7 = 1.693500 ν 7 = 53.2
R14 = -37.304 D14 = 3.61
R15 = -58.658 D15 = 0.60 N 8 = 1.846660 ν 8 = 23.9
R16 = 8.738 D16 = 0.22
R17 = 11.175 D17 = 2.10 N 9 = 1.804000 ν 9 = 46.6
R18 = -17.983 D18 = 可変
R19 = -18.910 D19 = 0.70 N10 = 1.487490 ν10 = 70.2
R20 = 9.648 D20 = 可変
R21 = 14.324 D21 = 3.30 N11 = 1.804000 ν11 = 46.6
R22 = -11.012 D22 = 0.60 N12 = 1.846660 ν12 = 23.9
R23 = -30.531 D23 = 可変
R24 = ∞ D24 = 1.28 N13 = 1.516330 ν13 = 64.1
R25 = ∞

\焦点距離 6.50 20.58 64.60
可変間隔\
D 5 0.70 9.82 19.70
D11 19.50 6.12 1.50
D18 1.50 5.76 0.50
D20 4.76 4.60 8.86
D23 7.65 7.80 3.54

非球面係数
R13 k=7.20570e-01 B=1.71220e-05 C=-7.85975e-06 D=4.66646e-07
E=0.00000e+00
R14 k=-2.19192e+02 B=-2.78497e-04 C=2.94176e-05 D=-1.06973e-06
E=0.00000e+00
<Numerical Example 3>
f = 6.50-64.60 Fno = 3.61-5.67 2ω = 54.5 °-5.9 °
R 1 = 36.036 D 1 = 1.30 N 1 = 1.728250 ν 1 = 28.5
R 2 = 20.572 D 2 = 4.00 N 2 = 1.438750 ν 2 = 95.0
R 3 = -108.255 D 3 = 0.10
R 4 = 18.755 D 4 = 2.40 N 3 = 1.603112 ν 3 = 60.6
R 5 = 53.640 D 5 = Variable
R 6 = 46.108 D 6 = 0.70 N 4 = 1.882997 ν 4 = 40.8
R 7 = 6.024 D 7 = 2.73
R 8 = -41.506 D 8 = 0.60 N 5 = 1.696797 ν 5 = 55.5
R 9 = 17.655 D 9 = 0.40
R10 = 10.769 D10 = 1.50 N 6 = 1.922860 ν 6 = 18.9
R11 = 27.978 D11 = variable
R12 = Aperture D12 = 1.50
R13 = 10.777 D13 = 2.00 N 7 = 1.693500 ν 7 = 53.2
R14 = -37.304 D14 = 3.61
R15 = -58.658 D15 = 0.60 N 8 = 1.846660 ν 8 = 23.9
R16 = 8.738 D16 = 0.22
R17 = 11.175 D17 = 2.10 N 9 = 1.804000 ν 9 = 46.6
R18 = -17.983 D18 = variable
R19 = -18.910 D19 = 0.70 N10 = 1.487490 ν10 = 70.2
R20 = 9.648 D20 = variable
R21 = 14.324 D21 = 3.30 N11 = 1.804000 ν11 = 46.6
R22 = -11.012 D22 = 0.60 N12 = 1.846660 ν12 = 23.9
R23 = -30.531 D23 = variable
R24 = ∞ D24 = 1.28 N13 = 1.516330 ν13 = 64.1
R25 = ∞

\ Focal length 6.50 20.58 64.60
Variable interval \
D 5 0.70 9.82 19.70
D11 19.50 6.12 1.50
D18 1.50 5.76 0.50
D20 4.76 4.60 8.86
D23 7.65 7.80 3.54

Aspheric coefficient
R13 k = 7.20570e-01 B = 1.71220e-05 C = -7.85975e-06 D = 4.66646e-07
E = 0.00000e + 00
R14 k = -2.19192e + 02 B = -2.78497e-04 C = 2.94176e-05 D = -1.06973e-06
E = 0.00000e + 00

<数値実施例4>
f=6.66〜 64.66 Fno= 3.61 〜 5.67 2ω=53.4゜ 〜 5.9゜
R 1 = 33.730 D 1 = 1.30 N 1 = 1.805181 ν 1 = 25.4
R 2 = 21.242 D 2 = 4.00 N 2 = 1.496999 ν 2 = 81.5
R 3 = -222.548 D 3 = 0.10
R 4 = 19.592 D 4 = 2.40 N 3 = 1.603112 ν 3 = 60.6
R 5 = 55.735 D 5 = 可変
R 6 = 51.057 D 6 = 0.70 N 4 = 1.882997 ν 4 = 40.8
R 7 = 5.957 D 7 = 2.95
R 8 = -26.146 D 8 = 0.60 N 5 = 1.696797 ν 5 = 55.5
R 9 = 18.026 D 9 = 0.40
R10 = 11.320 D10 = 1.70 N 6 = 1.922860 ν 6 = 18.9
R11 = 35.176 D11 = 可変
R12 = 10.850 D12 = 2.00 N 7 = 1.693500 ν 7 = 53.2
R13 = -36.094 D13 = 1.00
R14 = 絞り D14 = 2.50
R15 = 74.437 D15 = 0.60 N 8 = 1.846660 ν 8 = 23.9
R16 = 8.361 D16 = 0.23
R17 = 10.566 D17 = 2.10 N 9 = 1.603112 ν 9 = 60.6
R18 = -18.880 D18 = 可変
R19 = -35.563 D19 = 0.70 N10 = 1.487490 ν10 = 70.2
R20 = 11.702 D20 = 可変
R21 = 15.140 D21 = 2.90 N11 = 1.804000 ν11 = 46.6
R22 = -16.517 D22 = 0.60 N12 = 1.846660 ν12 = 23.9
R23 = -51.845 D23 = 可変
R24 = ∞ D24 = 1.28 N13 = 1.516330 ν13 = 64.1
R25 = ∞

\焦点距離 6.66 24.48 64.66
可変間隔\
D 5 0.70 11.20 18.20
D11 20.15 5.81 0.65
D18 1.50 5.34 3.50
D20 6.75 3.20 8.79
D23 7.10 10.65 5.07

非球面係数
R13 k=-1.32894e+02 B=-1.83375e-04 C=1.72475e-05 D=-5.54298e-07
E=0.00000e+00
<Numerical Example 4>
f = 6.66 to 64.66 Fno = 3.61 to 5.67 2ω = 53.4 ° to 5.9 °
R 1 = 33.730 D 1 = 1.30 N 1 = 1.805181 ν 1 = 25.4
R 2 = 21.242 D 2 = 4.00 N 2 = 1.496999 ν 2 = 81.5
R 3 = -222.548 D 3 = 0.10
R 4 = 19.592 D 4 = 2.40 N 3 = 1.603112 ν 3 = 60.6
R 5 = 55.735 D 5 = variable
R 6 = 51.057 D 6 = 0.70 N 4 = 1.882997 ν 4 = 40.8
R 7 = 5.957 D 7 = 2.95
R 8 = -26.146 D 8 = 0.60 N 5 = 1.696797 ν 5 = 55.5
R 9 = 18.026 D 9 = 0.40
R10 = 11.320 D10 = 1.70 N 6 = 1.922860 ν 6 = 18.9
R11 = 35.176 D11 = variable
R12 = 10.850 D12 = 2.00 N 7 = 1.693500 ν 7 = 53.2
R13 = -36.094 D13 = 1.00
R14 = Aperture D14 = 2.50
R15 = 74.437 D15 = 0.60 N 8 = 1.846660 ν 8 = 23.9
R16 = 8.361 D16 = 0.23
R17 = 10.566 D17 = 2.10 N 9 = 1.603112 ν 9 = 60.6
R18 = -18.880 D18 = variable
R19 = -35.563 D19 = 0.70 N10 = 1.487490 ν10 = 70.2
R20 = 11.702 D20 = variable
R21 = 15.140 D21 = 2.90 N11 = 1.804000 ν11 = 46.6
R22 = -16.517 D22 = 0.60 N12 = 1.846660 ν12 = 23.9
R23 = -51.845 D23 = variable
R24 = ∞ D24 = 1.28 N13 = 1.516330 ν13 = 64.1
R25 = ∞

\ Focal length 6.66 24.48 64.66
Variable interval \
D 5 0.70 11.20 18.20
D11 20.15 5.81 0.65
D18 1.50 5.34 3.50
D20 6.75 3.20 8.79
D23 7.10 10.65 5.07

Aspheric coefficient
R13 k = -1.32894e + 02 B = -1.83375e-04 C = 1.72475e-05 D = -5.54298e-07
E = 0.00000e + 00


L1:第1レンズ群
L2:第2レンズ群
L3:第3レンズ群
L4:第4レンズ群
L5:第5レンズ群
SP:開口絞り
IP:像面
d :d線
g :g線
C :C線
F :F線
ΔS:サジタル像面
ΔM:メリディオナル像面
ω :半画角
L1: First lens group L2: Second lens group L3: Third lens group L4: Fourth lens group L5: Fifth lens group SP: Aperture stop IP: Image plane d: d line g: g line C: C line F: F line ΔS: Sagittal image plane ΔM: Meridional image plane ω: Half angle of view

Claims (9)

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群より構成され、前記第2レンズ群と前記第3レンズ群と前記第5レンズ群はズーミングに際して移動し、前記第1レンズ群と前記第4レンズ群はズーミングのためには不動であり、
前記第1レンズ群は、物体側より像側へ順に、負レンズと正レンズとを接合した接合レンズと、正レンズより構成され、
前記第3レンズ群は2枚の正レンズと1枚の負レンズより構成され、
前記第4レンズ群の焦点距離をf4、広角端における全系の焦点距離をfw、前記第3レンズ群を構成する負レンズの焦点距離をf3n、前記第3レンズ群の焦点距離をf3とするとき、
1.0<|f4|/fw<17.0
0.4<|f3n|/f3<1.0
なる条件を満足することを特徴とするズームレンズ。
In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive lens group The second lens group, the third lens group, and the fifth lens group move during zooming, and the first lens group and the fourth lens group are used for zooming. Is immobile
The first lens group includes a cemented lens obtained by cementing a negative lens and a positive lens in order from the object side to the image side, and a positive lens.
The third lens group includes two positive lenses and one negative lens,
The focal length of the fourth lens group is f4, the focal length of the entire system at the wide angle end is fw, the focal length of the negative lens constituting the third lens group is f3n, and the focal length of the third lens group is f3. When
1.0 <| f4 | / fw <17.0
0.4 <| f3n | / f3 <1.0
A zoom lens characterized by satisfying the following conditions:
前記第2レンズ群の広角端と望遠端における横倍率を各々β2w、β2t、前記第3レンズ群の広角端と望遠端における横倍率を各々β3w、β3t、望遠端における全系の焦点距離をftとするとき、
0.7<(β2t/β2w)/(ft/fw)<2.0
0.01<(β3t/β3w)/(ft/fw)<0.2
なる条件を満足することを特徴とする請求項1に記載のズームレンズ。
The lateral magnifications at the wide-angle end and the telephoto end of the second lens group are β2w and β2t, respectively, the lateral magnifications at the wide-angle end and the telephoto end of the third lens group are β3w and β3t, respectively, and the focal length of the entire system at the telephoto end is ft. And when
0.7 <(β2t / β2w) / (ft / fw) <2.0
0.01 <(β3t / β3w) / (ft / fw) <0.2
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第3レンズ群の望遠端における横倍率をβ3t、前記第4レンズ群の望遠端における横倍率をβ4t、前記第5レンズ群の望遠端における横倍率をβ5tとするとき、
1.0<(1−β3t)×β4t×β5t<2.0
なる条件を満足することを特徴とする請求項1又は2に記載のズームレンズ。
When the lateral magnification at the telephoto end of the third lens group is β3t, the lateral magnification at the telephoto end of the fourth lens group is β4t, and the lateral magnification at the telephoto end of the fifth lens group is β5t,
1.0 <(1-β3t) × β4t × β5t <2.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第4レンズ群は1枚の負レンズから構成され、該負レンズの物体側と像側のレンズ面の曲率半径を各々R4a、R4bとするとき、
0.1<(R4a+R4b)/(R4a−R4b)<8.0
なる条件を満足することを特徴とする請求項1から3のいずれか1項に記載のズームレンズ。
The fourth lens group is composed of one negative lens, and when the radius of curvature of the object-side and image-side lens surfaces of the negative lens is R4a and R4b,
0.1 <(R4a + R4b) / (R4a-R4b) <8.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第1レンズ群は正レンズと負レンズからなる接合レンズを有し、該接合レンズを構成する正レンズの材料のアッベ数をνd1p、部分分散比をθgF1pとするとき、
−0.0016νd1p+0.641<θgF1p
なる条件を満足することを特徴とする請求項1から4のいずれか1項のズームレンズ。
The first lens group has a cemented lens composed of a positive lens and a negative lens, and when the Abbe number of the material of the positive lens constituting the cemented lens is νd1p and the partial dispersion ratio is θgF1p,
−0.0016νd1p + 0.641 <θgF1p
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第1レンズ群の焦点距離をf1、前記第2レンズ群の焦点距離をf2とするとき、
2.0<f1/fw<6.0
1.0<|f2|/fw<1.5
なる条件を満足することを特徴とする請求項1から5のいずれか1項に記載のズームレンズ。
When the focal length of the first lens group is f1, and the focal length of the second lens group is f2,
2.0 <f1 / fw <6.0
1.0 <| f2 | / fw <1.5
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第5レンズ群の焦点距離をf5とするとき、
1.5<f3/fw<3.0
1.5<f5/fw<3.0
なる条件を満足することを特徴とする請求項1から6のいずれか1項に記載のズームレンズ。
When the focal length of the fifth lens group is f5,
1.5 <f3 / fw <3.0
1.5 <f5 / fw <3.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
固体撮像素子に像を形成することを特徴とする請求項1から7のいずれか1項に記載のズームレンズ。 The zoom lens according to claim 1, wherein an image is formed on a solid-state image sensor. 請求項1から8のいずれか1項に記載のズームレンズと、該ズームレンズによって形成された像を受光する固体撮像素子を有することを特徴とする撮像装置。 An image pickup apparatus comprising: the zoom lens according to claim 1; and a solid-state image sensor that receives an image formed by the zoom lens.
JP2011250496A 2011-11-16 2011-11-16 Zoom lens and imaging apparatus having the same Expired - Fee Related JP5295339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011250496A JP5295339B2 (en) 2011-11-16 2011-11-16 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250496A JP5295339B2 (en) 2011-11-16 2011-11-16 Zoom lens and imaging apparatus having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006090806A Division JP4902240B2 (en) 2006-03-29 2006-03-29 Zoom lens and imaging apparatus having the same

Publications (2)

Publication Number Publication Date
JP2012032842A JP2012032842A (en) 2012-02-16
JP5295339B2 true JP5295339B2 (en) 2013-09-18

Family

ID=45846218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250496A Expired - Fee Related JP5295339B2 (en) 2011-11-16 2011-11-16 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP5295339B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932722B1 (en) 2012-09-14 2018-12-26 삼성전자주식회사 Zoom lens and photographing apparatus having the same
JP6139880B2 (en) * 2012-12-27 2017-05-31 キヤノン株式会社 Optical system and photographing apparatus having the same
KR102094508B1 (en) 2013-12-11 2020-03-27 삼성전자주식회사 Zoom lens and photographing lens having the same
JP7170519B2 (en) * 2018-11-30 2022-11-14 株式会社タムロン Zoom lens and imaging device
CN116577919B (en) * 2023-07-06 2023-09-26 苏州东方克洛托光电技术有限公司 Zoom lens with racemization prism

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813670B2 (en) * 2001-01-30 2011-11-09 パナソニック株式会社 Zoom lens and video camera using the same
JP4766933B2 (en) * 2005-06-21 2011-09-07 オリンパスイメージング株式会社 Optical path folding zoom lens and image pickup apparatus having the same

Also Published As

Publication number Publication date
JP2012032842A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP4902240B2 (en) Zoom lens and imaging apparatus having the same
JP4950630B2 (en) Zoom lens and imaging apparatus having the same
JP5072474B2 (en) Zoom lens and imaging apparatus having the same
JP5111059B2 (en) Zoom lens and imaging apparatus having the same
JP3352240B2 (en) High zoom ratio zoom lens
JP5053750B2 (en) Zoom lens and imaging apparatus having the same
JP4886334B2 (en) Zoom lens and imaging apparatus having the same
JP5111007B2 (en) Zoom lens and imaging apparatus having the same
JP2006337745A (en) Zoom lens and image pickup unit having the same
JP5072447B2 (en) Zoom lens and imaging apparatus having the same
JP2008281917A (en) Zoom lens and imaging apparatus equipped with same
JP2008089690A (en) Zoom lens and imaging apparatus having the same
JP2008070519A (en) Zoom lens and imaging apparatus having the same
JP2007322635A (en) Zoom lens and imaging apparatus having the same
JP2007178825A (en) Zoom lens and imaging device having the same
JP5295339B2 (en) Zoom lens and imaging apparatus having the same
JP2012255962A (en) Zoom lens and image pickup apparatus including the same
JP2007271710A (en) Zoom lens and imaging apparatus having the same
JP2007316287A (en) Zoom lens and imaging apparatus using the same
JP2015125383A (en) Zoom lens and imaging apparatus including the same
JP2006078964A (en) Zoom lens and image pickup device having the same
JP4865218B2 (en) Zoom lens and imaging apparatus having the same
JP2017015910A (en) Zoom lens and imaging device including the same
JP5528157B2 (en) Zoom lens and imaging apparatus having the same
JP6566747B2 (en) Zoom lens and imaging apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R151 Written notification of patent or utility model registration

Ref document number: 5295339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees