JP3719761B2 - Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same - Google Patents

Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same Download PDF

Info

Publication number
JP3719761B2
JP3719761B2 JP07039196A JP7039196A JP3719761B2 JP 3719761 B2 JP3719761 B2 JP 3719761B2 JP 07039196 A JP07039196 A JP 07039196A JP 7039196 A JP7039196 A JP 7039196A JP 3719761 B2 JP3719761 B2 JP 3719761B2
Authority
JP
Japan
Prior art keywords
film
optical compensation
compensation film
liquid crystal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07039196A
Other languages
Japanese (ja)
Other versions
JPH09230141A (en
Inventor
寿 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP07039196A priority Critical patent/JP3719761B2/en
Publication of JPH09230141A publication Critical patent/JPH09230141A/en
Application granted granted Critical
Publication of JP3719761B2 publication Critical patent/JP3719761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光学補償フィルムに関し、更に詳しくは液晶表示素子の表示コントラストの向上、表示の高精細化に関するものである。
【0002】
【従来の技術】
ワードプロセッサやデスクトップパソコン等のOA機器の表示装置の主流であるCRTは、薄型軽量、低消費電力という大きな利点を持った液晶表示素子に変換されてきている。現在普及している液晶表示素子の多くは、捻れネマティック液晶を用いている。このような液晶を用いた表示方式としては、複屈折モードと旋光モードとの2つの方式に大別できる。
【0003】
複屈折モードを用いた液晶表示素子は、スーパーツイステッドネマティック(以下STNと称す)モードと言い液晶分子配列の捻れ角が90°以上捻れたものである。STNは急峻な電気光学特性を持つため、単純マトリックス状の電極構造でも大容量の表示が得られる。しかし、応答速度が遅く、階調表示が困難という欠点を持ち、薄膜トランジスタやダイオードを用いた液晶表示素子の性能を越えるまでには至らない。
【0004】
薄膜トランジスタやダイオードを用いた液晶表示素子(TFT−LCD,MIM−LCD)は、液晶分子の分子配列状態が90°捻れた旋光モード表示素子であり、応答速度が速く、階調表示も可能であり、表示コントラストも高いことから、液晶表示素子としては最も有力な方式とされている。
【0005】
旋光モード(以下TNと称す)を利用した液晶表示素子は、2枚の基板間にTN液晶を封入した液晶セルとその両側に配置される偏光板で構成される。更にTN型液晶表示素子は偏光板の配置により2方式あり、2枚の偏光板を平行にする方式はノーマリーブラック(NB)モードと呼ばれ、2枚の偏光板を直交させる方式はノーマリーホワイト(NW)モードと呼ばれている。高精細・高画質表示素子、投写型表示装置ではNWモードがよく用いられる。これは、NBモードは黒表示の付近で目立ちやすい色度変化を生じるという問題があり、NWモードにはこのような問題がなく、白表示付近での色度変化は生じるものの、あまり目立たないためである。
【0006】
NWモードにおいて黒表示をする場合、自然光が入射側偏光板に入射すると、直線偏光だけが出射して液晶セルに入射する。液晶セルに駆動電圧を印加すると、液晶層の中央付近の液晶分子は基板とほぼ垂直に立ち上がるが、基板界面付近の液晶分子は基板によるアンカリング効果が強いために完全に立ち上がらない。この場合、液晶セルにはわずかな複屈折が存在するため、液晶セルからの出射光は楕円偏光となる。そのため、入射側偏光板に対し直交配置した出射側偏光板より光がわずかながら漏れてしまい黒表示レベルを低下させてしまう。以上の結果より、コントラストの低下を招き、有力視されるTFT−LCDにおいてもCRTの表示性能を越えるまでにはいたっていない。
【0007】
TN型液晶セルの液晶駆動時に発生する複屈折を位相差板により光学的に補償する方式(例えば、特開平6−148628号公報)が提案されているが、液晶セルより生じる位相差を光学的に補償するためには、位相差板の厚みムラや分子鎖の配向ムラを均一にする必要があるが、液晶セルより生じる位相差はごくわずかであるため、位相差を補償するフィルムは無複屈折フィルムと称してもよい程度に低い複屈折を有する必要があり、面内の複屈折状態を均一にした位相差板を大面積で得ることが非常に難しい。以上のような位相差板の製造上の問題から、パネル全面のコントラスト改善は十分に行われていない。
【0008】
フィルム面内の位相差を均一にする方式として、テンター横一軸延伸機による延伸処理した位相差フィルムの製造方法(例えば、特開平2−42406号公報、特開平6ー51118号公報)が提案されているが、わずかな位相差を均一に製造するまでにはいたっていない。
【0009】
【発明が解決しようとする課題】
本発明の目的とするところは、主屈折率をnx、ny、厚さをdとしたとき5nm≦|nx−ny|×d≦80nmでその振れ幅が10%以下であり、平滑性に優れた光学補償フィルム及びそれを用いた液晶表示素子を提供するものである。
【0010】
【課題を解決するための手段】
本発明は、
(1)熱可塑性樹脂フィルムの向かい合った一対の両端のみを均一に押さえる治具により、フィルム面内の屈折率楕円体の長軸方向を固定端に対し平行に固定し、固定されたフィルム両端の間隔LMDと治具により制約を受けないフィルム両端の間隔LTDとがLMD/LTD > 1.0となる条件で、かつ固定端に対し直角方向に一定の張力を掛けて熱処理することによって、面内の屈折率楕円体の長軸方向を90°変換することを特徴とする光学補償フィルムの製造方法、
(2)熱処理する温度が、熱可塑性樹脂フィルムの線膨張率が上昇する温度以上、熱可塑性樹脂のガラス転移点未満の温度である第(1)項記載の光学補償フィルムの製造方法、
(3)第(1)項又は第(2)項記載の光学補償フィルムの製造方法により得られる、光学補償フィルムの面内の主屈折率をnx、ny、厚さをdとしたとき5nm≦|nx−ny|×d≦80nmでその振れ幅が10%以下であることを特徴とする光学補償フィルム、
(4)第(1)項又は第(2)項記載の光学補償フィルムの製造方法により得られる、光学補償フィルムの面内の屈折率楕円体の光学的主軸の振れ幅が±1.0°以下であることを特徴とする光学補償フィルム、
(5)第(1)項又は第(2)項記載の熱可塑性樹脂がトリアセテート、ジアセテート、セロハン、ポリエーテルサルホン、ポリエーテルエーテルサルホン、ポリサルホン、ポリエーテルイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリアリレート、ポリメタクリル酸メチル、フッ化ビニリデン、及びポリスチレンからなる群より選ばれた1種又は2種以上の熱可塑性樹脂である第(3)項又は第(4)項記載の光学補償フィルム、
(6)2枚の電極基板間にTN型液晶を挟持してなる液晶セルと、その両側に配置された2枚の偏光素子と、該偏光素子の間に、少なくとも1枚以上の第(3)項〜第(5)項のいずれか1項に記載の光学補償フィルムを配置していることを特徴とする液晶表示素子、
を提供するものである。
【0011】
本発明では、熱可塑性樹脂フィルムにおけるフィルム面内の主屈折率nx、nyの関係を、フィルム幅方向の屈折率をnx、フィルム延伸方向の屈折率をnyとしたときに、フィルム面内の屈折率楕円体の長軸方向に対し直角方向に一定張力を掛けて熱処理することで、nx>nyの屈折率関係をnx<nyの屈折率関係に変換(面内屈折率楕円体の長軸方向の90°変換)し、厚さをdとしたとき5nm≦|nx−ny|×d≦80nmでその振れ幅が10%以下であり、平滑性に優れた光学補償フィルムを製造することが出来る。
【0012】
また本発明では、熱可塑性樹脂フィルムの向かい合った両端のみを均一に押さえる治具により固定し、かつ固定端に対し直角方向に一定の張力を掛けて熱処理する場合において、固定されたフィルム両端の間隔をLMD、治具により制約を受けないフィルム両端の間隔をLTDとするとき、
MD/LTD > 1.0
及び、その線膨張率が上昇する温度からそのガラス転移点より低い温度範囲内の条件で熱処理することで、フィルムの平滑性を損なうことなしにそのフィルム面内の複屈折率の大きさ及び屈折率楕円体の長軸方向を制御し、厚さをdとしたとき5nm≦|nx−ny|×d≦80nmでその振れ幅が10%以下、更にはフィルム面内の屈折率楕円体の光学的主軸の振れ幅が±1.0以下の光学補償フィルムを製造することが出来る。
【0013】
また本発明では、熱処理されるフィルムに二軸延伸性が付与されないように、自由端の間隔LTDに対し 固定されたフィルム両端の間隔LMDを十分長く設定し、かつフィルムが加熱変形されない範囲内の張力を掛け、フィルムとなる熱可塑性樹脂をそのフィルムを構成する分子鎖がミクロブラウン運動を開始しフィルムの線膨張率が上昇を開始する温度(以下Tg- と略す)からガラス転移点(Tg)より低い温度、好ましくはガラス転移点よりも10℃〜30℃低い温度で熱処理することで、その外観を損わず、フィルムの複屈折率の大きさ及び屈折率楕円体の長軸方向を制御し、厚さをdとしたとき5nm≦|nx−ny|×d≦80nmでその振れ幅が10%以下、更には光学的主軸の振れ幅が±1.0°以下の光学補償フィルムを製造することが出来る。
【0014】
【発明の実施の形態】
本発明の光学補償フィルムの製造法について説明する。光学補償フィルムを製造するプロセスは製膜と延伸によって行われる。熱可塑性樹脂フィルムを製膜する方法は、溶融製膜法と溶液製膜法があるが、光学補償フィルムの光学特性を左右するフィルムの厚さムラ及び配向ムラが生じなければ、本発明における製膜上の制約はない。しかし、溶融製膜においてはフィルム冷却時に、溶液製膜においてはフィルム乾燥時に、フィルム搬送過程でのフィルムに加わる張力によるひずみで80nmを越える位相差が発生し、本発明のフィルムを得ることはできない。
【0015】
熱可塑性樹脂フィルムに位相差が発現した場合、製膜したフィルムをTg以上で熱緩和させ複屈折を除去することができるが、フィルムを構成する分子鎖は運動性に富んだ脱配向挙動を示すために、フィルム表面の平滑性が失われる。
【0016】
また、製膜時におけるフィルム搬送過程において、極力張力を抑えることで位相差の発現を抑制しても、Tg以上の温度雰囲気下での縦一軸延伸または横一軸延伸では高精度の延伸を用いても、フィルムを構成する分子鎖が流動性に富んでいるため、本発明のように位相差が5nm≦|nx−ny|×d≦80nmの光学補償フィルムを得ることは難しい。
【0017】
本発明は、熱可塑性樹脂フィルムにおいて、フィルムが面内に有する屈折率楕円体の長軸方向に対し直角方向に一定張力を掛け、且つTg未満の温度雰囲気下で熱処理するために、屈折率楕円体は短軸方向に緩やかに延伸される。これはフィルム面内の屈折率の異方性を低減する効果に作用するために、フィルム表面の平滑性を維持したまま面内の配向ムラを低減化し、分子鎖の脱配向を促す。更に、Tg未満の温度雰囲気下で一定張力を掛け続けることにより、分子差は張力方向に緩やかな流動配向を示すために複屈折が生じる。以上のようにTg未満の温度雰囲気下で分子鎖の脱配向と再配向を連続的に行うことにより、本発明の5nm≦|nx−ny|×d≦80nmの特性を有する光学補償フィルムを得ることができる。
【0018】
本発明のLMD/LTD>1.0の場合ではなく、熱可塑性樹脂フィルムをLMD/LTD≦1.0の設定において熱処理した場合は、固定された間隔が短いため、張力が一方向のみに掛かっていた場合でもフィルム面内においては二軸配向的な引っ張り応力が発生する。そのために高分子鎖は理想的な一軸配向が抑制され、フィルムの幅方向に高分子鎖の配向角分布が発現する。屈折率楕円体の光学的主軸は分子鎖配向角に大きく依存するため、フィルムをLMD/LTD≦1.0の条件においては、分子鎖配向の自由度が一方向に制御されないために、光学的主軸の均一化がなされない。
【0019】
フィルムとなる熱可塑性樹脂をLMD/LTD>1.0の条件にて熱処理するときにガラス転移点以上の高温で処理した場合は、フィルムを構成する高分子鎖は流動性に富むためにフィルム流れ方向の分子鎖配向が容易に起こり光学的主軸の均一化はなされるものの、フィルム延伸により複屈折率の増加が起こり、本発明の5nm≦|nx−ny|×d≦80nmの特性を有する光学補償フィルム得ることが難しい。
【0020】
また、熱処理の温度がフィルムのTg- からTg未満の温度範囲より低すぎても、分子鎖のミクロブラウン運動が凍結し、局所的な分子振動をするのみであるため、熱処理による分子鎖配向が起こり難くなり、光学的主軸の均一化が確認されない場合が生じる。
【0021】
光学的主軸の振れ幅は、分子鎖配向のバラツキを示し、±1.0°以下、好ましくは±0.1°以下であるが、この光学的主軸の振れ幅が大きすぎると、液晶セルより発生した位相差を補償することがパネル全面で一様に行われないために、光学補償フィルムによる補償性能に偏差が生じ、部分的な光の漏れが発現する。その結果、TN型液晶表示素子において黒表示の偏差が生じコントラストムラとなるため好ましくない。
【0022】
本発明における熱可塑性樹脂としてはトリアセテート、ジアセテート、セロハン、ポリエーテルサルホン、ポリエーテルエーテルサルホン、ポリサルホン、ポリエーテルイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリアリレート、ポリメタクリル酸メチル、フッ化ビニリデン、ポリスチレン及び、これらをブレンドした樹脂をあげることができる。なお、本発明における樹脂は、添加剤として少量の安定剤、滑剤、染料等が含まれていてもさしつかえない。
【0023】
本発明における光学補償フィルムの厚さは10μm〜500μm更には50μm〜400μmであることが加工性、可撓性の面から好ましい。また、本発明におけるフィルムの表面粗さは0.5μm以下であることが好ましく、更には0.1μm以下であることが好ましい。表面粗さが0.5μmより大きいと光学的位相ムラが生じ、液晶表示素子の表示ムラが顕著に確認される。
【0024】
本発明によれば、熱可塑性樹脂フィルムをLMD/LTD>1.0、かつガラス転移点よりも低い温度で、一定張力下での屈折率異方体の連続的な脱配向と再配向により、フィルムの平滑性を失わずに、5nm≦|nx−ny|×d≦80nmの特性を有し、光学的主軸の分布状態が小さい光学補償フィルムを作製することが可能であり、更に、TN型液晶表示素子に適用することにより、高コントラストで表示ムラのない液晶表示素子が得られる。なお、熱処理の加熱時間や加熱温度及び張力は、フィルム基板に用いる合成樹脂の材質及び厚さにより決定される。
【0025】
【実施例】
以下本発明を実施例、比較例によって説明する。本発明のフィルムの光学的物性は次の方法により測定した。
(1)複屈折率
オリンパス光学(株)製偏光顕微鏡BH2とベレックコンペンセーターを用い、波長550nmでの光学的位相差を測定した。
(2)光学的主軸
光弾性測定装置により光弾性感度を測定しした後に、ベレックコンペンセーターを用い屈折率楕円体の増相軸と遅相軸を調べることにより光学的主軸を測定した。
【0026】
(実施例1)
住友化学工業(株)のポリエーテルサルホン樹脂:ビクトレックスPES4100G(Tg=226℃)を溶融押し出し法でフィルム化した。得られたフィルムのTg- は180℃であり、フィルム面内の位相差が15nm、フィルム厚みが95μm、光学的主軸の振れ幅は±23°であった。
装置はフィルムを均一にチャッキングし一端のみが可動できる固定治具を取り付けた熱風乾燥機を用いた。フィルムは屈折率楕円体の長軸方向が、一定張力を与える方向に対し直交するように固定し、熱処理は可動できる一方のフィルム固定部分に加重を掛けフィルムに一定張力を与えた状態で行った。
フィルムをLMD/LTD=3で取り付け、処理温度を216℃、加重によるフィルム張力を6.3gf/mmにした条件で4分間熱処理した。熱処理後のポリエーテルサルホンフィルムは位相差が張力方向に発現し17nmであり、光学的主軸の振れ幅は±0.5°以下で外観も良好であった。
【0027】
(実施例2)
実施例1と同様な方法によりフィルム面内の位相差が15nm、フィルム厚みが95μm、光学的主軸の振れ幅が±23°のポリエーテルサルホンを作製した。
このフィルムをLMD/LTD=10で取り付け、処理温度を216℃、加重によるフィルム張力を7.2gf/mmにした条件で、フィルムの屈折率楕円体の長軸方向に対し直交する方向に張力を掛け、4分間熱処理した。熱処理後のポリエーテルサルホンフィルムは位相差が張力方向に発現し19nmであり、光学的主軸の振れ幅は±0.1°以下で外観も良好であった。
【0028】
(実施例3)
実施例1と同様な方法によりフィルム面内の位相差が15nm、フィルム厚みが95μm、光学的主軸の振れ幅が±23°のポリエーテルサルホンを作製した。
このフィルムをLMD/LTD=10で取り付け、処理温度を216℃、加重によるフィルム張力を11.1gf/mmにした条件で、フィルムの屈折率楕円体の長軸方向に対し直交する方向に張力を掛け、4分間熱処理した。熱処理後のポリエーテルサルホンフィルムは位相差が張力方向に発現し30nmであり、光学的主軸の振れ幅は±0.1°以下で外観も良好であった。
【0029】
(実施例4)
実施例1と同様な方法によりフィルム面内の位相差が15nm、フィルム厚みが95μm、光学的主軸の振れ幅が±23°のポリエーテルサルホンを作製した。
このフィルムをLMD/LTD=10で取り付け、処理温度を216℃、加重によるフィルム張力を24.1gf/mmにした条件で、フィルムの屈折率楕円体の長軸方向に対し直交する方向に張力を掛け、4分間熱処理した。熱処理後のポリエーテルサルホンフィルムは位相差が張力方向に発現し64nmであり、光学的主軸の振れ幅は±0.1°以下で外観も良好であった。
【0030】
(比較例1)
実施例1と同様な方法によりフィルム面内の位相差が15nm、フィルム厚みが95μm、光学的主軸の振れ幅が±23°のポリエーテルサルホンを作製した。
このフィルムをLMD/LTD=3で取り付け、処理温度を236℃、加重によるフィルム張力を6.3gf/mmにした条件で、フィルムの屈折率楕円体の長軸方向に対し直交する方向に張力を掛け、4分間熱処理した。熱処理後のポリエーテルサルホンフィルムは光学的主軸の振れ幅は±0.1°以下で外観も良好であったが、位相差が張力方向に発現し158nmであった。
【0031】
(比較例2)
実施例1と同様な方法によりフィルム面内の位相差が15nm、フィルム厚みが95μm、光学的主軸の振れ幅が±23°のポリエーテルサルホンを作製した。
このフィルムをLMD/LTD=1、処理温度を216℃、フィルム張力を6.3gf/mmの条件で4分間熱処理した。熱処理後のポリエーテルサルホンフィルムは位相差が張力方向に発現し18nmであり、外観も良好であったが、光学的主軸の振れ幅は±24°であった。
【0032】
実施例1〜4及び比較例1〜2の光学補償フィルムを、NWモードTN型液晶表示素子に最適な角度で配置した場合の白照度/黒照度の比をコントラストとして測定した結果を表1に示す。
【0033】
【表1】

Figure 0003719761
*1 TN型液晶表示素子のみのコントラスト。
*2 TN型液晶表示素子に本発明の熱処理をしないフィルムを配置した。
【0034】
【発明の効果】
本発明により、位相差が5nm≦|nx−ny|×d≦80nmでその振れ幅が10%以下、更には光学的主軸の振れ幅を±1.0°以下であることを特徴とする光学補償フィルムを作製することができ、本発明をアクティブ駆動のTN型液晶表示素子に適用することで、高コントラスト・高精細な液晶表示素子を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical compensation film, and more particularly to an improvement in display contrast of a liquid crystal display element and an increase in display definition.
[0002]
[Prior art]
CRT, which is the mainstream of display devices for office automation equipment such as word processors and desktop personal computers, has been converted into a liquid crystal display element having the great advantages of being thin and light and low power consumption. Many of the liquid crystal display elements that are currently popular use twisted nematic liquid crystals. Display systems using such liquid crystals can be broadly divided into two systems, birefringence mode and optical rotation mode.
[0003]
A liquid crystal display element using a birefringence mode is called a super twisted nematic (hereinafter referred to as STN) mode, and a twist angle of a liquid crystal molecular arrangement is twisted by 90 ° or more. Since STN has steep electro-optical characteristics, a large-capacity display can be obtained even with a simple matrix electrode structure. However, the response speed is slow and the gradation display is difficult, and the performance of the liquid crystal display element using thin film transistors and diodes is not exceeded.
[0004]
Liquid crystal display elements (TFT-LCD, MIM-LCD) using thin-film transistors and diodes are optical rotation mode display elements in which the molecular alignment of liquid crystal molecules is twisted by 90 °, and the response speed is fast and gradation display is also possible. Since the display contrast is high, it is considered to be the most powerful method as a liquid crystal display element.
[0005]
A liquid crystal display element using an optical rotation mode (hereinafter referred to as TN) includes a liquid crystal cell in which TN liquid crystal is sealed between two substrates and polarizing plates disposed on both sides thereof. Furthermore, there are two types of TN liquid crystal display elements depending on the arrangement of the polarizing plates. The method in which two polarizing plates are parallel is called a normally black (NB) mode, and the method in which two polarizing plates are orthogonal is normally. This is called white (NW) mode. The NW mode is often used in high definition / high image quality display elements and projection display devices. This is because the NB mode causes a noticeable chromaticity change in the vicinity of the black display, and the NW mode does not have such a problem and the chromaticity change in the vicinity of the white display occurs but is not so noticeable. It is.
[0006]
When black display is performed in the NW mode, when natural light is incident on the incident side polarizing plate, only linearly polarized light is emitted and incident on the liquid crystal cell. When a driving voltage is applied to the liquid crystal cell, the liquid crystal molecules near the center of the liquid crystal layer rise almost perpendicularly to the substrate, but the liquid crystal molecules near the substrate interface do not rise completely because of the strong anchoring effect by the substrate. In this case, since the liquid crystal cell has a slight birefringence, the outgoing light from the liquid crystal cell becomes elliptically polarized light. For this reason, light leaks slightly from the exit-side polarizing plate arranged orthogonal to the entrance-side polarizing plate, thereby reducing the black display level. From the above results, the contrast is lowered, and the TFT-LCD which is regarded as promising does not reach the CRT display performance.
[0007]
A system (for example, Japanese Patent Laid-Open No. 6-148628) that optically compensates for birefringence generated during liquid crystal driving of a TN type liquid crystal cell by a phase difference plate has been proposed. In order to compensate for this, it is necessary to make the thickness unevenness of the retardation plate and the alignment unevenness of the molecular chain uniform, but since the phase difference generated from the liquid crystal cell is very small, there are no films that compensate for the phase difference. It is necessary to have birefringence that is low enough to be referred to as a refractive film, and it is very difficult to obtain a retardation plate having a uniform in-plane birefringence state in a large area. Due to the problems in manufacturing the retardation plate as described above, the contrast of the entire panel has not been sufficiently improved.
[0008]
As a method for making the in-plane retardation uniform, a method for producing a retardation film stretched by a tenter lateral uniaxial stretching machine (for example, JP-A-2-42406, JP-A-6-51118) has been proposed. However, it is not enough to produce a small phase difference uniformly.
[0009]
[Problems to be solved by the invention]
It is an object of the present invention, the principal refractive index n x, n y, 5nm ≦ when the thickness was d | n x -n y | × its amplitude with d ≦ 80 nm is 10% or less, An optical compensation film excellent in smoothness and a liquid crystal display element using the same are provided.
[0010]
[Means for Solving the Problems]
The present invention
(1) The long axis direction of the refractive index ellipsoid in the film plane is fixed parallel to the fixed end by a jig that uniformly holds only a pair of opposite ends of the thermoplastic resin film, and the fixed film ends in conditions and spacing L TD of the film ends not restricted by the distance L MD and the jig becomes L MD / L TD> 1.0, and be heat treated by applying a constant tension in the direction perpendicular to the fixed end A method for producing an optical compensation film, wherein the major axis direction of the in-plane refractive index ellipsoid is converted by 90 °,
(2) The method for producing an optical compensation film according to item (1), wherein the temperature for the heat treatment is a temperature not lower than the temperature at which the linear expansion coefficient of the thermoplastic resin film is increased and lower than the glass transition point of the thermoplastic resin,
(3) When the in-plane main refractive index of the optical compensation film obtained by the method for producing an optical compensation film described in the item (1) or (2) is nx , ny , and the thickness is d 5nm ≦ | n x -n y | optical compensation film characterized in that × its amplitude with d ≦ 80 nm is 10% or less,
(4) The deflection width of the optical principal axis of the refractive index ellipsoid in the plane of the optical compensation film obtained by the method for producing an optical compensation film described in (1) or (2) is ± 1.0 °. An optical compensation film characterized by:
(5) The thermoplastic resin described in item (1) or (2) is triacetate, diacetate, cellophane, polyethersulfone, polyetherethersulfone, polysulfone, polyetherimide, polycarbonate, polyester, polyvinyl alcohol The optical compensation film according to item (3) or (4), which is one or more thermoplastic resins selected from the group consisting of polyarylate, polymethyl methacrylate, vinylidene fluoride, and polystyrene ,
(6) A liquid crystal cell having a TN type liquid crystal sandwiched between two electrode substrates, two polarizing elements disposed on both sides thereof, and at least one third (3) between the polarizing elements A liquid crystal display element comprising the optical compensation film according to any one of items 1) to (5);
Is to provide.
[0011]
In the present invention, the main refractive indices n x in the film plane in the thermoplastic resin film, the relationship between n y, the refractive index in the film width direction n x, the refractive index of the film stretching direction is taken as n y, film by contrast the long axis direction of the refractive index ellipsoid in a plane heat-treated by applying a constant tension in the direction perpendicular convert the refractive index relationship of n x> n y in the refractive index relationship of n x <n y (in-plane refractive index of 90 ° long axis direction conversion ellipsoid) and, 5 nm ≦ when the thickness was d | n x -n y | × its amplitude with d ≦ 80 nm is 10% or less, excellent smoothness An optical compensation film can be manufactured.
[0012]
Further, in the present invention, in the case where the thermoplastic film is fixed by a jig that uniformly presses both opposite ends of the thermoplastic resin film and is heat-treated by applying a constant tension in a direction perpendicular to the fixed end, the distance between the fixed ends of the film is fixed. Is L MD , and the distance between both ends of the film that is not restricted by the jig is L TD .
L MD / L TD > 1.0
In addition, the heat treatment is performed under the temperature range from the temperature at which the linear expansion coefficient rises to a temperature lower than the glass transition point, so that the magnitude and refraction of the birefringence in the film plane are not impaired without impairing the smoothness of the film. controls the length axis direction of the rate ellipsoid, 5 nm ≦ when the thickness was d | n x -n y | × d ≦ 80nm its amplitude is 10% or less, even the refractive index ellipsoid in the film plane An optical compensation film having a deflection width of the optical principal axis of ± 1.0 or less can be produced.
[0013]
In the present invention, so as not biaxially stretching properties are imparted to the film to be heat treated, the distance L MD of fixed both ends of the film with respect to the interval L TD of the free end set sufficiently long and the film is not heat deformation range The glass transition point from the temperature (hereinafter abbreviated as Tg-) at which the molecular chain constituting the film starts micro-Brownian motion and the linear expansion coefficient of the film starts to rise. Heat treatment at a temperature lower than Tg), preferably 10 ° C. to 30 ° C. lower than the glass transition point, so that the appearance is not impaired, and the size of the birefringence of the film and the major axis direction of the refractive index ellipsoid controls, thickness of 5 nm ≦ when the d | n x -n y | × d ≦ 80nm its amplitude is 10% or less, still more optical amplitude of the optical main axis is less than ± 1.0 ° It is possible to manufacture compensation films come.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A method for producing the optical compensation film of the present invention will be described. The process for producing the optical compensation film is performed by film formation and stretching. There are two methods for forming a thermoplastic resin film: a melt film forming method and a solution film forming method. If the film thickness unevenness and orientation unevenness that affect the optical characteristics of the optical compensation film do not occur, the film forming in the present invention is performed. There are no restrictions on the membrane. However, a phase difference exceeding 80 nm occurs due to strain due to the tension applied to the film during the film conveyance process when the film is cooled in melt film formation and when the film is dried in solution film formation, and the film of the present invention cannot be obtained. .
[0015]
When a retardation is developed in the thermoplastic resin film, the formed film can be thermally relaxed at Tg or more to remove birefringence, but the molecular chains constituting the film exhibit a demobilization behavior rich in mobility. Therefore, the smoothness of the film surface is lost.
[0016]
In addition, in the film transport process during film formation, even if the expression of phase difference is suppressed by suppressing tension as much as possible, high-precision stretching is used in longitudinal uniaxial stretching or transverse uniaxial stretching under a temperature atmosphere of Tg or higher. also, since the molecular chains constituting the film is rich in fluidity, the phase difference is 5 nm ≦ as in the present invention | it is difficult to obtain a × optical compensation film of d ≦ 80nm | n x -n y .
[0017]
The present invention relates to a thermoplastic resin film in which a refractive index ellipse is applied in order to apply a constant tension in a direction perpendicular to the major axis direction of the refractive index ellipsoid in the plane and to perform heat treatment in a temperature atmosphere lower than Tg. The body is gently stretched in the minor axis direction. This acts on the effect of reducing the anisotropy of the refractive index in the film plane, thereby reducing the in-plane alignment unevenness while maintaining the smoothness of the film surface and promoting the de-orientation of molecular chains. Furthermore, when a constant tension is continuously applied under a temperature atmosphere lower than Tg, birefringence occurs because the molecular difference exhibits a gentle flow orientation in the tension direction. By performing disorientation and reorientation of the molecular chains at an ambient temperature of less than Tg continuously as described above, 5 nm ≦ of the present invention | optical compensation film having a × characteristics of d ≦ 80nm | n x -n y Can be obtained.
[0018]
When the thermoplastic resin film is heat-treated in the setting of L MD / L TD ≦ 1.0 instead of the case of L MD / L TD > 1.0 of the present invention, the fixed interval is short, so that the tension is constant. Even when applied only in the direction, a biaxially oriented tensile stress is generated in the film plane. For this reason, ideal uniaxial orientation of the polymer chain is suppressed, and the orientation angle distribution of the polymer chain appears in the width direction of the film. Since the optical principal axis of the refractive index ellipsoid largely depends on the molecular chain orientation angle, the degree of freedom of molecular chain orientation is not controlled in one direction under the condition of L MD / L TD ≦ 1.0. The optical main axis is not uniformized.
[0019]
When the thermoplastic resin used as the film is heat-treated under the condition of L MD / L TD > 1.0, the polymer chain constituting the film is rich in fluidity when processed at a high temperature above the glass transition point. although the molecular chain orientation direction of flow within happen homogenizing optical main axis easily done, occur an increase in birefringence index by film stretching, 5 nm ≦ of the present invention | characteristics of × d ≦ 80nm | n x -n y It is difficult to obtain an optical compensation film.
[0020]
Even if the temperature of the heat treatment is too lower than the temperature range from Tg- to less than Tg of the film, the micro-Brownian motion of the molecular chains freezes and only local molecular vibrations occur. It is difficult to occur, and there is a case where uniformity of the optical main axis is not confirmed.
[0021]
The fluctuation width of the optical principal axis shows variations in molecular chain orientation, and is ± 1.0 ° or less, preferably ± 0.1 ° or less. If the deflection width of the optical principal axis is too large, the liquid crystal cell Since the generated phase difference is not uniformly compensated on the entire panel surface, a deviation occurs in the compensation performance of the optical compensation film, and partial light leakage occurs. As a result, a black display deviation occurs in the TN liquid crystal display element, resulting in uneven contrast.
[0022]
Examples of the thermoplastic resin in the present invention include triacetate, diacetate, cellophane, polyethersulfone, polyetherethersulfone, polysulfone, polyetherimide, polycarbonate, polyester, polyvinyl alcohol, polyarylate, polymethyl methacrylate, and vinylidene fluoride. Polystyrene and blended resins thereof can be mentioned. The resin in the present invention may contain a small amount of a stabilizer, a lubricant, a dye or the like as an additive.
[0023]
The thickness of the optical compensation film in the present invention is preferably 10 μm to 500 μm, and more preferably 50 μm to 400 μm from the viewpoint of workability and flexibility. Moreover, the surface roughness of the film in the present invention is preferably 0.5 μm or less, and more preferably 0.1 μm or less. When the surface roughness is larger than 0.5 μm, optical phase unevenness occurs, and display unevenness of the liquid crystal display element is remarkably confirmed.
[0024]
According to the present invention, a thermoplastic resin film is continuously deoriented and reoriented with a refractive index anisotropic body under a constant tension at a temperature lower than the glass transition point with L MD / L TD > 1.0. Accordingly, without loss of smoothness of the film, 5nm ≦ | n x -n y | has characteristics of × d ≦ 80 nm, it is possible to produce an optical compensation film distribution of the optical main axis is small, Furthermore, by applying to a TN type liquid crystal display element, a liquid crystal display element with high contrast and no display unevenness can be obtained. Note that the heating time, heating temperature, and tension of the heat treatment are determined by the material and thickness of the synthetic resin used for the film substrate.
[0025]
【Example】
The present invention will be described below with reference to examples and comparative examples. The optical properties of the film of the present invention were measured by the following method.
(1) Birefringence The optical phase difference at a wavelength of 550 nm was measured using a polarizing microscope BH2 manufactured by Olympus Optical Co., Ltd. and a Belek Compensator.
(2) Optical principal axis After measuring the photoelastic sensitivity with a photoelasticity measuring device, the optical principal axis was measured by examining the phase-increasing axis and the slow-axis of the refractive index ellipsoid using a Belek Compensator.
[0026]
(Example 1)
A polyethersulfone resin: Victrex PES4100G (Tg = 226 ° C.) manufactured by Sumitomo Chemical Co., Ltd. was formed into a film by a melt extrusion method. The obtained film had a Tg− of 180 ° C., an in-plane retardation of 15 nm, a film thickness of 95 μm, and a deflection width of the optical main axis of ± 23 °.
The apparatus used was a hot air dryer with a fixed jig that chucked the film uniformly and only one end was movable. The film was fixed so that the major axis direction of the refractive index ellipsoid was perpendicular to the direction giving a constant tension, and the heat treatment was performed in a state in which a constant tension was applied to the film by applying a load to one movable film fixing part. .
The film was attached with L MD / L TD = 3, heat-treated for 4 minutes under the conditions of a treatment temperature of 216 ° C. and a film tension under load of 6.3 gf / mm. The polyether sulfone film after the heat treatment exhibited a phase difference in the tension direction of 17 nm, the deflection width of the optical main axis was ± 0.5 ° or less, and the appearance was good.
[0027]
(Example 2)
A polyethersulfone having a retardation in the film plane of 15 nm, a film thickness of 95 μm, and an optical principal axis deflection of ± 23 ° was produced by the same method as in Example 1.
The film was attached with L MD / L TD = 10, the processing temperature was 216 ° C., and the film tension by weight was 7.2 gf / mm. The tension was perpendicular to the major axis of the refractive index ellipsoid of the film. And heat-treated for 4 minutes. The polyether sulfone film after the heat treatment exhibited a phase difference in the tension direction of 19 nm, the deflection width of the optical main axis was ± 0.1 ° or less, and the appearance was good.
[0028]
(Example 3)
A polyethersulfone having a retardation in the film plane of 15 nm, a film thickness of 95 μm, and an optical principal axis deflection of ± 23 ° was produced by the same method as in Example 1.
The film was attached with L MD / L TD = 10, the processing temperature was 216 ° C., and the film tension by weight was 11.1 gf / mm. The tension was perpendicular to the major axis direction of the refractive index ellipsoid of the film. And heat-treated for 4 minutes. The polyether sulfone film after the heat treatment exhibited a phase difference in the tension direction of 30 nm, the deflection width of the optical main axis was ± 0.1 ° or less, and the appearance was good.
[0029]
(Example 4)
A polyethersulfone having a retardation in the film plane of 15 nm, a film thickness of 95 μm, and an optical principal axis deflection of ± 23 ° was produced by the same method as in Example 1.
The film was attached with L MD / L TD = 10, the processing temperature was 216 ° C., and the film tension by weight was 24.1 gf / mm. The tension was perpendicular to the major axis direction of the refractive index ellipsoid of the film. And heat-treated for 4 minutes. The polyether sulfone film after the heat treatment exhibited a phase difference of 64 nm in the tension direction, and the optical principal axis had a deflection width of ± 0.1 ° or less and a good appearance.
[0030]
(Comparative Example 1)
A polyethersulfone having a retardation in the film plane of 15 nm, a film thickness of 95 μm, and an optical principal axis deflection of ± 23 ° was produced by the same method as in Example 1.
This film is attached with L MD / L TD = 3, the processing temperature is 236 ° C., the film tension by weight is 6.3 gf / mm, and the tension is perpendicular to the major axis direction of the refractive index ellipsoid of the film. And heat-treated for 4 minutes. The polyether sulfone film after the heat treatment had a good optical appearance with a fluctuation width of the optical principal axis of ± 0.1 ° or less, but a phase difference was expressed in the tension direction and was 158 nm.
[0031]
(Comparative Example 2)
A polyethersulfone having a retardation in the film plane of 15 nm, a film thickness of 95 μm, and an optical principal axis deflection of ± 23 ° was produced by the same method as in Example 1.
This film was heat-treated for 4 minutes under the conditions of L MD / L TD = 1, a processing temperature of 216 ° C., and a film tension of 6.3 gf / mm. The polyether sulfone film after the heat treatment had a retardation of 18 nm in the tension direction and a good appearance, but the deflection width of the optical main axis was ± 24 °.
[0032]
Table 1 shows the results of measuring the white illuminance / black illuminance ratio as contrast when the optical compensation films of Examples 1 to 4 and Comparative Examples 1 and 2 are arranged at an optimum angle for the NW mode TN liquid crystal display element. Show.
[0033]
[Table 1]
Figure 0003719761
* 1 Contrast of TN type liquid crystal display only.
* 2 The non-heat-treated film of the present invention was placed on the TN liquid crystal display element.
[0034]
【The invention's effect】
The present invention, the phase difference is 5 nm ≦ | said the × its amplitude with d ≦ 80 nm is 10% or less, more or less ± 1.0 ° and amplitude of the optical main axis | n x -n y An optical compensation film can be manufactured, and a high contrast and high definition liquid crystal display element can be provided by applying the present invention to an active drive TN liquid crystal display element.

Claims (5)

熱可塑性樹脂フィルムの向かい合った一対の両端のみを均一に押さえる治具により、フィルム面内の屈折率楕円体の長軸方向を固定端に対し平行に固定し、固定されたフィルム両端の間隔LMDと治具により制約を受けないフィルム両端の間隔LTDとがLMD/LTD > 1.0となる条件で、かつ固定端に対し直角方向に一定の張力を掛けて熱処理することによって、面内の屈折率楕円体の長軸方向を90°変換することを特徴とする光学補償フィルムの製造方法であって、熱処理する温度が、熱可塑性樹脂フィルムの線膨張率が上昇する温度以上で、かつ熱可塑性樹脂のガラス転移点よりも10℃〜30℃低い温度である光学補償フィルムの製造方法。Fixing the long axis direction of the refractive index ellipsoid in the film plane parallel to the fixed end with a jig that uniformly holds only a pair of opposite ends of the thermoplastic resin film, and the distance L MD between the fixed film ends And the distance L TD between both ends of the film, which is not restricted by the jig, is such that L MD / L TD > 1.0, and heat treatment is performed by applying a constant tension in a direction perpendicular to the fixed end. It is a method for producing an optical compensation film characterized in that the major axis direction of the refractive index ellipsoid is converted by 90 °, and the heat treatment temperature is equal to or higher than the temperature at which the linear expansion coefficient of the thermoplastic resin film increases. And the manufacturing method of the optical compensation film which is 10 to 30 degreeC temperature lower than the glass transition point of a thermoplastic resin . 請求項1記載の光学補償フィルムの製造方法により得られる、光学補償フィルムの面内の主屈折率をnx、ny、厚さをdとしたとき5nm≦|nx−ny|×d≦80nmでその振れ幅が10%以下であることを特徴とする光学補償フィルム。Obtained by the production method of the optical compensation film of claim 1, wherein the principal refractive indices n x in the plane of the optical compensation film, n y, 5 nm ≦ when the thickness was d | n x -n y | × d An optical compensation film characterized by having a deflection width of 10% or less at ≦ 80 nm. 請求項1記載の光学補償フィルムの製造方法により得られる、光学補償フィルムの面内の屈折率楕円体の光学的主軸の振れ幅が±1.0°以下であることを特徴とする光学補償フィルム。 An optical compensation film obtained by the method for producing an optical compensation film according to claim 1, wherein the deflection width of the optical principal axis of the refractive index ellipsoid in the plane of the optical compensation film is ± 1.0 ° or less. . 熱可塑性樹脂がトリアセテート、ジアセテート、セロハン、ポリエーテルサルホン、ポリエーテルエーテルサルホン、ポリサルホン、ポリエーテルイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリアリレート、ポリメタクリル酸メチル、フッ化ビニリデン、及びポリスチレンからなる群より選ばれた1種又は2種以上の熱可塑性樹脂である請求項2又は3記載の光学補償フィルム。Thermoplastic resin from triacetate, diacetate, cellophane, polyethersulfone, polyetherethersulfone, polysulfone, polyetherimide, polycarbonate, polyester, polyvinyl alcohol, polyarylate, polymethyl methacrylate, vinylidene fluoride, and polystyrene 4. The optical compensation film according to claim 2, wherein the optical compensation film is one or more thermoplastic resins selected from the group consisting of: 2枚の電極基板間にTN型液晶を挟持してなる液晶セルと、その両側に配置された2枚の偏光素子と、該偏光素子の間に、少なくとも1枚以上の請求項2、3または4記載の光学補償フィルムを配置していることを特徴とする液晶表示素子。 A liquid crystal cell having a TN type liquid crystal sandwiched between two electrode substrates, two polarizing elements disposed on both sides thereof, and at least one sheet between the polarizing elements. 4. A liquid crystal display element, wherein the optical compensation film according to 4 is disposed.
JP07039196A 1995-12-22 1996-03-26 Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same Expired - Fee Related JP3719761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07039196A JP3719761B2 (en) 1995-12-22 1996-03-26 Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-334469 1995-12-22
JP33446995 1995-12-22
JP07039196A JP3719761B2 (en) 1995-12-22 1996-03-26 Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same

Publications (2)

Publication Number Publication Date
JPH09230141A JPH09230141A (en) 1997-09-05
JP3719761B2 true JP3719761B2 (en) 2005-11-24

Family

ID=26411555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07039196A Expired - Fee Related JP3719761B2 (en) 1995-12-22 1996-03-26 Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same

Country Status (1)

Country Link
JP (1) JP3719761B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6722768B1 (en) 1999-10-06 2004-04-20 Seiko Epson Corporation Projector
US6814914B2 (en) * 2001-05-30 2004-11-09 Konica Corporation Cellulose ester film, its manufacturing method, optical retardation film, optical compensation sheet, elliptic polarizing plate, and image display
JP4552962B2 (en) * 2001-05-30 2010-09-29 コニカミノルタホールディングス株式会社 Method for producing cellulose ester film
CN103992606B (en) * 2008-12-18 2016-08-24 可乐丽股份有限公司 Polyvinyl alcohol film

Also Published As

Publication number Publication date
JPH09230141A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
JP2640083B2 (en) Optical compensation sheet and liquid crystal display device using the same
JP4614466B2 (en) Multilayer optical compensation film with amorphous polymer for liquid crystal display
JPH07333597A (en) Liquid crystal display device
JPH07104450B2 (en) Biaxial optical element and manufacturing method thereof
JP4794015B2 (en) Multilayer optical compensator
TWI402579B (en) Multilayer compensator, method of forming a compensator and liquid crystal display
JP2000162419A (en) Phase difference film
JP3719761B2 (en) Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same
JP3675541B2 (en) Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same
JPH06222213A (en) Manufacture of optical anisotropic element and liquid crystal display element using it
JP3681079B2 (en) Optical compensation film manufacturing method, optical compensation film, and liquid crystal display device using the same
JP2004144942A (en) Method for manufacturing phase difference compensating film
JPH06194646A (en) Tn type liquid crystal display element provided with optical compensation film
JPH0323405A (en) Production of phase difference plate
JP2005316094A (en) Birefringent film, production method of birefringent film, elliptically polarizing plate, polarizing plate and liquid crystal display
JP3035204B2 (en) Method for producing heat-resistant optical film, heat-resistant optical film, and liquid crystal display panel using the same
JP3687921B2 (en) Liquid crystal display element using optical anisotropic element
JP2000111732A (en) Production of three-dimensional double refractive film
JPH07333437A (en) Production of optically anisotropic element and liquid crystal display element formed by using the same
JPH07128659A (en) Liquid crystal display element formed by using optical anisotropic element
JPH07110406A (en) Production of optically anisotropic element and liquid crystal display element formed by using the same
JPH09146085A (en) Elliptic polarizing plate and liquid crystal display element
JPH08304628A (en) Phase difference plate, laminated polarizing plate and liquid crystal display device
JPH0843625A (en) Production of optical compensating sheet
JPH07151915A (en) Optical anisotropic element, its production and liquid crystal display element using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees