JP2007316287A - Zoom lens and imaging apparatus using the same - Google Patents
Zoom lens and imaging apparatus using the same Download PDFInfo
- Publication number
- JP2007316287A JP2007316287A JP2006145152A JP2006145152A JP2007316287A JP 2007316287 A JP2007316287 A JP 2007316287A JP 2006145152 A JP2006145152 A JP 2006145152A JP 2006145152 A JP2006145152 A JP 2006145152A JP 2007316287 A JP2007316287 A JP 2007316287A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- positive
- lens group
- negative
- image side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lenses (AREA)
Abstract
Description
本発明は、ズームレンズ及びそれを用いた撮像装置に関し、ビデオカメラやデジタルスチルカメラ等の電子カメラ、フィルム用カメラ、そして放送用カメラ等に好適に用いられるものである。 The present invention relates to a zoom lens and an imaging apparatus using the same, and is suitably used for electronic cameras such as video cameras and digital still cameras, film cameras, broadcast cameras, and the like.
最近、固体撮像素子を用いたビデオカメラ、デジタルスチルカメラ、監視用カメラ等の撮像装置(カメラ)には、高機能であること、そしてカメラ全体が小型であることが要望されている。 Recently, imaging devices (cameras) such as a video camera, a digital still camera, and a surveillance camera using a solid-state imaging device are required to have high functionality and to be small in size as a whole.
そしてそれに伴い、これらのカメラに用いる光学系(撮像光学系)には、小型で広画角で、しかも高い光学性能を有するズームレンズであることが求められている。 Accordingly, an optical system (imaging optical system) used for these cameras is required to be a zoom lens having a small size, a wide angle of view, and high optical performance.
又、プリズムやフィルター等の色分解光学系を用いた撮像装置では、像側にこれらの色分解光学系を配置する。このためこれらに用いるズームレンズには、色分解光学系の光路長に相当する長さのバックフォーカスを有することが求められている。 Further, in an imaging apparatus using a color separation optical system such as a prism or a filter, these color separation optical systems are arranged on the image side. For this reason, the zoom lens used for these is required to have a back focus having a length corresponding to the optical path length of the color separation optical system.
これらの要求を満足するズームレンズとして物体側より像側へ順に正、負、正、正の屈折力の第1〜第4レンズ群より成る4群ズームレンズが知られている。 As a zoom lens that satisfies these requirements, there is known a four-group zoom lens including first to fourth lens units having positive, negative, positive, and positive refractive powers in order from the object side to the image side.
このうち、第2レンズ群を移動させて変倍を行い、第4レンズ群にて変倍に伴う像面変動を補正すると共に、フォーカシングを行う所謂リアフォーカス式の4群ズームレンズが知られている。 Among these, a so-called rear focus type four-group zoom lens is known that performs zooming by moving the second lens group, corrects image plane fluctuations accompanying zooming by the fourth lens group, and performs focusing. Yes.
そして、このリアフォーカス式の4群ズームレンズにおいて、第1レンズ群のレンズ構成として物体側に負の屈折力のレンズ群を、像側に正の屈折力のレンズ群を配置し、広画角を図ったズームレンズが知られている(特許文献1、2)。 In this rear focus type four-group zoom lens, a lens unit having a negative refractive power is disposed on the object side and a lens group having a positive refractive power is disposed on the image side as a lens configuration of the first lens unit, and a wide angle of view. A zoom lens that achieves the above has been known (Patent Documents 1 and 2).
この他、前述した要件を満足するズームレンズとして、物体側から像側へ順に正、負、正、正、正の屈折力の第1〜第5レンズ群より成る5群ズームレンズが知られている。 In addition, as a zoom lens that satisfies the above-described requirements, a five-group zoom lens that includes first to fifth lens units having positive, negative, positive, positive, and positive refractive powers in order from the object side to the image side is known. Yes.
この5群ズームレンズにおいて、第2レンズ群と第4レンズ群を移動させてズーミングを行い第4レンズ群を移動させてフォーカスを行う比較的広画角なズームレンズが知られている(特許文献3、4)。
ズームレンズにおいてリアフォーカス方式を採用すると、第1レンズ群でフォーカスを行うズームレンズに比べてレンズ系全体が小型化され、迅速なるフォーカスが可能となり、さらに近接撮影が容易となるなどの特徴が得られる。 When the rear focus method is used in the zoom lens, the entire lens system is reduced in size compared to the zoom lens that performs focusing with the first lens group, enabling quick focusing and facilitating close-up photography. It is done.
しかしながら反面、フォーカスの際の収差変動が多くなってくる。 On the other hand, however, aberration fluctuations during focusing increase.
又、広画角化及び高ズーム比化を図ろうとすると全ズーム範囲にわたり、高い光学性能を得るのが難しくなってくる。 In addition, if it is intended to increase the angle of view and the zoom ratio, it becomes difficult to obtain high optical performance over the entire zoom range.
このためリアフォーカス式のズームレンズにおいて、広画角化及び高ズーム比化を図りつつ、全ズーム領域において高い光学性能を得るには、各レンズ群のレンズ構成、特に第1レンズ群のレンズ構成を適切に設定する必要がある。 Therefore, in a rear focus type zoom lens, in order to obtain a high optical performance in the entire zoom range while achieving a wide angle of view and a high zoom ratio, the lens configuration of each lens group, particularly the lens configuration of the first lens group Must be set appropriately.
更に、色分解光学系を像側に配置するだけの長さのバックフォーカスを得るには、各レンズ群の屈折力配置及びレンズ構成を適切に設定する必要がある。 Furthermore, in order to obtain a back focus that is long enough to arrange the color separation optical system on the image side, it is necessary to appropriately set the refractive power arrangement and the lens configuration of each lens group.
特に前述したズームタイプの4群ズームレンズや5群ズームレンズにおいて第1レンズ群のレンズ構成を適切に設定しないと、広画角化及び高ズーム比化を図る際に、画面全体及び全ズーム範囲にわたり良好な光学性能を得ることが大変難しくなってくる。 In particular, in the zoom type 4-group zoom lens and 5-group zoom lens described above, if the lens configuration of the first lens group is not set appropriately, the entire screen and the entire zoom range can be obtained when a wide angle of view and a high zoom ratio are achieved. It becomes very difficult to obtain good optical performance over a long period of time.
本発明は、広画角、高ズーム比で、しかも全ズーム範囲にわたり高い光学性能が得られるズームレンズ及びそれを有する撮像装置の提供を目的とする。 An object of the present invention is to provide a zoom lens that has a wide angle of view, a high zoom ratio, and high optical performance over the entire zoom range, and an image pickup apparatus having the zoom lens.
本発明のズームレンズは、
◎物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、ズーミングに際して該第2、第4レンズ群が移動するズームレンズであって、
該第1レンズ群は、像側が凹面の1以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズ、負レンズと正レンズより成る接合レンズ又は負レンズ、最も像側に屈折力の絶対値が像側に比べ物体側に強く、物体側が凸面の正レンズより成り、
該第1レンズ群中の像側が凹面の1以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズの合成焦点距離をf1FF、該第1レンズ群の焦点距離をf1とするとき、
0.02<f1/f1FF<0.78 ・・・・・(1)
なる条件を満足することを特徴としている。
The zoom lens of the present invention is
In order from the object side to the image side, there is a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens group having a positive refractive power. A zoom lens in which the second and fourth lens groups move during zooming,
The first lens group includes one or more negative lenses having a concave surface on the image side, a lens having a concave surface on the object side, one or more positive lenses having a biconvex shape, a cemented lens or a negative lens composed of a negative lens and a positive lens, and the most image side. The absolute value of refractive power is stronger on the object side than on the image side, and the object side consists of a convex positive lens.
In the first lens group, the composite focal length of one or more negative lenses having a concave surface on the image side, a concave lens on the object side, and one or more positive lenses having a biconvex shape is defined as f1FF, and the focal length of the first lens group is defined as f1. and when,
0.02 <f1 / f1FF <0.78 (1)
It is characterized by satisfying the following conditions.
◎物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、ズーミングに際して該第2、第4レンズ群が移動するズームレンズであって、
該第1レンズ群は、像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズ、像側が凹面の負レンズと正レンズとの接合レンズ又は像側が凹面の負レンズ、物体側が凸面の2つの正レンズより成り、
該第1レンズ群中の像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズの合成焦点距離をf1FF、該第1レンズ群の焦点距離をf1とするとき、
0.02<f1/f1FF<0.78 ・・・・・(1)
なる条件を満足することを特徴としている。
In order from the object side to the image side, there is a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens group having a positive refractive power. A zoom lens in which the second and fourth lens groups move during zooming,
The first lens group includes a negative lens having a concave surface on the image side, a lens having a concave surface on the object side, a biconvex positive lens, a cemented lens of a negative lens having a concave surface and a positive lens on the image side, or a negative lens having a concave surface on the image side, Consists of two positive positive lenses,
When the composite focal length of the negative lens having the concave surface on the image side, the concave lens on the object side, and the positive lens having the biconvex shape is f1FF, and the focal length of the first lens group is f1 in the first lens group,
0.02 <f1 / f1FF <0.78 (1)
It is characterized by satisfying the following conditions.
◎物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、ズーミングに際して該第2、第4レンズ群が移動するズームレンズであって、
該第1レンズ群は、像側が凹面の1枚以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズ、負レンズと正レンズより成る接合レンズ又は負レンズ、屈折力の絶対値が像側に比べ物体側に大きく、物体側が凸面の1枚以上の正レンズより成り、
該第1レンズ群中の像側が凹面の1枚以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズの合成焦点距離をf1FF、該第1レンズ群の焦点距離をf1とするとき、
0.02<f1/f1FF<0.78
なる条件を満足することを特徴としている。
In order from the object side to the image side, there is a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens group having a positive refractive power. A zoom lens in which the second and fourth lens groups move during zooming,
The first lens group includes one or more negative lenses having a concave surface on the image side, a lens having a concave surface on the object side, one or more positive lenses having a biconvex shape, a cemented lens or a negative lens composed of a negative lens and a positive lens, The absolute value is larger on the object side than on the image side, and the object side consists of one or more positive lenses having a convex surface.
The composite focal length of one or more negative lenses having a concave surface on the image side, a concave lens on the object side, and one or more positive lenses having a biconvex shape in the first lens group is f1FF, and the focal length of the first lens group is f1. And when
0.02 <f1 / f1FF <0.78
It is characterized by satisfying the following conditions.
◎物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群、正の屈折力の第5レンズ群を有し、ズーミングに際して該第2、第4レンズ群が移動するズームレンズであって、
該第1レンズ群は、像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズ、像側が凹面の負レンズと正レンズとの接合レンズ又は像側が凹面の負レンズ、物体側が凸面の2つの正レンズより成り、
該第1レンズ群中の像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズの合成焦点距離をf1FF、該第1レンズ群の焦点距離をf1とするとき、
0.02<f1/f1FF<0.78 ・・・・・(1)
なる条件を満足することを特徴としている。
In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, A zoom lens having a fifth lens unit having a refractive power of 5 mm, and wherein the second and fourth lens units move during zooming,
The first lens group includes a negative lens having a concave surface on the image side, a lens having a concave surface on the object side, a biconvex positive lens, a cemented lens of a negative lens having a concave surface and a positive lens on the image side, or a negative lens having a concave surface on the image side, and Consists of two positive positive lenses,
When the composite focal length of the negative lens having the concave surface on the image side, the concave lens on the object side, and the biconvex positive lens in the first lens group is f1FF, and the focal length of the first lens group is f1.
0.02 <f1 / f1FF <0.78 (1)
It is characterized by satisfying the following conditions.
本発明によれば前述の如く、レンズ構成を特定することにより、広画角、高ズーム比で全ズーム領域にわたり高い光学性能を達成したズームレンズが得られる。 According to the present invention, as described above, by specifying the lens configuration, it is possible to obtain a zoom lens that achieves high optical performance over the entire zoom region with a wide angle of view and a high zoom ratio.
以下、本発明のズームレンズ及びそれを有する撮像装置の実施例について説明する。 Embodiments of the zoom lens of the present invention and an image pickup apparatus having the same will be described below.
図1は本発明の実施例1のズームレンズの広角端(短焦点距離端)におけるレンズ断面図、図2、図3、図4はそれぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。 1 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to Embodiment 1 of the present invention, and FIGS. 2, 3, and 4 are the wide-angle end and intermediate zoom position of the zoom lens according to Embodiment 1, respectively. FIG. 6 is an aberration diagram at the telephoto end (long focal length end).
図5は本発明の実施例2のズームレンズの広角端におけるレンズ断面図、図6、図7、図8はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。 FIG. 5 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 2 of the present invention, and FIGS. 6, 7, and 8 are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. It is.
図9は本発明の実施例3のズームレンズの広角端におけるレンズ断面図、図10、図11、図12はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。 FIG. 9 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 3 of the present invention. FIGS. 10, 11, and 12 are aberration diagrams at the wide-angle end, intermediate zoom position, and telephoto end of the zoom lens according to Embodiment 3, respectively. It is.
図13は本発明の実施例4のズームレンズの広角端におけるレンズ断面図、図14、図15、図16はそれぞれ実施例4のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。 FIG. 13 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 4 of the present invention. FIGS. 14, 15, and 16 are aberration diagrams at the wide-angle end, intermediate zoom position, and telephoto end of the zoom lens according to Embodiment 4, respectively. It is.
図17は本発明のズームレンズを備えるビデオカメラ(撮像装置)の要部概略図である。 FIG. 17 is a schematic diagram of a main part of a video camera (imaging device) including the zoom lens of the present invention.
各実施例のズームレンズは撮像装置に用いられる撮影レンズ系であり、レンズ断面図において、ZLはズームレンズ、CBはカメラ本体である。 The zoom lens of each embodiment is a photographic lens system used in an imaging apparatus. In the lens cross-sectional view, ZL is a zoom lens, and CB is a camera body.
L1は正の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群、L5は正の屈折力の第5レンズ群である。SPは光量調整用の開口絞りであり、第3レンズ群L3の物体側に位置している。 L1 is a first lens group having a positive refractive power (optical power = reciprocal of focal length), L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is positive. A fourth lens unit having a refractive power, L5 is a fifth lens unit having a positive refractive power. SP is an aperture stop for adjusting the amount of light, and is located on the object side of the third lens unit L3.
図13の実施例4において、GAはズームレンズZLの保護を目的とした必要に応じて設けられる保護ガラスである。尚、保護ガラスGAを実施例1〜3においても同様に用いても良い。 In Example 4 of FIG. 13, GA is a protective glass provided as needed for the purpose of protecting the zoom lens ZL. In addition, you may use protective glass GA similarly in Examples 1-3.
GBは色分解プリズム、光学フィルター、フェースプレート、ローパスフィルター等に相当する光学ブロックである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が、銀塩フィルム用カメラのときはフィルム面に相当する。 GB is an optical block corresponding to a color separation prism, an optical filter, a face plate, a low-pass filter, and the like. IP is an image plane, and when used as a photographing optical system for a video camera or a digital still camera, when the imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is a silver salt film camera Corresponds to the film surface.
第1レンズ群L1から第5レンズ群L5(図13の実施例4では保護ガラスGA)までの各要素はズームレンズ(ズームレンズ部)ZLの一要素を構成している。ガラスブロックGBと撮像素子はカメラ本体CB内に収納されている。ズームレンズ部ZLはマウント部材Cを介してカメラ本体CBに着脱可能に装着されている。 Each element from the first lens group L1 to the fifth lens group L5 (protective glass GA in Example 4 of FIG. 13) constitutes an element of the zoom lens (zoom lens unit) ZL. The glass block GB and the image sensor are housed in the camera body CB. The zoom lens unit ZL is detachably attached to the camera body CB via the mount member C.
収差図において、d、gは各々d線及びg線、ΔM、ΔSはメリジオナル像面、サジタル像面、倍率色収差はg線によって表している。 In the aberration diagrams, d and g are d-line and g-line, respectively, ΔM and ΔS are meridional image plane, sagittal image plane, and lateral chromatic aberration are represented by g-line.
FnoはFナンバー、ωは撮影画角の半画角である。 Fno is the F number, and ω is the half angle of view of the shooting angle of view.
尚、以下の各実施例において広角端と望遠端は変倍用のレンズ群(各実施例では第2レンズ群L2)が機構上光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。 In each of the following embodiments, the zoom at the wide-angle end and the telephoto end when the lens unit for zooming (in each embodiment, the second lens unit L2) is positioned at both ends of the movable range on the optical axis on the mechanism. Says the position.
各実施例では、広角端から望遠端へのズーミング(変倍)に際して矢印のように、第2レンズ群L2を像側へ移動させて変倍を行うと共に、変倍に伴う像面変動を第4レンズ群L4を物体側に凸状の軌跡を有するよう移動させて補正している。 In each embodiment, zooming (zooming) from the wide-angle end to the telephoto end is performed by moving the second lens unit L2 toward the image side as indicated by an arrow, and the image plane variation caused by the zooming is changed. The four lens unit L4 is moved and corrected so as to have a convex locus on the object side.
また、第4レンズ群L4の一部又は全部(各実施例では全部である)を光軸上移動させてフォーカシングを行うリアフォーカス式を採用している。 Further, a rear focus type is employed in which focusing is performed by moving a part or all of the fourth lens unit L4 (which is all in each embodiment) on the optical axis.
第4レンズ群のズーミングに伴う移動軌跡は物体距離によって異なっている。 The movement trajectory accompanying zooming of the fourth lens group varies depending on the object distance.
第4レンズ群L4に関する実線の曲線4aと点線の曲線4bは、各々無限遠物体と近距離物体にフォーカスしているときの変倍に伴う像面変動を補正するための移動軌跡である。このように第4レンズ群L4を物体側へ凸状の軌跡とすることで第3レンズ群L3と第4レンズ群L4との間の空間の有効利用を図り、レンズ全長の短縮化を効果的に達成している。 A solid curve 4a and a dotted curve 4b relating to the fourth lens unit L4 are movement trajectories for correcting image plane fluctuations accompanying zooming when focusing on an object at infinity and an object at close distance, respectively. Thus, by making the fourth lens unit L4 a locus convex toward the object side, the space between the third lens unit L3 and the fourth lens unit L4 can be effectively used, and the entire lens length can be shortened effectively. Has been achieved.
各実施例では、例えば望遠端において無限遠物体から近距離物体へフォーカスを行う場合には、矢印4cに示すように第4レンズ群L4を前方に繰り出すことで行っている。尚、第1レンズ群L1と第3レンズ群L3は、ズーミング及びフォーカスの為には光軸方向に固定であるが収差補正上必要に応じて移動させてもよい。 In each embodiment, for example, when focusing from an infinitely distant object to a close object at the telephoto end, the fourth lens unit L4 is moved forward as indicated by an arrow 4c. The first lens unit L1 and the third lens unit L3 are fixed in the optical axis direction for zooming and focusing, but may be moved as necessary for aberration correction.
各実施例においては、第3レンズ群の一部又は全部のレンズ群(防振レンズ群)を光軸と垂直方向の成分を持つように移動させて光学系全体が振動したときの像ぶれを補正するようにしている。即ち防振を行っている。 In each embodiment, image blur when the entire optical system vibrates by moving a part or all of the third lens group (anti-vibration lens group) so as to have a component perpendicular to the optical axis. I am trying to correct it. That is, vibration isolation is performed.
これにより可変頂角プリズム等の光学部材や防振のためのレンズ群を新たに付加することなく防振を行うようにし、光学系全体が大型化するのを防止している。 As a result, image stabilization is performed without newly adding an optical member such as a variable apex angle prism or a lens group for image stabilization, thereby preventing the entire optical system from becoming large.
図17に示す本発明のビデオカメラ(撮像装置)は、少なくとも上記ズームレンズと、色分解用素子と該色分解素子によって分割された各色対応の撮像素子と、撮像信号処理回路等を有している。 The video camera (imaging device) of the present invention shown in FIG. 17 has at least the zoom lens, a color separation element, an imaging element corresponding to each color divided by the color separation element, an imaging signal processing circuit, and the like. Yes.
まず図1、図5、図9の実施例1〜3の各レンズ群のレンズ構成について説明する。 First, the lens configuration of each lens group of Examples 1 to 3 in FIGS. 1, 5, and 9 will be described.
実施例1〜3は、物体側より像側へ順に、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5より成っている。 In Examples 1 to 3, in order from the object side to the image side, the first lens unit L1 having a positive refractive power, the second lens unit L2 having a negative refractive power, the third lens unit L3 having a positive refractive power, and a positive lens unit. The lens unit includes a fourth lens unit L4 having a refractive power and a fifth lens unit L5 having a positive refractive power.
そして、ズーミングに際して前述の如く第2、第4レンズ群L2、L4が移動する。 During zooming, the second and fourth lens units L2 and L4 move as described above.
第1レンズ群L1は、物体側から、像側が凹面の負レンズ、物体側が凹面のレンズ(屈折力は正でも負でも構わない)、両凸形状の正レンズ、像側が凹面の負レンズと正レンズとの接合レンズ(実施例1、3)又は像側が凹面の負レンズ(実施例2)、物体側が凸面の2つの正レンズより成っている。尚、これらの順番は必ずしも物体側から順番で無くても構わない。 The first lens unit L1 includes a negative lens having a concave surface on the image side, a lens having a concave surface on the object side (refractive power may be positive or negative), a positive lens having a biconvex shape, and a negative lens having a concave surface on the image side. A cemented lens with the lens (Examples 1 and 3) or a negative lens (Example 2) having a concave surface on the image side, and two positive lenses having a convex surface on the object side. Note that the order of these is not necessarily the order from the object side.
また、第1レンズ群L1を、物体側から、像側が凹面の1以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズ、負レンズと正レンズより成る接合レンズ又は負レンズ、屈折力の絶対値が像側に比べ物体側に大きく、物体側が凸面の正レンズにより構成しても良い。尚、これらの順番は必ずしも物体側から順番で無くても構わない。 Further, the first lens unit L1 includes, from the object side, one or more negative lenses having a concave surface on the image side, a lens having a concave surface on the object side, one or more positive lenses having a biconvex shape, a cemented lens including a negative lens and a positive lens, or a negative lens. The absolute value of the lens and refractive power may be larger on the object side than on the image side, and the object side may be a convex positive lens. Note that the order of these is not necessarily the order from the object side.
ここで、上述のような構成要素を、物体側から順に配置した場合、第1レンズ群L1中に負レンズと正レンズとの接合レンズ又は負レンズそして最も像面側に正レンズを設けることにより、望遠端の軸上色収差や球面収差を良好に補正している。 Here, when the constituent elements as described above are arranged in order from the object side, a negative lens-positive lens cemented lens or a negative lens in the first lens unit L1 and a positive lens closest to the image plane side are provided. The axial chromatic aberration and spherical aberration at the telephoto end are corrected well.
また、この第1レンズ群は、像側が凹面の1以上の負レンズ、物体側が凹面のレンズ、両凸の1以上の正レンズ、負レンズと正レンズより成る接合レンズ又は負レンズ、屈折力の絶対値が像側より物体側が大きく、物体側に凸の1以上の正レンズで構成しても良い。つまり、これらの配置順は必ずしも物体側から順とは限らない。但し、上述したように軸上色収差や球面収差を良好に補正するためには、第1レンズ群中に、接合レンズ又は負レンズそして最も像面側に正レンズを設けることが望ましい。 The first lens group includes one or more negative lenses having a concave surface on the image side, a lens having a concave surface on the object side, one or more positive lenses having a biconvex shape, a cemented lens or a negative lens composed of a negative lens and a positive lens, and a refractive power. One or more positive lenses having an absolute value larger on the object side than the image side and convex on the object side may be used. That is, the order of arrangement is not necessarily the order from the object side. However, as described above, in order to satisfactorily correct axial chromatic aberration and spherical aberration, it is desirable to provide a cemented lens or a negative lens and a positive lens closest to the image plane in the first lens group.
また、第1レンズ群L1のレンズ構成を上記のようにすることにより、広角端の画角が75度以上の超広画角のズームレンズにもかかわらず、歪曲収差を通常の画角のズームレンズ並みの収差量に補正している。 In addition, by configuring the first lens unit L1 as described above, the distortion aberration can be reduced to a normal angle of view in spite of a zoom lens having an ultra wide angle of view of 75 degrees or more at the wide angle end. The aberration is corrected to the same level as the lens.
さらに非点収差や、像面湾曲を良好に補正している。 Furthermore, astigmatism and curvature of field are corrected well.
第2レンズ群L2は、物体側から像側へ順に像側が凹面でメニスカス形状の負レンズ、像側が凸面の正レンズと両凹形状の負レンズとの接合レンズ、両凸形状の正レンズと負レンズとの接合レンズ又は単一の正レンズより成っている。 The second lens unit L2 includes, in order from the object side to the image side, a negative meniscus lens having a concave surface on the image side, a cemented lens of a positive lens having a convex surface on the image side and a biconcave negative lens, and a biconvex positive lens and a negative lens. It consists of a cemented lens with a lens or a single positive lens.
変倍作用をする第2レンズ群L2をこのように構成することにより、収差補正を良好に行っている。又第2レンズ群L2のレンズ構成は、高性能な光学性能を得るため、ズーミングによる収差変動を良好に補正するようにしている。 By configuring the second lens unit L2 having a zooming function in this way, aberration correction is performed satisfactorily. In addition, the lens configuration of the second lens unit L2 favorably corrects aberration variations due to zooming in order to obtain high-performance optical performance.
尚、各実施例においては、第2レンズ群L2に非球面を導入している。これにより広角端での非点収差を良好に補正して、高い光学性能を得ている。 In each embodiment, an aspherical surface is introduced into the second lens unit L2. As a result, astigmatism at the wide-angle end is corrected well, and high optical performance is obtained.
第3レンズ群L3は、物体側から像側へ順に、両凹形状の負レンズと正レンズとの接合レンズ、正レンズと負レンズとの接合レンズ又は正レンズより成っている。 The third lens unit L3 includes, in order from the object side to the image side, a cemented lens of a biconcave negative lens and a positive lens, a cemented lens of a positive lens and a negative lens, or a positive lens.
又、第3レンズ群L3は、少なくとも1以上の非球面を有している。これによって広角端での球面収差やコマ収差、および軸上色収差を良好に補正している。 The third lens unit L3 has at least one aspheric surface. As a result, spherical aberration, coma and axial chromatic aberration at the wide-angle end are corrected well.
このときの第3レンズ群L3に非球面を導入するとき、の非球面形状はレンズの周辺部にいくに従って正の屈折力が弱くなる形状とするのが望ましい。 When an aspheric surface is introduced into the third lens unit L3 at this time, it is desirable that the aspheric shape be such that the positive refractive power becomes weaker toward the periphery of the lens.
第3レンズ群L3の一部又は全部は、光軸と垂直方向の成分を持つように移動して像を変位している。即ち、防振を行っている。 A part or all of the third lens unit L3 moves so as to have a component perpendicular to the optical axis to displace the image. That is, vibration isolation is performed.
第4レンズ群L4は、物体側から像側へ順に正レンズ、負レンズと正レンズとの接合レンズより成っている。 The fourth lens unit L4 includes a positive lens and a cemented lens of a negative lens and a positive lens in order from the object side to the image side.
第5レンズ群L5は物体側から像側へ順に、両凸形状の正レンズと負レンズとの接合レンズより成っている。 The fifth lens unit L5 includes, in order from the object side to the image side, a cemented lens of a biconvex positive lens and a negative lens.
第5レンズ群L5のレンズ構成は、レンズ系全体として第4レンズ群に影響する。第5レンズ群L5は、第4レンズ群L4が行う球面収差、色収差の補正の一部を担っている。これによって、移動レンズ群である第4レンズ群L4のレンズ構成枚数を少なくしている。又第4レンズ群L4で瞬時のフォーカスを行うのに最適な構成としている。 The lens configuration of the fifth lens unit L5 affects the fourth lens unit as a whole. The fifth lens unit L5 bears part of correction of spherical aberration and chromatic aberration performed by the fourth lens unit L4. As a result, the number of lenses constituting the fourth lens unit L4, which is a moving lens unit, is reduced. Further, the fourth lens unit L4 has an optimum configuration for performing instantaneous focusing.
又、第5レンズ群L5は、第1レンズ群L1から第4レンズ群L4まででは補正しきれない収差、特に球面収差、色収差を補正して、高画質に適した収差補正を実現している。 The fifth lens unit L5 corrects aberrations that cannot be corrected by the first lens unit L1 to the fourth lens unit L4, particularly spherical aberration and chromatic aberration, and realizes aberration correction suitable for high image quality. .
次に図13の実施例4の各レンズ群のレンズ構成について説明する。 Next, the lens configuration of each lens group of Example 4 in FIG. 13 will be described.
実施例4は、物体側より像側へ順に、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3、正の屈折力の第4レンズ群L4より成っている。 In Example 4, in order from the object side to the image side, the first lens unit L1 having a positive refractive power, the second lens unit L2 having a negative refractive power, the third lens unit L3 having a positive refractive power, and a positive refractive power. The fourth lens unit L4.
そしてズーミングに際して前述の如く第2、第4レンズ群L2、L4が移動する。 During zooming, the second and fourth lens units L2 and L4 move as described above.
第1レンズ群L1は、像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズ、像側が凹面の負レンズと正レンズとの接合レンズ、物体側が凸面の2つの正レンズより成っている。 The first lens unit L1 includes a negative lens having a concave surface on the image side, a lens having a concave surface on the object side, a biconvex positive lens, a cemented lens of a negative lens having a concave surface on the image side and a positive lens, and two positive lenses having a convex surface on the object side. It is made up.
尚、第1レンズ群L1を像側が凹面の1以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズ、負レンズと正レンズより成る接合レンズ又は負レンズ、最も像側に屈折力の絶対値が像側に比べ物体側に強く、物体側が凸面の正レンズより構成しても良い。 The first lens unit L1 includes one or more negative lenses having a concave surface on the image side, a lens having a concave surface on the object side, one or more positive lenses having a biconvex shape, a cemented lens or a negative lens composed of a negative lens and a positive lens, and the most image side. In addition, the absolute value of the refractive power may be stronger on the object side than on the image side, and the object side may be composed of a convex positive lens.
第2レンズ群L2、第3レンズ群L3、第4レンズ群L4のレンズ構成及びそれから得られる効果は、実施例1〜3と同じである。 The lens configurations of the second lens unit L2, the third lens unit L3, and the fourth lens unit L4 and the effects obtained therefrom are the same as those in Examples 1 to 3.
各実施例では、第1レンズ群L1中の像側が凹面の1以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズの合成焦点距離又は像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズの合成焦点距離をf1FF、第1レンズ群L1の焦点距離をf1とするとき、
0.02<f1/f1FF<0.78 ・・・・・(1)
なる条件を満足している。
In each embodiment, the image side in the first lens unit L1 has one or more negative lenses having a concave surface, the object side has a concave lens, the combined focal length of one or more biconvex positive lenses or the image side has a concave negative lens, the object When the combined focal length of the concave lens on the side, the biconvex positive lens is f1FF, and the focal length of the first lens unit L1 is f1,
0.02 <f1 / f1FF <0.78 (1)
Is satisfied.
一般に、第1レンズ群の物体側に挿脱するワイドコンバーターレンズは屈折力が略0のアフォーカル系より成っている。 In general, a wide converter lens that is inserted into and removed from the object side of the first lens unit is composed of an afocal system having a refractive power of approximately zero.
各実施例において、第1レンズ群L1の一部のレンズ群がアフォーカル系であるとすると、そのレンズ構成は像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズに相当する。 In each embodiment, assuming that a part of the first lens unit L1 is an afocal system, the lens configuration corresponds to a negative lens having a concave surface on the image side, a lens having a concave surface on the object side, and a positive lens having a biconvex shape. To do.
しかしながら各実施例では、アフォール系を付加したものでないため、像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズより成る合成系は所定の屈折力を有している。 However, in each of the embodiments, since no fall system is added, a composite system including a negative lens having a concave surface on the image side, a lens having a concave surface on the object side, and a positive lens having a biconvex shape has a predetermined refractive power.
条件式(1)は、このときの合成系の屈折力(焦点距離の逆数)を適切に設定したものである。 Conditional expression (1) appropriately sets the refractive power (reciprocal of the focal length) of the synthesis system at this time.
条件式(1)はレンズ系全体の小型化を図るための条件である。条件式(1)の下限を超えて合成焦点距離f1FFが長くなるとレンズ系全体が大型化してくる。逆に上限を超えると球面収差の補正が困難になる。 Conditional expression (1) is a condition for reducing the size of the entire lens system. If the combined focal length f1FF becomes longer than the lower limit of conditional expression (1), the entire lens system becomes larger. Conversely, if the upper limit is exceeded, it becomes difficult to correct spherical aberration.
尚、より好ましくは条件式(1)の数値範囲を次の如く設定するのが良い。 More preferably, the numerical range of conditional expression (1) should be set as follows.
0.2<f1/f1FF<0.7 ・・・・・(1a)
更に望ましくは、以下を満足することが良い。
0.2 <f1 / f1FF <0.7 (1a)
More preferably, the following should be satisfied.
0.3<f1/f1FF<0.65 ・・・・・(1b)
又、各実施例では次の条件のうち1以上を満足するようにし、これによって各条件に相当する効果を得ている。
0.3 <f1 / f1FF <0.65 (1b)
In each embodiment, at least one of the following conditions is satisfied, thereby obtaining an effect corresponding to each condition.
第2レンズ群L2の焦点距離をf2とする。 Let the focal length of the second lens unit L2 be f2.
広角端における第1レンズ群L1と第2レンズ群L2の主点間隔をH12wとする。広角端における全系の焦点距離をfwとする。 The distance between the principal points of the first lens unit L1 and the second lens unit L2 at the wide-angle end is H12w. The focal length of the entire system at the wide angle end is fw.
第1レンズ群L1中の物体側が凹面のレンズの物体側と像側の曲率半径を各々RNF、RNRとする。 The curvature radii of the object side and the image side of the lens having a concave surface on the object side in the first lens unit L1 are RNF and RNR, respectively.
広角端における全系のFナンバーをFnowとする。広角端において最も像側のレンズ面(実施例1〜3では第5レンズ群の最終レンズ面から、又実施例4では第4レンズ群の最終レンズ面)から像面までの距離の空気換算量(プリズム等の光学ブロックがないとしたときの長さ)をBFとする。 The F number of the entire system at the wide-angle end is F no w. The air equivalent amount of the distance from the most image side lens surface at the wide angle end (from the final lens surface of the fifth lens group in Examples 1 to 3 and the final lens surface of the fourth lens group in Example 4) to the image surface. (Length when there is no optical block such as a prism) is defined as BF.
このとき、
−8.0<H12w/fw<−3.2 ‥‥‥(2)
0.8<RNF/RNR<1.4 ‥‥‥(3)
2.5<|f2/fw|<4.1 ‥‥‥(4)
At this time,
-8.0 <H12w / fw <-3.2 (2)
0.8 <RNF / RNR <1.4 (3)
2.5 <| f2 / fw | <4.1 (4)
なる条件のうち1以上を満足している。 One or more of the following conditions are satisfied.
次に前述の各条件式の技術的意味について説明する。 Next, the technical meaning of each conditional expression described above will be described.
条件式(2)は諸収差を良好に補正しつつ、レンズ全長の短縮化を図るための条件である。条件式(2)の上限を超えて主点間隔が大きくなると前玉径が大きくなってきて小型化が困難になる。 Conditional expression (2) is a condition for shortening the overall length of the lens while favorably correcting various aberrations. If the distance between the principal points exceeds the upper limit of conditional expression (2), the diameter of the front lens increases and it becomes difficult to reduce the size.
逆に条件式(2)の下限を超えて主点間隔が小さくなると、広角端から中間のズーム位置において非点収差や倍率色収差の補正が困難になってくる。 Conversely, when the principal point interval is reduced beyond the lower limit of conditional expression (2), it becomes difficult to correct astigmatism and lateral chromatic aberration at the intermediate zoom position from the wide-angle end.
条件式(3)は広角端で発生する諸収差を良好に補正するための条件であり、特に、歪曲収差と倍率色収差を良好に補正するための条件である。条件式(3)の上限を超えて曲率が大きくなると倍率色収差がプラス方向に大きくなり好ましくない。逆に条件式(3)の下限を超えると、歪曲収差がマイナス方向に大きく発生してくるので好ましくない。 Conditional expression (3) is a condition for satisfactorily correcting various aberrations occurring at the wide-angle end, and in particular, a condition for satisfactorily correcting distortion and lateral chromatic aberration. If the curvature exceeds the upper limit of conditional expression (3), the lateral chromatic aberration increases in the positive direction, which is not preferable. On the contrary, when the lower limit of conditional expression (3) is exceeded, distortion is greatly generated in the minus direction, which is not preferable.
条件式(4)、(5)はいずれもレンズ系全体の小型化と広画角化、そして長いバックフォーカスを確保するための条件である。条件式(4)、(5)のうち少なくとも1つを満足することによりバランスの取れたレンズ系を達成することができる。 Conditional expressions (4) and (5) are conditions for miniaturizing the entire lens system, widening the angle of view, and ensuring a long back focus. A balanced lens system can be achieved by satisfying at least one of conditional expressions (4) and (5).
条件式(4)は第2レンズ群L2の負の屈折力に関し、超広画角化を達成するための変倍部の屈折力を規定している。 Conditional expression (4) specifies the refractive power of the zooming unit for achieving a wide angle of view with respect to the negative refractive power of the second lens unit L2.
又条件式(4)はズーミングに伴う収差変動を少なくしつつ高ズーム比を確保するためのものである。 Conditional expression (4) is for ensuring a high zoom ratio while reducing aberration fluctuations associated with zooming.
条件式(4)の上限を超えて第2レンズ群L2の負の屈折力が弱くなると変倍部におけるアフォーカル倍率を十分高めることができずバックフォーカスを所望の長さ確保することが困難となる。 When the upper limit of conditional expression (4) is exceeded and the negative refractive power of the second lens unit L2 becomes weak, it is difficult to sufficiently increase the afocal magnification in the zooming unit, and it is difficult to secure a desired back focus length. Become.
また、所望のズーム比を得るための第2レンズ群L2の移動量が増大し、絞りSPと第1レンズ群L1との距離が長くなって前玉径の増大を招くので好ましくない。 Further, the amount of movement of the second lens unit L2 for obtaining a desired zoom ratio increases, and the distance between the aperture stop SP and the first lens unit L1 increases, leading to an increase in the front lens diameter.
逆に条件式(4)の下限を超えて第2レンズ群L2の負の屈折力が強くなリ過ぎると、ペッツバール和が負の方向に増大し像面湾曲が大きくなると共に、ズーミングに伴う収差変動が大きくなる。 Conversely, if the negative refractive power of the second lens unit L2 exceeds the lower limit of the conditional expression (4), the Petzval sum increases in the negative direction, the field curvature increases, and aberrations associated with zooming occur. Fluctuation increases.
条件式(5)はズームレンズのバックフォーカスBFとFナンバーとの関係式である。条件式(5)は、高性能なカメラで採用している色分解プリズムを用いて3つの色光に分光してそれぞれの画像を撮像素子で撮像して高画質の画像を得るためのものである。 Conditional expression (5) is a relational expression between the back focus BF and the F number of the zoom lens. Conditional expression (5) is for obtaining a high-quality image by spectrally separating the three color lights using a color separation prism employed in a high-performance camera and capturing each image with an image sensor. .
条件式(5)の上限を超えてFナンバーを明るくすると高次の球面収差、コマ収差が多く発生し、これらの収差の補正が困難となる。逆に条件式(5)の下限を越えて、Fナンバーが暗くなると軸上光線束が細くなり、ズームレンズの像側に配置される色分解プリズムが小型化になる。この結果、バックフォーカスが必要以上に長くなり、レンズ系全長の長大化を招き好ましくない。 If the F number is increased beyond the upper limit of conditional expression (5), high-order spherical aberration and coma aberration are often generated, and correction of these aberrations becomes difficult. On the other hand, if the lower limit of conditional expression (5) is exceeded and the F-number becomes dark, the axial ray bundle becomes thin, and the color separation prism arranged on the image side of the zoom lens becomes smaller. As a result, the back focus becomes unnecessarily long, which leads to an increase in the total length of the lens system, which is not preferable.
又、各実施例では、第3レンズ群L3は少なくとも1つの空気間隔をはさんで複数のレンズを有している。そして少なくとも1つの空気間隔の光軸方向の長さをD3a、該第3レンズ群の焦点距離をf3とする。このとき
0.01<D3a/f3<0.08 ‥‥‥(6)
なる条件を満足している。
In each embodiment, the third lens unit L3 includes a plurality of lenses with at least one air interval. The length of at least one air interval in the optical axis direction is D3a, and the focal length of the third lens group is f3. At this time, 0.01 <D3a / f3 <0.08 (6)
Is satisfied.
第3レンズ群L3中の空気間隔は、光量調整用の絞りとは別に単一又は複数のNDフィルターなどの光量調整用フィルターを光路中に挿脱するためのものである。 The air gap in the third lens unit L3 is for inserting / removing a light amount adjusting filter such as a single or a plurality of ND filters in the optical path separately from the light amount adjusting diaphragm.
各実施例では、単一又は複数の光量調整用フィルターを光路中に挿脱して撮像素子に入射する光量を調整している。 In each embodiment, the amount of light incident on the image sensor is adjusted by inserting or removing a single or a plurality of light amount adjustment filters into the optical path.
条件式(6)の上限を超えて、間隔が広くなりすぎるとレンズ系全体が大型化し、同時に、広角端における球面収差の補正が困難になってくる。逆に下限を超えると光量調整用フィルターの光路中への挿入が困難になる。 If the distance exceeds the upper limit of conditional expression (6) and the distance becomes too wide, the entire lens system becomes large, and at the same time, it becomes difficult to correct spherical aberration at the wide-angle end. On the other hand, when the lower limit is exceeded, it becomes difficult to insert the light amount adjustment filter into the optical path.
尚、実施例1〜3においては、第3レンズ群L3と第5レンズ群L5の焦点距離を各々f3、f5とする。このとき
1.3<f3/f5<3.1 ‥‥‥(7)
なる条件を満足している。
In Examples 1 to 3, the focal lengths of the third lens unit L3 and the fifth lens unit L5 are set to f3 and f5, respectively. At this time, 1.3 <f3 / f5 <3.1 (7)
Is satisfied.
条件式(7)は第3レンズ群L3と第5レンズ群L5の焦点距離の比に関し、ズーム比を大きくすることと長いバックフォーカスを確保するための条件である。条件式(7)の上限を超えて第3レンズ群L3の焦点距離が長くなると第3レンズ群L3から射出する光束の発散が大きくなり、バックフォーカスは長くなるが、第4レンズ群L4の有効径が大きくなりレンズ系全体が重くなってくる。 Conditional expression (7) relates to the ratio of the focal lengths of the third lens unit L3 and the fifth lens unit L5, and is a condition for increasing the zoom ratio and ensuring a long back focus. If the upper limit of conditional expression (7) is exceeded and the focal length of the third lens unit L3 increases, the divergence of the light beam emitted from the third lens unit L3 increases, and the back focus increases, but the fourth lens unit L4 is effective. The diameter increases and the entire lens system becomes heavier.
逆に条件式(7)の下限を超えて第3レンズ群L3の焦点距離が短くなると充分な長さのバックフォーカスを確保するのが困難になる。又、第5レンズ群L5の焦点距離が長くなると球面収差の補正が不十分となる。 Conversely, if the focal length of the third lens unit L3 becomes shorter than the lower limit of conditional expression (7), it will be difficult to ensure a sufficiently long back focus. Further, when the focal length of the fifth lens unit L5 is increased, the correction of spherical aberration becomes insufficient.
尚、更に好ましくは、条件式(2)〜(7)の数値範囲を次の如く設定するのが光学性能を良好に維持するのが容易となるので好ましい。 It is more preferable to set the numerical ranges of the conditional expressions (2) to (7) as follows because it is easy to maintain good optical performance.
−7.0<H12w/fw<−3.4 ‥‥‥(2a)
0.9<RNF/RNR<1.3 ‥‥‥(3a)
2.7<|f2/fw|<3.8 ‥‥‥(4a)
-7.0 <H12w / fw <-3.4 (2a)
0.9 <RNF / RNR <1.3 (3a)
2.7 <| f2 / fw | <3.8 (4a)
0.015<D3a/f3<0.06 ‥‥‥(6a)
1.5<f3/f5<2.6 ‥‥‥(7a)
又、各実施例では、広角端で無限遠物体にフォーカスしたときの歪曲収差が、画面全体にわたり−8%から0%であるように各要素を特定している。
0.015 <D3a / f3 <0.06 (6a)
1.5 <f3 / f5 <2.6 (7a)
In each embodiment, each element is specified such that distortion aberration when focusing on an object at infinity at the wide-angle end is -8% to 0% over the entire screen.
超広画角になってくると歪曲収差はますます増大し、マイナスの歪曲収差すなわち樽型の歪曲が多く発生する。 As the angle of view increases, the distortion increases more and more negative distortion, that is, barrel distortion occurs.
近年、画像表示面がフラットTVになってきて、樽型の歪曲収差が目立つようになってきた。そのため歪曲収差も良好に補正する必要がある。 In recent years, the image display surface has become a flat TV, and barrel distortion has become conspicuous. Therefore, it is necessary to correct distortion well.
従来、歪曲収差を補正するには最も物体側に正レンズを配置するか又は非球面を配置して補正している。 Conventionally, in order to correct distortion, a positive lens is disposed closest to the object side or an aspherical surface is disposed for correction.
各実施例では、第1レンズ群L1を前述の如く構成することで歪曲収差を良好に補正している。 In each embodiment, the first lens unit L1 is configured as described above to correct distortion well.
尚、実施例1〜3においては第5レンズ群L5の像側に、実施例4では第4レンズ群L4の像側に、又第1レンズ群L1の物体側に屈折力の小さな光学部材を配置しても良い。 In Examples 1 to 3, an optical member having a small refractive power is provided on the image side of the fifth lens unit L5, in Example 4 on the image side of the fourth lens unit L4, and on the object side of the first lens unit L1. It may be arranged.
次に本発明のズームレンズを撮影光学系として用いたビデオカメラ(撮像装置)の実施形態を図17を用いて説明する。 Next, an embodiment of a video camera (imaging device) using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG.
図17において、10はビデオカメラ本体またはデジタルスチルカメラ本体、11は本発明のズームレンズによって構成された撮影光学系である。12は撮影光学系11によって被写体像を受光するCCD等の撮像素子の1つ、13は撮像素子12が受光した被写体像を記録する記録手段である。14は表示素子に表示された被写体像を観察するためのファインダーである。 In FIG. 17, reference numeral 10 denotes a video camera body or digital still camera body, and 11 denotes a photographing optical system constituted by the zoom lens of the present invention. Reference numeral 12 denotes one of image sensors such as a CCD that receives a subject image by the photographing optical system 11, and 13 denotes a recording unit that records the subject image received by the image sensor 12. Reference numeral 14 denotes a finder for observing the subject image displayed on the display element.
上記表示素子は液晶パネル等によって構成され、撮像素子12上に形成された披写体像が表示される。15は不図示の前記ファインダーと同等の機能を有する液晶表示パネルである。 The display element is constituted by a liquid crystal panel or the like, and a live image formed on the image sensor 12 is displayed. Reference numeral 15 denotes a liquid crystal display panel having a function equivalent to that of the finder (not shown).
このように本発明のズームレンズをビデオカメラ等の撮像装置に適用することにより、高い光学性能を有する光学機器を実現している。 Thus, by applying the zoom lens of the present invention to an imaging apparatus such as a video camera, an optical apparatus having high optical performance is realized.
以上のように各実施例によればレンズ系全体を小型化し、高変倍比にもかかわらず高い光学性能を有したズームレンズ及びそれを用いた撮像装置を達成することができる。 As described above, according to each embodiment, the entire lens system can be miniaturized, and a zoom lens having high optical performance despite a high zoom ratio and an imaging apparatus using the same can be achieved.
この他各実施例によれば、ズーム比が6〜8倍と高変倍比にもかかわらず広角端から望遠端のズーム位置に至る全変倍範囲にわたり、また無限遠物体から超至近物体に至る物体距離全般にわたり高い光学性能が得られる。 In addition, according to each of the embodiments, the zoom ratio is 6 to 8 times, and the entire zooming range from the wide angle end to the telephoto end zoom position regardless of the high zooming ratio, and from an infinite object to an extremely close object. High optical performance can be obtained over the entire object distance.
又、Fナンバーが1.6程度と大口径比でありながら、色分解用プリズム等の光学素子が入る長いバックフォーカスが得られる。更に複雑な絞り機構の入る空間や、NDフィルターの入る空間等を確保しつつ、全ズーム域・全物体距離にわたって良好な性能を有するズームレンズが得られる。 In addition, a long back focus in which an optical element such as a color separation prism enters can be obtained while the F-number is about 1.6 and a large aperture ratio. In addition, a zoom lens having good performance over the entire zoom range and the entire object distance can be obtained while ensuring a space for entering a complicated aperture mechanism and a space for entering an ND filter.
以下に、実施例1〜4に各々対応する数値実施例1〜4を示す。各数値実施例において、iは物体側からの面の順番を示し、Riは各面の曲率半径、Diは第i面と第i+1面との間の部材肉厚又は空気間隔、Ni,νiはそれぞれd線に対する屈折率,アッベ数を示す。又、各数値実施例では最も像側の3つの面は水晶ローパスフィルター、赤外カットフィルター等に相当する平面である。 The numerical examples 1 to 4 corresponding to the first to fourth examples are shown below. In each numerical example, i indicates the order of the surfaces from the object side, Ri is the radius of curvature of each surface, Di is the member thickness or air spacing between the i-th surface and the (i + 1) -th surface, Ni and νi are Refractive index and Abbe number for d line are shown respectively. In each numerical embodiment, the three surfaces closest to the image are planes corresponding to a crystal low-pass filter, an infrared cut filter, and the like.
非球面形状は光軸からの高さHの位置での光軸方向の変位を面頂点に基準にしてXとするとき、 When the aspherical shape is X with respect to the displacement in the direction of the optical axis at the position of the height H from the optical axis,
で表される。但しRは近軸曲率半径、kは円錐定数、A,B,C.D,Eは非球面係数である。 It is represented by Where R is the paraxial radius of curvature, k is the conic constant, A, B, C.I. D and E are aspheric coefficients.
又、「e−X」は「×10−X」を意味している。fは焦点距離、FnoはFナンバー、ωは半画角を示す。又、前述の各条件式と数値実施例における諸数値との関係を表1に示す。 “E-X” means “× 10 −X ”. f represents a focal length, Fno represents an F number, and ω represents a half angle of view. Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.
数値実施例 1
f=1〜5.84 Fno= 1.68 〜 2.65 2ω=82.5 〜 17.1
R 1 = -752.576 D 1 = 0.99 N 1 = 1.603112 ν 1 = 60.6
R 2 = 10.654 D 2 = 6.11
R 3 = -17.574 D 3 = 1.34 N 2 = 1.846660 ν 2 = 23.9
R 4 = -16.934 D 4 = 5.46
R 5 = 24.410 D 5 = 2.25 N 3 = 1.712995 ν 3 = 53.9
R 6 = -27.041 D 6 = 0.15
R 7 = 35.967 D 7 = 0.74 N 4 = 1.846660 ν 4 = 23.9
R 8 = 9.654 D 8 = 1.96 N 5 = 1.487490 ν 5 = 70.2
R 9 = 70.768 D 9 = 0.06
R10 = 24.197 D10 = 0.84 N 6 = 1.516330 ν 6 = 64.1
R11 = 156.617 D11 = 0.06
R12 = 9.104 D12 = 0.98 N 7 = 1.806098 ν 7 = 40.9
R13 = 20.646 D13 = 可変
R14 = 11.084 D14 = 0.29 N 8 = 1.882997 ν 8 = 40.8
R15 = 2.636 D15 = 1.02
R16 = -68.317 D16 = 1.49 N 9 = 1.805181 ν 9 = 25.4
R17 = -2.798 D17 = 0.29 N10 = 1.848620 ν10 = 40.0
R18*= 5.554 D18 = 0.46
R19 = 5.750 D19 = 1.26 N11 = 1.603420 ν11 = 38.0
R20 = -3.153 D20 = 0.23 N12 = 1.882997 ν12 = 40.8
R21 = -9.077 D21 = 可変
R22 = 絞り D22 = 1.17
R23 = -6.072 D23 = 0.26 N13 = 1.696797 ν13 = 55.5
R24 = 3.575 D24 = 1.14 N14 = 1.688931 ν14 = 31.1
R25*= -13.784 D25 = 1.76
R26 = 21.400 D26 = 1.61 N15 = 1.581439 ν15 = 40.8
R27 = -4.097 D27 = 0.23 N16 = 2.003300 ν16 = 28.3
R28 = -7.310 D28 = 可変
R29 = 51.299 D29 = 0.88 N17 = 1.583126 ν17 = 59.4
R30*= -14.087 D30 = 0.06
R31 = 12.799 D31 = 0.26 N18 = 1.846660 ν18 = 23.9
R32 = 6.030 D32 = 1.48 N19 = 1.496999 ν19 = 81.5
R33 = -9.465 D33 = 可変
R34 = 12.383 D34 = 0.70 N20 = 1.487490 ν20 = 70.2
R35 = -8.097 D35 = 0.20 N21 = 1.698947 ν21 = 30.1
R36 = -33.046 D36 = 1.46
R37 = ∞ D37 = 5.84 N22 = 1.589130 ν22 = 61.2
R38 = ∞ D38 = 1.10 N23 = 1.516330 ν23 = 64.2
R39 = ∞
*は非球面
非球面係数
R18 k=-3.90735e-01 B=-2.47000e-03 C=-1.08204e-04 D= 0.00
E= 0.00 F= 0.00
R25 k=-1.14046e+01 B= 1.43303e-05 C=-1.62497e-06 D= 1.20851e-06
E= 0.00 F=0.00
R30 k=2.73642 B=2.51117e-04 C= 3.07675e-06 D=-5.87407e-07
E= 1.72443e-08 F=0.00
\焦点距離 1.00 3.95 5.84
可変間隔\
D13 0.29 5.96 7.04
D21 7.60 1.93 0.85
D28 2.13 1.38 1.80
D33 1.46 2.21 1.79
数値実施例 2
f=1〜5.84 Fno= 1.68 〜 2.65 2ω=82.5 〜 17.1
R 1 = 305.324 D 1 = 0.99 N 1 = 1.603112 ν 1 = 60.6
R 2 = 10.031 D 2 = 5.85
R 3 = -17.214 D 3 = 1.34 N 2 = 1.581439 ν 2 = 40.8
R 4 = -14.740 D 4 = 4.16
R 5 = 15.867 D 5 = 2.63 N 3 = 1.693495 ν 3 = 50.8
R 6 = -30.714 D 6 = 0.15
R 7 = 127.492 D 7 = 0.70 N 4 = 1.846660 ν 4 = 23.9
R 8 = 9.864 D 8 = 0.30
R 9 = 11.828 D 9 = 1.75 N 5 = 1.517417 ν 5 = 52.4
R10 = -111.042 D10 = 0.06
R11 = 10.549 D11 = 1.10 N 6 = 1.882997 ν 6 = 40.8
R12 = 35.921 D12 = 可変
R13 = 11.785 D13 = 0.29 N 7 = 1.882997 ν 7 = 40.8
R14 = 2.562 D14 = 1.04
R15 = -85.374 D15 = 1.23 N 8 = 1.805181 ν 8 = 25.4
R16 = -2.788 D16 = 0.29 N 9 = 1.848620 ν 9 = 40.0
R17*= 5.971 D17 = 0.39
R18 = 5.687 D18 = 1.23 N10 = 1.603420 ν10 = 38.0
R19 = -3.739 D19 = 0.23 N11 = 1.882997 ν11 = 40.8
R20 = -9.705 D20 = 可変
R21 = 絞り D21 = 1.17
R22 = -5.601 D22 = 0.26 N12 = 1.677900 ν12 = 55.3
R23 = 3.560 D23 = 1.14 N13 = 1.688931 ν13 = 31.1
R24*= -13.864 D24 = 1.75
R25 = 18.511 D25 = 1.61 N14 = 1.567322 ν14 = 42.8
R26 = -4.216 D26 = 0.23 N15 = 2.003300 ν15 = 28.3
R27 = -7.397 D27 = 可変
R28 = 68.339 D28 = 0.88 N16 = 1.583126 ν16 = 59.4
R29*= -13.030 D29 = 0.06
R30 = 11.083 D30 = 0.26 N17 = 1.846660 ν17 = 23.9
R31 = 5.550 D31 = 1.45 N18 = 1.496999 ν18 = 81.5
R32 = -10.111 D32 = 可変
R33 = 16.663 D33 = 0.70 N19 = 1.487490 ν19 = 70.2
R34 = -8.481 D34 = 0.20 N20 = 1.698947 ν20 = 30.1
R35 = -30.035 D35 = 1.46
R36 = ∞ D36 = 5.84 N21 = 1.589130 ν21 = 61.2
R37 = ∞ D37 = 1.10 N22 = 1.516330 ν22 = 64.2
R38 = ∞
*は非球面
非球面係数
R17 k=-4.45518e-01 B=-2.21385e-03 C=-1.46718e-04 D= 0.00
E= 0.00 F=0.00
R24 k=-5.98345 B= 4.19262e-04 C=-1.99511e-07 D= 1.53944e-07
E= 0.00 F=0.00
R29 k= 1.43684 B= 2.42859e-04 C= 2.74441e-06 D=-7.00580e-07
E= 3.08679e-08 F= 0.00
\焦点距離 1.00 3.96 5.84
可変間隔\
D12 0.29 6.77 8.00
D20 8.58 2.10 0.87
D27 2.12 1.17 1.34
D32 1.46 2.41 2.24
数値実施例 3
f=1〜7.47 Fno= 1.68 〜 2.85 2ω=82.5 〜 13.4
R 1 = -1283.218 D 1 = 0.99 N 1 = 1.603112 ν 1 = 60.6
R 2 = 10.756 D 2 = 6.16
R 3 = -17.733 D 3 = 1.34 N 2 = 1.846660 ν 2 = 23.9
R 4 = -16.973 D 4 = 5.48
R 5 = 25.632 D 5 = 2.25 N 3 = 1.712995 ν 3 = 53.9
R 6 = -26.065 D 6 = 0.15
R 7 = 39.658 D 7 = 0.74 N 4 = 1.846660 ν 4 = 23.9
R 8 = 9.968 D 8 = 1.96 N 5 = 1.487490 ν 5 = 70.2
R 9 = 101.722 D 9 = 0.06
R10 = 22.510 D10 = 0.88 N 6 = 1.516330 ν 6 = 64.1
R11 = 73.425 D11 = 0.06
R12 = 9.257 D12 = 0.98 N 7 = 1.806098 ν 7 = 40.9
R13 = 20.842 D13 = 可変
R14 = 12.558 D14 = 0.29 N 8 = 1.882997 ν 8 = 40.8
R15 = 2.661 D15 = 0.99
R16 = -166.292 D16 = 1.49 N 9 = 1.805181 ν 9 = 25.4
R17 = -2.792 D17 = 0.29 N10 = 1.848620 ν10 = 40.0
R18*= 5.254 D18 = 0.44
R19 = 5.550 D19 = 1.26 N11 = 1.603420 ν11 = 38.0
R20 = -3.055 D20 = 0.23 N12 = 1.882997 ν12 = 40.8
R21 = -8.551 D21 = 可変
R22 = 絞り D22 = 1.17
R23 = -6.232 D23 = 0.26 N13 = 1.696797 ν13 = 55.5
R24 = 3.709 D24 = 1.14 N14 = 1.688931 ν14 = 31.1
R25*= -14.957 D25 = 1.67
R26 = 20.929 D26 = 1.61 N15 = 1.581439 ν15 = 40.8
R27 = -4.101 D27 = 0.23 N16 = 2.003300 ν16 = 28.3
R28 = -7.239 D28 = 可変
R29 = 47.690 D29 = 0.88 N17 = 1.583126 ν17 = 59.4
R30*= -13.707 D30 = 0.06
R31 = 12.761 D31 = 0.26 N18 = 1.846660 ν18 = 23.9
R32 = 5.986 D32 = 1.51 N19 = 1.496999 ν19 = 81.5
R33 = -9.611 D33 = 可変
R34 = 13.277 D34 = 0.70 N20 = 1.487490 ν20 = 70.2
R35 = -8.604 D35 = 0.20 N21 = 1.698947 ν21 = 30.1
R36 = -39.874 D36 = 1.46
R37 = ∞ D37 = 5.84 N22 = 1.589130 ν22 = 61.2
R38 = ∞ D38 = 1.10 N23 = 1.516330 ν23 = 64.2
R39 = ∞
*は非球面
非球面係数
R18 k=-6.63924e-01 B=-2.44889e-03 C=-1.23438e-04 D= 0.00
E= 0.00 F=0.00
R25 k=-1.13530e+01 B= 1.52934e-04 C= 2.28654e-06 D=-1.40095e-07
E= 0.00 F=0.00
R30 k= 2.97547e+00 B= 2.84769e-04 C= 3.41041e-06 D=-6.06424e-07
E= 2.48786e-08 F=0.00
\焦点距離 1.00 4.68 7.47
可変間隔\
D13 0.29 6.65 7.87
D21 8.07 1.70 0.49
D28 2.12 1.41 2.17
D33 1.54 2.26 1.50
数値実施例 4
f=1〜7.27 Fno= 1.68 〜 2.85 2ω=82.5 〜 13.8
R 1 = 140.342 D 1 = 0.99 N 1 = 1.603112 ν 1 = 60.6
R 2 = 10.377 D 2 = 6.77
R 3 = -18.307 D 3 = 1.34 N 2 = 1.846660 ν 2 = 23.9
R 4 = -18.744 D 4 = 6.08
R 5 = 33.008 D 5 = 2.25 N 3 = 1.712995 ν 3 = 53.9
R 6 = -24.336 D 6 = 0.15
R 7 = 54.160 D 7 = 0.74 N 4 = 1.846660 ν 4 = 23.9
R 8 = 12.226 D 8 = 1.96 N 5 = 1.487490 ν 5 = 70.2
R 9 = -92.832 D 9 = 0.06
R10 = 26.605 D10 = 0.80 N 6 = 1.516330 ν 6 = 64.1
R11 = 98.896 D11 = 0.06
R12 = 9.489 D12 = 0.89 N 7 = 1.806098 ν 7 = 40.9
R13 = 16.887 D13 = 可変
R14 = 8.895 D14 = 0.29 N 8 = 1.882997 ν 8 = 40.8
R15 = 2.792 D15 = 1.08
R16 = -104.592 D16 = 1.49 N 9 = 1.805181 ν 9 = 25.4
R17 = -2.693 D17 = 0.29 N10 = 1.848620 ν10 = 40.0
R18*= 5.697 D18 = 0.50
R19 = 5.667 D19 = 1.46 N11 = 1.603420 ν11 = 38.0
R20 = -3.180 D20 = 0.23 N12 = 1.882997 ν12 = 40.8
R21 = -11.328 D21 = 可変
R22 = 絞り D22 = 1.17
R23 = -6.656 D23 = 0.26 N13 = 1.696797 ν13 = 55.5
R24 = 4.637 D24 = 1.14 N14 = 1.688931 ν14 = 31.1
R25*= -15.371 D25 = 2.41
R26 = 33.101 D26 = 1.69 N15 = 1.567322 ν15 = 42.8
R27 = -4.447 D27 = 0.23 N16 = 2.003300 ν16 = 28.3
R28 = -7.148 D28 = 可変
R29 = 17.519 D29 = 0.96 N17 = 1.516330 ν17 = 64.1
R30*= -13.273 D30 = 0.06
R31 = 8.770 D31 = 0.26 N18 = 1.922860 ν18 = 18.9
R32 = 5.632 D32 = 1.50 N19 = 1.433870 ν19 = 95.1
R33 = -11.683 D33 = 可変
R34 = ∞ D34 = 0.70 N20 = 1.487490 ν20 = 70.2
R35 = ∞ D35 = 0.20 N21 = 1.698947 ν21 = 30.1
R36 = ∞ D36 = 1.61
R37 = ∞ D37 = 5.84 N22 = 1.589130 ν22 = 61.2
R38 = ∞ D38 = 1.10 N23 = 1.516330 ν23 = 64.2
R39 = ∞
*は非球面
非球面係数
R18 k= 3.06503e-02 B=-2.34534e-03 C=-1.05213e-04 D=0.00
E= 0.00 F=0.00
R25 k=-7.56262e+00 B= 2.46057e-04 C=-1.35044e-06 D=-1.57075e-06
E= 0.00 F=0.00
R30 k= 1.13937e+00 B= 3.77437e-04 C= 4.70922e-06 D=-7.23878e-07
E= 2.90257e-08 F=0.00
\焦点距離 1.00 4.49 7.27
可変間隔\
D13 0.29 7.14 8.45
D21 8.71 1.86 0.55
D28 2.98 2.44 2.83
D33 1.45 1.99 1.60
Numerical example 1
f = 1 to 5.84 Fno = 1.68 to 2.65 2ω = 82.5 to 17.1
R 1 = -752.576 D 1 = 0.99 N 1 = 1.603112 ν 1 = 60.6
R 2 = 10.654 D 2 = 6.11
R 3 = -17.574 D 3 = 1.34 N 2 = 1.846660 ν 2 = 23.9
R 4 = -16.934 D 4 = 5.46
R 5 = 24.410 D 5 = 2.25 N 3 = 1.712995 ν 3 = 53.9
R 6 = -27.041 D 6 = 0.15
R 7 = 35.967 D 7 = 0.74 N 4 = 1.846660 ν 4 = 23.9
R 8 = 9.654 D 8 = 1.96 N 5 = 1.487490 ν 5 = 70.2
R 9 = 70.768 D 9 = 0.06
R10 = 24.197 D10 = 0.84 N 6 = 1.516330 ν 6 = 64.1
R11 = 156.617 D11 = 0.06
R12 = 9.104 D12 = 0.98 N 7 = 1.806098 ν 7 = 40.9
R13 = 20.646 D13 = Variable
R14 = 11.084 D14 = 0.29 N 8 = 1.882997 ν 8 = 40.8
R15 = 2.636 D15 = 1.02
R16 = -68.317 D16 = 1.49 N 9 = 1.805181 ν 9 = 25.4
R17 = -2.798 D17 = 0.29 N10 = 1.848620 ν10 = 40.0
R18 * = 5.554 D18 = 0.46
R19 = 5.750 D19 = 1.26 N11 = 1.603420 ν11 = 38.0
R20 = -3.153 D20 = 0.23 N12 = 1.882997 ν12 = 40.8
R21 = -9.077 D21 = variable
R22 = Aperture D22 = 1.17
R23 = -6.072 D23 = 0.26 N13 = 1.696797 ν13 = 55.5
R24 = 3.575 D24 = 1.14 N14 = 1.688931 ν14 = 31.1
R25 * = -13.784 D25 = 1.76
R26 = 21.400 D26 = 1.61 N15 = 1.581439 ν15 = 40.8
R27 = -4.097 D27 = 0.23 N16 = 2.003300 ν16 = 28.3
R28 = -7.310 D28 = variable
R29 = 51.299 D29 = 0.88 N17 = 1.583126 ν17 = 59.4
R30 * = -14.087 D30 = 0.06
R31 = 12.799 D31 = 0.26 N18 = 1.846660 ν18 = 23.9
R32 = 6.030 D32 = 1.48 N19 = 1.496999 ν19 = 81.5
R33 = -9.465 D33 = variable
R34 = 12.383 D34 = 0.70 N20 = 1.487490 ν20 = 70.2
R35 = -8.097 D35 = 0.20 N21 = 1.698947 ν21 = 30.1
R36 = -33.046 D36 = 1.46
R37 = ∞ D37 = 5.84 N22 = 1.589130 ν22 = 61.2
R38 = ∞ D38 = 1.10 N23 = 1.516330 ν23 = 64.2
R39 = ∞
* Aspherical aspherical coefficient
R18 k = -3.90735e-01 B = -2.47000e-03 C = -1.08204e-04 D = 0.00
E = 0.00 F = 0.00
R25 k = -1.14046e + 01 B = 1.43303e-05 C = -1.62497e-06 D = 1.20851e-06
E = 0.00 F = 0.00
R30 k = 2.73642 B = 2.51117e-04 C = 3.07675e-06 D = -5.87407e-07
E = 1.72443e-08 F = 0.00
\ Focal length 1.00 3.95 5.84
Variable interval \
D13 0.29 5.96 7.04
D21 7.60 1.93 0.85
D28 2.13 1.38 1.80
D33 1.46 2.21 1.79
Numerical example 2
f = 1 to 5.84 Fno = 1.68 to 2.65 2ω = 82.5 to 17.1
R 1 = 305.324 D 1 = 0.99 N 1 = 1.603112 ν 1 = 60.6
R 2 = 10.031 D 2 = 5.85
R 3 = -17.214 D 3 = 1.34 N 2 = 1.581439 ν 2 = 40.8
R 4 = -14.740 D 4 = 4.16
R 5 = 15.867 D 5 = 2.63 N 3 = 1.693495 ν 3 = 50.8
R 6 = -30.714 D 6 = 0.15
R 7 = 127.492 D 7 = 0.70 N 4 = 1.846660 ν 4 = 23.9
R 8 = 9.864 D 8 = 0.30
R 9 = 11.828 D 9 = 1.75 N 5 = 1.517417 ν 5 = 52.4
R10 = -111.042 D10 = 0.06
R11 = 10.549 D11 = 1.10 N 6 = 1.882997 ν 6 = 40.8
R12 = 35.921 D12 = variable
R13 = 11.785 D13 = 0.29 N 7 = 1.882997 ν 7 = 40.8
R14 = 2.562 D14 = 1.04
R15 = -85.374 D15 = 1.23 N 8 = 1.805181 ν 8 = 25.4
R16 = -2.788 D16 = 0.29 N 9 = 1.848620 ν 9 = 40.0
R17 * = 5.971 D17 = 0.39
R18 = 5.687 D18 = 1.23 N10 = 1.603420 ν10 = 38.0
R19 = -3.739 D19 = 0.23 N11 = 1.882997 ν11 = 40.8
R20 = -9.705 D20 = variable
R21 = Aperture D21 = 1.17
R22 = -5.601 D22 = 0.26 N12 = 1.677900 ν12 = 55.3
R23 = 3.560 D23 = 1.14 N13 = 1.688931 ν13 = 31.1
R24 * = -13.864 D24 = 1.75
R25 = 18.511 D25 = 1.61 N14 = 1.567322 ν14 = 42.8
R26 = -4.216 D26 = 0.23 N15 = 2.003300 ν15 = 28.3
R27 = -7.397 D27 = Variable
R28 = 68.339 D28 = 0.88 N16 = 1.583126 ν16 = 59.4
R29 * = -13.030 D29 = 0.06
R30 = 11.083 D30 = 0.26 N17 = 1.846660 ν17 = 23.9
R31 = 5.550 D31 = 1.45 N18 = 1.496999 ν18 = 81.5
R32 = -10.111 D32 = variable
R33 = 16.663 D33 = 0.70 N19 = 1.487490 ν19 = 70.2
R34 = -8.481 D34 = 0.20 N20 = 1.698947 ν20 = 30.1
R35 = -30.035 D35 = 1.46
R36 = ∞ D36 = 5.84 N21 = 1.589130 ν21 = 61.2
R37 = ∞ D37 = 1.10 N22 = 1.516330 ν22 = 64.2
R38 = ∞
* Aspherical aspherical coefficient
R17 k = -4.45518e-01 B = -2.21385e-03 C = -1.46718e-04 D = 0.00
E = 0.00 F = 0.00
R24 k = -5.98345 B = 4.19262e-04 C = -1.99511e-07 D = 1.53944e-07
E = 0.00 F = 0.00
R29 k = 1.43684 B = 2.42859e-04 C = 2.74441e-06 D = -7.00580e-07
E = 3.08679e-08 F = 0.00
\ Focal length 1.00 3.96 5.84
Variable interval \
D12 0.29 6.77 8.00
D20 8.58 2.10 0.87
D27 2.12 1.17 1.34
D32 1.46 2.41 2.24
Numerical example 3
f = 1 to 7.47 Fno = 1.68 to 2.85 2ω = 82.5 to 13.4
R 1 = -1283.218 D 1 = 0.99 N 1 = 1.603112 ν 1 = 60.6
R 2 = 10.756 D 2 = 6.16
R 3 = -17.733 D 3 = 1.34 N 2 = 1.846660 ν 2 = 23.9
R 4 = -16.973 D 4 = 5.48
R 5 = 25.632 D 5 = 2.25 N 3 = 1.712995 ν 3 = 53.9
R 6 = -26.065 D 6 = 0.15
R 7 = 39.658 D 7 = 0.74 N 4 = 1.846660 ν 4 = 23.9
R 8 = 9.968 D 8 = 1.96 N 5 = 1.487490 ν 5 = 70.2
R 9 = 101.722 D 9 = 0.06
R10 = 22.510 D10 = 0.88 N 6 = 1.516330 ν 6 = 64.1
R11 = 73.425 D11 = 0.06
R12 = 9.257 D12 = 0.98 N 7 = 1.806098 ν 7 = 40.9
R13 = 20.842 D13 = Variable
R14 = 12.558 D14 = 0.29 N 8 = 1.882997 ν 8 = 40.8
R15 = 2.661 D15 = 0.99
R16 = -166.292 D16 = 1.49 N 9 = 1.805181 ν 9 = 25.4
R17 = -2.792 D17 = 0.29 N10 = 1.848620 ν10 = 40.0
R18 * = 5.254 D18 = 0.44
R19 = 5.550 D19 = 1.26 N11 = 1.603420 ν11 = 38.0
R20 = -3.055 D20 = 0.23 N12 = 1.882997 ν12 = 40.8
R21 = -8.551 D21 = variable
R22 = Aperture D22 = 1.17
R23 = -6.232 D23 = 0.26 N13 = 1.696797 ν13 = 55.5
R24 = 3.709 D24 = 1.14 N14 = 1.688931 ν14 = 31.1
R25 * = -14.957 D25 = 1.67
R26 = 20.929 D26 = 1.61 N15 = 1.581439 ν15 = 40.8
R27 = -4.101 D27 = 0.23 N16 = 2.003300 ν16 = 28.3
R28 = -7.239 D28 = variable
R29 = 47.690 D29 = 0.88 N17 = 1.583126 ν17 = 59.4
R30 * = -13.707 D30 = 0.06
R31 = 12.761 D31 = 0.26 N18 = 1.846660 ν18 = 23.9
R32 = 5.986 D32 = 1.51 N19 = 1.496999 ν19 = 81.5
R33 = -9.611 D33 = variable
R34 = 13.277 D34 = 0.70 N20 = 1.487490 ν20 = 70.2
R35 = -8.604 D35 = 0.20 N21 = 1.698947 ν21 = 30.1
R36 = -39.874 D36 = 1.46
R37 = ∞ D37 = 5.84 N22 = 1.589130 ν22 = 61.2
R38 = ∞ D38 = 1.10 N23 = 1.516330 ν23 = 64.2
R39 = ∞
* Aspherical aspherical coefficient
R18 k = -6.63924e-01 B = -2.44889e-03 C = -1.23438e-04 D = 0.00
E = 0.00 F = 0.00
R25 k = -1.13530e + 01 B = 1.52934e-04 C = 2.28654e-06 D = -1.40095e-07
E = 0.00 F = 0.00
R30 k = 2.97547e + 00 B = 2.84769e-04 C = 3.41041e-06 D = -6.06424e-07
E = 2.48786e-08 F = 0.00
\ Focal length 1.00 4.68 7.47
Variable interval \
D13 0.29 6.65 7.87
D21 8.07 1.70 0.49
D28 2.12 1.41 2.17
D33 1.54 2.26 1.50
Numerical example 4
f = 1 to 7.27 Fno = 1.68 to 2.85 2ω = 82.5 to 13.8
R 1 = 140.342 D 1 = 0.99 N 1 = 1.603112 ν 1 = 60.6
R 2 = 10.377 D 2 = 6.77
R 3 = -18.307 D 3 = 1.34 N 2 = 1.846660 ν 2 = 23.9
R 4 = -18.744 D 4 = 6.08
R 5 = 33.008 D 5 = 2.25 N 3 = 1.712995 ν 3 = 53.9
R 6 = -24.336 D 6 = 0.15
R 7 = 54.160 D 7 = 0.74 N 4 = 1.846660 ν 4 = 23.9
R 8 = 12.226 D 8 = 1.96 N 5 = 1.487490 ν 5 = 70.2
R 9 = -92.832 D 9 = 0.06
R10 = 26.605 D10 = 0.80 N 6 = 1.516330 ν 6 = 64.1
R11 = 98.896 D11 = 0.06
R12 = 9.489 D12 = 0.89 N 7 = 1.806098 ν 7 = 40.9
R13 = 16.887 D13 = variable
R14 = 8.895 D14 = 0.29 N 8 = 1.882997 ν 8 = 40.8
R15 = 2.792 D15 = 1.08
R16 = -104.592 D16 = 1.49 N 9 = 1.805181 ν 9 = 25.4
R17 = -2.693 D17 = 0.29 N10 = 1.848620 ν10 = 40.0
R18 * = 5.697 D18 = 0.50
R19 = 5.667 D19 = 1.46 N11 = 1.603420 ν11 = 38.0
R20 = -3.180 D20 = 0.23 N12 = 1.882997 ν12 = 40.8
R21 = -11.328 D21 = variable
R22 = Aperture D22 = 1.17
R23 = -6.656 D23 = 0.26 N13 = 1.696797 ν13 = 55.5
R24 = 4.637 D24 = 1.14 N14 = 1.688931 ν14 = 31.1
R25 * = -15.371 D25 = 2.41
R26 = 33.101 D26 = 1.69 N15 = 1.567322 ν15 = 42.8
R27 = -4.447 D27 = 0.23 N16 = 2.003300 ν16 = 28.3
R28 = -7.148 D28 = variable
R29 = 17.519 D29 = 0.96 N17 = 1.516330 ν17 = 64.1
R30 * = -13.273 D30 = 0.06
R31 = 8.770 D31 = 0.26 N18 = 1.922860 ν18 = 18.9
R32 = 5.632 D32 = 1.50 N19 = 1.433870 ν19 = 95.1
R33 = -11.683 D33 = variable
R34 = ∞ D34 = 0.70 N20 = 1.487490 ν20 = 70.2
R35 = ∞ D35 = 0.20 N21 = 1.698947 ν21 = 30.1
R36 = ∞ D36 = 1.61
R37 = ∞ D37 = 5.84 N22 = 1.589130 ν22 = 61.2
R38 = ∞ D38 = 1.10 N23 = 1.516330 ν23 = 64.2
R39 = ∞
* Aspherical aspherical coefficient
R18 k = 3.06503e-02 B = -2.34534e-03 C = -1.05213e-04 D = 0.00
E = 0.00 F = 0.00
R25 k = -7.56262e + 00 B = 2.46057e-04 C = -1.35044e-06 D = -1.57075e-06
E = 0.00 F = 0.00
R30 k = 1.13937e + 00 B = 3.77437e-04 C = 4.70922e-06 D = -7.23878e-07
E = 2.90257e-08 F = 0.00
\ Focal length 1.00 4.49 7.27
Variable interval \
D13 0.29 7.14 8.45
D21 8.71 1.86 0.55
D28 2.98 2.44 2.83
D33 1.45 1.99 1.60
ZL ズームレンズ
CB カメラ本体
GA 保護ガラス
GB 光学ブロック
C マウント部材
L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
SP 絞り
IP 像面
G ガラスブロック
d d線
g g線
ΔS サジタル像面
ΔM メリディオナル像面
Fno Fナンバー
10 カメラ本体
11 撮影光学系
12 撮像素子
13 記録手段
14 ファインダー
15 液晶表示パネル
ZL Zoom lens CB Camera body GA Protective glass GB Optical block C Mount member L1 First lens group L2 Second lens group L3 Third lens group L4 Fourth lens group SP Aperture IP Image surface G Glass block d d line g g line ΔS Sagittal image plane ΔM Meridional image plane Fno F number 10 Camera body 11 Imaging optical system 12 Imaging element 13 Recording means 14 Viewfinder 15 Liquid crystal display panel
Claims (15)
該第1レンズ群は、像側が凹面の1枚以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズ、負レンズと正レンズより成る接合レンズ又は負レンズ、最も像側に配置され、屈折力の絶対値が像側に比べ物体側に大きく、物体側が凸面の正レンズより成り、
該第1レンズ群中の像側が凹面の1以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズの合成焦点距離をf1FF、該第1レンズ群の焦点距離をf1とするとき、
0.02<f1/f1FF<0.78
なる条件を満足することを特徴とするズームレンズ。 In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power are provided. A zoom lens in which the second and fourth lens groups move during zooming,
The first lens group includes one or more negative lenses having a concave surface on the image side, a lens having a concave surface on the object side, one or more positive lenses having a biconvex shape, a cemented lens or a negative lens composed of a negative lens and a positive lens, and the most image side. The absolute value of refractive power is larger on the object side than on the image side, and the object side consists of a positive lens with a convex surface,
In the first lens group, the composite focal length of one or more negative lenses having a concave surface on the image side, a concave lens on the object side, and one or more positive lenses having a biconvex shape is defined as f1FF, and the focal length of the first lens group is defined as f1. and when,
0.02 <f1 / f1FF <0.78
A zoom lens characterized by satisfying the following conditions:
該第1レンズ群は、像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズ、像側が凹面の負レンズと正レンズとの接合レンズ又は像側が凹面の負レンズ、物体側が凸面の2つの正レンズより成り、
該第1レンズ群中の像側が凹面の負レンズ、物体側が凹面のレンズ、両凸形状の正レンズの合成焦点距離をf1FF、該第1レンズ群の焦点距離をf1とするとき、
0.02<f1/f1FF<0.78
なる条件を満足することを特徴とするズームレンズ。 In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power are provided. A zoom lens in which the second and fourth lens groups move during zooming,
The first lens group includes a negative lens having a concave surface on the image side, a lens having a concave surface on the object side, a biconvex positive lens, a cemented lens of a negative lens having a concave surface and a positive lens on the image side, or a negative lens having a concave surface on the image side, Consists of two positive positive lenses,
When the composite focal length of the negative lens having the concave surface on the image side, the concave lens on the object side, and the positive lens having the biconvex shape is f1FF, and the focal length of the first lens group is f1 in the first lens group,
0.02 <f1 / f1FF <0.78
A zoom lens characterized by satisfying the following conditions:
該第1レンズ群は、像側が凹面の1枚以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズ、負レンズと正レンズより成る接合レンズ又は負レンズ、屈折力の絶対値が像側に比べ物体側に大きく、物体側が凸面の1枚以上の正レンズより成り、
該第1レンズ群中の像側が凹面の1枚以上の負レンズ、物体側が凹面のレンズ、両凸形状の1以上の正レンズの合成焦点距離をf1FF、該第1レンズ群の焦点距離をf1とするとき、
0.02<f1/f1FF<0.78
なる条件を満足することを特徴とするズームレンズ。 In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power are provided. A zoom lens in which the second and fourth lens groups move during zooming,
The first lens group includes one or more negative lenses having a concave surface on the image side, a lens having a concave surface on the object side, one or more positive lenses having a biconvex shape, a cemented lens or a negative lens composed of a negative lens and a positive lens, The absolute value is larger on the object side than on the image side, and the object side consists of one or more positive lenses having a convex surface.
The composite focal length of one or more negative lenses having a concave surface on the image side, a concave lens on the object side, and one or more positive lenses having a biconvex shape in the first lens group is f1FF, and the focal length of the first lens group is f1. And when
0.02 <f1 / f1FF <0.78
A zoom lens characterized by satisfying the following conditions:
−8.0<H12w/fw<−3.2
なる条件を満足することを特徴とする請求項1から4のいずれか1項に記載のズームレンズ。 When the distance between the principal points of the first lens group and the second lens group at the wide angle end is H12w, and the focal length of the entire system at the wide angle end is fw,
-8.0 <H12w / fw <-3.2
The zoom lens according to claim 1, wherein the following condition is satisfied.
0.8<RNF/RNR<1.4
なる条件を満足することを特徴とする請求項1から5のいずれか1項に記載のズームレンズ。 When the radius of curvature of the object side and the image side of the lens having a concave surface on the object side in the first lens group is RNF and RNR,
0.8 <RNF / RNR <1.4
The zoom lens according to claim 1, wherein the following condition is satisfied.
2.5<|f2/fw|<4.1
なる条件を満足することを特徴とする請求項1から6のいずれか1項に記載のズームレンズ。 The focal length of the second lens group is f2, the focal length of the entire system at the wide angle end is fw, the F number of the entire system at the wide angle end is F no w, and the distance from the lens surface closest to the image side to the image plane at the wide angle end. When the air equivalent amount is BF,
2.5 <| f2 / fw | <4.1
The zoom lens according to claim 1, wherein the following condition is satisfied.
0.01<D3a/f3<0.08
なる条件を満足することを特徴とする請求項1から10のいずれか1項に記載のズームレンズ。 When the third lens group has a plurality of lenses with at least one air gap, the length of the at least one air gap in the optical axis direction is D3a, and the focal length of the third lens group is f3. ,
0.01 <D3a / f3 <0.08
The zoom lens according to claim 1, wherein the following condition is satisfied.
1.3<f3/f5<3.1
なる条件を満足することを特徴とする請求項3、4又は12に記載のズームレンズ。 When the focal lengths of the third lens group and the fifth lens group are f3 and f5, respectively.
1.3 <f3 / f5 <3.1
The zoom lens according to claim 3, 4 or 12, wherein the following condition is satisfied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006145152A JP4944495B2 (en) | 2006-05-25 | 2006-05-25 | Zoom lens and imaging apparatus using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006145152A JP4944495B2 (en) | 2006-05-25 | 2006-05-25 | Zoom lens and imaging apparatus using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007316287A true JP2007316287A (en) | 2007-12-06 |
JP2007316287A5 JP2007316287A5 (en) | 2009-07-02 |
JP4944495B2 JP4944495B2 (en) | 2012-05-30 |
Family
ID=38850214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006145152A Expired - Fee Related JP4944495B2 (en) | 2006-05-25 | 2006-05-25 | Zoom lens and imaging apparatus using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4944495B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010160298A (en) * | 2009-01-08 | 2010-07-22 | Fujinon Corp | Zoom lens and imaging apparatus |
CN102628982A (en) * | 2011-02-07 | 2012-08-08 | 佳能株式会社 | Zoom lens and image pickup apparatus including the same |
JP2015169689A (en) * | 2014-03-05 | 2015-09-28 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
CN106371199A (en) * | 2015-07-20 | 2017-02-01 | 扬明光学股份有限公司 | Zoom lens |
JP2017078772A (en) * | 2015-10-20 | 2017-04-27 | キヤノン株式会社 | Zoom lens and imaging device having the same |
KR101739375B1 (en) | 2010-03-12 | 2017-05-24 | 삼성전자주식회사 | Compact zoom lens |
US10295806B2 (en) | 2015-10-20 | 2019-05-21 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03127005A (en) * | 1989-10-13 | 1991-05-30 | Minolta Camera Co Ltd | Wide converter lens |
JP2006119346A (en) * | 2004-10-21 | 2006-05-11 | Canon Inc | Wide converter lens and imaging device having the same |
-
2006
- 2006-05-25 JP JP2006145152A patent/JP4944495B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03127005A (en) * | 1989-10-13 | 1991-05-30 | Minolta Camera Co Ltd | Wide converter lens |
JP2006119346A (en) * | 2004-10-21 | 2006-05-11 | Canon Inc | Wide converter lens and imaging device having the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010160298A (en) * | 2009-01-08 | 2010-07-22 | Fujinon Corp | Zoom lens and imaging apparatus |
KR101739375B1 (en) | 2010-03-12 | 2017-05-24 | 삼성전자주식회사 | Compact zoom lens |
CN102628982A (en) * | 2011-02-07 | 2012-08-08 | 佳能株式会社 | Zoom lens and image pickup apparatus including the same |
JP2015169689A (en) * | 2014-03-05 | 2015-09-28 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
CN106371199A (en) * | 2015-07-20 | 2017-02-01 | 扬明光学股份有限公司 | Zoom lens |
JP2017078772A (en) * | 2015-10-20 | 2017-04-27 | キヤノン株式会社 | Zoom lens and imaging device having the same |
US10295806B2 (en) | 2015-10-20 | 2019-05-21 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
Also Published As
Publication number | Publication date |
---|---|
JP4944495B2 (en) | 2012-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5006575B2 (en) | Zoom lens and imaging apparatus using the same | |
JP4794912B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5053750B2 (en) | Zoom lens and imaging apparatus having the same | |
US7545580B2 (en) | Zoom lens and image pickup apparatus including the same | |
JP4829586B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4776936B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4695912B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5072447B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5111007B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2009288619A (en) | Zoom lens and imaging apparatus having the same | |
JP4944495B2 (en) | Zoom lens and imaging apparatus using the same | |
JP5599022B2 (en) | Zoom lens and imaging apparatus having the same | |
JP2007178825A (en) | Zoom lens and imaging device having the same | |
JP2018159822A (en) | Zoom lens and imaging device including the same | |
JP4612795B2 (en) | Zoom lens and imaging apparatus using the same | |
JP6261235B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6541470B2 (en) | Zoom lens and imaging device having the same | |
JP5295339B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6355331B2 (en) | Zoom lens and image pickup apparatus using the same | |
JP2017068155A (en) | Zoom lens and image capturing device having the same | |
JP5730134B2 (en) | Zoom lens and imaging apparatus having the same | |
JP6584089B2 (en) | Zoom lens and imaging apparatus having the same | |
JP4865218B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5059207B2 (en) | Zoom lens and imaging apparatus having the same | |
JP5372205B2 (en) | Zoom lens and imaging apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090512 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120228 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120302 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4944495 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |