JPH09230141A - Production of optical compensation film, optical compensation film and liquid crystal display element formed by using the same - Google Patents

Production of optical compensation film, optical compensation film and liquid crystal display element formed by using the same

Info

Publication number
JPH09230141A
JPH09230141A JP8070391A JP7039196A JPH09230141A JP H09230141 A JPH09230141 A JP H09230141A JP 8070391 A JP8070391 A JP 8070391A JP 7039196 A JP7039196 A JP 7039196A JP H09230141 A JPH09230141 A JP H09230141A
Authority
JP
Japan
Prior art keywords
film
optical compensation
liquid crystal
compensation film
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8070391A
Other languages
Japanese (ja)
Other versions
JP3719761B2 (en
Inventor
Hisashi Ito
寿 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP07039196A priority Critical patent/JP3719761B2/en
Publication of JPH09230141A publication Critical patent/JPH09230141A/en
Application granted granted Critical
Publication of JP3719761B2 publication Critical patent/JP3719761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the smoothness of a film surface, to lessen unequal orientation and to accelerate the deorientation of molecular chains by applying specified tension on a film in the direction perpendicular to the major axis direction of the refractive index ellipse within the film plane and heat treating the film is a temp. atmosphere below the glass transition point (Tg) temp. SOLUTION: The major axis direction of the refractive index ellipse within the film plane is fixed in parallel with the fixed ends by jigs which uniformly press only a pair of both ends facing each other of the thermoplastic film. The film is then heat treated by applying specified tension thereon in the direction perpendicular to the fixed ends under the conditions under which the spacing LMD at both ends of the fixed film and the spacing LTD at both ends not subjected to the restriction by the jigs attains LMD/LTD>1.0. The major axis direction of the refractive index ellipse in the plane is, therefore, changed 90 deg.. As a result, the optical compensation film which is 5nm<=|nx -ny |×d<=80nm when the main refractive index are defined as nx , ny and the thickness is defined as d, is <=10% in the deflection width thereof and has excellent smoothness and the liquid crystal display element formed by using the same are obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光学補償フィルムに
関し、更に詳しくは液晶表示素子の表示コントラストの
向上、表示の高精細化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical compensation film, and more particularly to improvement of display contrast of a liquid crystal display device and high definition of display.

【0002】[0002]

【従来の技術】ワードプロセッサやデスクトップパソコ
ン等のOA機器の表示装置の主流であるCRTは、薄型
軽量、低消費電力という大きな利点を持った液晶表示素
子に変換されてきている。現在普及している液晶表示素
子の多くは、捻れネマティック液晶を用いている。この
ような液晶を用いた表示方式としては、複屈折モードと
旋光モードとの2つの方式に大別できる。
2. Description of the Related Art CRTs, which are the mainstream of display devices for office automation equipment such as word processors and desktop personal computers, have been converted into liquid crystal display elements having the great advantages of thinness, light weight, and low power consumption. Most of the liquid crystal display devices that are currently popular use twisted nematic liquid crystals. Display methods using such a liquid crystal can be roughly classified into two methods, a birefringence mode and an optical rotation mode.

【0003】複屈折モードを用いた液晶表示素子は、ス
ーパーツイステッドネマティック(以下STNと称す)
モードと言い液晶分子配列の捻れ角が90°以上捻れた
ものである。STNは急峻な電気光学特性を持つため、
単純マトリックス状の電極構造でも大容量の表示が得ら
れる。しかし、応答速度が遅く、階調表示が困難という
欠点を持ち、薄膜トランジスタやダイオードを用いた液
晶表示素子の性能を越えるまでには至らない。
A liquid crystal display element using a birefringence mode is a super twisted nematic (hereinafter referred to as STN)
A mode is a mode in which the twist angle of the liquid crystal molecule array is twisted by 90 ° or more. Since STN has steep electro-optical characteristics,
A large capacity display can be obtained even with a simple matrix electrode structure. However, it has a drawback that the response speed is slow and gradation display is difficult, and it does not exceed the performance of a liquid crystal display device using a thin film transistor or a diode.

【0004】薄膜トランジスタやダイオードを用いた液
晶表示素子(TFT−LCD,MIM−LCD)は、液
晶分子の分子配列状態が90°捻れた旋光モード表示素
子であり、応答速度が速く、階調表示も可能であり、表
示コントラストも高いことから、液晶表示素子としては
最も有力な方式とされている。
A liquid crystal display element (TFT-LCD, MIM-LCD) using a thin film transistor or a diode is an optical rotation mode display element in which the molecular alignment state of liquid crystal molecules is twisted by 90 ° and has a high response speed and gradation display. Since it is possible and the display contrast is high, it is considered to be the most effective method as a liquid crystal display element.

【0005】旋光モード(以下TNと称す)を利用した
液晶表示素子は、2枚の基板間にTN液晶を封入した液
晶セルとその両側に配置される偏光板で構成される。更
にTN型液晶表示素子は偏光板の配置により2方式あ
り、2枚の偏光板を平行にする方式はノーマリーブラッ
ク(NB)モードと呼ばれ、2枚の偏光板を直交させる
方式はノーマリーホワイト(NW)モードと呼ばれてい
る。高精細・高画質表示素子、投写型表示装置ではNW
モードがよく用いられる。これは、NBモードは黒表示
の付近で目立ちやすい色度変化を生じるという問題があ
り、NWモードにはこのような問題がなく、白表示付近
での色度変化は生じるものの、あまり目立たないためで
ある。
A liquid crystal display element utilizing an optical rotation mode (hereinafter referred to as TN) is composed of a liquid crystal cell in which TN liquid crystal is sealed between two substrates and polarizing plates arranged on both sides thereof. Furthermore, there are two types of TN type liquid crystal display devices depending on the arrangement of polarizing plates. A method of making two polarizing plates parallel is called a normally black (NB) mode, and a method of making two polarizing plates orthogonal is normally. It is called the white (NW) mode. NW for high-definition / high-quality display elements and projection display devices
Modes are often used. This is because the NB mode has a problem that the chromaticity change easily occurs in the vicinity of black display, and the NW mode does not have such a problem. Although the chromaticity change occurs in the vicinity of white display, it is not so noticeable. Is.

【0006】NWモードにおいて黒表示をする場合、自
然光が入射側偏光板に入射すると、直線偏光だけが出射
して液晶セルに入射する。液晶セルに駆動電圧を印加す
ると、液晶層の中央付近の液晶分子は基板とほぼ垂直に
立ち上がるが、基板界面付近の液晶分子は基板によるア
ンカリング効果が強いために完全に立ち上がらない。こ
の場合、液晶セルにはわずかな複屈折が存在するため、
液晶セルからの出射光は楕円偏光となる。そのため、入
射側偏光板に対し直交配置した出射側偏光板より光がわ
ずかながら漏れてしまい黒表示レベルを低下させてしま
う。以上の結果より、コントラストの低下を招き、有力
視されるTFT−LCDにおいてもCRTの表示性能を
越えるまでにはいたっていない。
When displaying black in the NW mode, when natural light enters the incident side polarization plate, only linearly polarized light is emitted and enters the liquid crystal cell. When a driving voltage is applied to the liquid crystal cell, the liquid crystal molecules near the center of the liquid crystal layer rise almost vertically to the substrate, but the liquid crystal molecules near the substrate interface do not rise completely because the anchoring effect of the substrate is strong. In this case, since there is a slight birefringence in the liquid crystal cell,
Light emitted from the liquid crystal cell becomes elliptically polarized light. For this reason, a slight amount of light leaks from the exit side polarization plate disposed orthogonal to the entrance side polarization plate, and the black display level is lowered. From the above results, the contrast is deteriorated, and the display performance of the CRT is not exceeded even in the promising TFT-LCD.

【0007】TN型液晶セルの液晶駆動時に発生する複
屈折を位相差板により光学的に補償する方式(例えば、
特開平6−148628号公報)が提案されているが、
液晶セルより生じる位相差を光学的に補償するために
は、位相差板の厚みムラや分子鎖の配向ムラを均一にす
る必要があるが、液晶セルより生じる位相差はごくわず
かであるため、位相差を補償するフィルムは無複屈折フ
ィルムと称してもよい程度に低い複屈折を有する必要が
あり、面内の複屈折状態を均一にした位相差板を大面積
で得ることが非常に難しい。以上のような位相差板の製
造上の問題から、パネル全面のコントラスト改善は十分
に行われていない。
A method of optically compensating the birefringence generated when the liquid crystal of the TN type liquid crystal cell is driven by a retardation plate (for example,
JP-A-6-148628) has been proposed,
In order to optically compensate the retardation generated by the liquid crystal cell, it is necessary to make the thickness unevenness of the retardation plate and the orientation unevenness of the molecular chains uniform, but since the phase difference caused by the liquid crystal cell is very small, The film that compensates for the phase difference needs to have a low birefringence to the extent that it can be called a non-birefringent film, and it is very difficult to obtain a retardation plate with a uniform in-plane birefringence state in a large area. . Due to the problems in manufacturing the retardation plate as described above, the contrast on the entire surface of the panel is not sufficiently improved.

【0008】フィルム面内の位相差を均一にする方式と
して、テンター横一軸延伸機による延伸処理した位相差
フィルムの製造方法(例えば、特開平2−42406号
公報、特開平6ー51118号公報)が提案されている
が、わずかな位相差を均一に製造するまでにはいたって
いない。
As a method for making the in-plane retardation uniform, a method for producing a retardation film stretched by a tenter transverse uniaxial stretching machine (for example, JP-A-2-42406 and JP-A-6-51118). Although it has been proposed, it has not yet been possible to uniformly manufacture a slight phase difference.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的とすると
ころは、主屈折率をnx、ny、厚さをdとしたとき5nm
≦|nx−ny|×d≦80nmでその振れ幅が10%以下で
あり、平滑性に優れた光学補償フィルム及びそれを用い
た液晶表示素子を提供するものである。
The object of the present invention is to set the main refractive index to n x and n y and the thickness to d to be 5 nm.
≦ | n x -n y | × is in its amplitude is 10% or less by d ≦ 80 nm, there is provided an optical compensation film excellent in smoothness and liquid crystal display device using the same.

【0010】[0010]

【課題を解決するための手段】本発明は、(1)熱可塑
性樹脂フィルムの向かい合った一対の両端のみを均一に
押さえる治具により、フィルム面内の屈折率楕円体の長
軸方向を固定端に対し平行に固定し、固定されたフィル
ム両端の間隔LMDと治具により制約を受けないフィルム
両端の間隔LTDとがLMD/LTD > 1.0となる条件
で、かつ固定端に対し直角方向に一定の張力を掛けて熱
処理することによって、面内の屈折率楕円体の長軸方向
を90°変換することを特徴とする光学補償フィルムの
製造方法、(2)熱処理する温度が、熱可塑性樹脂フィ
ルムの線膨張率が上昇する温度以上、熱可塑性樹脂のガ
ラス転移点未満の温度である第(1)項記載の光学補償
フィルムの製造方法、(3)第(1)項又は第(2)項
記載の光学補償フィルムの製造方法により得られる、光
学補償フィルムの面内の主屈折率をnx、ny、厚さをd
としたとき5nm≦|nx−ny|×d≦80nmでその振れ幅
が10%以下であることを特徴とする光学補償フィル
ム、(4)第(1)項又は第(2)項記載の光学補償フ
ィルムの製造方法により得られる、光学補償フィルムの
面内の屈折率楕円体の光学的主軸の振れ幅が±1.0°
以下であることを特徴とする光学補償フィルム、(5)
第(1)項又は第(2)項記載の熱可塑性樹脂がトリア
セテート、ジアセテート、セロハン、ポリエーテルサル
ホン、ポリエーテルエーテルサルホン、ポリサルホン、
ポリエーテルイミド、ポリカーボネート、ポリエステ
ル、ポリビニルアルコール、ポリアリレート、ポリメタ
クリル酸メチル、フッ化ビニリデン、及びポリスチレン
からなる群より選ばれた1種又は2種以上の熱可塑性樹
脂である第(3)項又は第(4)項記載の光学補償フィ
ルム、(6)2枚の電極基板間にTN型液晶を挟持して
なる液晶セルと、その両側に配置された2枚の偏光素子
と、該偏光素子の間に、少なくとも1枚以上の第(3)
項〜第(5)項のいずれか1項に記載の光学補償フィル
ムを配置していることを特徴とする液晶表示素子、を提
供するものである。
According to the present invention, (1) a jig for uniformly pressing only a pair of opposite ends of a thermoplastic resin film is used to fix the long-axis direction of a refractive index ellipsoid in the film plane at a fixed end. And the distance L MD between both ends of the fixed film and the distance L TD between both ends of the film, which is not restricted by a jig, are L MD / L TD > 1.0, and A method for producing an optical compensation film, characterized in that the longitudinal direction of the in-plane refractive index ellipsoid is converted by 90 ° by applying a constant tension in the direction perpendicular to the heat treatment, and (2) the heat treatment temperature is The method for producing an optical compensation film according to item (1), wherein the temperature is equal to or higher than the temperature at which the linear expansion coefficient of the thermoplastic resin film increases and lower than the glass transition point of the thermoplastic resin, (3) item (1) or The optical compensation filter described in item (2). Obtained by the production method of the beam, the main refractive indices n x in the plane of the optical compensation film, n y, the thickness d
And 5 nm ≦ | n x −n y | × d ≦ 80 nm, and the deflection width is 10% or less, (4) Item (1) or (2) Obtained by the method for producing an optical compensation film, the deflection width of the optical principal axis of the in-plane refractive index ellipsoid of the optical compensation film is ± 1.0 °.
An optical compensation film characterized by being (5)
The thermoplastic resin according to item (1) or (2) is triacetate, diacetate, cellophane, polyether sulfone, polyether ether sulfone, polysulfone,
Item (3) which is one or more thermoplastic resins selected from the group consisting of polyetherimide, polycarbonate, polyester, polyvinyl alcohol, polyarylate, polymethylmethacrylate, vinylidene fluoride, and polystyrene. (4) The optical compensation film according to item (4), (6) a liquid crystal cell in which a TN type liquid crystal is sandwiched between two electrode substrates, two polarizing elements arranged on both sides of the liquid crystal cell, and a polarizing element of the polarizing element. In between, at least one or more (3)
A liquid crystal display device, comprising the optical compensation film according to any one of items (1) to (5).

【0011】本発明では、熱可塑性樹脂フィルムにおけ
るフィルム面内の主屈折率nx、nyの関係を、フィルム
幅方向の屈折率をnx、フィルム延伸方向の屈折率をny
としたときに、フィルム面内の屈折率楕円体の長軸方向
に対し直角方向に一定張力を掛けて熱処理することで、
x>nyの屈折率関係をnx<nyの屈折率関係に変換
(面内屈折率楕円体の長軸方向の90°変換)し、厚さ
をdとしたとき5nm≦|nx−ny|×d≦80nmでその振
れ幅が10%以下であり、平滑性に優れた光学補償フィ
ルムを製造することが出来る。
In the present invention, the relationship between the principal in-plane refractive indices n x and n y of the thermoplastic resin film is as follows: the refractive index in the film width direction is n x and the refractive index in the film stretching direction is n y.
At that time, by applying a constant tension in a direction perpendicular to the long axis direction of the in-plane refractive index ellipsoid, and heat-treating,
n x> (90 ° in the major axis direction transformation plane refractive index ellipsoid) converting the refractive index relationship of n y in the refractive index relationship of n x <n y and, 5 nm ≦ when the thickness was d | n x -n y | × is in its amplitude is 10% or less by d ≦ 80 nm, it is possible to produce a good optical compensation film smoothness.

【0012】また本発明では、熱可塑性樹脂フィルムの
向かい合った両端のみを均一に押さえる治具により固定
し、かつ固定端に対し直角方向に一定の張力を掛けて熱
処理する場合において、固定されたフィルム両端の間隔
をLMD、治具により制約を受けないフィルム両端の間隔
をLTDとするとき、 LMD/LTD > 1.0 及び、その線膨張率が上昇する温度からそのガラス転移
点より低い温度範囲内の条件で熱処理することで、フィ
ルムの平滑性を損なうことなしにそのフィルム面内の複
屈折率の大きさ及び屈折率楕円体の長軸方向を制御し、
厚さをdとしたとき5nm≦|nx−ny|×d≦80nmでそ
の振れ幅が10%以下、更にはフィルム面内の屈折率楕
円体の光学的主軸の振れ幅が±1.0以下の光学補償フ
ィルムを製造することが出来る。
Further, in the present invention, when the thermoplastic resin film is fixed by a jig that uniformly presses only opposite ends of the thermoplastic resin film, and a constant tension is applied in a direction perpendicular to the fixed end, the film is fixed. When the distance between both ends is L MD and the distance between both ends of the film which is not restricted by a jig is L TD , L MD / L TD > 1.0, and the temperature at which the coefficient of linear expansion increases from the glass transition point. By heat treatment under conditions of a low temperature range, to control the magnitude of the birefringence index in the film plane and the long axis direction of the refractive index ellipsoid without impairing the smoothness of the film,
When the thickness is d, 5 nm ≦ | n x −n y | × d ≦ 80 nm, the deflection width is 10% or less, and the deflection width of the optical principal axis of the index ellipsoid in the film plane is ± 1. An optical compensation film of 0 or less can be produced.

【0013】また本発明では、熱処理されるフィルムに
二軸延伸性が付与されないように、自由端の間隔LTD
対し 固定されたフィルム両端の間隔LMDを十分長く設
定し、かつフィルムが加熱変形されない範囲内の張力を
掛け、フィルムとなる熱可塑性樹脂をそのフィルムを構
成する分子鎖がミクロブラウン運動を開始しフィルムの
線膨張率が上昇を開始する温度(以下Tg- と略す)か
らガラス転移点(Tg)より低い温度、好ましくはガラ
ス転移点よりも10℃〜30℃低い温度で熱処理するこ
とで、その外観を損わず、フィルムの複屈折率の大きさ
及び屈折率楕円体の長軸方向を制御し、厚さをdとした
とき5nm≦|nx−ny|×d≦80nmでその振れ幅が10
%以下、更には光学的主軸の振れ幅が±1.0°以下の
光学補償フィルムを製造することが出来る。
Further, in the present invention, the distance L MD between both ends of the fixed film is set sufficiently long with respect to the distance L TD between the free ends and the film is heated so that the film to be heat treated is not biaxially stretched. Glass is applied from the temperature (hereinafter abbreviated as Tg-) at which tension is applied within the range where the film is not deformed, and the molecular chains that make up the film thermoplastic resin start micro Brownian motion and the linear expansion coefficient of the film starts to increase. By heat-treating at a temperature lower than the transition point (Tg), preferably 10 ° C. to 30 ° C. lower than the glass transition point, the appearance is not impaired and the birefringence of the film and the refractive index ellipsoid of the film are reduced. controls longitudinally, 5 nm ≦ when the thickness was d | n x -n y | its amplitude at × d ≦ 80 nm is 10
% Or less, and further, an optical compensation film having a deflection width of the optical main axis of ± 1.0 ° or less can be manufactured.

【0014】[0014]

【発明の実施の形態】本発明の光学補償フィルムの製造
法について説明する。光学補償フィルムを製造するプロ
セスは製膜と延伸によって行われる。熱可塑性樹脂フィ
ルムを製膜する方法は、溶融製膜法と溶液製膜法がある
が、光学補償フィルムの光学特性を左右するフィルムの
厚さムラ及び配向ムラが生じなければ、本発明における
製膜上の制約はない。しかし、溶融製膜においてはフィ
ルム冷却時に、溶液製膜においてはフィルム乾燥時に、
フィルム搬送過程でのフィルムに加わる張力によるひず
みで80nmを越える位相差が発生し、本発明のフィルムを
得ることはできない。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing the optical compensation film of the present invention will be described. The process of manufacturing the optical compensation film is performed by film formation and stretching. The method for forming a thermoplastic resin film includes a melt film forming method and a solution film forming method, but if film thickness unevenness and orientation unevenness that affect the optical characteristics of the optical compensation film do not occur, the film forming method according to the present invention There are no restrictions on the membrane. However, in melt film formation, during film cooling, in solution film formation, during film drying,
Due to the strain due to the tension applied to the film during the film transport process, a phase difference of more than 80 nm occurs, and the film of the present invention cannot be obtained.

【0015】熱可塑性樹脂フィルムに位相差が発現した
場合、製膜したフィルムをTg以上で熱緩和させ複屈折
を除去することができるが、フィルムを構成する分子鎖
は運動性に富んだ脱配向挙動を示すために、フィルム表
面の平滑性が失われる。
When the thermoplastic resin film exhibits a retardation, the formed film can be thermally relaxed at Tg or higher to remove the birefringence, but the molecular chain constituting the film is deorientated with high mobility. Due to the behavior, the smoothness of the film surface is lost.

【0016】また、製膜時におけるフィルム搬送過程に
おいて、極力張力を抑えることで位相差の発現を抑制し
ても、Tg以上の温度雰囲気下での縦一軸延伸または横
一軸延伸では高精度の延伸を用いても、フィルムを構成
する分子鎖が流動性に富んでいるため、本発明のように
位相差が5nm≦|nx−ny|×d≦80nmの光学補償フィ
ルムを得ることは難しい。
Further, in the film transporting process during film formation, even if the retardation is suppressed by suppressing the tension as much as possible, the uniaxial stretching in the longitudinal direction or the uniaxial stretching in the transverse direction in a temperature atmosphere of Tg or higher gives a highly accurate stretching. be used, the molecular chains constituting the film is rich in fluidity, the phase difference is 5 nm ≦ as in the present invention | it is difficult to obtain a × optical compensation film of d ≦ 80nm | n x -n y .

【0017】本発明は、熱可塑性樹脂フィルムにおい
て、フィルムが面内に有する屈折率楕円体の長軸方向に
対し直角方向に一定張力を掛け、且つTg未満の温度雰
囲気下で熱処理するために、屈折率楕円体は短軸方向に
緩やかに延伸される。これはフィルム面内の屈折率の異
方性を低減する効果に作用するために、フィルム表面の
平滑性を維持したまま面内の配向ムラを低減化し、分子
鎖の脱配向を促す。更に、Tg未満の温度雰囲気下で一
定張力を掛け続けることにより、分子差は張力方向に緩
やかな流動配向を示すために複屈折が生じる。以上のよ
うにTg未満の温度雰囲気下で分子鎖の脱配向と再配向
を連続的に行うことにより、本発明の5nm≦|nx−ny
|×d≦80nmの特性を有する光学補償フィルムを得るこ
とができる。
According to the present invention, in a thermoplastic resin film, a constant tension is applied in a direction perpendicular to the long axis direction of the in-plane refractive index ellipsoid of the film, and heat treatment is performed in an atmosphere at a temperature lower than Tg. The index ellipsoid is gently stretched in the minor axis direction. This acts on the effect of reducing the anisotropy of the refractive index in the film plane, and therefore reduces the in-plane alignment unevenness while maintaining the smoothness of the film surface and promotes the deorientation of the molecular chains. Further, when a constant tension is continuously applied in an atmosphere of a temperature lower than Tg, the molecular difference exhibits a gentle flow orientation in the tension direction, so that birefringence occurs. By continuously performing the disorientation and reorientation of the molecular chains at an ambient temperature of less than Tg as described above, 5 nm ≦ of the present invention | n x -n y
An optical compensation film having a characteristic of | × d ≦ 80 nm can be obtained.

【0018】本発明のLMD/LTD>1.0の場合ではな
く、熱可塑性樹脂フィルムをLMD/LTD≦1.0の設定
において熱処理した場合は、固定された間隔が短いた
め、張力が一方向のみに掛かっていた場合でもフィルム
面内においては二軸配向的な引っ張り応力が発生する。
そのために高分子鎖は理想的な一軸配向が抑制され、フ
ィルムの幅方向に高分子鎖の配向角分布が発現する。屈
折率楕円体の光学的主軸は分子鎖配向角に大きく依存す
るため、フィルムをLMD/LTD≦1.0の条件において
は、分子鎖配向の自由度が一方向に制御されないため
に、光学的主軸の均一化がなされない。
When the thermoplastic resin film is heat-treated under the setting of L MD / L TD ≦ 1.0, not when L MD / L TD > 1.0 of the present invention, the fixed interval is short. Even when the tension is applied only in one direction, biaxially oriented tensile stress is generated in the film plane.
Therefore, the ideal uniaxial orientation of the polymer chain is suppressed, and the orientation angle distribution of the polymer chain is developed in the width direction of the film. Since the optical principal axis of the index ellipsoid largely depends on the molecular chain orientation angle, the degree of freedom of molecular chain orientation is not controlled in one direction under the condition of L MD / L TD ≦ 1.0 for the film. The optical principal axis is not made uniform.

【0019】フィルムとなる熱可塑性樹脂をLMD/LTD
>1.0の条件にて熱処理するときにガラス転移点以上
の高温で処理した場合は、フィルムを構成する高分子鎖
は流動性に富むためにフィルム流れ方向の分子鎖配向が
容易に起こり光学的主軸の均一化はなされるものの、フ
ィルム延伸により複屈折率の増加が起こり、本発明の5n
m≦|nx−ny|×d≦80nmの特性を有する光学補償フ
ィルム得ることが難しい。
The thermoplastic resin that becomes the film is L MD / L TD
When the heat treatment is performed at a temperature higher than 1.0 when the heat treatment is performed under the condition of> 1.0, the polymer chains constituting the film have a high fluidity, so that the molecular chain orientation in the film flow direction easily occurs and the optical Although the main axis is made uniform, an increase in birefringence occurs due to film stretching, and the 5n
m ≦ | n x -n y | it is difficult to obtain an optical compensation film having characteristics × d ≦ 80 nm.

【0020】また、熱処理の温度がフィルムのTg- か
らTg未満の温度範囲より低すぎても、分子鎖のミクロ
ブラウン運動が凍結し、局所的な分子振動をするのみで
あるため、熱処理による分子鎖配向が起こり難くなり、
光学的主軸の均一化が確認されない場合が生じる。
Further, even if the temperature of the heat treatment is lower than the temperature range from Tg- of the film to less than Tg, the micro-Brownian motion of the molecular chain is frozen and only local molecular vibration occurs. Chain orientation is less likely to occur,
In some cases, homogenization of the optical principal axis is not confirmed.

【0021】光学的主軸の振れ幅は、分子鎖配向のバラ
ツキを示し、±1.0°以下、好ましくは±0.1°以
下であるが、この光学的主軸の振れ幅が大きすぎると、
液晶セルより発生した位相差を補償することがパネル全
面で一様に行われないために、光学補償フィルムによる
補償性能に偏差が生じ、部分的な光の漏れが発現する。
その結果、TN型液晶表示素子において黒表示の偏差が
生じコントラストムラとなるため好ましくない。
The deflection width of the optical principal axis shows a variation in molecular chain orientation and is ± 1.0 ° or less, preferably ± 0.1 ° or less. However, if the deflection width of the optical principal axis is too large,
Since the phase difference generated from the liquid crystal cell is not uniformly compensated on the entire panel surface, deviation occurs in the compensation performance of the optical compensation film and partial light leakage occurs.
As a result, deviation of black display occurs in the TN type liquid crystal display element, resulting in uneven contrast, which is not preferable.

【0022】本発明における熱可塑性樹脂としてはトリ
アセテート、ジアセテート、セロハン、ポリエーテルサ
ルホン、ポリエーテルエーテルサルホン、ポリサルホ
ン、ポリエーテルイミド、ポリカーボネート、ポリエス
テル、ポリビニルアルコール、ポリアリレート、ポリメ
タクリル酸メチル、フッ化ビニリデン、ポリスチレン及
び、これらをブレンドした樹脂をあげることができる。
なお、本発明における樹脂は、添加剤として少量の安定
剤、滑剤、染料等が含まれていてもさしつかえない。
As the thermoplastic resin in the present invention, triacetate, diacetate, cellophane, polyether sulfone, polyether ether sulfone, polysulfone, polyetherimide, polycarbonate, polyester, polyvinyl alcohol, polyarylate, polymethyl methacrylate, Examples thereof include vinylidene fluoride, polystyrene, and resins obtained by blending these.
The resin in the present invention may contain a small amount of stabilizers, lubricants, dyes and the like as additives.

【0023】本発明における光学補償フィルムの厚さは
10μm〜500μm更には50μm〜400μmであ
ることが加工性、可撓性の面から好ましい。また、本発
明におけるフィルムの表面粗さは0.5μm以下である
ことが好ましく、更には0.1μm以下であることが好
ましい。表面粗さが0.5μmより大きいと光学的位相
ムラが生じ、液晶表示素子の表示ムラが顕著に確認され
る。
The thickness of the optical compensation film in the present invention is preferably 10 μm to 500 μm, more preferably 50 μm to 400 μm from the viewpoint of workability and flexibility. Further, the surface roughness of the film in the present invention is preferably 0.5 μm or less, and more preferably 0.1 μm or less. When the surface roughness is larger than 0.5 μm, optical phase unevenness occurs and display unevenness of the liquid crystal display element is remarkably confirmed.

【0024】本発明によれば、熱可塑性樹脂フィルムを
MD/LTD>1.0、かつガラス転移点よりも低い温度
で、一定張力下での屈折率異方体の連続的な脱配向と再
配向により、フィルムの平滑性を失わずに、5nm≦|nx
−ny|×d≦80nmの特性を有し、光学的主軸の分布状
態が小さい光学補償フィルムを作製することが可能であ
り、更に、TN型液晶表示素子に適用することにより、
高コントラストで表示ムラのない液晶表示素子が得られ
る。なお、熱処理の加熱時間や加熱温度及び張力は、フ
ィルム基板に用いる合成樹脂の材質及び厚さにより決定
される。
According to the present invention, a thermoplastic resin film is continuously dealigned with a refractive index anisotropic material under constant tension at a temperature of L MD / L TD > 1.0 and lower than the glass transition point. And re-orientation, 5nm ≦ | n x without losing the smoothness of the film.
-N y | has characteristics of × d ≦ 80 nm, it is possible distribution of the optical principal axis to produce a small optical compensation film, further, by applying to the TN-type liquid crystal display device,
A liquid crystal display device having high contrast and no display unevenness can be obtained. The heating time, heating temperature and tension of the heat treatment are determined by the material and thickness of the synthetic resin used for the film substrate.

【0025】[0025]

【実施例】以下本発明を実施例、比較例によって説明す
る。本発明のフィルムの光学的物性は次の方法により測
定した。 (1)複屈折率 オリンパス光学(株)製偏光顕微鏡BH2とベレックコ
ンペンセーターを用い、波長550nmでの光学的位相
差を測定した。 (2)光学的主軸 光弾性測定装置により光弾性感度を測定しした後に、ベ
レックコンペンセーターを用い屈折率楕円体の増相軸と
遅相軸を調べることにより光学的主軸を測定した。
The present invention will be described below with reference to examples and comparative examples. The optical properties of the film of the present invention were measured by the following methods. (1) Birefringence Using a polarizing microscope BH2 manufactured by Olympus Optical Co., Ltd. and a Berek compensator, the optical phase difference at a wavelength of 550 nm was measured. (2) Optical principal axis After measuring the photoelastic sensitivity with a photoelasticity measuring device, the optical principal axis was measured by examining the phase increasing axis and slow axis of the index ellipsoid using a Berek compensator.

【0026】(実施例1)住友化学工業(株)のポリエ
ーテルサルホン樹脂:ビクトレックスPES4100G
(Tg=226℃)を溶融押し出し法でフィルム化し
た。得られたフィルムのTg- は180℃であり、フィ
ルム面内の位相差が15nm、フィルム厚みが95μm、光学
的主軸の振れ幅は±23°であった。装置はフィルムを
均一にチャッキングし一端のみが可動できる固定治具を
取り付けた熱風乾燥機を用いた。フィルムは屈折率楕円
体の長軸方向が、一定張力を与える方向に対し直交する
ように固定し、熱処理は可動できる一方のフィルム固定
部分に加重を掛けフィルムに一定張力を与えた状態で行
った。フィルムをLMD/LTD=3で取り付け、処理温度
を216℃、加重によるフィルム張力を6.3gf/mmにした条
件で4分間熱処理した。熱処理後のポリエーテルサルホ
ンフィルムは位相差が張力方向に発現し17nmであり、光
学的主軸の振れ幅は±0.5°以下で外観も良好であっ
た。
Example 1 Polyethersulfone resin of Sumitomo Chemical Co., Ltd .: Victorex PES4100G
(Tg = 226 ° C.) was formed into a film by the melt extrusion method. The obtained film had a Tg- of 180 ° C., an in-plane retardation of the film of 15 nm, a film thickness of 95 μm, and an optical axis swing range of ± 23 °. The apparatus used was a hot-air dryer in which a film was uniformly chucked and a fixing jig having only one end movable was attached. The film was fixed so that the major axis direction of the index ellipsoid was orthogonal to the direction in which a constant tension was applied, and the heat treatment was performed with a weight applied to one of the movable film fixing parts and a constant tension applied to the film. . The film was attached with L MD / L TD = 3, and heat-treated for 4 minutes under the conditions that the processing temperature was 216 ° C. and the film tension due to weighting was 6.3 gf / mm. The polyether sulfone film after the heat treatment had a retardation of 17 nm in which the retardation was developed in the tension direction, and the deflection width of the optical principal axis was ± 0.5 ° or less, and the appearance was good.

【0027】(実施例2)実施例1と同様な方法により
フィルム面内の位相差が15nm、フィルム厚みが95μm、
光学的主軸の振れ幅が±23°のポリエーテルサルホン
を作製した。このフィルムをLMD/LTD=10で取り付
け、処理温度を216℃、加重によるフィルム張力を7.2gf
/mmにした条件で、フィルムの屈折率楕円体の長軸方向
に対し直交する方向に張力を掛け、4分間熱処理した。
熱処理後のポリエーテルサルホンフィルムは位相差が張
力方向に発現し19nmであり、光学的主軸の振れ幅は±
0.1°以下で外観も良好であった。
Example 2 By the same method as in Example 1, the in-plane retardation of the film was 15 nm, the film thickness was 95 μm,
A polyether sulfone having an optical axis deflection range of ± 23 ° was produced. This film was attached with L MD / L TD = 10, processing temperature was 216 ° C, and film tension due to loading was 7.2 gf.
/ Mm, a tension was applied in a direction orthogonal to the major axis direction of the refractive index ellipsoid of the film, and heat treatment was performed for 4 minutes.
After heat treatment, the polyether sulfone film has a phase difference of 19 nm in the tension direction, and the deflection range of the optical axis is ±
The appearance was good at 0.1 ° or less.

【0028】(実施例3)実施例1と同様な方法により
フィルム面内の位相差が15nm、フィルム厚みが95μm、
光学的主軸の振れ幅が±23°のポリエーテルサルホン
を作製した。このフィルムをLMD/LTD=10で取り付
け、処理温度を216℃、加重によるフィルム張力を11.1g
f/mmにした条件で、フィルムの屈折率楕円体の長軸方
向に対し直交する方向に張力を掛け、4分間熱処理し
た。熱処理後のポリエーテルサルホンフィルムは位相差
が張力方向に発現し30nmであり、光学的主軸の振れ幅は
±0.1°以下で外観も良好であった。
Example 3 By the same method as in Example 1, the in-plane retardation of the film was 15 nm, the film thickness was 95 μm,
A polyether sulfone having an optical axis deflection range of ± 23 ° was produced. This film was attached with L MD / L TD = 10, processing temperature was 216 ° C, and film tension due to loading was 11.1 g.
Under the condition of f / mm, tension was applied in a direction orthogonal to the major axis direction of the refractive index ellipsoid of the film, and heat treatment was performed for 4 minutes. The polyether sulfone film after the heat treatment had a phase difference of 30 nm in which the retardation was developed in the tension direction, and the deflection width of the optical principal axis was ± 0.1 ° or less, and the appearance was good.

【0029】(実施例4)実施例1と同様な方法により
フィルム面内の位相差が15nm、フィルム厚みが95μm、
光学的主軸の振れ幅が±23°のポリエーテルサルホン
を作製した。このフィルムをLMD/LTD=10で取り付
け、処理温度を216℃、加重によるフィルム張力を24.1g
f/mmにした条件で、フィルムの屈折率楕円体の長軸方
向に対し直交する方向に張力を掛け、4分間熱処理し
た。熱処理後のポリエーテルサルホンフィルムは位相差
が張力方向に発現し64nmであり、光学的主軸の振れ幅は
±0.1°以下で外観も良好であった。
Example 4 By the same method as in Example 1, the in-plane retardation of the film was 15 nm, the film thickness was 95 μm,
A polyether sulfone having an optical axis deflection range of ± 23 ° was produced. This film was attached with L MD / L TD = 10, the processing temperature was 216 ° C, and the film tension due to loading was 24.1 g.
Under the condition of f / mm, tension was applied in a direction orthogonal to the major axis direction of the refractive index ellipsoid of the film, and heat treatment was performed for 4 minutes. The polyether sulfone film after the heat treatment had a phase difference of 64 nm in the tension direction, and the deflection width of the optical principal axis was ± 0.1 ° or less, and the appearance was good.

【0030】(比較例1)実施例1と同様な方法により
フィルム面内の位相差が15nm、フィルム厚みが95μm、
光学的主軸の振れ幅が±23°のポリエーテルサルホン
を作製した。このフィルムをLMD/LTD=3で取り付
け、処理温度を236℃、加重によるフィルム張力を6.3gf
/mmにした条件で、フィルムの屈折率楕円体の長軸方向
に対し直交する方向に張力を掛け、4分間熱処理した。
熱処理後のポリエーテルサルホンフィルムは光学的主軸
の振れ幅は±0.1°以下で外観も良好であったが、位
相差が張力方向に発現し158nmであった。
Comparative Example 1 By the same method as in Example 1, the in-plane retardation of the film was 15 nm, the film thickness was 95 μm,
A polyether sulfone having an optical axis deflection range of ± 23 ° was produced. This film was attached with L MD / L TD = 3, the processing temperature was 236 ° C, and the film tension due to loading was 6.3 gf.
/ Mm, a tension was applied in a direction orthogonal to the major axis direction of the refractive index ellipsoid of the film, and heat treatment was performed for 4 minutes.
The polyether sulfone film after the heat treatment had a deflection of the optical main axis of ± 0.1 ° or less and a good appearance, but a retardation was developed in the tension direction and was 158 nm.

【0031】(比較例2)実施例1と同様な方法により
フィルム面内の位相差が15nm、フィルム厚みが95μm、
光学的主軸の振れ幅が±23°のポリエーテルサルホン
を作製した。このフィルムをLMD/LTD=1、処理温度
を216℃、フィルム張力を6.3gf/mmの条件で4分間熱処
理した。熱処理後のポリエーテルサルホンフィルムは位
相差が張力方向に発現し18nmであり、外観も良好であっ
たが、光学的主軸の振れ幅は±24°であった。
Comparative Example 2 By the same method as in Example 1, the in-plane retardation of the film was 15 nm, the film thickness was 95 μm,
A polyether sulfone having an optical axis deflection range of ± 23 ° was produced. This film was heat-treated for 4 minutes under the conditions of L MD / L TD = 1, treatment temperature of 216 ° C. and film tension of 6.3 gf / mm. The heat-treated polyether sulfone film had a phase difference of 18 nm in the tension direction and a good appearance, but the deflection of the optical principal axis was ± 24 °.

【0032】実施例1〜4及び比較例1〜2の光学補償
フィルムを、NWモードTN型液晶表示素子に最適な角
度で配置した場合の白照度/黒照度の比をコントラスト
として測定した結果を表1に示す。
When the optical compensation films of Examples 1 to 4 and Comparative Examples 1 and 2 are arranged at an optimum angle for a NW mode TN type liquid crystal display element, the result of measuring the white illuminance / black illuminance ratio as contrast is shown. It shows in Table 1.

【0033】[0033]

【表1】 *1 TN型液晶表示素子のみのコントラスト。 *2 TN型液晶表示素子に本発明の熱処理をしないフィ
ルムを配置した。
[Table 1] * 1 Contrast of TN type liquid crystal display element only. * 2 The TN-type liquid crystal display element was provided with the film of the present invention which was not heat-treated.

【0034】[0034]

【発明の効果】本発明により、位相差が5nm≦|nx−n
y|×d≦80nmでその振れ幅が10%以下、更には光学
的主軸の振れ幅を±1.0°以下であることを特徴とす
る光学補償フィルムを作製することができ、本発明をア
クティブ駆動のTN型液晶表示素子に適用することで、
高コントラスト・高精細な液晶表示素子を提供できる。
According to the present invention, the phase difference is 5 nm ≦ | n x −n
An optical compensation film characterized in that y | × d ≦ 80 nm and its deflection width is 10% or less, and the deflection width of the optical principal axis is ± 1.0 ° or less can be produced. By applying to active drive TN type liquid crystal display element,
A high-contrast and high-definition liquid crystal display device can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C08J 5/18 C08J 5/18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication // C08J 5/18 C08J 5/18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂フィルムの向かい合った一
対の両端のみを均一に押さえる治具により、フィルム面
内の屈折率楕円体の長軸方向を固定端に対し平行に固定
し、固定されたフィルム両端の間隔LMDと治具により制
約を受けないフィルム両端の間隔LTDとがLMD/LTD
> 1.0となる条件で、かつ固定端に対し直角方向に
一定の張力を掛けて熱処理することによって、面内の屈
折率楕円体の長軸方向を90°変換することを特徴とす
る光学補償フィルムの製造方法。
1. A fixed film in which the major axis direction of the refractive index ellipsoid in the film plane is fixed in parallel to the fixed end by a jig that uniformly presses only a pair of opposite ends of the thermoplastic resin film. The distance L MD between both ends and the distance L TD between both ends of the film that is not restricted by the jig are L MD / L TD
The optics characterized in that the major axis direction of the in-plane ellipsoid of the in-plane is converted by 90 ° by applying a constant tension in a direction perpendicular to the fixed end and performing heat treatment under the condition of> 1.0. Compensation film manufacturing method.
【請求項2】 熱処理する温度が、熱可塑性樹脂フィル
ムの線膨張率が上昇する温度以上、熱可塑性樹脂のガラ
ス転移点未満の温度である請求項1記載の光学補償フィ
ルムの製造方法。
2. The method for producing an optical compensation film according to claim 1, wherein the temperature for the heat treatment is not less than the temperature at which the linear expansion coefficient of the thermoplastic resin film increases and less than the glass transition point of the thermoplastic resin.
【請求項3】 請求項1又は2記載の光学補償フィルム
の製造方法により得られる、光学補償フィルムの面内の
主屈折率をnx、ny、厚さをdとしたとき5nm≦|nx
y|×d≦80nmでその振れ幅が10%以下であること
を特徴とする光学補償フィルム。
3. The optical compensatory film obtained by the method for producing an optical compensatory film according to claim 1 or 2, wherein the in-plane main refractive indices are n x and n y , and the thickness is d, 5 nm ≦ | n x
An optical compensation film, characterized in that n y | × d ≦ 80 nm and the deflection width is 10% or less.
【請求項4】 請求項1又は2記載の光学補償フィルム
の製造方法により得られる、光学補償フィルムの面内の
屈折率楕円体の光学的主軸の振れ幅が±1.0°以下で
あることを特徴とする光学補償フィルム。
4. The deflection width of the optical principal axis of the in-plane refractive index ellipsoid of the optical compensation film obtained by the method for producing an optical compensation film according to claim 1 or 2, is ± 1.0 ° or less. An optical compensation film characterized by:
【請求項5】 請求項1又は2記載の熱可塑性樹脂がト
リアセテート、ジアセテート、セロハン、ポリエーテル
サルホン、ポリエーテルエーテルサルホン、ポリサルホ
ン、ポリエーテルイミド、ポリカーボネート、ポリエス
テル、ポリビニルアルコール、ポリアリレート、ポリメ
タクリル酸メチル、フッ化ビニリデン、及びポリスチレ
ンからなる群より選ばれた1種又は2種以上の熱可塑性
樹脂である請求項3又は4記載の光学補償フィルム。
5. The thermoplastic resin according to claim 1 or 2, wherein the thermoplastic resin is triacetate, diacetate, cellophane, polyether sulfone, polyether ether sulfone, polysulfone, polyetherimide, polycarbonate, polyester, polyvinyl alcohol, polyarylate, The optical compensation film according to claim 3, which is one or more thermoplastic resins selected from the group consisting of polymethyl methacrylate, vinylidene fluoride, and polystyrene.
【請求項6】 2枚の電極基板間にTN型液晶を挟持し
てなる液晶セルと、その両側に配置された2枚の偏光素
子と、該偏光素子の間に、少なくとも1枚以上の請求項
3、4または5記載の光学補償フィルムを配置している
ことを特徴とする液晶表示素子。
6. A liquid crystal cell in which a TN type liquid crystal is sandwiched between two electrode substrates, two polarizing elements arranged on both sides of the liquid crystal cell, and at least one or more elements are provided between the polarizing elements. Item 3. A liquid crystal display device comprising the optical compensation film according to item 4 above.
JP07039196A 1995-12-22 1996-03-26 Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same Expired - Fee Related JP3719761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07039196A JP3719761B2 (en) 1995-12-22 1996-03-26 Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-334469 1995-12-22
JP33446995 1995-12-22
JP07039196A JP3719761B2 (en) 1995-12-22 1996-03-26 Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
JPH09230141A true JPH09230141A (en) 1997-09-05
JP3719761B2 JP3719761B2 (en) 2005-11-24

Family

ID=26411555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07039196A Expired - Fee Related JP3719761B2 (en) 1995-12-22 1996-03-26 Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same

Country Status (1)

Country Link
JP (1) JP3719761B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722768B1 (en) 1999-10-06 2004-04-20 Seiko Epson Corporation Projector
JP2007245730A (en) * 2001-05-30 2007-09-27 Konica Minolta Holdings Inc Cellulose ester film, manufacturing method of cellulose ester film, phase difference film, optical compensation sheet, elliptically-polarizing plate, and display
US7740919B2 (en) 2001-05-30 2010-06-22 Konica Corporation Cellulose ester film, its manufacturing method, optical retardation film, optical compensation sheet, elliptic polarizing plate, and image display
WO2010071094A1 (en) * 2008-12-18 2010-06-24 株式会社クラレ Polyvinyl alcohol film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722768B1 (en) 1999-10-06 2004-04-20 Seiko Epson Corporation Projector
JP2007245730A (en) * 2001-05-30 2007-09-27 Konica Minolta Holdings Inc Cellulose ester film, manufacturing method of cellulose ester film, phase difference film, optical compensation sheet, elliptically-polarizing plate, and display
US7740919B2 (en) 2001-05-30 2010-06-22 Konica Corporation Cellulose ester film, its manufacturing method, optical retardation film, optical compensation sheet, elliptic polarizing plate, and image display
JP4552962B2 (en) * 2001-05-30 2010-09-29 コニカミノルタホールディングス株式会社 Method for producing cellulose ester film
JP2010241140A (en) * 2001-05-30 2010-10-28 Konica Minolta Holdings Inc Manufacturing method for cellulose ester film
JP2010253953A (en) * 2001-05-30 2010-11-11 Konica Minolta Holdings Inc Method of manufacturing cellulose ester film
WO2010071094A1 (en) * 2008-12-18 2010-06-24 株式会社クラレ Polyvinyl alcohol film
KR20110105803A (en) * 2008-12-18 2011-09-27 가부시키가이샤 구라레 Polyvinyl alcohol film
JPWO2010071094A1 (en) * 2008-12-18 2012-05-31 株式会社クラレ Polyvinyl alcohol film
JP5628025B2 (en) * 2008-12-18 2014-11-19 株式会社クラレ Polyvinyl alcohol film

Also Published As

Publication number Publication date
JP3719761B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP2640083B2 (en) Optical compensation sheet and liquid crystal display device using the same
JP3044681B2 (en) Liquid crystal display
JPH07104450B2 (en) Biaxial optical element and manufacturing method thereof
JPH07191217A (en) Elliptical polarizing plate and liquid crystal display device using the same
US7288296B2 (en) Multilayer optical compensator, liquid crystal display, and process
TWI402579B (en) Multilayer compensator, method of forming a compensator and liquid crystal display
KR101199278B1 (en) Optical film, polarizing plate and liquid crystal display device
US7211304B2 (en) Multilayer optical compensator, liquid crystal display, and process
JP3719761B2 (en) Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same
JPH0894838A (en) Elliptic polarizing plate and liquid crystal display device
JPH06222213A (en) Manufacture of optical anisotropic element and liquid crystal display element using it
JP2003232922A (en) Polarizing plate and liquid crystal display
JP3675541B2 (en) Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same
JP3830559B2 (en) Optical compensation film and liquid crystal display device
JPH06148429A (en) Production of composite phase difference film
JP3681079B2 (en) Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same
JPH06194646A (en) Tn type liquid crystal display element provided with optical compensation film
JPH07287120A (en) Optical compensating sheet
JP3687921B2 (en) Liquid crystal display element using optical anisotropic element
JP3035204B2 (en) Method for producing heat-resistant optical film, heat-resistant optical film, and liquid crystal display panel using the same
JPH07333437A (en) Production of optically anisotropic element and liquid crystal display element formed by using the same
JPH08146220A (en) Phase difference film
JP2006071965A (en) Polarizing plate integrated optical compensation film and liquid crystal display device
JPH0843625A (en) Production of optical compensating sheet
JPH09146085A (en) Elliptic polarizing plate and liquid crystal display element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees