JP3387307B2 - Zoom lens with camera shake correction function - Google Patents

Zoom lens with camera shake correction function

Info

Publication number
JP3387307B2
JP3387307B2 JP04005096A JP4005096A JP3387307B2 JP 3387307 B2 JP3387307 B2 JP 3387307B2 JP 04005096 A JP04005096 A JP 04005096A JP 4005096 A JP4005096 A JP 4005096A JP 3387307 B2 JP3387307 B2 JP 3387307B2
Authority
JP
Japan
Prior art keywords
group
lens
object side
wide
image stabilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04005096A
Other languages
Japanese (ja)
Other versions
JPH09230237A (en
Inventor
賢治 金野
宏太郎 林
Original Assignee
ミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミノルタ株式会社 filed Critical ミノルタ株式会社
Priority to JP04005096A priority Critical patent/JP3387307B2/en
Priority to US08/802,756 priority patent/US6266189B1/en
Priority to EP97102979A priority patent/EP0791845A3/en
Publication of JPH09230237A publication Critical patent/JPH09230237A/en
Priority to US09/689,531 priority patent/US6285502B1/en
Application granted granted Critical
Publication of JP3387307B2 publication Critical patent/JP3387307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、手ぶれ補正機能を
有するズームレンズに関するものであり、更に詳しく
は、手ぶれ(例えば、カメラの手持ち撮影時の振動)によ
る像のぶれを防ぐことができる、一眼レフカメラ用の標
準・標準高倍率ズームとして好適なズームレンズに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens having a camera shake correction function, and more specifically, it is capable of preventing image blur caused by camera shake (for example, vibration during hand-held shooting of a camera). The present invention relates to a zoom lens suitable as a standard / standard high-magnification zoom lens for a reflex camera.

【0002】[0002]

【従来の技術】従来より、手ぶれ補正機能を有する様々
なズームレンズが提案されている。例えば、特開平5-23
2410号公報では、正・負・正・正の4群構成において第
2群全体を光軸に対して垂直方向に移動させることによ
って手ぶれ補正を行うズームレンズが提案されている。
特開平7-199124号公報では、正・負・正・正の4群構成
において第3群全体を光軸に対して垂直方向に移動させ
ことによって手ぶれ補正を行うズームレンズが提案され
ている。
2. Description of the Related Art Conventionally, various zoom lenses having a camera shake correction function have been proposed. For example, JP-A-5-23
Japanese Laid-Open Patent Publication No. 2410 proposes a zoom lens having a positive, negative, positive, and positive four-group configuration, in which the entire second group is moved in the direction perpendicular to the optical axis to perform camera shake correction.
Japanese Patent Application Laid-Open No. 7-991124 proposes a zoom lens which has a positive, negative, positive, and positive four-group configuration in which the entire third group is moved in the direction perpendicular to the optical axis to perform camera shake correction.

【0003】[0003]

【発明が解決しようとする課題】特開平5-232410号公報
や特開平7-199124号公報で提案されているズームレンズ
は、使用画角が望遠寄りであるため、標準ズームとして
使用するには光学系が非常に大きすぎて不適当である。
また、ズーム群全体を手ぶれ補正のために光軸に対して
垂直方向に移動させる構成となっているため、移動させ
るレンズの重量は大きく、そのレンズを保持する玉枠部
も大きなものとなっている。このため、手ぶれ補正駆動
を行う手ぶれ駆動系に大きな負担がかかり、その結果生
じる手ぶれ駆動系の大型化や偏心に対するレスポンスの
遅れが問題となっている。
The zoom lens proposed in Japanese Patent Application Laid-Open No. 5-232410 and Japanese Patent Application Laid-Open No. 7-991124 has a working angle of view close to the telephoto end, and therefore cannot be used as a standard zoom. The optics are too large and unsuitable.
Also, since the entire zoom group is moved in the direction perpendicular to the optical axis for camera shake correction, the weight of the lens to be moved is large and the lens frame portion that holds the lens is also large. There is. For this reason, a large load is applied to the camera shake drive system that performs camera shake correction drive, and the resulting increase in the size of the camera shake drive system and the delay in response to eccentricity pose problems.

【0004】以上のように、コンパクトで良好な手ぶれ
補正が可能な標準ズームレンズや標準高倍率ズームレン
ズは未だ知られていない。そこで、本発明では、手ぶれ
補正機能を有するとともに、手ぶれ補正のために移動す
るレンズ群の重量が軽く、しかも全長が短くコンパクト
であって、描写性能の高い標準・標準高倍率のズームレ
ンズを提供することを目的とする。
As described above, a standard zoom lens and a standard high-magnification zoom lens which are compact and capable of excellent image stabilization have not yet been known. In view of the above, the present invention provides a standard / standard high-magnification zoom lens that has an image stabilization function, a lens group that moves for image stabilization is light in weight, and the overall length is short and compact, and that has high depiction performance. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明の手ぶれ補正機能を有するズームレンズ
は、物体側から順に、正の屈折力を有する第1群と、負
の屈折力を有する第2群と、正の屈折力を有する第3群
と、を含み、各群の間隔を変化させることによって変倍
を行うズームレンズであって、広角端から望遠端への変
倍に際して前記第1群が物体側へ移動し、前記第2群以
降のいずれかのズーム群を物体側から順に前群と後群と
に分けて、前記前群又は前記後群を光軸に対して垂直方
向に移動させることによって手ぶれ補正を行い、前記前
群と前記後群との間隔が変倍に際して変化せず、以下の
条件式(1)を満足することを特徴とする。 2.1<f1/fW<4.3 …(1) ただし、 f1:第1群の焦点距離、 fW:広角端での全系の焦点距離 である。
In order to achieve the above object, a zoom lens having an image stabilizing function according to a first aspect of the present invention comprises a first group having a positive refractive power and a negative refractive power in order from the object side. A zoom lens that includes a second lens unit having a positive refractive power and a third lens unit having a positive refracting power to perform zooming by changing the distance between the zoom lens units, and at the time of zooming from the wide-angle end to the telephoto end. The first group moves to the object side, and any one of the second and subsequent zoom groups is divided into a front group and a rear group in order from the object side, and the front group or the rear group is set with respect to the optical axis. performs image stabilization by moving in a vertical direction, the front
It is characterized in that the distance between the group and the rear group does not change upon zooming and satisfies the following conditional expression (1). 2.1 <f1 / fW <4.3 (1) where f1 is the focal length of the first lens group, and fW is the focal length of the entire system at the wide-angle end.

【0006】第2の発明の手ぶれ補正機能を有するズー
ムレンズは、物体側から順に、正の屈折力を有する第1
群と、負の屈折力を有する第2群と、正の屈折力を有す
る第3群と、を含み、各群の間隔を変化させることによ
って変倍を行うズームレンズであって、広角端から望遠
端への変倍に際して前記第1群が物体側へ移動し、前記
第2群を物体側から順に前群と後群とに分けて、前記前
群又は前記後群を光軸に対して垂直方向に移動させるこ
とによって手ぶれ補正を行い、前記前群と前記後群との
間隔が変倍に際して変化せず、前記条件式(1)を満足す
ることを特徴とする。
The zoom lens having the image stabilization function of the second invention is the first lens having a positive refractive power in order from the object side.
A zoom lens including a group, a second group having a negative refracting power, and a third group having a positive refracting power, and performing zooming by changing the distance between the groups, At the time of zooming to the telephoto end, the first group moves to the object side, the second group is divided into a front group and a rear group in order from the object side, and the front group or the rear group with respect to the optical axis. Image stabilization is performed by moving in the vertical direction, and the front group and the rear group
It is characterized in that the interval does not change upon zooming and satisfies the conditional expression (1).

【0007】第3の発明の手ぶれ補正機能を有するズー
ムレンズは、物体側から順に、正の屈折力を有する第1
群と、負の屈折力を有する第2群と、正の屈折力を有す
る第3群と、を含み、各群の間隔を変化させることによ
って変倍を行うズームレンズであって、広角端から望遠
端への変倍に際して前記第1群が物体側へ移動し、前記
第3群を物体側から順に前群と後群とに分けて、前記前
群又は前記後群を光軸に対して垂直方向に移動させるこ
とによって手ぶれ補正を行い、前記前群と前記後群との
間隔が変倍に際して変化せず、前記条件式(1)を満足す
ることを特徴とする。
A zoom lens having a camera shake correction function according to a third aspect of the present invention comprises a first zoom lens having a positive refractive power in order from the object side.
A zoom lens including a group, a second group having a negative refracting power, and a third group having a positive refracting power, and performing zooming by changing the distance between the groups, Upon zooming to the telephoto end, the first group moves to the object side, the third group is divided into a front group and a rear group in order from the object side, and the front group or the rear group is set with respect to the optical axis. Image stabilization is performed by moving in the vertical direction, and the front group and the rear group
It is characterized in that the interval does not change upon zooming and satisfies the conditional expression (1).

【0008】第4の発明の手ぶれ補正機能を有するズー
ムレンズは、物体側から順に、正の屈折力を有する第1
群と、負の屈折力を有する第2群と、正の屈折力を有す
る第3群と、正の屈折力を有する第4群と、を含み、各
群の間隔を変化させることによって変倍を行うズームレ
ンズであって、広角端から望遠端への変倍に際して前記
第1群が物体側へ移動し、前記第4群を物体側から順に
前群と後群とに分けて、前記前群又は前記後群を光軸に
対して垂直方向に移動させることによって手ぶれ補正を
行い、前記前群と前記後群との間隔が変倍に際して変化
せず、前記条件式(1)を満足することを特徴とする。
The zoom lens having the image stabilizing function according to the fourth aspect of the present invention is the first lens having a positive refractive power in order from the object side.
A group, a second group having a negative refracting power, a third group having a positive refracting power, and a fourth group having a positive refracting power, and the magnification is changed by changing an interval between the groups. The first lens group moves toward the object side during zooming from the wide-angle end to the telephoto end, and the fourth lens group is divided into a front lens group and a rear lens group in order from the object side. Image stabilization is performed by moving the lens group or the rear group in the direction perpendicular to the optical axis, and the distance between the front group and the rear group changes during zooming.
Without satisfying the above condition (1).

【0009】上記第1〜第4の発明は、一眼レフカメラ
用の標準ズームレンズや標準高倍率ズームレンズとして
適するように、物体側から順に、正の屈折力を有する第
1群と、負の屈折力を有する第2群と、正の屈折力を有
する第3群と、を含んでいる。このような正・負・正を
含むタイプのズームレンズでは、ズーム群の移動の自由
度を収差補正に有効に利用することができるため、広角
域を含む高倍率ズームレンズでありながら、ズーム域の
全てにわたって良好な結像性能を得ることができる。
The first to fourth inventions are, in order from the object side, a first group having a positive refracting power and a negative lens group so as to be suitable as a standard zoom lens for a single-lens reflex camera or a standard high-magnification zoom lens. It includes a second group having a refractive power and a third group having a positive refractive power. With a zoom lens that includes positive, negative, and positive types as described above, the degree of freedom of movement of the zoom group can be effectively used for aberration correction, so even though it is a high-power zoom lens that includes a wide-angle range, It is possible to obtain good imaging performance over all of the above.

【0010】また、広角端から望遠端への変倍に際して
第1群が物体側へ移動するので、広角端ではレトロ型、
望遠端ではテレフォト型の構成をとることになる。この
ため、充分なバックフォーカスを確保することができる
とともに、全長の短い光学系を達成することができる。
さらに、広角端から望遠端への変倍に際して第2群及び
第3群が物体側へ移動する構成とすれば、ズーム群の移
動の自由度が増えるため、収差補正上有利になるととも
に、全長の更に短い光学系を得ることができる。
Further, since the first lens unit moves to the object side during zooming from the wide-angle end to the telephoto end, a retro type lens is used at the wide-angle end.
At the telephoto end, a telephoto type structure will be adopted. Therefore, a sufficient back focus can be secured and an optical system having a short total length can be achieved.
Furthermore, if the second group and the third group are configured to move to the object side during zooming from the wide-angle end to the telephoto end, the degree of freedom of movement of the zoom group is increased, which is advantageous for aberration correction and the total length is increased. It is possible to obtain a shorter optical system.

【0011】また、このタイプのズームレンズでは、各
ズーム群が積極的に変倍を行うため、各ズーム群にかか
る収差負担はかなり大きなものとなる。このため、各ズ
ーム群の収差補正を1枚の単レンズや1枚の接合レンズ
だけで行うことは非常に困難である。従って、各ズーム
群を複数のレンズで構成することが望ましい。
Further, in this type of zoom lens, since each zoom group positively performs zooming, the aberration burden on each zoom group becomes considerably large. Therefore, it is very difficult to correct the aberration of each zoom group with only one single lens or one cemented lens. Therefore, it is desirable to configure each zoom group with a plurality of lenses.

【0012】前記条件式(1)は、第1群の焦点距離に関
するものであり、この条件式(1)を満たすことによっ
て、コンパクト性を損なうことなく良好な結像性能を得
ることができる。条件式(1)の上限を超えると、第1群
の焦点距離が大きくなるために収差補正上は有利になる
が、第1群のレンズ外径の大型化及び第1群のズーミン
グでの移動量の増大を招くため、コンパクトな光学系を
得ることが困難になる。条件式(1)の上限を3.8にしてこ
れを満たすようにすれば、更にコンパクトな光学系を得
ることができる。条件式(1)の下限を超えると、第1群
で発生する収差が非常に大きくなり、他の群でその収差
を補正することが困難になる。条件式(1)の下限を2.5に
してこれを満たすようにすれば、更に良好な結像性能を
得ることができる。
The conditional expression (1) relates to the focal length of the first lens unit, and by satisfying this conditional expression (1), good imaging performance can be obtained without impairing compactness. If the upper limit of conditional expression (1) is exceeded, the focal length of the first lens group becomes large, which is advantageous for aberration correction, but the lens outer diameter of the first lens group becomes large and the first lens group moves during zooming. Since this causes an increase in the amount, it becomes difficult to obtain a compact optical system. By setting the upper limit of conditional expression (1) to 3.8 and satisfying this, a more compact optical system can be obtained. When the value goes below the lower limit of the conditional expression (1), the aberration generated in the first group becomes very large, and it becomes difficult to correct the aberration in the other groups. By setting the lower limit of conditional expression (1) to 2.5 and satisfying the lower limit, a better imaging performance can be obtained.

【0013】上記第1〜第4の発明において、更に以下
の条件式(2)を満足することが望ましい。条件式(2)を満
たすことによって、広角域を含む高倍率ズームレンズを
コンパクト化するとともに、その結像性能を良好にする
ことができる。 0.65<fR/fW<1.8 …(2) ただし、 fR:広角端における第3群以降のズーム群の合成焦点距
離 である。
In the above first to fourth inventions, it is desirable that the following conditional expression (2) is further satisfied. By satisfying conditional expression (2), it is possible to make a high-power zoom lens including a wide-angle range compact and to improve its imaging performance. 0.65 <fR / fW <1.8 (2) where fR is the combined focal length of the third and subsequent zoom groups at the wide-angle end.

【0014】条件式(2)は、第3群以降のズーム群の広
角端における合成焦点距離に関するものである。条件式
(2)の上限を超えると、収差補正上は有利になるが、第
3群以降の構成長が長くなるために、コンパクト性が失
われてしまう。条件式(2)の上限を1.3にしてこれを満た
すようにすれば、更にコンパクトな光学系を得ることが
できる。条件式(2)の下限を超えると、第3群以降のズ
ーム群の広角端における合成焦点距離が短くなりすぎる
ために過大な収差が発生し、それを他のズーム群で補正
することが困難になる。条件式(2)の下限を0.8にしてこ
れを満たすようにすれば、更に良好な結像性能を得るこ
とができる。
Conditional expression (2) relates to the combined focal length at the wide-angle end of the third and subsequent zoom groups. Conditional expression
When the value exceeds the upper limit of (2), it is advantageous for aberration correction, but the length of the third and subsequent lens groups becomes long, resulting in loss of compactness. If the upper limit of conditional expression (2) is set to 1.3 and this is satisfied, a more compact optical system can be obtained. If the lower limit of conditional expression (2) is exceeded, an excessive aberration will occur because the combined focal length at the wide-angle end of the third and subsequent zoom groups will be too short, and it will be difficult to correct it with other zoom groups. become. By setting the lower limit of conditional expression (2) to 0.8 and satisfying the lower limit, a better imaging performance can be obtained.

【0015】一般に、一眼レフカメラ用のズーム撮影光
学系では、第1群が最も大型のレンズ群であり、そのレ
ンズ重量も相当大きいものとなっている。第1〜第4の
発明のように、物体側から順に、正の屈折力を有する第
1群と、負の屈折力を有する第2群と、正の屈折力を有
する第3群と、を備えたズームレンズにおいても、第1
群のレンズ重量は、第2群以降のズーム群のレンズ重量
に比べて非常に大きくなっている。このため、第1群の
レンズを光軸に対して垂直方向に移動させること(すな
わち、平行偏心させること)によって手ぶれ補正を行う
ことは、手ぶれ駆動系を大型化することになるので好ま
しくない。
Generally, in a zoom photographing optical system for a single-lens reflex camera, the first lens group is the largest lens group, and the lens weight is also considerably large. As in the first to fourth inventions, a first group having a positive refracting power, a second group having a negative refracting power, and a third group having a positive refracting power are provided in order from the object side. The first zoom lens equipped
The lens weights of the groups are much larger than the lens weights of the second and subsequent zoom groups. For this reason, it is not preferable to move the first lens group in the direction perpendicular to the optical axis (that is, to perform parallel eccentricity) to correct the camera shake because the camera shake drive system becomes large.

【0016】また、第1〜第4の発明のように、物体側
から順に、正の屈折力を有する第1群と、負の屈折力を
有する第2群と、正の屈折力を有する第3群と、を備え
たズームレンズでは、開口絞りを第2群以降に有するの
が一般的である。開口絞り付近では軸上光束と軸外光束
とが密に集まっているため、開口絞り付近でのレンズ径
は小さくなる。第2群以降のズーム群は、広角端から望
遠端にかけてのズーミングにおいて開口絞りの近くに位
置するため、そのレンズ径を比較的小さくすることは可
能である。従って、第1〜第4の発明のように、第2群
以降のズーム群を構成している小さく軽量なレンズを手
ぶれ補正に用いることは、手ぶれ駆動系にかかる負担を
大きくすることなく、手ぶれ補正を行うのには適してい
る。
Further, as in the first to fourth inventions, in order from the object side, the first group having a positive refractive power, the second group having a negative refractive power, and the first group having a positive refractive power. A zoom lens including three groups generally has an aperture stop in the second and subsequent groups. Since the on-axis light flux and the off-axis light flux are densely gathered near the aperture stop, the lens diameter is reduced near the aperture stop. The zoom groups of the second group and the subsequent groups are located near the aperture stop in zooming from the wide-angle end to the telephoto end, so that it is possible to make the lens diameter relatively small. Therefore, as in the first to fourth inventions, the use of the small and lightweight lenses constituting the second and subsequent zoom groups for camera shake correction does not increase the load on the camera shake drive system and causes the camera shake. It is suitable for making corrections.

【0017】しかし、第2群以降のいずれかのズーム群
全体を平行偏心させることによって手ぶれ補正を行うよ
うにすると、平行偏心させるレンズ及び玉枠部の重量が
大きくなるため、手ぶれ駆動系にかかる負担も大きくな
る。そこで、第1〜第4の発明では、第2群以降のいず
れかのズーム群を物体側から順に前群と後群とに分け
て、前群又は後群を手ぶれ補正用のレンズ群(以下「手
ぶれ補正群」ともいう。)として、光軸に対して垂直方
向に移動させること(すなわち、平行偏心させること)に
よって手ぶれ補正を行う構成としている。この構成によ
って、手ぶれ補正のために移動させるレンズ及び玉枠部
の重量を減らすことができ、その結果、手ぶれ駆動系に
かかる負担を軽減することができる。
However, if the camera shake correction is performed by decentering the entire zoom group of the second and subsequent zoom groups in parallel, the weight of the lens and the lens frame portion to be decentered in parallel increases, so that the camera shake driving system is affected. The burden also increases. Therefore, in the first to fourth inventions, any one of the second and subsequent zoom groups is divided into a front group and a rear group in order from the object side, and the front group or the rear group is a lens group for image stabilization (hereinafter The "shake correction group") is configured to perform the shake correction by moving in the direction perpendicular to the optical axis (that is, by causing parallel eccentricity). With this configuration, it is possible to reduce the weight of the lens and the lens frame portion that are moved for camera shake correction, and as a result, it is possible to reduce the load on the camera shake drive system.

【0018】上記手ぶれ補正群と開口絞りとの位置関係
に関し、以下の条件式(3)を全てのズーム域で満足する
ことが好ましい。 D/f<1.2 …(3) ただし、 D:手ぶれ補正群の最も開口絞り側の面から開口絞りま
での距離、 f:全系の焦点距離 である。
Regarding the positional relationship between the camera shake correction group and the aperture stop, it is preferable that the following conditional expression (3) is satisfied in all zoom regions. D / f <1.2 (3) where D is the distance from the surface closest to the aperture stop in the image stabilization group to the aperture stop, and f is the focal length of the entire system.

【0019】条件式(3)の上限を超えると、手ぶれ補正
群は開口絞りから大きく離れることになり、軸上光束と
軸外光束とで通過位置が離れてしまう。その結果、レン
ズ径が大きくなってレンズ重量が増大するため、手ぶれ
駆動系にかかる負担が大きくなってしまう。
If the upper limit of conditional expression (3) is exceeded, the camera shake correction group will be greatly separated from the aperture stop, and the passing positions of the on-axis light beam and the off-axis light beam will be separated. As a result, the lens diameter increases and the lens weight increases, which increases the load on the camera shake drive system.

【0020】手ぶれ補正のためにレンズ群を光軸に対し
て垂直方向に移動させると、通常状態(偏心前状態)では
光線の通らない所を、手ぶれ補正状態(偏心後状態)では
光線が通ることになる。この光線が有害光線となって結
像性能を低下させてしまうおそれがある。そのため、手
ぶれ補正群の物体側、手ぶれ補正群中、又は手ぶれ補正
群の像側に固定絞りを設けることによって、手ぶれ補正
時の有害光線を遮断するのが望ましく、これにより、手
ぶれ補正状態においても良好な結像性能を得ることがで
きる。
When the lens group is moved in the direction perpendicular to the optical axis for camera shake correction, the light beam passes where the light beam does not pass in the normal state (pre-eccentric state) and in the camera shake correction state (post-eccentric state). It will be. This light beam may become a harmful light beam and deteriorate the imaging performance. Therefore, it is desirable to block harmful light rays during image stabilization by providing a fixed aperture on the object side of the image stabilization group, in the image stabilization group, or on the image side of the image stabilization group, and thus even in the image stabilization state. Good imaging performance can be obtained.

【0021】また、近接物体へのフォーカシングを、手
ぶれ補正群又は手ぶれ補正群を有するズーム群で行うの
が望ましい。これによると、フォーカシング用の駆動系
と手ぶれ補正用の手ぶれ駆動系とを共通の駆動部材を用
いて実現することが可能になり、コスト面で非常に有利
になる。
Further, it is desirable that focusing on a near object is performed by a camera shake correction group or a zoom group having a camera shake correction group. This makes it possible to realize the focusing drive system and the camera shake drive system for camera shake correction by using a common drive member, which is very advantageous in terms of cost.

【0022】一般に、手ぶれ時の収差は、手ぶれ補正の
ために偏心する光学系よりも前方に位置する光学系によ
る収差と、手ぶれ補正のために偏心する光学系自身の収
差と、の合成で表すことができる。手ぶれ補正群を1枚
のレンズで構成した場合、手ぶれ補正群よりも前方に位
置する光学系は手ぶれ補正群よりもレンズ枚数が多いた
め、収差補正の自由度も大きい。従って、手ぶれ補正群
よりも前方に位置する光学系で通常状態での収差と手ぶ
れ時の収差との両方を補正することは可能である。しか
し、手ぶれ補正群は収差補正のための自由度が小さいた
め、その屈折力が大きすぎると、手ぶれ補正群で発生す
る収差が甚大になり、通常状態での収差補正を他のレン
ズで抑えることが困難になる。
Generally, the aberration at the time of camera shake is represented by a combination of the aberration caused by the optical system located in front of the optical system decentered for camera shake correction and the aberration of the optical system itself decentered for camera shake correction. be able to. When the camera shake correction group is composed of one lens, the optical system located in front of the camera shake correction group has a larger number of lenses than the camera shake correction group, so that the degree of freedom of aberration correction is large. Therefore, it is possible to correct both the aberration in the normal state and the aberration at the time of camera shake by the optical system located in front of the camera shake correction group. However, since the camera shake correction group has a small degree of freedom for aberration correction, if its refracting power is too large, the aberrations that occur in the camera shake correction group will be extremely large, and aberration correction in normal conditions should be suppressed with other lenses. Becomes difficult.

【0023】そこで、手ぶれ補正群を1枚のレンズで構
成する場合には、以下の条件式(4)を満足することが好
ましい。 |Pd|/fW<2.30 …(4) ただし、 Pd:手ぶれ補正群の屈折力 である。
Therefore, when the image stabilizing group is composed of one lens, it is preferable that the following conditional expression (4) is satisfied. | Pd | / fW <2.30 (4) where Pd is the refractive power of the image stabilization group.

【0024】条件式(4)の上限を超えると、手ぶれ補正
群の屈折力が大きくなりすぎるため、手ぶれ補正群だけ
で発生する収差が過大となり、通常状態(偏心前状態)で
の収差を補正することが困難になる。また、条件式(4)
の上限を1.6にしてこれを満たすようにすれば、更に収
差補正された光学系を得ることができる。
If the upper limit of conditional expression (4) is exceeded, the refractive power of the image stabilization group becomes too large, so that the aberrations generated only in the image stabilization group become excessive and the aberrations in the normal state (pre-eccentric state) are corrected. Difficult to do. Also, conditional expression (4)
By setting the upper limit of to 1.6 and satisfying this, it is possible to obtain an optical system with further aberration correction.

【0025】手ぶれ時に手ぶれ補正群を平行偏心させる
と、偏心収差の一つである軸上横色収差が発生するが、
これを抑えるためには、手ぶれ補正群が色補正されてい
ることが望ましい。しかし、手ぶれ補正群が1枚のレン
ズから成る場合、必然的に手ぶれ補正群で色収差が発生
してしまう。これを抑えるためにレンズを追加して手ぶ
れ補正群のレンズ枚数を増やすと、手ぶれ補正群の大型
化を招いてしまう。そこで、手ぶれ補正群として正レン
ズと負レンズとの接合レンズを用いるのが望ましい。1
枚の接合レンズを用いることによって、色補正された軽
量の手ぶれ補正群を実現することができる。
When the camera shake correction group is decentered in parallel during camera shake, axial lateral chromatic aberration, which is one of decentering aberrations, occurs.
In order to suppress this, it is desirable that the camera shake correction group be color-corrected. However, when the camera shake correction group is composed of one lens, chromatic aberration inevitably occurs in the camera shake correction group. If the number of lenses in the image stabilizing group is increased by adding a lens in order to suppress this, the image stabilizing group becomes large. Therefore, it is desirable to use a cemented lens of a positive lens and a negative lens as the camera shake correction group. 1
By using a single cemented lens, it is possible to realize a color-corrected, lightweight image stabilization group.

【0026】1枚の接合レンズから成る手ぶれ補正群を
用いる場合、手ぶれ補正群が正の屈折力を有するときに
は以下の条件式(5)を満足することが望ましく、手ぶれ
補正群が負の屈折力を有するときには以下の条件式(6)
を満足することが望ましい。 νp>νn …(5) νp<νn …(6) ただし、 νp:手ぶれ補正群(接合レンズ)中の正レンズのアッベ
数、 νn:手ぶれ補正群(接合レンズ)中の負レンズのアッベ
数 である。
When using the image stabilizing group consisting of one cemented lens, it is desirable that the following conditional expression (5) is satisfied when the image stabilizing group has a positive refractive power, and the image stabilizing group has a negative refractive power. If you have the following conditional expression (6)
It is desirable to satisfy. νp> νn… (5) νp < νn… (6) where νp is the Abbe number of the positive lens in the image stabilization group (junction lens), νn is the Abbe number of the negative lens in the image stabilization group (junction lens) is there.

【0027】《偏心収差及び偏心収差係数》次に、本発
明に係るズームレンズのような手ぶれ補正機能を有する
光学系(以下「手ぶれ補正光学系」という。)の収差劣化
の定義を、図17に基づいて説明する。同図に示す偏心
収差(軸外像点移動誤差,片ボケ,軸上コマ及び軸上横
色収差)は、手ぶれ補正光学系の像劣化の要因となる。
<< Decentering Aberration and Decentering Aberration Coefficient >> Next, the definition of aberration deterioration of an optical system having a camera shake correcting function (hereinafter referred to as “camera shake correcting optical system”) like the zoom lens according to the present invention is defined in FIG. It will be described based on. The decentration aberrations (off-axis image point movement error, one-sided blur, axial coma and axial lateral chromatic aberration) shown in the same figure cause image deterioration of the image stabilizing optical system.

【0028】[軸外像点移動誤差]{図17(A)} 偏心した光学系では、通常の歪曲収差に加えて偏心によ
る歪曲誤差が発生する。このため、手ぶれ補正光学系に
おいては、軸上(つまり、画面中心)の像点が完全に止ま
るように補正したとき、軸外の像点が完全に止まらずに
像ぶれが発生する。図17(A)中、1はフィルム面、2
は補正状態(偏心後状態)の像点、3は通常状態(偏心前
状態)の像点、4は手ぶれ補正方向を表す。
[Off-axis image point movement error] {FIG. 17 (A)} In a decentered optical system, a distortion error due to decentering occurs in addition to the normal distortion aberration. For this reason, in the image stabilization optical system, when the image point on the axis (that is, the center of the screen) is corrected to completely stop, the image point off-axis does not completely stop, and an image blur occurs. In FIG. 17 (A), 1 is the film surface, 2
Represents an image point in a corrected state (post-eccentric state), 3 represents an image point in a normal state (pre-eccentric state), and 4 represents a camera shake correction direction.

【0029】ここで、光軸をx軸方向、手ぶれ方向をy軸
方向(すなわち、手ぶれ補正方向4もy軸方向)とし、Y
(y',z',θ)を近軸像点が(y',z')である光線の手ぶれ補
正角θでの実際の像点のY座標{軸上の像点が完全に止ま
るように補正するので、常にY(0,0,θ)=0である。}とす
ると、次の式(a)が成り立つ。 ΔY(y',z',θ)=Y(y',z',θ)-Y(y',z',0) ……(a)
Here, the optical axis is the x-axis direction, the camera shake direction is the y-axis direction (that is, the camera shake correction direction 4 is also the y-axis direction), and Y
(y ', z', θ) is the Y coordinate of the actual image point at the image stabilization angle θ of the ray whose paraxial image point is (y ', z') (so that the image point on the axis stops completely Since Y is corrected to Y (0,0, θ) = 0. }, The following expression (a) is established. ΔY (y ', z', θ) = Y (y ', z', θ) -Y (y ', z', 0) …… (a)

【0030】特に指定しない限り、y軸上の像点につい
ての軸外像点移動誤差ΔYY'及びz軸上の像点についての
軸外像点移動誤差ΔYZ'は、それぞれ以下の式(b)及び式
(c)で表される。なお、0.7fieldは新規格の24mmフィル
ムでは約12mmである。 ΔYY'={ΔY(0.7field,0,0.7゜)+ΔY(-0.7field,0,0.7゜)}/2 ……(b) ΔYZ'=ΔY(0,0.7field,0.7゜) ……(c)
[0030] Unless otherwise specified, the off-axial image point movement error of the image point on the y-axis [Delta] Y Y 'and axial image point for an image point on the z-axis movement error [Delta] Y Z' are each the following formula ( b) and the formula
It is represented by (c). The 0.7 field is about 12 mm for the new standard 24 mm film. ΔY Y '= {ΔY (0.7field, 0,0.7 °) + ΔY (-0.7field, 0,0.7 °)} / 2 …… (b) ΔY Z ' = ΔY (0,0.7field, 0.7 °)… … (C)

【0031】[片ボケ]{図17(B)} 図17(B)中、5は光軸AXに非対称な像面を表し、6
は光軸に対称な像面を表す。光学系の非対称性によっ
て、像面5は光軸AXに対し非対称となる。これによ
り、生じるメリディオナル片ボケΔM'及びサジタル片ボ
ケΔS'は、それぞれ以下の式(d)及び式(e)で表される。 ΔM'={メリテ゛ィオナル値(y'=0.7field,z=0,θ=0.7゜)-メリテ゛ィオナル値(y'=-0.7field,z =0,θ=0.7゜)}/2 ……(d) ΔS'={サシ゛タル値(y'=0.7field, z=0,θ=0.7゜)-サシ゛タル値(y'=-0.7field,z=0,θ =0.7゜)}/2 ……(e)
[One-sided blur] {FIG. 17 (B)} In FIG. 17 (B), 5 represents an image plane asymmetric with respect to the optical axis AX, and 6
Represents an image plane symmetrical to the optical axis. Due to the asymmetry of the optical system, the image plane 5 is asymmetric with respect to the optical axis AX. As a result, the generated meridional one-sided blur ΔM ′ and the sagittal one-sided blur ΔS ′ are represented by the following equations (d) and (e), respectively. ΔM '= {meridional value (y' = 0.7field, z = 0, θ = 0.7 °) -meridional value (y '=-0.7field, z = 0, θ = 0.7 °)} / 2 (d) ΔS '= {Sagittal value (y' = 0.7field, z = 0, θ = 0.7 °) -Sagittal value (y '=-0.7field, z = 0, θ = 0.7 °)} / 2 ...... (e)

【0032】[軸上コマ]{図17(C)} 図17(C)中、7は軸上光束を表し、8は軸上主光線を
表す。図示のように、軸上の光束7が軸上主光線8に対
して対称とならずにコマ収差が発生する。軸上光束7に
おいて生じる軸上コマAXCMは、次の式(f)で表される。 AXCM={Y(Upper Zornal,θ=0.7゜)+Y(Lower Zornal,θ=0.7゜)}/2 ……(f)
[On-axis coma] {FIG. 17 (C)} In FIG. 17 (C), 7 represents an axial luminous flux, and 8 represents an axial chief ray. As shown in the figure, the axial light beam 7 is not symmetrical with respect to the axial principal ray 8, and coma aberration occurs. The axial coma AXCM generated in the axial luminous flux 7 is expressed by the following equation (f). AXCM = {Y (Upper Zornal, θ = 0.7 °) + Y (Lower Zornal, θ = 0.7 °)} / 2 …… (f)

【0033】[軸上横色収差]{図17(D)} 像点は波長の違いによってずれるため、光学系が非対称
のとき軸上光でもずれが生じる。軸上主光線において生
じる軸上横色収差は、次の式(g)で表される。 (軸上横色収差)={Y(g線,θ=0.7゜)-Y(d線,θ=0.7゜)} ……(g)
[Axial Lateral Chromatic Aberration] {FIG. 17 (D)} Since the image point shifts due to the difference in wavelength, when the optical system is asymmetric, a shift occurs even in the axial light. The axial lateral chromatic aberration that occurs in the axial chief ray is represented by the following equation (g). (Axial lateral chromatic aberration) = {Y (g line, θ = 0.7 °) -Y (d line, θ = 0.7 °)} …… (g)

【0034】上記偏心収差については、松居吉哉氏の論
文「偏心の存在する光学系の3次の収差論」(1990
年6月JOEM)に、その応用方法が示されている。その方法
は通常の撮影レンズが取付誤差により偏心した場合等に
は適しているが、物体平面と撮影レンズ及び像平面との
共軸関係がずれる手ぶれ補正光学系には、これを直接適
用することができない。そこで、上記論文の方法を手ぶ
れ補正光学系に直接適用できるようにするため、以下に
説明する式の変換等を行うことによって、実際の手ぶれ
補正光学系の収差を通常の3次の収差係数で表現する。
Regarding the above-mentioned eccentric aberration, Yoshiya Matsui's article "Third-order aberration theory of an optical system having eccentricity" (1990)
June, JOEM) shows the application method. This method is suitable when the photographic lens is decentered due to mounting error, but it should be applied directly to the image stabilization optical system where the coaxial relationship between the object plane and the photographic lens and image plane is misaligned. I can't. Therefore, in order to enable the method of the above paper to be directly applied to the image stabilization optical system, the aberration of the actual image stabilization optical system is converted into a normal third-order aberration coefficient by performing conversion of the equations described below. Express.

【0035】[手ぶれ補正光学系への偏心収差係数の応
用]光学系と座標との関係を示す図18に基づいて、以
下に偏心収差係数の求め方を説明する。まず、次のよう
に式を定義する。 tanω・cosφω=Y/g$ tanω・sinφω=Z/g$ R・cosφR=(g$/g)・Y* R・sinφR=(g$/g)・Z* g,g$はそれぞれ入射瞳面,物体側主平面から物体平面
(物面)OSまでの距離、ωは物点と物体側主点Hとを結ぶ
直線が基準軸となす角で、φωがそのazimuth、また、R
は物体側主平面上に換算した入射瞳半径でφRがそのazi
muthである。
[Application of Eccentric Aberration Coefficient to Shake Correction Optical System] The method of obtaining the eccentric aberration coefficient will be described below with reference to FIG. 18 showing the relationship between the optical system and the coordinates. First, the formula is defined as follows. tanω ・ cosφω = Y / g $ tanω ・ sinφω = Z / g $ R ・ cosφR = (g $ / g) ・ Y * R ・ sinφR = (g $ / g) ・ Z * g and g $ are entrance pupils Surface, object side principal plane to object plane
(Object surface) The distance to the OS, ω is the angle formed by the straight line connecting the object point and the object-side principal point H with the reference axis, and φω is its azimuth, and R
Is the entrance pupil radius converted on the object-side principal plane and φR is the azimuth.
It's muth.

【0036】物体側からν番目の面が基準軸に対してY
方向に微小量Eνだけ平行偏心したときの像平面(像面)I
S上での像点移動量ΔY,ΔZは、次の式(1A),(1B)で表
される。 ΔY=-(Eν/2αk')・[(ΔE)ν+(N・tanω)2・{(2+cos2φω)・(VE1)ν-(VE2)ν} +2R・(N・tanω)・{(2cos(φR-φω)+cos(φR+φω))・(IIIE)ν+cosφR・cosφω・(P E)ν}+R2・(2+cos2φR)・(IIE)ν] ……(1A) ΔZ=-(Eν/2αk')・[(N・tanω)2・sin2φω・(VE1)ν+2R・(N・tanω)・{sin(φR +φω)・(IIIE)ν+sinφR・sinφω・(PE)ν}+R2・sin2φR・(IIE)ν] ……(1B)
The νth surface from the object side is Y with respect to the reference axis.
Image plane (image plane) I when decentered by a small amount Eν
The image point movement amounts ΔY and ΔZ on S are expressed by the following equations (1A) and (1B). ΔY =-(Eν / 2α k ') ・ [(ΔE) ν + (N ・ tanω) 2・ {(2 + cos2φω) ・ (VE1) ν- (VE2) ν} + 2R ・ (N ・ tanω) ・((2cos (φR-φω) + cos (φR + φω)) ・ (IIIE) ν + cosφR ・ cosφω ・ (PE) ν} + R 2・ (2 + cos2φR) ・ (IIE) ν] …… (1A ) ΔZ =-(Eν / 2α k ') ・ [(N ・ tanω) 2・ sin2φω ・ (VE1) ν + 2R ・ (N ・ tanω) ・ (sin (φR + φω) ・ (IIIE) ν + sinφR ・sinφω ・ (PE) ν} + R 2・ sin2φR ・ (IIE) ν] …… (1B)

【0037】ここに、 (ΔE)ν:プリズム作用(像の横ずれ) (VE1)ν,(VE2)ν:回転非対称な歪曲 (IIIE)ν,(PE)ν:回転非対称な非点収差,像面の傾き (IIE)ν:軸上にも表れる回転非対称なコマ収差 とすると、偏心による影響を表す各偏心収差係数も、ν
番目の面から像面までのレンズ面の収差係数により、以
下の式(1C)〜(1H)で表される(#:物面上を示す添え
字。)。なお、回転偏心の場合も式(1A)〜(1H)と同様の
形の式で表現される。 (ΔE)ν=-2(αν'-αν) ……(1C) (VE1)ν=[{αν'・(μ=ν+1→k)ΣVμ}-{αν・(μ=ν→k)ΣVμ}]-[{αν'#・ (μ=ν+1→k)ΣIIIμ}-{αν#・(μ=ν→k)ΣIIIμ}] ……(1D) (VE2)ν={αν'#・(μ=ν+1→k)ΣPμ}-{αν#・(μ=ν→k)ΣPμ} ……(1E ) (IIIE)ν=[{αν'・(μ=ν+1→k)ΣIIIμ}-{αν・(μ=ν→k)ΣIIIμ}]-[{ αν'#・(μ=ν+1→k)ΣIIμ}-{αν#・(μ=ν→k)ΣIIμ}] ……(1F) (PE)ν={αν'・(μ=ν+1→k)ΣPμ}-{αν・(μ=ν→k)ΣPμ} ……(1G) (IIE)ν=[{αν'・(μ=ν+1→k)ΣIIμ}-{αν・(μ=ν→k)ΣIIμ}]-[{αν '#・(μ=ν+1→k)ΣIμ}-{αν#・(μ=ν→k)ΣIμ}] ……(1H)
Where (ΔE) ν: prism action (lateral deviation of image) (VE1) ν, (VE2) ν: rotationally asymmetric distortion (IIIE) ν, (PE) ν: rotationally asymmetric astigmatism, image Surface inclination (IIE) ν: If the rotationally asymmetric coma aberration that also appears on the axis is taken, each decentering aberration coefficient that represents the effect of decentering is also ν
It is expressed by the following equations (1C) to (1H) according to the aberration coefficient of the lens surface from the second surface to the image surface (#: subscript indicating the object surface). In the case of rotational eccentricity, it is expressed by the same formula as the formulas (1A) to (1H). (ΔE) ν = -2 (αν'-αν) …… (1C) (VE1) ν = [{αν '・ (μ = ν + 1 → k) ΣVμ}-{αν ・ (μ = ν → k) ΣVμ}]-[{αν '# ・ (μ = ν + 1 → k) ΣIIIμ}-{αν # ・ (μ = ν → k) ΣIIIμ}] …… (1D) (VE2) ν = {αν'#・ (Μ = ν + 1 → k) ΣPμ}-{αν # ・ (μ = ν → k) ΣPμ} …… (1E) (IIIE) ν = [{αν '・ (μ = ν + 1 → k) ΣIIIμ}-{αν ・ (μ = ν → k) ΣIIIμ}]-[{αν '# ・ (μ = ν + 1 → k) ΣIIμ}-{αν # ・ (μ = ν → k) ΣIIμ}]… … (1F) (PE) ν = {αν '・ (μ = ν + 1 → k) ΣPμ}-{αν ・ (μ = ν → k) ΣPμ} …… (1G) (IIE) ν = [{αν '・ (Μ = ν + 1 → k) ΣIIμ}-{αν ・ (μ = ν → k) ΣIIμ}]-[{αν'# ・ (μ = ν + 1 → k) ΣIμ}-{αν # ・(μ = ν → k) ΣIμ}] …… (1H)

【0038】ところが、手ぶれ補正光学系に偏心収差係
数を応用するには、光学系の反転により像面ISを物面OS
に置き換えて、像面ISからの収差係数を用いる必要があ
る。つまり、像点移動量を物面OS上のものに変換しなけ
ればならない。その理由を以下に説明する。
However, in order to apply the decentering aberration coefficient to the image stabilization optical system, the image plane IS is changed to the object plane OS by reversing the optical system.
It is necessary to replace with, and use the aberration coefficient from the image plane IS. In other words, the image point movement amount must be converted to that on the object plane OS. The reason will be described below.

【0039】第1の理由は、偏心によって光線通過位置
に違いが生じることにある。図19(A)に示すように(L
1:偏心前の光線,L2:偏心後の光線)、上述の松居吉哉
氏の論文の方法においては、偏心レンズLSより像面IS側
の光線の通過位置が偏心レンズLSによって変わってしま
う。従って、偏心レンズLSと偏心レンズLS〜像面ISの収
差係数が偏心収差係数に関係することになる。これに対
し、図19(B)に示すように(M1:手ぶれ補正前の光
線,M2:手ぶれ補正後の光線)、手ぶれ補正光学系では
(理想的には)、偏心レンズLSより物体側の光線の通過位
置が手ぶれ補正前と手ぶれ補正後とで変わってしまう。
従って、偏心レンズLSと偏心レンズLSより物体側の収差
係数が偏心収差係数に関係することになる。
The first reason is that there is a difference in the light beam passage position due to eccentricity. As shown in FIG.
(1 : before decentering, L 2 : after decentering), and in the method of the above-mentioned article by Yoshiya Matsui, the passing position of the ray on the image plane IS side of the decentering lens LS changes depending on the decentering lens LS. Therefore, the aberration coefficients of the eccentric lens LS and the eccentric lens LS to the image plane IS are related to the eccentric aberration coefficient. On the other hand, as shown in FIG. 19B (M 1 : light beam before image stabilization, M 2 : light beam after image stabilization), the image stabilization optical system
(Ideally), the passing position of the light beam on the object side of the decentering lens LS changes between before and after the image stabilization.
Therefore, the eccentric lens LS and the aberration coefficient on the object side of the eccentric lens LS are related to the eccentric aberration coefficient.

【0040】第2の理由は、物面の回転変換に起因して
収差劣化が生じることにある。上述の松居吉哉氏の論文
の方法においては、物面OS1,像面ISは共に動かない
が、手ぶれ補正光学系では、物面OS1が図20に示すよ
うに回転する。そのため、軸外像点移動誤差や片ボケ
は、回転がない場合と比べて大きく異なってしまう。図
20中、OS1は手ぶれ補正前の物面を表し、OS2は手ぶれ
補正後の物面を表す。
The second reason is that aberration deterioration occurs due to rotational conversion of the object surface. In the method described by Yoshiya Matsui, both the object plane OS 1 and the image plane IS do not move, but in the image stabilization optical system, the object plane OS 1 rotates as shown in FIG. Therefore, the off-axis image point movement error and the one-sided blur greatly differ from those when there is no rotation. In FIG. 20, OS 1 represents the object surface before camera shake correction, and OS 2 represents the object surface after camera shake correction.

【0041】[反転系の収差係数と非反転系の収差係
数]上記した理由から、像点移動量を物面上のものに変
換しなければならないので、式(1A)〜(1H)の各係数を、
図21(非反転系)に基づいて表される以下の式(2A)〜(2
J)に従って変換する。なお、R( )は反転系の記号、N
は屈折率を表すものとする。R α=RN/Rg$=-α' ……(2A)R α#=α'# ……(2B)R αμ'=-αν ……(2C)R αμ'#=αν# ……(2D)R Pμ=Pν ……(2E) …同R φμ=φν ……(2F) …同R Iμ=Iν ……(2G) …同R IIμ=-IIν ……(2H) …逆R IIIμ=IIIν ……(2I) …同R Vμ=-Vν ……(2J) …逆
[Aberration Coefficient of Inverted System and Aberration Coefficient of Non-Inverted System] For the above-mentioned reason, the amount of movement of the image point must be converted to that on the object surface. Therefore, each of the formulas (1A) to (1H) The coefficient
The following formulas (2A) to (2) represented based on FIG. 21 (non-inverting system)
Convert according to J). In addition, R () is an inversion symbol, N
Represents the refractive index. R α = R N / R g $ = -α '…… (2A) R α # = α'# …… (2B) R αμ '=-αν …… (2C) R αμ'# = αν # …… (2D) R Pμ = Pν …… (2E)… Same R φμ = φν …… (2F)… Same R Iμ = Iν …… (2G)… Same R IIμ = -IIν …… (2H)… Inverse R IIIμ = IIIν …… (2I)… Same R Vμ = -Vν …… (2J)… Inverse

【0042】[手ぶれ補正群が平行偏心するときの偏心
収差係数と手ぶれ収差係数]前述の式(1A)〜(1H)は、た
だ1つの面νだけが偏心した場合を示している。そこで
さらに、式(1A)〜(1H)を複数の面i〜jが偏心した場合の
式に変形する。なお、手ぶれ補正群が平行偏心すると
き、偏心する各面i〜jの偏心量Ei〜Ejは等しいので、
式: (ΔE)i〜j=(ν=i→j)Σ{-2・(αν'-αν)} で示すように、収差係数を和として扱うことができる。
そして、αν'=αν+1より、式: (ΔE)i〜j=-2・(αj'-αi) が得られる。
[Eccentric Aberration Coefficient and Camera Shake Aberration Coefficient When Parallel Shake Correction Group is Decentered] The above equations (1A) to (1H) show the case where only one surface ν is eccentric. Therefore, equations (1A) to (1H) are further transformed into equations when a plurality of surfaces i to j are eccentric. When the camera shake correction group is decentered in parallel, the eccentric amounts Ei to Ej of the decentered surfaces i to j are equal,
The aberration coefficient can be treated as the sum as shown by the formula: (ΔE) i to j = (ν = i → j) Σ {-2 · (αν'-αν)}.
Then, from αν ′ = αν + 1, the formula: (ΔE) i to j = −2 · (αj′-αi) is obtained.

【0043】その他の収差係数についても、同様にΣの
途中の項が消える。例えば、 (PE)i〜j=(μ=i→j)Σ{αν'・(μ=ν+1→k)ΣPμ-αν・(μ=ν→k)ΣPμ} =αj'・(μ=j+1→k)ΣPμ-αi・(μ=i→k)ΣPμ 更に変形して、 (PE)i〜j=(αj'-αi)・(μ=j+1→k)ΣPμ-αi・(μ=i→j)ΣPμ ここで、(μ=j+1→k)ΣPμ:手ぶれ補正群より後のPの
和(ペッツバール和) (μ=i→j)ΣPμ:手ぶれ補正群のPの和 である。 (PE)i〜j=(αj'-αi)PR-αi・PD ただし、 ( )R:手ぶれ補正群より後の収差係数の和 ( )D:手ぶれ補正群の収差係数の和 である。
For other aberration coefficients, the term in the middle of Σ similarly disappears. For example, (PE) i ~ j = (μ = i → j) Σ {αν '・ (μ = ν + 1 → k) ΣPμ-αν ・ (μ = ν → k) ΣPμ} = αj' ・ (μ = j + 1 → k) ΣPμ-αi ・ (μ = i → k) ΣPμ Further transformation, (PE) i〜j = (αj'-αi) ・ (μ = j + 1 → k) ΣPμ-αi ・(μ = i → j) ΣPμ where (μ = j + 1 → k) ΣPμ: Sum of P after the image stabilization group (Petzval sum) (μ = i → j) ΣPμ: P of image stabilization group It is a sum. (PE) i to j = (αj'-αi) P R -αi · P D where () R is the sum of aberration coefficients after the image stabilization group () D : is the sum of aberration coefficients of the image stabilization group .

【0044】上記のように、像点移動量の物面上のもの
への変換と、複数の面i〜jが偏心した場合の式への変形
とによって、次の式(3A)〜(3F)で表される偏心収差係数
が得られる。そして、各偏心収差係数を式(3A)〜(3F)の
通りに定義し直すと、式(1A)〜(1H)を物面上の像点移動
量を表す式として、そのまま用いることができる。 (ΔE)i〜j=-2・(αj'-αi) ……(3A) (VE1)i〜j=(αj'-αi)・VR-(αj'#-αi#)・IIIR-(αi・VD-αi#・IIID) ……( 3B) (VE2)i〜j=(αj#-αi#)・PR-αi#・PD …(3C) (IIIE)i〜j=(αj'-αi)・IIIR-(αj'#-αi#)・IIR-(αi・IIID-αi#・IID) … …(3D) (PE)i〜j=(αj'-αi)・PR-αi・PD ……(3E) (IIE)i〜j=(αj'-αi)・IIR-(αj'#-αi#)・IR-(αi・IID-αi#・ID) ……(3F )
As described above, the following equations (3A) to (3F) are obtained by converting the image point movement amount into that on the object plane and transforming into the equation when a plurality of surfaces i to j are eccentric. The decentering aberration coefficient represented by) is obtained. Then, by redefining each eccentric aberration coefficient as in equations (3A) to (3F), equations (1A) to (1H) can be used as they are as an equation representing the image point movement amount on the object surface. . (ΔE) i~j = -2 · ( αj'-αi) ...... (3A) (VE1) i~j = (αj'-αi) · V R - (αj '# - αi #) · III R - (αi ・ V D -αi # ・ III D ) …… (3B) (VE2) i〜j = (αj # -αi #) ・ P R -αi # ・ P D … (3C) (IIIE) i〜j = (αj'-αi) ・ III R- (αj '#-αi #) ・ II R- (αi ・ III D -αi # ・ II D ) ...… (3D) (PE) i〜j = (αj' -αi) · P R -αi · P D ...... (3E) (IIE) i~j = (αj'-αi) · II R - (αj '# - αi #) · I R - (αi · II D -αi # ・ I D ) …… (3F)

【0045】[軸外像点移動誤差]次に、軸外像点移動
誤差を説明する。(反転した系の)偏心収差係数をΔE,V
E1,VE2,IIIE,PE,IIEとする。物面上での偏心による
像点移動(物面上回転変換前)は{主光線(R=0)において
は}、次の式(4A),(4B)で表される。なお、式(4A),(4
B)は、式(1A),(1B)のRをR=0としたものである。 ΔY#=-(E/2α'k)・[ΔE+(N・tanω)2・{(2+cos2φω)VE1-VE2}] ……(4A) ΔZ#=-(E/2α')・{(N・tanω)2・sin2φω)・VE1} ……(4B)
[Off-axis image point movement error] Next, the off-axis image point movement error will be described. The eccentric aberration coefficient (of the inverted system) is ΔE, V
E1, VE2, IIIE, PE, IIE. The image point movement due to eccentricity on the object surface (before rotation conversion on the object surface) is {in the principal ray (R = 0)} and expressed by the following equations (4A) and (4B). Note that equations (4A), (4
In B), R in the equations (1A) and (1B) is set to R = 0. ΔY # =-(E / 2α ' k ) ・ [ΔE + (N ・ tanω) 2・ {(2 + cos 2 φω) VE1-VE2}] …… (4A) ΔZ # =-(E / 2α') ・{(N ・ tanω) 2・ sin2φω) ・ VE1} …… (4B)

【0046】上記式(4A),(4B)に基づいて、次の式(4
C),(4D)が得られる(軸上光、tanω=0)。 ΔY0#=-(E/2α'k)・ΔE ……(4C) ΔZ0#=0 ……(4D)
Based on the above equations (4A) and (4B), the following equation (4
C) and (4D) are obtained (axial light, tan ω = 0). ΔY 0 # =-(E / 2α ' k ) ・ ΔE …… (4C) ΔZ 0 # = 0 …… (4D)

【0047】次に、図22に基づいて回転変換を説明す
る。図22(A)から式: Y#=g$k・tanω が成り立つ。正弦定理により、 Y'#/{sin(π/2-ω')}=(Y#+ΔY#-ΔY0#)/{sin(π/2+ω'
-θ)} となり、回転変換後のΔY'#は、次の式: ΔY'#=(Y'#)-(Y#) =[Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・cos(ω'-
θ)]/cos(ω'-θ) で表される。この式の分子のみを変形する。 [Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・cos(ω'-θ)] =Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・cosθ・cosω'-Y#・sinθ・si nω' =(1-cosθ)・Y#・cosω'+{(ΔY#)-(ΔY0#)}・cosω'-Y#・sinθ・sinω' ここで、θは小さく他の2項に比べて無視できるので、
(1-cosθ)≒θ2/2,sinθ≒θである。また、cosω'/{c
os(ω'-θ)}≒1,sinω'/{cos(ω'-θ)}≒tanωであ
る。
Next, the rotation conversion will be described with reference to FIG. From FIG. 22 (A), the equation: Y # = g $ k · tanω holds. According to the sine theorem, Y '# / {sin (π / 2-ω')} = (Y # + ΔY # -ΔY 0 #) / {sin (π / 2 + ω '
-θ)}, and ΔY '# after rotation conversion is the following formula: ΔY'# = (Y '#)-(Y #) = [Y # ・ cosω' + {(ΔY #)-(ΔY 0 #)} ・ Cosω'-Y # ・ cos (ω'-
θ)] / cos (ω'-θ). Only the numerator of this equation is transformed. [Y # ・ cosω '+ {(ΔY #)-(ΔY 0 #)} ・ cosω'-Y # ・ cos (ω'-θ)] = Y # ・ cosω' + {(ΔY #)-(ΔY 0 #)} ・ Cosω'-Y # ・ cosθ ・ cosω'-Y # ・ sinθ ・ sin nω '= (1-cosθ) ・ Y # ・ cosω' + {(ΔY #)-(ΔY 0 #)} ・ cosω '-Y # ・ sin θ ・ sin ω' where θ is small and can be ignored compared to the other two terms,
(1-cosθ) ≒ θ 2 /2, a sin [theta ≒ theta. Also, cosω '/ {c
os (ω'-θ)} ≈ 1 and sin ω '/ {cos (ω'-θ)} ≈ tanω.

【0048】従って、式: ΔY'#≒(ΔY#-ΔY0#)-Y#・θ・tanω が得られる。(ΔY#-ΔY0#)は平行偏心の軸外像点移動誤
差を表し、Y#・θ・tanωは回転による付加項(収差係数と
は関係ない)を表す。ただし、このときのωはXY断面上
なので、 ΔY'#≒(ΔY#-ΔY0#)-Y#・θ・tanω・cosφω ……(5A) となる。
Therefore, the formula: ΔY '# ≈ (ΔY # -ΔY 0 #)-Y # · θ · tanω is obtained. (ΔY # −ΔY 0 #) represents the parallel decentering off-axis image point movement error, and Y # · θ · tan ω represents the additional term due to rotation (not related to the aberration coefficient). However, since ω at this time is on the XY cross section, ΔY '# ≈ (ΔY # -ΔY 0 #)-Y # ・ θ ・ tanω ・ cosφω ...... (5A).

【0049】ついで、図23に基づいて像面ISへの変換
を説明する。倍率βは、式: β=g$1/g$k=αk'/α1 で表される。ここで、α1=1/g$1である。一方、像面IS
と物面OSとには、式: Y=β・Y# の関係があり、また、Y#やΔY#は1/αk'×( )の形とな
っているので、次のように変形する。 Y=β・Y# =(αk'/α1)・(1/αk')×( ) =g$1×( ) ここで、g$k'→∞とすると、g$1=-Flとなる。従って、
式: Y=-Fl×( ) =-Fl×αk'×Y# が成り立つ。
Next, the conversion to the image plane IS will be described with reference to FIG. The scaling factor β is represented by the formula: β = g $ 1 / g $ k = α k ′ / α 1 . Here, α 1 = 1 / g $ 1 . On the other hand, the image plane IS
And the object surface OS are related by the formula: Y = β ・ Y #, and Y # and ΔY # are in the form of 1 / α k '× (), so they are transformed as follows. To do. Y = β ・ Y # = (α k '/ α 1 ) ・ (1 / α k ') × () = g $ 1 × () where g $ k ′ → ∞, g $ 1 =- It becomes Fl. Therefore,
Formula: Y = -Fl × () =-Fl × α k '× Y # holds.

【0050】次に、像面上の軸外像点移動誤差を説明す
る。偏心量Eは、式(4C)及びαk'=1/gk'$より、以下の
式: θ=ΔY0#/g$k'=E・ΔE/2 E=2・θ/ΔE で表される。この手ぶれ補正角θが一定となるように規
格化する(0.7deg=0.0122173rad)。
Next, the off-axis image point movement error on the image plane will be described. The eccentricity E can be calculated from the equation (4C) and α k '= 1 / g k ' $ by the following equation: θ = ΔY 0 # / g $ k '= E ・ ΔE / 2 E = 2 ・ θ / ΔE expressed. The camera shake correction angle θ is normalized so as to be constant (0.7 deg = 0.0122173 rad).

【0051】平行偏心(回転変換しない)により、ΔY=
(ΔY#-ΔY0#)を像面変換すると(ここで、N・tanω=Φ/F
l,Φ2=Y2+Z2)、以下の式(6A)〜(6D)が得られる。 ΔY=(θ・Φ2/Fl)・[{(2+cos2・φω)・VE1-VE2}/ΔE] ……(6A) ΔZ=(θ・Φ2/Fl)・[{(sin2・φω)・VE1-VE2}/ΔE] ……(6B) Y+像点,Y-像点{式(6A),(6B)のφω=0,π}: ΔYY=(θ・Y2/Fl)・{(3・VE1-VE2)/ΔE} ……(6C) Z像点{式(6A),(6B)のφω=π/2}: ΔYZ=(θ・Z2/Fl)・{(VE1-VE2)/ΔE} ……(6D)
Due to parallel eccentricity (no rotation conversion), ΔY =
When (ΔY # -ΔY 0 #) is converted to the image plane, (where N ・ tanω = Φ / F
l, Φ 2 = Y 2 + Z 2 ) and the following equations (6A) to (6D) are obtained. ΔY = (θ ・ Φ 2 / Fl) ・ [{(2 + cos2 ・ φω) ・ VE1-VE2} / ΔE] …… (6A) ΔZ = (θ ・ Φ 2 / Fl) ・ [{(sin2 ・ φω ) ・ VE1-VE2} / ΔE] …… (6B) Y + image point, Y image point {φω = 0, π} in equations (6A) and (6B): ΔY Y = (θ ・ Y 2 / Fl ) ・ {(3 ・ VE1-VE2) / ΔE} …… (6C) Z image point {φω = π / 2} of formulas (6A) and (6B): ΔY Z = (θ ・ Z 2 / Fl) ・{(VE1-VE2) / ΔE} ...... (6D)

【0052】次に、回転変換を行う。Y#=-Y/(Fl×
αk')であるので、式(5A)中の-Y#・θ・tanω・cosφωに
関し、式: -Y#・θ・tanω・cosφω=Y/(Fl×αk')・θ・tanω・cosφ
ω が成り立つ。Y+像点,Y-像点では、φω=0,π、また、
tanω/αk'=Yであるので、像面での-Y#・θ・tanω・cosφ
ω=Y2・θ/Flである。これを式(6C)に加えると、次の式
(6E)が得られる。一方、Z像点では、φω=π/2である
ので、像面での-Y#・θ・tanω・cosφω=0である。これ
を式(6D)に加えると、次の式(6F)が得られる。 ΔYY'=(θ・Y2/Fl)・{(3・VE1-VE2-ΔE)/ΔE} ……(6E) ΔY’=ΔYZ ……(6F)
Next, rotation conversion is performed. Y # =-Y / (Fl ×
α k '), so -Y # ・ θ ・ tanω ・ cosφω in formula (5A) is expressed as: -Y # ・ θ ・ tanω ・ cosφω = Y / (Fl × α k ') ・ θ ・ tanω・ Cosφ
ω holds. At Y + image point and Y - image point, φω = 0, π, and
tanω / α k '= Y, so -Y # ・ θ ・ tanω ・ cosφ at the image plane
ω = Y 2 · θ / Fl. Adding this to equation (6C) gives
(6E) is obtained. On the other hand, at the Z image point, since φω = π / 2, -Y # · θ · tanω · cos φω = 0 on the image plane. By adding this to the equation (6D), the following equation (6F) is obtained. ΔY Y '= (θ ・ Y 2 / Fl) ・ {(3 ・ VE1-VE2-ΔE) / ΔE} …… (6E) ΔY Z ' = ΔY Z …… (6F)

【0053】[片ボケ]次に、片ボケを説明する。式(1
A),(1B)から、ΔMは{ΔYの(Rの1次の項)φR=0}×g$k'
であり、ΔSは{ΔZの(Rの1次の項)φR=π/2}×g$k'で
ある。まず、回転前の物面OS上では(ここで、αk'=Nk'/
g$k',E/2=θ/ΔEを用いる。)、式: ΔM#=(-g$k'2・θ/Nk')×2・R・(N・tanω)・cosφω・{(3・I
IIE+PE)/ΔE} が成り立つ。そして、回転後は式: ΔM'#≒ΔM#+θY# が成り立つ。
[One-sided blur] Next, one-sided blur will be described. Expression (1
From (A) and (1B), ΔM is {(first order term of R) φR = 0} × g $ k 'of ΔY
And ΔS is {(first-order term of R) φR = π / 2} × g $ k 'of ΔZ. First, on the object OS before rotation (where α k '= N k ' /
g $ k ', E / 2 = θ / ΔE is used. ), Formula: ΔM # = (-g $ k ' 2・ θ / N k ') × 2 ・ R ・ (N ・ tanω) ・ cosφω ・ {(3 ・ I
IIE + PE) / ΔE} holds. Then, after rotation, the formula: ΔM '# ≈ΔM # + θY # holds.

【0054】像面上に変換すると共に、Nk'=1,N=1とす
ると、式: ΔM'=β2・ΔM'# =-g$1 2・θ×2・R・tanω・cosφω・{(3・IIIE+PE)/ΔE}+β・Y・θ が得られ、物面OSを∞とすると(ここで、g$1=-Fl,β→
0,tanω=Y/Fl,φω=0とする。)、メリディオナル片ボ
ケΔM'を表す式(7A)が得られる。同様にして、サジタル
片ボケΔS'を表す式(7B)が得られる。 ΔM'=-2・Fl・Y・θ・R・{(3・IIIE+PE)/ΔE} ……(7A) ΔS'=-2・Fl・Y・θ・R・{(IIIE+PE)/ΔE} ……(7B)
Assuming that N k '= 1 and N = 1 while transforming on the image plane, the equation: ΔM' = β 2 · ΔM '# = -g $ 1 2 · θ × 2 · R · tanω · cosφω・ {(3 ・ IIIE + PE) / ΔE} + β ・ Y ・ θ is obtained, and the object surface OS is ∞ (where g $ 1 = -Fl, β →
0, tanω = Y / Fl, φω = 0. ), A formula (7A) expressing the meridional half-blurred ΔM ′ is obtained. Similarly, the equation (7B) expressing the sagittal one-sided blur ΔS ′ is obtained. ΔM '=-2 ・ Fl ・ Y ・ θ ・ R ・ {(3 ・ IIIE + PE) / ΔE} …… (7A) ΔS' =-2 ・ Fl ・ Y ・ θ ・ R ・ {(IIIE + PE) / ΔE} ...... (7B)

【0055】[軸上コマ]次に、軸上コマを説明する。
式(1A)に基づき、ω=0,Upperの偏心によるコマは、
式: ΔYUpper#=ΔY#(ω=0,φR=0)−ΔY#(ω=0,R=0) =-E/(2・α')×R2×3・IIE で表され、ω=0、Lowerの偏心によるコマ(ΔYUpper#と
符号を含めて同じである。)は、式: ΔYLower#=ΔY#(ω=0,φR=π)−ΔY#(ω=0,R=0) =-E/(2・α')×R2×3・IIE で表される。
[On-axis coma] Next, the on-axis coma will be described.
Based on equation (1A), the coma due to eccentricity of ω = 0, Upper is
Formula: ΔY Upper # = ΔY # (ω = 0, φ R = 0) −ΔY # (ω = 0, R = 0) =-E / (2 ・ α ') × R 2 × 3 ・ IIE , Ω = 0, the coma due to the eccentricity of Lower (same as ΔY Upper # including the sign) is expressed by the formula: ΔY Lower # = ΔY # (ω = 0, φ R = π) −ΔY # (ω = 0, R = 0) = − E / (2 · α ′) × R 2 × 3 · IIE

【0056】ω=0なので、軸上コマは回転変換に対し
てほとんど変化しない。物面OSから像面ISへの変換によ
り(ΔY=β・ΔY#,E/2=θ/ΔE)、式: ΔYUpper=Fl×θ×R2×(3・IIE/ΔE)=ΔYLower が得られ、軸上コマAXCMは、次の式(8A)で表される。 AXCM=(ΔYUpper+ΔYLower)/2 =ΔYUpper ……(8A)
Since ω = 0, the axial coma hardly changes with rotation conversion. By converting from the object surface OS to the image surface IS (ΔY = β ・ ΔY #, E / 2 = θ / ΔE), the formula: ΔY Upper = Fl × θ × R 2 × (3 ・ IIE / ΔE) = ΔY Lower And the axial coma AXCM is expressed by the following equation (8A). AXCM = (ΔY Upper + ΔY Lower ) / 2 = ΔY Upper ...... (8A)

【0057】以上のようにして得られた式(6E),(6F),
(7A),(7B),(8A)中の一部を、新たに以下の式(9A)〜(9
E)で表す手ぶれ収差係数として定義する。 y軸上像点の軸外像点移動誤差… VEY={(3・VE1-VE2-ΔE)/ΔE} …(9A) z軸上像点の軸外像点移動誤差… VEZ={(VE1-VE2)/ΔE} …(9B) メリディオナル片ボケ…………… IIIEM={(3・IIIE+PE)/ΔE} …(9C) サジタル片ボケ…………………… IIIES={(IIIE+PE)/ΔE} …(9D) 軸上コマ…………………………… IIEA={(3・IIE)/ΔE} …(9E)
Equations (6E), (6F), obtained as described above,
A part of (7A), (7B), and (8A) is newly added by the following formulas (9A) to (9A).
It is defined as the camera shake aberration coefficient represented by E). Off-axis image point movement error of y-axis image point VE Y = {(3 ・ VE1-VE2-ΔE) / ΔE} (9A) Off-axis image point movement error of z-axis image point VE Z = { (VE1-VE2) / ΔE}… (9B) Meridional one-sided blur ……………… IIIE M = {(3 ・ IIIE + PE) / ΔE}… (9C) Sagittal one-sided blur …………………… IIIE S = {(IIIE + PE) / ΔE}… (9D) On-axis coma ……………………………… IIE A = {(3 ・ IIE) / ΔE}… (9E)

【0058】上記手ぶれ収差係数を表す式(9A)〜(9E)に
式(3A)〜(3F)を代入して整理すると、手ぶれ収差係数を
表す以下の式(10A)〜(10E)が得られる。 VEY=-1/2・{3VR-3VD・A+2-(3・IIIR+PR)・H#+(3・IIID+PD)・A#} ……(10A) VEZ=-1/2・{VR-VD・A-(IIIR+PR)・H#+(IIID+PD)・A#} ……(10B) IIIEM=-1/2・{(3・IIIR+PR)-(3・IIID+PD)・A-3・IIR・H#+3・IID・A#} ……(10C) IIIES=-1/2・{(IIIR+PR)-(IIID+PD)・A-IIR・H#+IID・A#} ……(10D) IIEA=-3/2・(IIR+IID・A-IR・H#+ID・A#) ……(10E) ただし、 ( )D:手ぶれ補正群の収差係数の和 ( )R:手ぶれ補正群より後(物体側)の収差係数の和 A=αi/(αj'-αi) (ここで、手ぶれ補正群をi〜jとす
る。) A#=αi#/(αj'-αi) H#=(αi'#-αi#)/(αj'-αi) である。
By substituting the equations (3A) to (3F) into the equations (9A) to (9E) representing the camera shake aberration coefficient and rearranging, the following equations (10A) to (10E) representing the camera shake aberration coefficient are obtained. To be VE Y = -1 / 2 ・ {3V R -3V D・ A + 2- (3 ・ III R + P R ) ・ H # + (3 ・ III D + P D ) ・ A #} …… (10A) VE Z = -1 / 2 ・ {V R -V D・ A- (III R + P R ) ・ H # + (III D + P D ) ・ A #} ...... (10B) IIIE M = -1 / 2 ・{(3 · III R + P R) - (3 · III D + P D) · A-3 · II R · H # + 3 · II D · A #} ...... (10C) IIIE S = -1 / 2・ {(III R + P R )-(III D + P D ) ・ A-II R・ H # + II D・ A #} …… (10D) IIE A = -3/2 ・ (II R + II D・ AI R・ H # + I D・ A #) (10E) However, () D : Sum of aberration coefficients of the image stabilization group () R : Sum of aberration coefficients after the image stabilization group (object side) A = Αi / (αj'-αi) (Here, the camera shake correction groups are i to j.) A # = αi # / (αj'-αi) H # = (αi '#-αi #) / (αj' -αi).

【0059】ΔE=-2・(αj'-αi)は{ここで、(αj'-αi)
は0.7°/mmのとき±0.0122173である。}、(手ぶれ補正
角)/(レンズ偏心量)の係数なので、ほぼ所定の値を目指
す(ただし、手ぶれ補正群が正か負かで符号が異な
る。)。従って、Aは(像側から見た)手ぶれ補正群へのマ
ージナル光線の入射角であり、A#は主光線の入射角に比
例する。手ぶれ補正群中でh#やhがあまり変化しない場
合、H#は主光線のh#とマージナル光線のhとの比を表
す。
ΔE = -2 · (αj'-αi) is {where (αj'-αi)
Is ± 0.0122173 at 0.7 ° / mm. }, (Camera shake correction angle) / (lens eccentricity) coefficient, so aim at almost a predetermined value (however, the sign differs depending on whether the camera shake correction group is positive or negative). Therefore, A is the angle of incidence of the marginal ray on the image stabilization group (as seen from the image side), and A # is proportional to the angle of incidence of the chief ray. When h # and h do not change much in the image stabilization group, H # represents the ratio between the chief ray h # and the marginal ray h.

【0060】上記式(10A)〜(10E)内の各偏心収差係数は
反転系で定義されているので、これらを再度、非反転系
に戻さなければならない。そこで、式(10A)〜(10E)内の
各係数を上述の式(2A)〜(2J)を使って非反転系に戻す
と、以下の式(11A)〜(11E)が得られる。 VEY=+1/2・{3VF-3VD・A-2+(3・IIIF+PF)H#-(3・IIID+PD)・A#} ……(11A) VEZ=+1/2・{VF-VD・A+(IIIF+PF)H#-(IIID+PD)・A#} ……(11B) IIIEM=-1/2・{(3・IIIF+PF)-(3・IIID+PD)・A+3・IIF・H#-3・IID・A#} ……(11C) IIIES=-1/2・{(IIIF+PF)-(IIID+PD)・A+IIF・H#-IID・A#} ……(11D) IIEA=+3/2・(IIF-IID・A+IF・H#-ID・A#) ……(11E) ただし、 ( )D:手ぶれ補正群、非反転系の収差係数の和 ( )F:手ぶれ補正群より前の収差係数の和 A=-αn'/(αn'-αm) A#=αn'#/(αn'-αm) H=-(αn'#-αm#)/(αn'-αm)=-(Σhμ#・φμ)/(Σhμ
・φμ) ΔE=-2(αn'-αm) である(手ぶれ補正群をm→n,反転j←i)。
Since each eccentric aberration coefficient in the above equations (10A) to (10E) is defined in the inverting system, these must be returned to the non-inverting system again. Therefore, when the coefficients in the equations (10A) to (10E) are returned to the non-inversion system using the above equations (2A) to (2J), the following equations (11A) to (11E) are obtained. VE Y = + 1/2 ・ {3V F -3V D・ A-2 + (3 ・ III F + P F ) H #-(3 ・ III D + P D ) ・ A #} …… (11A) VE Z = + 1/2 ・ {V F -V D・ A + (III F + P F ) H #-(III D + P D ) ・ A #} …… (11B) IIIE M = -1 / 2 ・ {(3 · III F + P F) - (3 · III D + P D) · A + 3 · II F · H # -3 · II D · A #} ...... (11C) IIIE S = -1 / 2 · {( III F + P F )-(III D + P D ) ・ A + II F・ H # -II D・ A #} …… (11D) IIE A = + 3/2 ・ (II F -II D・ A + I F / H # -I D / A #) (11E) However, () D : Sum of aberration coefficients of camera shake correction group and non-inverting system () F : Sum of aberration coefficients before camera shake correction group A = -αn '/ (αn'-αm) A # = αn'# / (αn'-αm) H =-(αn '#-αm #) / (αn'-αm) =-(Σhμ # ・ φμ) / ( Σhμ
・ Φμ) ΔE = -2 (αn'-αm) (m → n for image stabilization group, inversion j ← i).

【0061】上記式(11A)〜(11E)から以下のことが分か
る。第1に、前述したように、松居吉哉氏の上記論文の
方法では手ぶれ補正群(すなわち、偏心レンズLS)とそれ
より後の光学系とが光学性能に関係するが、式(11A)〜
(11E)では手ぶれ補正群とそれより前の光学系とが光学
性能に関係する。第2に、軸外像点移動誤差は広角系
(手ぶれ補正群の焦点距離Flが分母)で大きくなり、片ボ
ケ,軸上コマは望遠系で大きくなる傾向がある。
From the above equations (11A) to (11E), the following can be understood. First, as described above, in the method of Yoshiya Matsui, the image stabilization group (that is, the decentering lens LS) and the optical system after that are related to the optical performance.
In (11E), the image stabilization group and the optical system before it are related to the optical performance. Second, the off-axis image point movement error is wide-angle system.
The focal length Fl of the image stabilization group becomes larger in the denominator, and one-sided blur and axial coma tend to become larger in the telephoto system.

【0062】第3に、手ぶれ補正群とそれより前の群の
収差係数を小さくすれば、偏心時の収差劣化は小さくな
るが、軸外像点移動誤差ΔYY’の係数VEYには、定数(式
(11A)中の{ }内の-2)が残る。これは、物面OSと像面IS
とが、回転ブレによって傾いた関係になるため発生する
項である。この定数項(-2)による軸外像点移動誤差は、
広角系で非常に大きくなる。例えば、焦点距離Fl=38mm
では、軸外像点移動誤差ΔYY'=-72μmになり、無視で
きない。また、この定数項(-2)による軸外像点移動誤差
は、各収差係数を"0"にしても残ってしまう。従って、
定数項(-2)を相殺するように各収差係数を設定すること
が望ましい。
Thirdly, if the aberration coefficient of the camera shake correction group and the group before it are reduced, the aberration deterioration at the time of decentering is reduced, but the coefficient VE Y of the off-axis image point movement error ΔY Y 'is Constant (expression
-2 in {} in (11A) remains. This is the object plane OS and the image plane IS
And are terms that occur because of a tilted relationship due to rotational blur. The off-axis image point movement error due to this constant term (-2) is
It becomes very large in wide-angle systems. For example, focal length Fl = 38mm
Then, the off-axis image point movement error ΔY Y '= -72 μm, which cannot be ignored. Further, the off-axis image point movement error due to the constant term (-2) remains even if each aberration coefficient is "0". Therefore,
It is desirable to set each aberration coefficient so as to cancel the constant term (-2).

【0063】第4に、偏心時の収差劣化を小さくするた
めには、各収差係数を小さくするとともに、収差係数に
かかる係数A,A#,H#等を小さくする必要がある。A,A#
については、分母のαn'-αmを大きくすればよいが、こ
れはΔE=-2(αn'-αm)に直結するため、大きすぎるとブ
レ補正感度(何mmレンズを偏心させると光束を何度曲げ
るか)が高くなりすぎ、メカ的な駆動精度が必要にな
る。H#については、手ぶれ補正群が絞りに近い方が、各
面のh#が小さくなり、H#も小さくなる。
Fourthly, in order to reduce the deterioration of aberration at the time of decentering, it is necessary to reduce each aberration coefficient and also reduce the coefficients A, A #, H #, etc. related to the aberration coefficient. A, A #
As for, the denominator α n '-α m should be increased, but this is directly connected to ΔE = -2 (α n ' -α m ), so if it is too large, the blur correction sensitivity (how many mm the lens decenters) And how many times the light beam is bent) becomes too high, and mechanical driving accuracy is required. Regarding H #, the closer the image stabilization group is to the aperture, the smaller h # on each surface and the smaller H #.

【0064】[0064]

【発明の実施の形態】以下、本発明を実施した手ぶれ補
正機能を有するズームレンズを、図面を参照しつつ説明
する。図1,図5,図9,図13は、第1〜第4の実施
の形態にそれぞれ対応する通常状態(偏心前状態)でのレ
ンズ構成図であり、広角端[W]でのレンズ配置を示して
いる。また、各レンズ構成図中、ri(i=1,2,3,...)は物
体側から数えてi番目の面の曲率半径、di(i=1,2,3,...)
は物体側から数えてi番目の軸上面間隔を示している。
図1,図5,図9,図13中の矢印m1,m2,m3,
m4は、第1群Gr1,第2群Gr2,絞りS及び第3
群Gr3,並びに第4群Gr4の広角端[W]から望遠端
[T]にかけてのズーム移動をそれぞれ模式的に示してお
り、さらに、図1中の矢印m5は、第5群Gr5の広角
端[W]から望遠端[T]にかけてのズーム移動を模式的に
示している。
BEST MODE FOR CARRYING OUT THE INVENTION A zoom lens having an image stabilization function according to the present invention will be described below with reference to the drawings. FIG. 1, FIG. 5, FIG. 9, and FIG. 13 are lens configuration diagrams in a normal state (pre-eccentric state) corresponding to the first to fourth embodiments, respectively, and the lens arrangement at the wide-angle end [W]. Is shown. Also, in each lens configuration diagram, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, and di (i = 1,2,3, ...).
Indicates the i-th axial upper surface distance counted from the object side.
Arrows m1, m2, m3 in FIG. 1, FIG. 5, FIG. 9, and FIG.
m4 is a first lens unit Gr1, a second lens unit Gr2, a diaphragm S and a third lens unit.
From the wide-angle end [W] of the group Gr3 and the fourth group Gr4 to the telephoto end
The zoom movements to [T] are schematically shown, and the arrow m5 in FIG. 1 schematically shows the zoom movements from the wide-angle end [W] to the telephoto end [T] of the fifth lens unit Gr5. Shows.

【0065】第1の実施の形態は、物体側から順に、正
の屈折力を有する第1群Gr1と、負の屈折力を有する
第2群Gr2と、正の屈折力を有する第3群Gr3と、
正の屈折力を有する第4群Gr4と、負の屈折力を有す
る第5群Gr5と、から成り、各群の間隔を変化させる
ことによってズーミングを行うズームレンズである。第
1の実施の形態では、第2群Gr2を物体側から順に前
群GrAと後群GrBとに分けて、後群GrBを平行偏
心させること(つまり、光軸AXに対して垂直方向に移
動させること)によって手ぶれ補正が行われる。
In the first embodiment, in order from the object side, the first group Gr1 having a positive refractive power, the second group Gr2 having a negative refractive power, and the third group Gr3 having a positive refractive power. When,
The zoom lens includes a fourth group Gr4 having a positive refractive power and a fifth group Gr5 having a negative refractive power, and performs zooming by changing the distance between the groups. In the first embodiment, the second group Gr2 is divided into a front group GrA and a rear group GrB in order from the object side, and the rear group GrB is decentered in parallel (that is, moved in the direction perpendicular to the optical axis AX). Camera shake correction is performed.

【0066】第2〜第4の実施の形態は、物体側から順
に、正の屈折力を有する第1群Gr1と、負の屈折力を
有する第2群Gr2と、正の屈折力を有する第3群Gr
3と、正の屈折力を有する第4群Gr4と、から成り、
各群の間隔を変化させることによってズーミングを行う
ズームレンズである。
In the second to fourth embodiments, the first group Gr1 having a positive refracting power, the second group Gr2 having a negative refracting power, and the first group having a positive refracting power are arranged in this order from the object side. Group 3 Gr
3 and a fourth group Gr4 having a positive refractive power,
This is a zoom lens that performs zooming by changing the distance between each group.

【0067】第2の実施の形態では、第3群Gr3を物
体側から順に前群GrAと後群GrBとに分けて、前群
GrAを平行偏心させることによって手ぶれ補正が行わ
れる。第3の実施の形態では、第4群Gr4を物体側か
ら順に前群GrAと後群GrBとに分けて、前群GrA
を平行偏心させることによって手ぶれ補正が行われる。
第4の実施の形態では、第2群Gr2を物体側から順に
前群GrAと後群GrBとに分けて、後群GrBを平行
偏心させることによって手ぶれ補正が行われる。
In the second embodiment, the third group Gr3 is divided into the front group GrA and the rear group GrB in order from the object side, and the front group GrA is decentered in parallel to perform camera shake correction. In the third embodiment, the fourth group Gr4 is divided into a front group GrA and a rear group GrB in order from the object side, and the front group GrA is divided.
Shake correction is performed by eccentricizing.
In the fourth embodiment, the camera shake correction is performed by dividing the second lens unit Gr2 into a front lens unit GrA and a rear lens unit GrB in order from the object side and by eccentricizing the rear lens unit GrB in parallel.

【0068】また、第2,第3の実施の形態では、手ぶ
れ補正群である前群GrAの像側の面に非球面(すなわ
ち、第2の実施の形態では曲率半径r16の面、第3の実
施の形態では曲率半径r22の面)を有しており、前群Gr
Aの像側に隣り合って位置するレンズに、前群GrAの
非球面を打ち消すような非球面(すなわち、第2の実施
の形態では曲率半径r17の面、第3の実施の形態では曲
率半径r23の面)を有している。つまり、前群GrAと後
群GrBのそれぞれ向かい合う面が、お互いを打ち消し
合うような非球面となっている。これによって、通常撮
影時の性能を変化させることなく、手ぶれ時の収差を良
好に補正することができる。
Further, in the second and third embodiments, an aspherical surface (that is, a surface having a radius of curvature r16 in the second embodiment, the third surface, which is the image stabilizing side of the front group GrA, which is the camera shake correction group, is used. In the first embodiment, the front group Gr has a radius of curvature r22).
A lens adjacent to the image side of A has an aspherical surface that cancels the aspherical surface of the front lens unit GrA (that is, a surface having a radius of curvature r17 in the second embodiment, and a radius of curvature in the third embodiment. r23 surface). That is, the surfaces of the front group GrA and the rear group GrB that face each other are aspherical surfaces that cancel each other out. This makes it possible to excellently correct aberrations caused by camera shake without changing the performance during normal shooting.

【0069】各実施の形態において、手ぶれ補正のため
に平行偏心する手ぶれ補正群は、第2群Gr2〜第4群
Gr4を構成している重量の軽い前群GrA又は後群G
rBであるため、手ぶれ駆動系にかかる負担も軽くなっ
ている。しかも、全長を短くしコンパクト化する上で効
果的なパワー配置,ズーム移動構成となっており、さら
に、前述した各条件式を満たすことによって、コンパク
ト性を損なうことなく高い描写性能が得られるようにな
っている。
In each of the embodiments, the camera shake correction group that is decentered in parallel for camera shake correction is a light weight front group GrA or rear group G that constitutes the second group Gr2 to the fourth group Gr4.
Since it is rB, the burden on the camera shake drive system is also reduced. Moreover, the power arrangement and zoom movement configuration are effective for shortening the overall length and making it compact. Furthermore, by satisfying the above-mentioned conditional expressions, it is possible to obtain high rendering performance without impairing compactness. It has become.

【0070】[0070]

【実施例】以下、本発明を実施した手ぶれ補正機能を有
するズームレンズの構成を、コンストラクションデー
タ,収差性能等を挙げて更に具体的に説明する。ここで
例として挙げる実施例1〜実施例4は、前述した第1〜
第4の実施の形態(図1,図5,図9,図13)にそれぞ
れ対応する実施例である。そして、各実施例のコンスト
ラクションデータにおいて、ri(i=1,2,3,...)は物体側
から数えてi番目の面の曲率半径、di(i=1,2,3,...)は物
体側から数えてi番目の軸上面間隔(ここでは、偏心前状
態について示す。)を示しており、Ni(i=1,2,3,...),νi
(i=1,2,3,...)は物体側から数えてi番目のレンズのd線
に対する屈折率(Nd),アッベ数(νd)を示している。
また、コンストラクションデータ中、ズーミングにより
変化する軸上面間隔は、広角端[W]〜ミドル(中間焦点
距離状態)[M]〜望遠端[T]での各群間の実際の面間隔
であり、各状態に対応する全系の焦点距離f及びFナン
バーFNOを併せて示す。
EXAMPLES The structure of a zoom lens having a camera shake correction function embodying the present invention will be described more specifically below with reference to construction data, aberration performance and the like. Examples 1 to 4 given as examples here are the first to first examples described above.
These are examples corresponding to the fourth embodiment (FIGS. 1, 5, 5, 9 and 13). Then, in the construction data of each example, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, di (i = 1,2,3 ,. .) Indicates the i-th shaft upper surface distance (here, the state before eccentricity is shown) counted from the object side, and Ni (i = 1,2,3, ...), νi
(i = 1,2,3, ...) Indicates the refractive index (Nd) and Abbe number (νd) of the i-th lens with respect to the d-line counting from the object side.
Also, in the construction data, the axial upper surface spacing that changes due to zooming is the actual surface spacing between each group at the wide-angle end [W] -middle (intermediate focal length state) [M] -telephoto end [T], The focal length f and the F number FNO of the entire system corresponding to each state are also shown.

【0071】また、各実施例中、曲率半径riに*印を付
した面は、非球面で構成された面であることを示し、非
球面の面形状を表わす次の式(AS)で定義されるものとす
る。 X=C・Y2/{1+(1-ε・C2・Y2)1/2}+A4・Y4+A6・Y6+A8・Y8+A10・
Y10+A12・Y12 …(AS) ただし、 X :光軸方向の基準面からの変位量、 Y :光軸に対して垂直な方向の高さ、 C :近軸曲率、 ε:2次曲面パラメータ、 A4,A6,A8,A10,A12:4次,6次,8次,10次,12次
の非球面係数である。
In each of the examples, the surface with the radius of curvature ri marked with * indicates that it is a surface composed of an aspherical surface, and is defined by the following expression (AS) representing the surface shape of the aspherical surface. Shall be done. X = C ・ Y 2 / {1+ (1-ε ・ C 2・ Y 2 ) 1/2 } + A4 ・ Y 4 + A6 ・ Y 6 + A8 ・ Y 8 + A10 ・
Y 10 + A12 ・ Y 12 (AS) where X: displacement from the reference plane in the optical axis direction, Y: height in the direction perpendicular to the optical axis, C: paraxial curvature, ε: quadratic Surface parameter, A4, A6, A8, A10, A12: 4th order, 6th order, 8th order, 10th order and 12th order aspherical surface coefficient.

【0072】さらに、表1に、各実施例における条件式
(1)〜(4)の対応値を示す。
Further, Table 1 shows the conditional expression in each embodiment.
The corresponding values from (1) to (4) are shown.

【0073】《実施例1》 f=30.6〜64.7〜165.1 FNO=4.60〜5.23〜5.81 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 89.595 d1 1.530 N1 1.84666 ν1 23.82 r2 50.523 d2 6.970 N2 1.58913 ν2 61.11 r3 885.692 d3 0.127 r4 47.852 d4 5.695 N3 1.51680 ν3 64.20 r5 218.621 d5 0.467〜17.796〜41.243 〈第2群Gr2 …負〉 {前群GrA} r6 73.128 d6 1.020 N4 1.85000 ν4 40.04 r7 14.317 d7 4.420 r8 -404.817 d8 2.550 N5 1.75000 ν5 25.14 r9 -31.873 d9 1.020 N6 1.77250 ν6 49.77 r10 36.869 d10 1.105 r11 22.548 d11 2.635 N7 1.76182 ν7 26.55 r12 212.813 d12 1.530 {後群GrB …手ぶれ補正群} r13 -45.353 d13 1.000 N8 1.75450 ν8 51.57 r14 38.340 d14 1.000 N9 1.80518 ν9 25.43 r15 171.510 d15 17.275〜8.731〜1.714 〈絞りS,第3群Gr3 …正〉 r16 ∞(絞りS) d16 1.062 r17 33.590 d17 2.125 N10 1.51680 ν10 64.20 r18 145.888 d18 0.085 r19 28.299 d19 2.720 N11 1.51823 ν11 58.96 r20 -4683.183 d20 0.127 r21 40.246 d21 2.380 N12 1.51680 ν12 64.20 r22 -101.132 d22 2.125 r23 -26.751 d23 1.020 N13 1.84666 ν13 23.82 r24 397.583 d24 4.505〜1.969〜1.360 〈第4群Gr4 …正〉 r25 43.689 d25 2.550 N14 1.51823 ν14 58.96 r26 -52.186 d26 0.127 r27 35.901 d27 2.890 N15 1.51823 ν15 58.96 r28 -32.031 d28 3.187 r29* -70.884 d29 0.030 N16 1.51790 ν16 52.31 r30 -58.398 d30 1.190 N17 1.85000 ν17 40.04 r31 23.219 d31 1.020 r32 68.181 d32 2.550 N18 1.67339 ν18 29.25 r33 -66.682 d33 1.700〜9.782〜0.628 〈第5群Gr5 …負〉 r34 -41.406 d34 1.598 N19 1.67000 ν19 57.07 r35 -98.910 Σd= 81.338〜95.669〜102.335Example 1  f = 30.6 to 64.7 to 165.1 FNO = 4.60 ~ 5.23 ~ 5.81    [Radius of curvature] [Spacing on top of axis] [Refractive index] [Abbe number] <First group Gr1 ... Positive> r1 89.595                     d1 1.530 N1 1.84666 ν1 23.82 r2 50.523                     d2 6.970 N2 1.58913 ν2 61.11 r3 885.692                     d3 0.127 r4 47.852                     d4 5.695 N3 1.51680 ν3 64.20 r5 218.621                     d5 0.467 ~ 17.796 ~ 41.243 <Second group Gr2 ... Negative>   {Front group GrA} r6 73.128                     d6 1.020 N4 1.85000 ν4 40.04 r7 14.317                     d7 4.420 r8 -404.817                     d8 2.550 N5 1.75000 ν5 25.14 r9 -31.873                     d9 1.020 N6 1.77 250 ν6 49.77 r10 36.869                     d10 1.105 r11 22.548                     d11 2.635 N7 1.76182 ν7 26.55 r12 212.813                     d12 1.530   {Rear group GrB ... Image stabilization group} r13 -45.353                     d13 1.000 N8 1.75 450 ν8 51.57 r14 38.340                     d14 1.000 N9 1.80518 ν9 25.43 r15 171.510                     d15 17.275 ~ 8.731 ~ 1.714 <Aperture S, third group Gr3 ... Positive> r16 ∞ (Aperture S)                     d16 1.062 r17 33.590                     d17 2.125 N10 1.51680 ν10 64.20 r18 145.888                     d18 0.085 r19 28.299                     d19 2.720 N11 1.51823 ν11 58.96 r20 -4683.183                     d20 0.127 r21 40.246                     d21 2.380 N12 1.51680 ν12 64.20 r22 -101.132                     d22 2.125 r23 -26.751                     d23 1.020 N13 1.84666 ν13 23.82 r24 397.583                     d24 4.505 ~ 1.969 ~ 1.360 <4th group Gr4 ... Positive> r25 43.689                     d25 2.550 N14 1.51823 ν14 58.96 r26 -52.186                     d26 0.127 r27 35.901                     d27 2.890 N15 1.51823 ν15 58.96 r28 -32.031                     d28 3.187 r29 * -70.884                     d29 0.030 N16 1.51790 ν16 52.31 r30 -58.398                     d30 1.190 N17 1.85000 ν17 40.04 r31 23.219                     d31 1.020 r32 68.181                     d32 2.550 N18 1.67339 ν18 29.25 r33 -66.682                     d33 1.700 ~ 9.782 ~ 0.628 <Fifth group Gr5 ... Negative> r34 -41.406                     d34 1.598 N19 1.67000 ν19 57.07 r35 -98.910                   Σd = 81.338 ~ 95.669 ~ 102.335

【0074】[非球面係数] r29:ε= 1.0000 A4=-0.68521×10-4 A6=-0.10299×10-6 A8=-0.23092×10-8 A10= 0.11744×10-9 A12=-0.13601×10-11 [Aspherical coefficient] r29: ε = 1.0000 A4 = -0.68521 × 10 -4 A6 = -0.10299 × 10 -6 A8 = -0.23092 × 10 -8 A10 = 0.11744 × 10 -9 A12 = -0.13601 × 10 -11

【0075】《実施例2》 f=22.6〜50.5〜78.0 FNO=4.10〜5.31〜5.73 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 122.692 d1 1.300 N1 1.83350 ν1 21.00 r2 51.521 d2 6.550 N2 1.58913 ν2 61.11 r3 -185.231 d3 0.100 r4 27.634 d4 4.250 N3 1.71300 ν3 53.93 r5 57.348 d5 1.845〜12.466〜19.246 〈第2群Gr2 …負〉 r6 51.452 d6 1.100 N4 1.80420 ν4 46.50 r7 10.185 d7 4.400 r8 -30.276 d8 0.950 N5 1.75450 ν5 51.57 r9 20.585 d9 0.300 r10 16.780 d10 3.700 N6 1.75000 ν6 25.14 r11 -38.497 d11 0.940 r12 -14.318 d12 1.300 N7 1.69680 ν7 56.47 r13 -47.972 d13 9.859〜4.319〜2.000 〈絞りS,第3群Gr3 …正〉 r14 ∞(絞りS) d14 0.500 {前群GrA …手ぶれ補正群} r15 32.322 d15 1.500 N8 1.62041 ν8 60.29 r16* -24.847 d16 0.500 {後群GrB} r17* -24.847 d17 1.310 N9 1.62041 ν9 60.29 r18 -24.706 d18 0.110 r19 24.077 d19 4.710 N10 1.51742 ν10 52.15 r20 -12.877 d20 1.360 N11 1.80741 ν11 31.59 r21 133.539 d21 5.300〜1.467〜1.000 〈第4群Gr4 …正〉 r22 35.194 d22 4.820 N12 1.51823 ν12 58.96 r23 -17.079 d23 1.470 r24* -125.833 d24 0.100 N13 1.51790 ν13 52.31 r25 -56.309 d25 1.400 N14 1.80500 ν14 40.97 r26 39.727 Σd= 59.674〜60.923〜64.916Example 2  f = 22.6-50.5-78.0 FNO = 4.10 ~ 5.31 ~ 5.73    [Radius of curvature] [Spacing on top of axis] [Refractive index] [Abbe number] <First group Gr1 ... Positive> r1 122.692                     d1 1.300 N1 1.83350 ν1 21.00 r2 51.521                     d2 6.550 N2 1.58913 ν2 61.11 r3 -185.231                     d3 0.100 r4 27.634                     d4 4.250 N3 1.71300 ν3 53.93 r5 57.348                     d5 1.845 ~ 12.466 ~ 19.246 <Second group Gr2 ... Negative> r6 51.452                     d6 1.100 N4 1.80420 ν4 46.50 r7 10.185                     d7 4.400 r8 -30.276                     d8 0.950 N5 1.75 450 ν5 51.57 r9 20.585                     d9 0.300 r10 16.780                     d10 3.700 N6 1.75000 ν6 25.14 r11 -38.497                     d11 0.940 r12 -14.318                     d12 1.300 N7 1.69680 ν7 56.47 r13 -47.972                     d13 9.859 ~ 4.319 ~ 2.000 <Aperture S, third group Gr3 ... Positive> r14 ∞ (Aperture S)                     d14 0.500   {Front group GrA ... Image stabilization group} r15 32.322                     d15 1.500 N8 1.62041 ν8 60.29 r16 * -24.847                     d16 0.500   {Rear group GrB} r17 * -24.847                     d17 1.310 N9 1.62041 ν9 60.29 r18 -24.706                     d18 0.110 r19 24.077                     d19 4.710 N10 1.51742 ν10 52.15 r20 -12.877                     d20 1.360 N11 1.80741 ν11 31.59 r21 133.539                     d21 5.300 ~ 1.467 ~ 1.000 <4th group Gr4 ... Positive> r22 35.194                     d22 4.820 N12 1.51823 ν12 58.96 r23 -17.079                     d23 1.470 r24 * -125.833                     d24 0.100 N13 1.51790 ν13 52.31 r25 -56.309                     d25 1.400 N14 1.80 500 ν14 40.97 r26 39.727                   Σd = 59.674 ~ 60.923 ~ 64.916

【0076】[非球面係数] r16:ε= 1.0000 A4= 0.33000×10-4 r17:ε= 1.0000 A4= 0.33000×10-4 r24:ε= 1.0000 A4=-0.10469×10-3 A6=-0.34301×10-6 A8=-0.53437×10-9 A10=-0.14584×10-10 A12=-0.75981×10-15 [Aspherical coefficient] r16: ε = 1.0000 A4 = 0.33000 × 10 -4 r17: ε = 1.0000 A4 = 0.33000 × 10 -4 r24: ε = 1.0000 A4 = -0.10469 × 10 -3 A6 = -0.34301 × 10 -6 A8 = -0.53437 × 10 -9 A10 = -0.14584 × 10 -10 A12 = -0.75981 × 10 -15

【0077】《実施例3》 f=22.6〜47.2〜80.7 FNO=3.57〜4.38〜4.63 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 701.858 d1 1.339 N1 1.84666 ν1 23.78 r2 50.822 d2 6.300 N2 1.61272 ν2 58.75 r3 -142.661 d3 0.118 r4 33.789 d4 3.937 N3 1.83400 ν3 37.17 r5 86.386 d5 1.696〜13.804〜21.178 〈第2群Gr2 …負〉 r6 39.339 d6 1.102 N4 1.83400 ν4 37.17 r7 11.226 d7 4.804 r8 -26.223 d8 2.126 N5 1.78472 ν5 25.68 r9 -15.872 d9 1.024 N6 1.77250 ν6 49.60 r10 41.165 d10 0.118 r11 22.587 d11 3.071 N7 1.78472 ν7 25.68 r12 -27.632 d12 1.102 r13 -18.584 d13 1.024 N8 1.81554 ν8 44.36 r14 321.763 d14 9.368〜4.115〜1.069 〈絞りS,第3群Gr3 …正〉 r15 ∞(絞りS) d15 1.496 r16 29.194 d16 3.465 N9 1.61800 ν9 63.39 r17 -40.669 d17 0.079 r18 27.739 d18 5.591 N10 1.56873 ν10 63.16 r19 -14.928 d19 1.181 N11 1.83400 ν11 37.17 r20 102.907 d20 7.384〜3.742〜2.663 〈第4群Gr4 …正〉 {前群GrA …手ぶれ補正群} r21 24.467 d21 2.362 N12 1.58170 ν12 69.75 r22* -59.882 d22 0.354 {後群GrB} r23* -59.882 d23 1.575 N13 1.75450 ν13 51.57 r24 -27.635 d24 2.756 r25* -86.973 d25 1.488 N14 1.74500 ν14 34.96 r26 34.087 Σd= 64.862〜68.073〜71.323Example 3  f = 22.6 to 47.2 to 80.7 FNO = 3.57-4.38-4.63    [Radius of curvature] [Spacing on top of axis] [Refractive index] [Abbe number] <First group Gr1 ... Positive> r1 701.858                     d1 1.339 N1 1.84666 ν1 23.78 r2 50.822                     d2 6.300 N2 1.61272 ν2 58.75 r3 -142.661                     d3 0.118 r4 33.789                     d4 3.937 N3 1.83400 ν3 37.17 r5 86.386                     d5 1.696 ~ 13.804 ~ 21.178 <Second group Gr2 ... Negative> r6 39.339                     d6 1.102 N4 1.83400 ν4 37.17 r7 11.226                     d7 4.804 r8 -26.223                     d8 2.126 N5 1.78472 ν5 25.68 r9 -15.872                     d9 1.024 N6 1.77 250 ν6 49.60 r10 41.165                     d10 0.118 r11 22.587                     d11 3.071 N7 1.78472 ν7 25.68 r12 -27.632                     d12 1.102 r13 -18.584                     d13 1.024 N8 1.81554 ν8 44.36 r14 321.763                     d14 9.368 ~ 4.115 ~ 1.069 <Aperture S, third group Gr3 ... Positive> r15 ∞ (Aperture S)                     d15 1.496 r16 29.194                     d16 3.465 N9 1.61800 ν9 63.39 r17 -40.669                     d17 0.079 r18 27.739                     d18 5.591 N10 1.56873 ν10 63.16 r19 -14.928                     d19 1.181 N11 1.83400 ν11 37.17 r20 102.907                     d20 7.384 ~ 3.742 ~ 2.663 <4th group Gr4 ... Positive>   {Front group GrA ... Image stabilization group} r21 24.467                     d21 2.362 N12 1.58170 ν12 69.75 r22 * -59.882                     d22 0.354   {Rear group GrB} r23 * -59.882                     d23 1.575 N13 1.75450 ν13 51.57 r24 -27.635                     d24 2.756 r25 * -86.973                     d25 1.488 N14 1.74 500 ν14 34.96 r26 34.087                   Σd = 64.862 ~ 68.073 ~ 71.323

【0078】[非球面係数] r22:ε= 1.0000 A4= 0.27748×10-4 r23:ε= 1.0000 A4= 0.25095×10-4 r25:ε= 1.0000 A4=-0.76769×10-4 A6=-0.21795×10-6 A8= 0.57736×10-9 A10=-0.52121×10-11 A12= 0.27373×10-13 [Aspherical surface coefficient] r22: ε = 1.0000 A4 = 0.27748 × 10 -4 r23: ε = 1.0000 A4 = 0.25095 × 10 -4 r25: ε = 1.0000 A4 = -0.76769 × 10 -4 A6 = -0.21795 × 10 -6 A8 = 0.57736 × 10 -9 A10 = -0.52121 × 10 -11 A12 = 0.27373 × 10 -13

【0079】《実施例4》 f=22.6〜50.5〜78.0 FNO=4.10〜5.45〜6.20 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] 〈第1群Gr1 …正〉 r1 69.769 d1 1.300 N1 1.83350 ν1 21.00 r2 45.196 d2 6.550 N2 1.58913 ν2 61.11 r3 -397.682 d3 0.100 r4 36.176 d4 4.250 N3 1.71300 ν3 53.93 r5 44.734 d5 1.845〜14.591〜25.237 〈第2群Gr2 …負〉 {前群GrA} r6 123.224 d6 1.100 N4 1.80420 ν4 46.50 r7 11.538 d7 4.400 r8 -72.748 d8 0.950 N5 1.75450 ν5 51.57 r9 26.505 d9 0.300 r10 17.282 d10 3.700 N6 1.75000 ν6 25.14 r11 -51.639 d11 0.940 {後群GrB …手ぶれ補正群} r12 -28.103 d12 1.300 N7 1.69680 ν7 56.47 r13 64.162 d13 10.332〜3.957〜2.000 〈絞りS,第3群Gr3 …正〉 r14 ∞(絞りS) d14 0.500 r15 21.611 d15 3.310 N8 1.62041 ν8 60.29 r16 -68.274 d16 0.110 r17 24.544 d17 4.710 N9 1.51742 ν9 52.15 r18 -13.473 d18 1.360 N10 1.80741 ν10 31.59 r19 80.836 d19 5.300〜2.063〜1.000 〈第4群Gr4 …正〉 r20 27.647 d20 4.820 N11 1.51823 ν11 58.96 r21 -19.138 d21 1.470 r22* 1610.591 d22 0.100 N12 1.51790 ν12 52.31 r23 -292.156 d23 1.400 N13 1.80500 ν13 40.97 r24 42.444 Σd= 60.147〜63.282〜70.907Example 4  f = 22.6-50.5-78.0 FNO = 4.10 ~ 5.45 ~ 6.20    [Radius of curvature] [Spacing on top of axis] [Refractive index] [Abbe number] <First group Gr1 ... Positive> r1 69.769                     d1 1.300 N1 1.83350 ν1 21.00 r2 45.196                     d2 6.550 N2 1.58913 ν2 61.11 r3 -397.682                     d3 0.100 r4 36.176                     d4 4.250 N3 1.71300 ν3 53.93 r5 44.734                     d5 1.845 ~ 14.591 ~ 25.237 <Second group Gr2 ... Negative>   {Front group GrA} r6 123.224                     d6 1.100 N4 1.80420 ν4 46.50 r7 11.538                     d7 4.400 r8 -72.748                     d8 0.950 N5 1.75 450 ν5 51.57 r9 26.505                     d9 0.300 r10 17.282                     d10 3.700 N6 1.75000 ν6 25.14 r11 -51.639                     d11 0.940   {Rear group GrB ... Image stabilization group} r12 -28.103                     d12 1.300 N7 1.69680 ν7 56.47 r13 64.162                     d13 10.332 ~ 3.957 ~ 2.000 <Aperture S, third group Gr3 ... Positive> r14 ∞ (Aperture S)                     d14 0.500 r15 21.611                     d15 3.310 N8 1.62041 ν8 60.29 r16 -68.274                     d16 0.110 r17 24.544                     d17 4.710 N9 1.51742 ν9 52.15 r18 -13.473                     d18 1.360 N10 1.80741 ν10 31.59 r19 80.836                     d19 5.300 ~ 2.063 ~ 1.000 <4th group Gr4 ... Positive> r20 27.647                     d20 4.820 N11 1.51823 ν11 58.96 r21 -19.138                     d21 1.470 r22 * 1610.591                     d22 0.100 N12 1.51790 ν12 52.31 r23 -292.156                     d23 1.400 N13 1.80 500 ν13 40.97 r24 42.444                   Σd = 60.147 to 63.282 to 70.907

【0080】[非球面係数] r22:ε= 1.0000 A4=-0.10446×10-3 A6=-0.34881×10-6 A8=-0.56963×10-9 A10=-0.14711×10-10 A12=-0.89025×10−15 [Aspherical surface coefficient] r22: ε = 1.0000 A4 = -0.10446 × 10 -3 A6 = -0.34881 × 10 -6 A8 = -0.56963 × 10 -9 A10 = -0.14711 × 10 -10 A12 = -0.89025 × 10-15

【0081】[0081]

【表1】 [Table 1]

【0082】図2,図6,図10,図14は、それぞれ
実施例1〜実施例4に対応する縦収差図である。各図
中、[W]は広角端,[M]は中間焦点距離状態(ミド
ル),[T]は望遠端における通常状態(偏心前状態)での
収差を示している。また、実線(d)はd線に対する収差
を表わし、破線(SC)は正弦条件を表わす。さらに、破
線(DM)と実線(DS)はメリディオナル面とサジタル面
での非点収差をそれぞれ表わしている。
2, FIG. 6, FIG. 10 and FIG. 14 are longitudinal aberration diagrams corresponding to Examples 1 to 4, respectively. In each drawing, [W] shows the aberration in the wide-angle end, [M] shows the intermediate focal length state (middle), and [T] shows the aberration in the normal state (pre-eccentric state) at the telephoto end. Further, the solid line (d) represents the aberration with respect to the d line, and the broken line (SC) represents the sine condition. Further, the broken line (DM) and the solid line (DS) represent astigmatism on the meridional surface and the sagittal surface, respectively.

【0083】図3及び図4,図7及び図8,図11及び
図12,図15及び図16は、実施例1〜実施例4の広
角端[W]及び望遠端[T]に対応する横収差図であり、そ
れぞれ手ぶれ補正群の偏心前[A]と偏心後[B]のメリデ
ィオナル面の光束についての横収差を示している。各偏
心後の収差図[B]は、手ぶれ補正群の手ぶれ補正角θ=
0.7°(=0.0122173rad)の補正状態での収差を示してい
る。
FIGS. 3 and 4, FIG. 7 and FIG. 8, FIG. 11 and FIG. 12, FIG. 15 and FIG. 16 correspond to the wide-angle end [W] and the telephoto end [T] of the first to fourth embodiments. FIG. 7 is a lateral aberration diagram, showing lateral aberrations of light fluxes on the meridional surface before decentering [A] and after decentering [B] of the camera shake correction group, respectively. The aberration diagram [B] after each eccentricity shows the camera shake correction angle θ =
The aberration in the corrected state of 0.7 ° (= 0.0122173rad) is shown.

【0084】[0084]

【発明の効果】以上説明したように本発明によれば、手
ぶれ補正機能を有するとともに、手ぶれ補正のために移
動するレンズ群の重量が軽く、しかも全長が短くコンパ
クトであって、描写性能の高い標準・標準高倍率のズー
ムレンズを実現することができる。
As described above, according to the present invention, the lens group that has a camera shake correction function and moves for camera shake correction is light in weight, and the overall length is short and compact, and the drawing performance is high. A standard / standard high-power zoom lens can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態(実施例1)のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment (Example 1).

【図2】実施例1の偏心前の縦収差図。FIG. 2 is a longitudinal aberration diagram of Example 1 before decentering.

【図3】実施例1の広角端における偏心前後のメリディ
オナル横収差を示す収差図。
FIG. 3 is an aberration diagram showing meridional lateral aberration before and after decentering at the wide-angle end in Example 1.

【図4】実施例1の望遠端における偏心前後のメリディ
オナル横収差を示す収差図。
FIG. 4 is an aberration diagram showing meridional lateral aberrations before and after decentering at the telephoto end according to Example 1;

【図5】第2の実施の形態(実施例2)のレンズ構成図。FIG. 5 is a lens configuration diagram of a second embodiment (Example 2).

【図6】実施例2の偏心前の縦収差図。FIG. 6 is a longitudinal aberration diagram of Example 2 before decentering.

【図7】実施例2の広角端における偏心前後のメリディ
オナル横収差を示す収差図。
FIG. 7 is an aberration diagram showing meridional lateral aberration before and after decentering at the wide-angle end in Example 2;

【図8】実施例2の望遠端における偏心前後のメリディ
オナル横収差を示す収差図。
FIG. 8 is an aberration diagram showing meridional lateral aberration before and after decentering at the telephoto end according to Example 2;

【図9】第3の実施の形態(実施例3)のレンズ構成図。FIG. 9 is a lens configuration diagram of a third embodiment (Example 3).

【図10】実施例3の偏心前の縦収差図。FIG. 10 is a longitudinal aberration diagram for Example 3 before decentering.

【図11】実施例3の広角端における偏心前後のメリデ
ィオナル横収差を示す収差図。
FIG. 11 is an aberration diagram showing meridional lateral aberration before and after decentering at the wide-angle end in Example 3;

【図12】実施例3の望遠端における偏心前後のメリデ
ィオナル横収差を示す収差図。
FIG. 12 is an aberration diagram showing meridional lateral aberration before and after decentering at the telephoto end in Example 3;

【図13】第4の実施の形態(実施例4)のレンズ構成
図。
FIG. 13 is a lens configuration diagram of a fourth embodiment (Example 4).

【図14】実施例4の偏心前の縦収差図。14 is a longitudinal aberration diagram of Example 4 before decentering. FIG.

【図15】実施例4の広角端における偏心前後のメリデ
ィオナル横収差を示す収差図。
FIG. 15 is an aberration diagram showing meridional lateral aberration before and after decentering at the wide angle end in Example 4;

【図16】実施例4の望遠端における偏心前後のメリデ
ィオナル横収差を示す収差図。
FIG. 16 is an aberration diagram showing meridional lateral aberration before and after decentering at the telephoto end according to Example 4;

【図17】手ぶれ補正光学系の像劣化の要因を説明する
ための図。
FIG. 17 is a diagram for explaining a factor of image deterioration of the image stabilizing optical system.

【図18】光学系と座標との関係を説明するための図。FIG. 18 is a diagram for explaining the relationship between the optical system and coordinates.

【図19】偏心による光線通過位置の違いを説明するた
めの図。
FIG. 19 is a diagram for explaining a difference in light beam passing position due to eccentricity.

【図20】物面の回転変換を説明するための図。FIG. 20 is a diagram for explaining rotation conversion of an object surface.

【図21】反転系・非反転系の収差係数を説明するため
の図。
FIG. 21 is a diagram for explaining aberration coefficients of inverted and non-inverted systems.

【図22】回転変換を説明するための図。FIG. 22 is a diagram for explaining rotation conversion.

【図23】像面への変換を説明するための図。FIG. 23 is a diagram for explaining conversion to an image plane.

【符号の説明】[Explanation of symbols]

Gr1 …第1群 Gr2 …第2群 Gr3 …第3群 Gr4 …第4群 Gr5 …第5群 GrA …前群 GrB …後群 S …絞り AX …光軸 Gr1 ... 1st group Gr2 ... Second group Gr3 ... Third group Gr4 ... 4th group Gr5 ... Fifth group GrA ... Front group GrB ... Rear group S ... diaphragm AX ... Optical axis

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−136863(JP,A) 特開 平9−61753(JP,A) 特開 平9−15502(JP,A) 特開 平8−146354(JP,A) 特開 平6−289298(JP,A) 特開 平7−199124(JP,A) 特開 平7−325272(JP,A) 特開 平6−265827(JP,A) 特開 平7−128619(JP,A) 特開 平7−92431(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 15/16 ─────────────────────────────────────────────────── ─── Continued Front Page (56) References JP-A-8-136863 (JP, A) JP-A-9-61753 (JP, A) JP-A-9-15502 (JP, A) JP-A-8- 146354 (JP, A) JP-A-6-289298 (JP, A) JP-A-7-199124 (JP, A) JP-A-7-325272 (JP, A) JP-A-6-265827 (JP, A) JP 7-128619 (JP, A) JP 7-92431 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 15/16

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体側から順に、正の屈折力を有する第
1群と、負の屈折力を有する第2群と、正の屈折力を有
する第3群と、を含み、各群の間隔を変化させることに
よって変倍を行うズームレンズであって、 広角端から望遠端への変倍に際して前記第1群が物体側
へ移動し、前記第2群以降のいずれかのズーム群を物体
側から順に前群と後群とに分けて、前記前群又は前記後
群を光軸に対して垂直方向に移動させることによって手
ぶれ補正を行い、前記前群と前記後群との間隔が変倍に
際して変化せず、以下の条件を満足することを特徴とす
る手ぶれ補正機能を有するズームレンズ; 2.1<f1/fW<4.30.65<fR/fW<1.8 ただし、 f1:第1群の焦点距離、 fW:広角端での全系の焦点距離 fR:広角端における第3群以降のズーム群の合成焦点距
離、 である。
1. A first group having a positive refracting power, a second group having a negative refracting power, and a third group having a positive refracting power are arranged in order from the object side, and an interval between the respective groups. Is a zoom lens that performs zooming by changing the zoom ratio, wherein the first group moves to the object side during zooming from the wide-angle end to the telephoto end, and any one of the second and subsequent zoom groups is moved to the object side. Then, the front group and the rear group are divided into the front group and the rear group, and the image stabilization is performed by moving the front group or the rear group in the direction perpendicular to the optical axis, and the distance between the front group and the rear group is varied. To
The zoom lens with the image stabilization function, which does not change and satisfies the following conditions; 2.1 <f1 / fW <4.3 0.65 <fR / fW <1.8 , where f1 is the focal length of the first lens group. , FW: Focal length of the entire system at the wide-angle end , fR: Composite focal length of the third and subsequent zoom groups at the wide-angle end
Away .
【請求項2】 物体側から順に、正の屈折力を有する第
1群と、負の屈折力を有する第2群と、正の屈折力を有
する第3群と、を含み、各群の間隔を変化させることに
よって変倍を行うズームレンズであって、 広角端から望遠端への変倍に際して前記第1群が物体側
へ移動し、前記第2群を物体側から順に前群と後群とに
分けて、前記前群又は前記後群を光軸に対して垂直方向
に移動させることによって手ぶれ補正を行い、前記前群
と前記後群との間隔が変倍に際して変化せず、以下の条
件を満足することを特徴とする手ぶれ補正機能を有する
ズームレンズ; 2.1<f1/fW<4.30.65<fR/fW<1.8 ただし、 f1:第1群の焦点距離、 fW:広角端での全系の焦点距離 fR:広角端における第3群以降のズーム群の合成焦点距
離、 である。
2. An interval between each group, which includes, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, and a third group having a positive refractive power. Is a zoom lens that performs zooming by changing the zoom ratio, wherein the first group moves to the object side during zooming from the wide-angle end to the telephoto end, and the second group moves in order from the object side to the front group and the rear group. divided into preparative performs image stabilization by moving vertically the front group or the rear group relative to the optical axis, the front group
The zoom lens having an image stabilization function, characterized in that the distance between the rear lens group and the rear group does not change during zooming, and satisfies the following conditions: 2.1 <f1 / fW <4.3 0.65 <fR / fW <1.8 However, f1: focal length of the first lens group, fW: focal length of the entire system at the wide-angle end , fR: combined focal length of the third and subsequent zoom lens units at the wide-angle end
Away .
【請求項3】 物体側から順に、正の屈折力を有する第
1群と、負の屈折力を有する第2群と、正の屈折力を有
する第3群と、を含み、各群の間隔を変化させることに
よって変倍を行うズームレンズであって、 広角端から望遠端への変倍に際して前記第1群が物体側
へ移動し、前記第3群を物体側から順に前群と後群とに
分けて、前記前群又は前記後群を光軸に対して垂直方向
に移動させることによって手ぶれ補正を行い、前記前群
と前記後群との間隔が変倍に際して変化せず、以下の条
件を満足することを特徴とする手ぶれ補正機能を有する
ズームレンズ; 2.1<f1/fW<4.30.65<fR/fW<1.8 ただし、 f1:第1群の焦点距離、 fW:広角端での全系の焦点距離 fR:広角端における第3群以降のズーム群の合成焦点距
離、 である。
3. An interval between each group, which includes, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, and a third group having a positive refractive power. Is a zoom lens that performs zooming by changing the zoom ratio, wherein the first group moves toward the object side during zooming from the wide-angle end to the telephoto end, and the third group moves in order from the object side to the front group and the rear group. divided into preparative performs image stabilization by moving vertically the front group or the rear group relative to the optical axis, the front group
The zoom lens having an image stabilization function, characterized in that the distance between the rear lens group and the rear group does not change during zooming, and satisfies the following conditions: 2.1 <f1 / fW <4.3 0.65 <fR / fW <1.8 However, f1: focal length of the first lens group, fW: focal length of the entire system at the wide-angle end , fR: combined focal length of the third and subsequent zoom lens units at the wide-angle end
Away .
【請求項4】 物体側から順に、正の屈折力を有する第
1群と、負の屈折力を有する第2群と、正の屈折力を有
する第3群と、正の屈折力を有する第4群と、を含み、
各群の間隔を変化させることによって変倍を行うズーム
レンズであって、 広角端から望遠端への変倍に際して前記第1群が物体側
へ移動し、前記第4群を物体側から順に前群と後群とに
分けて、前記前群又は前記後群を光軸に対して垂直方向
に移動させることによって手ぶれ補正を行い、前記前群
と前記後群との間隔が変倍に際して変化せず、以下の条
件を満足することを特徴とする手ぶれ補正機能を有する
ズームレンズ; 2.1<f1/fW<4.30.65<fR/fW<1.8 ただし、 f1:第1群の焦点距離、 fW:広角端での全系の焦点距離 fR:広角端における第3群以降のズーム群の合成焦点距
離、 である。
4. A first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a third group having a positive refractive power in order from the object side. Including 4 groups,
A zoom lens that performs zooming by changing the distance between each group, wherein the first group moves toward the object side during zooming from the wide-angle end to the telephoto end, and the fourth group moves in order from the object side. divided into a group and the rear group performs image stabilization by moving vertically the front group or the rear group relative to the optical axis, the front group
The zoom lens having an image stabilization function, characterized in that the distance between the rear lens group and the rear group does not change during zooming, and satisfies the following conditions: 2.1 <f1 / fW <4.3 0.65 <fR / fW <1.8 However, f1: focal length of the first lens group, fW: focal length of the entire system at the wide-angle end , fR: combined focal length of the third and subsequent zoom lens units at the wide-angle end
Away .
【請求項5】 前記前群又は前記後群を手ぶれ補正群と5. The front group or the rear group is referred to as an image stabilization group.
し、その手ぶれ補正群又は手ぶれ補正群を有するズームHowever, the camera shake correction group or the zoom having the camera shake correction group
群で近接物体へのフォーカシングを行うことを特徴とすIt is characterized by performing focusing on a close object in a group
る請求項1〜4のいずれか1項に記載の手ぶれ補正機能The image stabilization function according to any one of claims 1 to 4.
を有するズームレンズ。Zoom lens with.
JP04005096A 1996-02-23 1996-02-27 Zoom lens with camera shake correction function Expired - Fee Related JP3387307B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04005096A JP3387307B2 (en) 1996-02-27 1996-02-27 Zoom lens with camera shake correction function
US08/802,756 US6266189B1 (en) 1996-02-23 1997-02-20 Zoom lens system having an image blur compensating function
EP97102979A EP0791845A3 (en) 1996-02-23 1997-02-24 Zoom lens system having an image blur compensating function
US09/689,531 US6285502B1 (en) 1996-02-23 2000-10-12 Zoom lens system having an image blur compensation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04005096A JP3387307B2 (en) 1996-02-27 1996-02-27 Zoom lens with camera shake correction function

Publications (2)

Publication Number Publication Date
JPH09230237A JPH09230237A (en) 1997-09-05
JP3387307B2 true JP3387307B2 (en) 2003-03-17

Family

ID=12570092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04005096A Expired - Fee Related JP3387307B2 (en) 1996-02-23 1996-02-27 Zoom lens with camera shake correction function

Country Status (1)

Country Link
JP (1) JP3387307B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630423B2 (en) * 2000-06-16 2011-02-09 キヤノン株式会社 Zoom lens and optical apparatus using the same
US7196853B2 (en) 2004-08-19 2007-03-27 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus having the same
JPWO2007010862A1 (en) * 2005-07-19 2009-01-29 パナソニック株式会社 Zoom lens system and imaging optical apparatus having the same
JP4951370B2 (en) 2007-03-01 2012-06-13 株式会社タムロン Zoom lens with image stabilization by lens eccentricity
JP4533437B2 (en) * 2008-02-26 2010-09-01 キヤノン株式会社 Zoom lens
JP5544959B2 (en) * 2010-03-18 2014-07-09 株式会社ニコン Variable-magnification optical system, optical apparatus, and variable-magnification optical system manufacturing method
JP5727513B2 (en) 2010-12-07 2015-06-03 富士フイルム株式会社 Zoom lens and imaging device
JP5891895B2 (en) * 2012-03-28 2016-03-23 リコーイメージング株式会社 Zoom lens system and electronic imaging apparatus including the same
JP2014115426A (en) * 2012-12-07 2014-06-26 Samsung Electronics Co Ltd Zoom lens having vibration reduction function
US9313384B2 (en) 2012-12-07 2016-04-12 Samsung Electronics Co., Ltd. Zoom lens having vibration prevention function

Also Published As

Publication number Publication date
JPH09230237A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
US6266189B1 (en) Zoom lens system having an image blur compensating function
US6646803B2 (en) Zoom lens having an image stabilizing function
EP2000839B1 (en) Zoom lens and image projection apparatus having the same
US6010537A (en) Zoom lens system having an image blur compensation function
JP3196283B2 (en) Zoom lens device
US6462885B2 (en) Zoom lens and photographing apparatus having the same
US20070070524A1 (en) High zoom ratio zoom lens system
US7227699B2 (en) Zoom lens system and image pick-up apparatus including same
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JP3226297B2 (en) Zoom lens and camera with zoom lens
JP3387305B2 (en) Zoom lens with camera shake correction function
JP2009175324A5 (en)
JP2001350092A (en) Image pickup lens device
JPH09265042A (en) Photographing optical system provided with camera shake correcting function
JPH1164728A (en) Zoom lens having camera shake correction function
JP3365087B2 (en) Optical system with camera shake correction function
JPH0882769A (en) Zoom lens having function to correct hand shake
JP3387307B2 (en) Zoom lens with camera shake correction function
US6690519B2 (en) High-magnification zoom lens system
JP3417192B2 (en) Optical system and zoom lens having camera shake correction function
JPH11316342A (en) Variable power optical system having vibration-proof function
JPH09230241A (en) Zoom lens having camera shake correcting function
JPH0862541A (en) Variable power optical system having vibration damping function
JPH09230240A (en) Zoom lens having camera shake correcting function
JPH11352400A (en) Zoom lens system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees