JPH07333437A - Production of optically anisotropic element and liquid crystal display element formed by using the same - Google Patents

Production of optically anisotropic element and liquid crystal display element formed by using the same

Info

Publication number
JPH07333437A
JPH07333437A JP6130307A JP13030794A JPH07333437A JP H07333437 A JPH07333437 A JP H07333437A JP 6130307 A JP6130307 A JP 6130307A JP 13030794 A JP13030794 A JP 13030794A JP H07333437 A JPH07333437 A JP H07333437A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
optically anisotropic
crystal cell
anisotropic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6130307A
Other languages
Japanese (ja)
Inventor
Yosuke Nishiura
陽介 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP6130307A priority Critical patent/JPH07333437A/en
Publication of JPH07333437A publication Critical patent/JPH07333437A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce optically anisotropic elements which have an excellent contrast and visual field angle characteristic and have less unequal colors and unequal contrasts continuously over a long period of time by specifying the surface roughness of a film before passing the film through stages. CONSTITUTION:This process for production of the optically anisotropic elements has a stage for applying distortion deformation to the film consisting of a thermoplastic resin and having light transmissivity by holding the film between two pieces of rolls varying in circumferential speeds and applying shearing force in both directions of the film and a transverse uniaxial stretching stage. The surface roughness (Ra) of the film before passing the film to these stages is specified to a range of 1nm<=Ra<=20nm. In such a case, shaped or unshaped particles are kneaded into the resin or are applied together with a binder on the film in order to obtain the surface roughness (Ra) before passing the films through the stages. The optical characteristics uniform over the entire surface free from unequalness and defects are obtd. continuously over a long period of time by specifying the roughness of the raw film in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示素子に用いる
と、表示コントラスト及び表示色の視角特性を表示画面
全面で均一に改善できる光学異方素子の製造方法及びそ
れを用いた液晶表示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when used in a liquid crystal display device, provides a method for producing an optically anisotropic element capable of uniformly improving the viewing angle characteristics of display contrast and display color over the entire display screen, and a liquid crystal display device using the same. Regarding

【0002】[0002]

【従来の技術】日本語ワードプロセッサやディスクトッ
プパソコン等のOA機器の表示装置の主流であるCRT
は、薄型軽量、低消費電力という大きな利点をもった液
晶表示素子に変換されてきている。現在普及している液
晶表示素子(以下LCDと称す)の多くは、ねじれネマ
ティック液晶を用いている。このような液晶を用いた表
示方式としては、複屈折モードと旋光モードとの2つの
方式に大別できる。
2. Description of the Related Art CRTs, which are the mainstream of display devices for OA equipment such as Japanese word processors and desktop personal computers
Have been converted into liquid crystal display elements which have the great advantages of thinness, light weight, and low power consumption. Most of the liquid crystal display elements (hereinafter, referred to as LCDs) that are currently popular use twisted nematic liquid crystals. The display method using such a liquid crystal can be roughly classified into a birefringence mode and an optical rotation mode.

【0003】複屈折モードを用いたLCDは、液晶分子
配列のねじれ角160°以上ねじれたもので、急崚な電
気光学特性をもつ為、能動素子(薄膜トランジスタやダ
イオード)が無くても単純なマトリクス状の電極構造で
も時分割駆動により大容量の表示が得られる。しかし、
応答速度が遅く(数百ミリ秒)、階調表示が困難という
欠点を持ち、能動素子を用いた液晶表示素子(TFT−
LCDやMIM−LCDなど)の表示性能を越えるまで
には至らない。
An LCD using a birefringence mode has a twisted angle of 160 ° or more in the alignment of liquid crystal molecules and has steep electro-optical characteristics. Therefore, a simple matrix without active elements (thin film transistor or diode). A large-capacity display can be obtained by time-division driving even with a striped electrode structure. But,
The response speed is slow (hundreds of milliseconds), and gradation display is difficult, and a liquid crystal display element (TFT-
It does not exceed the display performance of LCD and MIM-LCD.

【0004】TFT−LCDやMIM−LCDには、液
晶分子の配列状態が90°ねじれた旋光モードの表示方
式(TN型液晶表示素子)が用いられている。この表示
方式は、応答速度が速く(数+ミリ秒)、容易に白黒表
示が得られ、高い表示コントラストを示すことから他の
方式のLCDと比較して最も有力な方式である。しか
し、ねじれネマティック液晶を用いている為に、表示方
式の原理上見る方向によって表示色や表示コントラスト
が変化するといった視角特性があり、CRTの表示性能
を越えるまでには至らない。
For the TFT-LCD and MIM-LCD, there is used a display system (TN type liquid crystal display element) of optical rotation mode in which the alignment state of liquid crystal molecules is twisted by 90 °. This display method is the most effective method as compared with other LCDs because it has a high response speed (several + milliseconds), can easily obtain a black and white display, and has a high display contrast. However, since the twisted nematic liquid crystal is used, there is a viewing angle characteristic that the display color and the display contrast change depending on the viewing direction in view of the principle of the display system, and the display performance of the CRT cannot be exceeded.

【0005】特開平4−229828号、特開平4−2
58923号公報などに見られるように、一対の偏光板
とTN型液晶セルの間に、光学異方素子を配置すること
によって視野角を拡大しようとする方法が提案されてい
る。
Japanese Unexamined Patent Publication Nos. 4-229828 and 4-2.
As disclosed in Japanese Patent No. 58923, a method has been proposed in which an optical anisotropic element is arranged between a pair of polarizing plates and a TN type liquid crystal cell to increase the viewing angle.

【0006】上記公開公報で提案された光学異方素子
は、液晶セルの表面に対して、垂直な方向に位相差がほ
ぼゼロのものであり、真正面からはなんら光学的な作用
を及ぼさず、傾けたときに位相差が発現し、液晶セルで
発現する位相差を補償しょうというものである。しか
し、これらの方法によってもLCDの視野角はまだ不十
分であり、更なる改良が望まれている。特に、車載用
や、CRTの代替として考えた場合には、現状の視野角
では全く対応できないのが実状である。上記課題を解決
するために、LCDに負の一軸性を有すると共に光学軸
がフイルム面に垂直でも平行でもなく、フイルム法線か
ら10度〜40度傾斜した光学異方素子を使用することによ
って、視野角を大幅に拡大できることを突き止め特許出
願(特願平4ー308377号明細書)した。また、そ
のような光学特性を有するフイルムを連続的に製造する
ために、フイルムの両面に連続的にせん断力差をつける
ことによって、負の一軸性を有すると共に、光学軸が傾
斜した光学異方素子を製造できることを見いだし特許出
願(特願平4ー324116号明細書)した。
The optical anisotropic element proposed in the above publication has a phase difference of almost zero in the direction perpendicular to the surface of the liquid crystal cell and exerts no optical action from the front. The phase difference appears when tilted, and the phase difference that appears in the liquid crystal cell should be compensated. However, even with these methods, the viewing angle of LCD is still insufficient, and further improvement is desired. In particular, when considered as a vehicle-mounted type or as a substitute for a CRT, the current viewing angle cannot cope with the situation. In order to solve the above problems, the LCD has a negative uniaxial property and the optical axis is neither perpendicular nor parallel to the film surface, and by using an optical anisotropic element inclined by 10 to 40 degrees from the film normal, A patent application was filed (Japanese Patent Application No. 4-308377) to find out that the viewing angle can be greatly expanded. In addition, in order to continuously manufacture a film having such optical characteristics, the film has a negative uniaxial property by continuously providing a difference in shearing force on both sides of the film, and also has an optical anisotropy with an inclined optical axis. He found that the device can be manufactured and filed a patent application (Japanese Patent Application No. 4-324116).

【0007】[0007]

【発明が解決しようとする課題】しかし、この方法で長
期間連続製造すると、若干の複屈折ムラが発生し、液晶
表示素子に用いると、表示画像の色むら、コントラスト
むらとなる問題点があった。従って本発明の目的は、コ
ントラスト及び視野角特性に優れ、色むら、コントラス
トむらの少ない光学異方素子を長期間連続製造する方法
を提案することである。
However, when this method is used for continuous production for a long period of time, some birefringence unevenness occurs, and when it is used in a liquid crystal display device, there is a problem that the display image has uneven color and uneven contrast. It was Therefore, an object of the present invention is to propose a method for continuously producing an optical anisotropic element having excellent contrast and viewing angle characteristics and having little color unevenness and contrast unevenness for a long period of time.

【0008】[0008]

【課題を解決するための手段】上記課題は、(1)熱可
塑性樹脂からなり、光透過性を有するフイルムを周速が
異なる2本のロール間に挟んで、該フイルムの面方向に
せん断力を加えることによって、フイルムにひずみ変形
を与える工程と、横一軸延伸工程とを有する光学異方素
子の製造方法において、該工程を通す前のフィルムの表
面粗さ(Ra)が式(1)の範囲である事を特徴とする
光学異方素子の製造方法。 式(1) 1nm≦Ra≦20nm (2)該フィルムの工程を通す前の表面粗さ(Ra)を
得るために定形または不定形の粒子を樹脂に練り込むか
またはバインダーとともに塗布する事を特徴とする前記
(1)記載の光学異方素子の製造方法。 (3)該光学異方素子の光学軸がフイルム法線方向から
傾斜し、且つ負の一軸性を有することを特徴とする前記
(1)乃至(2)記載の光学異方素子の製造方法。 (4)2枚の電極基板間にねじれ角がほぼ90°のTN
型液晶を挟持してなる液晶セルと、その両側に配置され
た2枚の偏光素子と、該液晶セルと該偏光素子の間に、
前記(1)乃至(5)記載の方法により製造された光学
異方素子を少くも一枚配置したことを特徴とする液晶表
示素子によって達成された。
Means for Solving the Problems The above-mentioned problems are as follows. (1) A film made of a thermoplastic resin and having a light-transmitting property is sandwiched between two rolls having different peripheral speeds, and a shearing force is applied in the surface direction of the film. In the method for producing an optically anisotropic element having a step of giving strain deformation to the film by adding the film and a lateral uniaxial stretching step, the surface roughness (Ra) of the film before passing through the step is represented by the formula (1). A method for manufacturing an optical anisotropic element characterized by being in a range. Formula (1) 1 nm ≤ Ra ≤ 20 nm (2) Characteristic that regular or amorphous particles are kneaded into a resin or coated with a binder in order to obtain the surface roughness (Ra) of the film before the step. The method for producing an optical anisotropic element according to (1) above. (3) The method for producing an optically anisotropic element as described in (1) or (2) above, wherein the optical axis of the optically anisotropic element is inclined from the film normal direction and has negative uniaxiality. (4) TN with a twist angle of about 90 ° between two electrode substrates
A liquid crystal cell sandwiching a type liquid crystal, two polarizing elements disposed on both sides of the liquid crystal cell, and between the liquid crystal cell and the polarizing element,
This is achieved by a liquid crystal display device characterized in that at least one optically anisotropic element manufactured by the method described in (1) to (5) above is arranged.

【0009】次に、本発明について詳しく説明する。本
発明における熱可塑性樹脂からなり光透過性を有するフ
イルムとは、熱可塑性樹脂からなるフイルムまたはシー
ト形状での光の透過率が70%以上好ましくは85%以
上でヘイズ2%以下好ましくは1.5%以下のものが全
て対象となる。具体的には、ポリカボネート、ポリアリ
レート、ポリスルホン、ポリエチレンテレフタレート、
ポリエチレンナフタレート、ポリエーテルスルホン、ポ
リフュニレンスルファイド、ポリフェニレンオキサイ
ド、ポリアリルスルホン、ポリビニルアルコール、ポリ
アミド、ポリイミド、ポリオレフィン、ポリ塩化ビニ
ル、セルロース系重合体、ポリアクリロニトリル、ポリ
スチレン、又、二元系、三元系各種共重合体、グラフト
共重合体、ブレンド物など好適に利用される。表面粗さ
を与えるためにこれらの熱可塑性樹脂に定形または不定
形の粒子を練り込むかまたはバインダーとともに塗布す
ることが好ましい。この時、使用される粒子はその組成
において特に限定されず、2種類以上の混合物でもよい
が、高温の2本のロール間に挟まれた時にもフィルム表
面の粗さを保持するためには、無機物が好ましい。例え
ば、硫酸バリウム、マンガンコロイド、二酸化チタン、
硫酸ストロンチウムバリウム、二酸化珪素などの無機物
の微粉末があるが、さらに例えば湿式法や珪酸のゲル化
より得られる合成シリカ等が挙げられる。
Next, the present invention will be described in detail. The film having a light-transmitting property made of a thermoplastic resin in the present invention means that the film or sheet made of a thermoplastic resin has a light transmittance of 70% or more, preferably 85% or more and a haze of 2% or less, preferably 1. Anything less than 5% is targeted. Specifically, polycarbonate, polyarylate, polysulfone, polyethylene terephthalate,
Polyethylene naphthalate, polyether sulfone, polyphenylene sulfide, polyphenylene oxide, polyallyl sulfone, polyvinyl alcohol, polyamide, polyimide, polyolefin, polyvinyl chloride, cellulosic polymer, polyacrylonitrile, polystyrene, also binary system, Various ternary copolymers, graft copolymers, blends and the like are preferably used. It is preferable to knead regular or amorphous particles into these thermoplastic resins or to apply them together with a binder in order to impart surface roughness. At this time, the particles to be used are not particularly limited in composition and may be a mixture of two or more kinds, but in order to maintain the roughness of the film surface even when sandwiched between two high temperature rolls, Inorganic substances are preferred. For example, barium sulfate, manganese colloid, titanium dioxide,
There are fine powders of inorganic substances such as strontium barium sulfate and silicon dioxide, and further examples thereof include synthetic silica obtained by a wet method or gelation of silicic acid.

【0010】また、本発明に用いられるフイルムは、基
本的には面配向がないことが好ましい。たとえば面内の
主屈折率をnx、ny、厚さ方向の屈折率をnzとしたと
き、{(nx+ny)/2ーnz}×d、が100nm以
下好ましくは30nm以下が更に好ましい。もし、この
値が大きいと、せん断によるひずみ変形で得られる光学
異方素子のレターデーション値を小さい領域で制御する
事が難しい。ただし、せん断を加える前のフイルムが光
学的に等方性の場合、せん断ひずみ後の光学特性は、負
の一軸性から若干ずれるため、それを調節するために、
せん断を加える前または後において0.5%〜20%の
幅方向一軸延伸またはアンバランス二軸延伸の工程を加
えることが好ましい。アンバランス二軸延伸とは、長手
方向、幅方向の延伸倍率が異なる二軸延伸であり、この
場合の二軸延伸の長手方向、幅方向の延伸倍率に関して
は幅方向の延伸倍率が0.5%〜20%大きい方が好ま
しい。
The film used in the present invention is basically preferably free of plane orientation. For example, when the main in-plane refractive indices are nx and ny and the refractive index in the thickness direction is nz, {(nx + ny) / 2−nz} × d is 100 nm or less, preferably 30 nm or less. If this value is large, it is difficult to control the retardation value of the optically anisotropic element obtained by strain deformation due to shear in a small region. However, if the film before shearing is optically isotropic, the optical characteristics after shear strain will be slightly deviated from the negative uniaxiality, so to adjust it,
It is preferable to add a step of 0.5% to 20% width uniaxial stretching or unbalanced biaxial stretching before or after shearing. The unbalanced biaxial stretching is biaxial stretching in which the stretching ratios in the longitudinal direction and the width direction are different, and in this case, the stretching ratio in the width direction is 0.5 in the longitudinal direction and the stretching ratio in the width direction. % To 20% is preferable.

【0011】本発明において、フイルムにせん断力を与
えるために最低2本のロールが使用される。これらのロ
ールに強制的に周速差をつけることによって、フイルム
にせん断力を加える。ロールがフイルムをニップする力
は、フイルムがスリップしてせん断力が伝わらないよう
な現象を阻止できることが好ましく、圧下力(ロールが
フイルムを押す力)がフイルムの幅方向の単位長さあた
り、50Kg/cm以上、更に好ましくは100Kg/
cm以上である。また、フイルム面にせん断力を加える
方法としては、フイルムの(Tgー50)度以上、(T
g+10)度以下の温度条件で、周速に差があるかまた
は逆方向にフイルムを進ませるように回転する2つのロ
−ル間に該フイルムを挟み込んで該フイルムを引き出す
ことが挙げられる。せん断力によって主屈折率を傾斜で
きたことについては図4のようなひずみがフイルム内部
に加わっているものと思われる。図4において、フイル
ム内部に仮定した立方体Aは二つのロールの周速差によ
って、変形が加えられ、立体Bのように変形し、更に立
体Cとなって送り出される。このとき立体内部の分子も
傾斜したものと考えられる。
In the present invention, at least two rolls are used to apply the shearing force to the film. A shearing force is applied to the film by forcing the roll speed difference between these rolls. The force with which the roll nips the film is preferably capable of preventing the phenomenon that the film slips and the shearing force is not transmitted, and the reduction force (the force with which the roll pushes the film) is 50 kg per unit length in the width direction of the film. / Cm or more, more preferably 100 kg /
cm or more. Further, as a method of applying a shearing force to the film surface, (Tg-50) degrees or more of the film and (T
Under a temperature condition of g + 10) degrees or less, the film may be sandwiched between two rolls having different peripheral speeds or rotating so as to advance the film in the opposite direction, and the film may be pulled out. The fact that the main refractive index can be inclined by the shearing force is considered to be due to the strain as shown in Fig. 4 being applied inside the film. In FIG. 4, the assumed cube A inside the film is deformed by the difference in the peripheral speeds of the two rolls, deformed like a solid B, and is further sent out as a solid C. At this time, it is considered that the molecules inside the cube are also tilted.

【0012】ところで、該フィルムを上記の条件で連続
的に製造すると、徐々に複屈折ムラが発生し、次第にし
わが大きくなるという問題があった。フィルムがロール
に接触する時に微小な発生し、それが次第に蓄積、拡大
していく事が判明した。また、更に現象を追究した結
果、ロール表面の粗さ、原反フィルムの表面粗さ、原反
フイルムとロールの温度差、フイルムテンションのバラ
ツキが深く係わっていることが判明した。具体的には、
原反フイルムとロールの温度差があるためにフイルムが
ロールに接触したときに熱膨張が生じたり、フイルムテ
ンションの幅方向のバラツキでしわが発生するが、フイ
ルムとロールの間に十分な滑り性があると、そのしわが
解消する事が判明した。
By the way, when the film is continuously manufactured under the above conditions, there is a problem that birefringence unevenness gradually occurs and wrinkles gradually increase. It was found that when the film comes into contact with the roll, a minute amount is generated, which gradually accumulates and expands. Further, as a result of further investigation of the phenomenon, it was found that the roughness of the roll surface, the surface roughness of the original film, the temperature difference between the original film and the roll, and the variations in the film tension are deeply involved. In particular,
Due to the temperature difference between the original film and the roll, thermal expansion occurs when the film contacts the roll, and wrinkles occur due to variations in the film tension in the width direction, but there is sufficient slippage between the film and the roll. It was found that the wrinkle disappeared.

【0013】しかし、フイルムとロール間の温度差やテ
ンションのバラツキは非常にわずかでも微妙にしわの原
因となり、制御が難しいため、フイルムトロールの滑り
性を改善する事が好ましい。ただし、ロールの表面や原
反フィルムの表面を粗くして接触面の摩擦係数を小さく
するために、粗くしすぎると加工後ヘイズが高くなった
り目視で見える欠陥になったりするため好ましくない。
特に、ロール表面を粗くする事は、ヘイズを著しく上げ
るため、好ましい手段ではない。以上の事から、十分検
討した結果、原反フィルムの粗さが式(1)1nm≦R
a≦20nmの範囲にするとによって、ムラや欠陥の無
い全面で均一な光学特性が長時間連続的に得られること
を見いだし本発明に至った。
However, even if the temperature difference between the film and the roll and the variation in the tension are very slight, they cause delicate wrinkles and are difficult to control. Therefore, it is preferable to improve the slip property of the film roll. However, in order to make the surface of the roll or the surface of the raw film rough to reduce the friction coefficient of the contact surface, if it is made too rough, the haze after processing becomes high and it becomes a visible defect, which is not preferable.
In particular, roughening the roll surface is not a preferable means because it significantly increases the haze. Based on the above, as a result of thorough examination, the roughness of the original film is expressed by the formula (1) 1 nm ≦ R.
It has been found that by setting the range of a ≦ 20 nm, uniform optical characteristics can be continuously obtained for a long time on the entire surface without unevenness and defects, and the present invention has been completed.

【0014】次に、図面を用いてTN型液晶表示素子を
例にとり本発明の製造方法で作製される光学異方素子の
作用を説明する。図1、図2は、液晶セルにしきい値電
圧以上の十分な電圧を印加した場合の液晶セル中を伝搬
する光の偏光状態を示したものである。コントラストの
視野角特性には、特に電圧印加時の光の透過率特性が大
きく寄与するため、電圧印加時を例にとり説明する。図
2は、液晶セルに光が垂直に入射した場合の光の偏光状
態を示した図である。自然光L0が偏光軸PAをもつ偏
光板Aに垂直に入射したとき、偏光板PAを透過した光
は、直線偏光L1となるため、偏光板Bによってほぼ完
全にL1は遮断される。
Next, the operation of the optical anisotropic element manufactured by the manufacturing method of the present invention will be described by taking a TN type liquid crystal display element as an example with reference to the drawings. 1 and 2 show polarization states of light propagating in a liquid crystal cell when a sufficient voltage equal to or higher than a threshold voltage is applied to the liquid crystal cell. Since the transmittance characteristic of light particularly when a voltage is applied greatly contributes to the viewing angle characteristic of the contrast, a case where a voltage is applied will be described as an example. FIG. 2 is a diagram showing a polarization state of light when light is vertically incident on the liquid crystal cell. When the natural light L0 is vertically incident on the polarizing plate A having the polarization axis PA, the light transmitted through the polarizing plate PA becomes the linearly polarized light L1, so that the polarizing plate B almost completely blocks L1.

【0015】TN型液晶セルに十分に電圧を印加した時
の液晶分子の配列状態を、概略的に1つの液晶分子でモ
デル的に示すと、概略図中LCのようになる。液晶セル
中の液晶分子LCの分子長軸が光の進路と平行な場合、
入射面(光の進路に垂直な面内)での屈折率の差が生じ
ないので、液晶セル中を伝搬する常光と異常光の位相差
が生じずLCセルを通過した直線偏光は液晶セルを透過
しても直線偏光のまま伝搬する。偏光板Bの偏光軸PB
を偏光板Aの偏光軸PAと垂直に設定すると、液晶セル
を透過した直線偏光は偏光板Bを透過することができず
暗状態となる。
When a sufficient voltage is applied to the TN type liquid crystal cell, the alignment state of the liquid crystal molecules is schematically shown as a model with one liquid crystal molecule, which is represented by LC in the schematic diagram. When the molecular long axis of the liquid crystal molecule LC in the liquid crystal cell is parallel to the path of light,
Since there is no difference in the refractive index on the incident surface (in the plane perpendicular to the light path), there is no phase difference between the ordinary and extraordinary rays propagating in the liquid crystal cell, and the linearly polarized light passing through the LC cell passes through the liquid crystal cell. Even when transmitted, it propagates as linearly polarized light. Polarization axis PB of polarizing plate B
Is set to be perpendicular to the polarization axis PA of the polarizing plate A, the linearly polarized light that has passed through the liquid crystal cell cannot pass through the polarizing plate B, resulting in a dark state.

【0016】図3は、液晶セルに光が斜めに入射した場
合の光の偏光状態を示した図である。入射光の自然光L
0が斜めに入射した場合偏光板Aを透過した偏光L1は
ほぼ直線偏光になる。(実際の場合偏光板の特性により
楕円偏光になる)。この場合、液晶の屈折率異方性によ
り液晶セルの入射面において屈折率の差が生じ、液晶セ
ルを透過する光L2は楕円偏光して偏光板Bで遮断され
ない。この様に斜方入射においては暗状態での光の遮断
が不十分となり、コントラストの大幅な低下を招き好ま
しくない。
FIG. 3 is a diagram showing the polarization state of light when the light obliquely enters the liquid crystal cell. Natural light of incident light L
When 0 is obliquely incident, the polarized light L1 transmitted through the polarizing plate A becomes almost linearly polarized light. (In the actual case, it becomes elliptically polarized due to the characteristics of the polarizing plate). In this case, the refractive index anisotropy of the liquid crystal causes a difference in the refractive index on the incident surface of the liquid crystal cell, and the light L2 transmitted through the liquid crystal cell is elliptically polarized and is not blocked by the polarizing plate B. As described above, in the case of oblique incidence, blocking of light in a dark state becomes insufficient, resulting in a large decrease in contrast, which is not preferable.

【0017】本発明は、表示画面のどの部分においても
均一に、上記斜方入射におけるコントラストの低下を防
ぎ、視角特性を改善しようとするものである。図1に本
発明による構成の一例を示した。偏光板Bと液晶セルと
の間に光の液晶セルの法線方向から傾いた光学軸をも
ち、複屈折ムラが改善された光学異方素子RFが配置さ
れている。この光学異方素子RFは光学軸に対して光が
入射する角度が大きくなる程大きく偏光する複屈折体で
ある。この様な構成の液晶表示素子に図2の場合と同様
に光が斜方入射し液晶セルを透過した楕円偏光した光L
2は、光学異方素子RFを透過する時の位相遅延作用に
よって楕円偏光が元の直線偏光に変調され、種々の斜方
入射においても同一な透過率が得られる視角依存性のな
い良好な液晶表示素子が実現できた。
The present invention intends to prevent the deterioration of the contrast due to the oblique incidence and improve the viewing angle characteristics uniformly in any part of the display screen. FIG. 1 shows an example of the configuration according to the present invention. An optical anisotropic element RF having an optical axis tilted from the normal direction of the liquid crystal cell of light and having improved birefringence unevenness is arranged between the polarizing plate B and the liquid crystal cell. The optically anisotropic element RF is a birefringent body that polarizes more as the angle of incidence of light with respect to the optical axis increases. As in the case of FIG. 2, the elliptically polarized light L which is obliquely incident on the liquid crystal display device having such a structure and is transmitted through the liquid crystal cell is transmitted.
No. 2 is a good liquid crystal that does not depend on the viewing angle because the elliptically polarized light is modulated into the original linearly polarized light by the phase delay effect when transmitting through the optically anisotropic element RF, and the same transmittance is obtained even at various oblique incidences. A display device was realized.

【0018】本発明によって、液晶表示素子の視野角を
大幅に向上できたことについては以下のように推定して
いる。TN−LCDの多くは、ノーマリーホワイトモー
ドが採用されている。このモードにおける視野角特性
は、視角を大きくすることに伴って、黒表示部からの光
の透過率が著しく増大し、結果としてコントラストの急
激な低下を招いていることになる。黒表示は電圧印加時
の状態であるが、この時には、TN型液晶セルは、光学
軸が、セルの表面に対する法線方向から若干傾いた正の
一軸性光学異方体とみなすことができる。又、中間諧調
の場合にはその光学軸は更に、LCセルの法線方向から
傾いていくものと思われる。
It is presumed as follows that the viewing angle of the liquid crystal display device can be greatly improved by the present invention. Most TN-LCDs adopt a normally white mode. With respect to the viewing angle characteristics in this mode, the transmittance of light from the black display portion is significantly increased as the viewing angle is increased, resulting in a sharp decrease in contrast. The black display is the state when a voltage is applied, but at this time, the TN type liquid crystal cell can be regarded as a positive uniaxial optical anisotropic body in which the optical axis is slightly inclined from the direction normal to the cell surface. Also, in the case of intermediate gradation, the optical axis seems to further tilt from the normal direction of the LC cell.

【0019】液晶セルの光学軸が液晶セルの表面に対す
る法線方向から傾いている場合、光学軸が法線方向にあ
る光学異方体では、その補償が不十分であることが予想
される。又、液晶セルが光学軸の傾斜した正の一軸性光
学異方体とみなせるのであれば、それを補償するために
は、光学軸がたがいに直行する方向に傾斜した負の一軸
性光学異方体が好ましい。このような理由から本発明に
おける、光学軸が法線方向から傾いた光学異方体、より
好ましくは負の一軸性を有する光学異方体によって大幅
な視野角特性が改善されたものと推定する。
When the optical axis of the liquid crystal cell is tilted from the direction of the normal line to the surface of the liquid crystal cell, it is expected that the optical anisotropic body having the optical axis in the normal direction will be insufficiently compensated. If the liquid crystal cell can be regarded as a positive uniaxial optical anisotropic body with an inclined optical axis, in order to compensate for it, a negative uniaxial optical anisotropic body with the optical axis inclined in a direction orthogonal to each other is used. The body is preferred. For these reasons, it is presumed that the viewing angle characteristics are significantly improved by the optical anisotropic body having the optical axis inclined from the normal direction in the present invention, more preferably the optical anisotropic body having negative uniaxiality. .

【0020】本発明における光学軸が傾斜した負の一軸
性とは、光学異方性を有したシートの3主軸方向屈折率
N1、N2、N3の間に、N3<N2=N1の関係を有するも
のである。従って光学軸方向の屈折率が最も小さいとい
う特性を有するものである。ただし、N1とN2の値は厳
密に等しい必要はなく、ほぼ等しければ十分である。具
体的には、|N2ーN1|/|N2ーN3|≦0.2であれ
ば実用上問題ない。又、TFT,TN液晶セルの視野角
特性を大幅に改良する条件としては、光学軸、即ち屈折
率N3の方向はシート面の法線方向から10度〜40度
傾いていることが好ましく、15度〜35度がより好ま
しい。また、{(N2+N1)/2ーN3}×dが100
〜400nmである事が好ましい。
In the present invention, the negative uniaxial property in which the optical axis is tilted has a relationship of N3 <N2 = N1 among the refractive indexes N1, N2 and N3 of the sheet having optical anisotropy. It is a thing. Therefore, it has a characteristic that the refractive index in the optical axis direction is the smallest. However, it is not necessary that the values of N1 and N2 are exactly equal, and it is sufficient if they are almost equal. Specifically, if | N2−N1 | / | N2−N3 | ≦ 0.2, there is no practical problem. Further, as a condition for greatly improving the viewing angle characteristics of the TFT and TN liquid crystal cell, it is preferable that the optical axis, that is, the direction of the refractive index N3 is inclined by 10 to 40 degrees from the normal line direction of the sheet surface. More preferably, the degree is from 35 degrees. Also, {(N2 + N1) / 2-N3} × d is 100
It is preferably ˜400 nm.

【0021】[0021]

【実施例】以下実施例によって詳細に説明する。 実施例1 三菱ガス化学(株)製ポリカーボネートフィルム、IU
PILON(FB2000B)、50μm(F−1)を
テンターによって横一軸延伸を行ないフイルム(F−
2)を得た。延伸条件は以下の通りである。 延伸温度 :175度 延伸倍率 :17% フイルム送り出し速度:2m/min
Embodiments will be described in detail below with reference to embodiments. Example 1 Polycarbonate film manufactured by Mitsubishi Gas Chemical Co., Inc., IU
PILON (FB2000B), 50 μm (F-1) is uniaxially stretched by a tenter and the film (F-
2) was obtained. The stretching conditions are as follows. Stretching temperature: 175 degrees Stretching ratio: 17% Film feeding speed: 2 m / min

【0022】次に、(F−2)を20cm幅にスリット
し、図5に示す周速の異なるロールに挟み込んでフイル
ム(F−3)をロール形状で200m作製した。図5に
おいてロールR1は送りだしロール、R2,R3は駆動
系を持たないニップロール兼余熱ロールである。R4と
R5はそれぞれに駆動系を有するロールであり、周速差
を任意に制御できるロールである。また、油圧によって
R4,R5の間の圧力を制御できる構造になっている。
R6は駆動系を有する巻取りロールであり、テンション
コントロールで巻取り速度を制御している。R2からR
5はロール内部にヒーターを内臓し、ロール表面に温度
センサーが取り付けられており、センサー温度をヒータ
ーにフィードバックしPID制御によって±1度の精度
で温度コントロールした。また、それぞれのロールの材
質はハードクロムメッキ後研磨し、表面粗さ、真円度、
円筒度がそれぞれ0.1S、15μm、15μm、であ
った。
Next, (F-2) was slit into a width of 20 cm and sandwiched between rolls having different peripheral speeds shown in FIG. 5 to produce a film (F-3) in a roll shape of 200 m. In FIG. 5, roll R1 is a feed roll, and R2 and R3 are nip rolls and residual heat rolls having no drive system. R4 and R5 are rolls each having a drive system, and can control the peripheral speed difference arbitrarily. Further, the structure is such that the pressure between R4 and R5 can be controlled by hydraulic pressure.
R6 is a winding roll having a drive system, and the winding speed is controlled by tension control. R2 to R
In No. 5, a heater was incorporated inside the roll, and a temperature sensor was attached to the roll surface. The sensor temperature was fed back to the heater to control the temperature with an accuracy of ± 1 degree by PID control. Also, the material of each roll is hard chrome plated and then polished to obtain surface roughness, roundness,
The cylindricity was 0.1S, 15 μm, and 15 μm, respectively.

【0023】図5の装置における(F−3)の成形条件
は以下の通りである。 R4、R5の周速 :2.01m/min、2.00
m/min R4、R5の表面温度 :130度 R4、R5に挟まれたフイルムに加わる力:3000K
g R4、R5のロール径 :150mm
The molding conditions of (F-3) in the apparatus of FIG. 5 are as follows. Peripheral speed of R4 and R5: 2.01 m / min, 2.00
m / min Surface temperature of R4 and R5: 130 degrees Force applied to the film sandwiched between R4 and R5: 3000K
Roll diameter of g R4 and R5: 150mm

【0024】比較例1 三菱ガス化学(株)製ポリカーボネートフィルム、IU
PILON(FB2000B:但し練り込まれているシ
リカの量を実施例1の1.5倍にした物)、50μm
(F−4)を実施例1と同様に、テンター横一軸延伸を
行った後に周速の異なるロールに挟み込んでフイルム
(F−5)をロール形状で200m作製した。
Comparative Example 1 Polycarbonate film manufactured by Mitsubishi Gas Chemical Co., Inc., IU
PILON (FB2000B: the amount of silica kneaded in is 1.5 times that of Example 1), 50 μm
In the same manner as in Example 1, (F-4) was subjected to tenter transverse uniaxial stretching and then sandwiched between rolls having different peripheral speeds to prepare a film (F-5) in a roll shape of 200 m.

【0025】比較例2 ホスゲンとビスフェノールAの縮合によって得られたス
チレン換算重量平均分子量3万のポリカーボネートをメ
チレンクロライドに溶解し、20%溶液とした。これを
ステンレスドラム上に流延し、連続的にはぎ取り、乾燥
することによってフィルム(F−6)を得た。次に実施
例1と同様に、テンター横一軸延伸を行った後に周速の
異なるロールに挟み込んでフイルム(F−7)をロール
形状で200m作製した。
Comparative Example 2 A polycarbonate having a styrene-equivalent weight average molecular weight of 30,000 obtained by condensation of phosgene and bisphenol A was dissolved in methylene chloride to prepare a 20% solution. This was cast on a stainless drum, continuously stripped, and dried to obtain a film (F-6). Then, in the same manner as in Example 1, the tenter was transversely uniaxially stretched, and then sandwiched between rolls having different peripheral speeds to prepare a film (F-7) having a roll shape of 200 m.

【0026】<光学異方素子の製造に用いたフィルムの
評価>実施例及び比較例におけるF−1、F−2、F−
4、F−6のフィルムから、15cm×30cmのサン
プルを切り出し、均等に36点を選び、島津製作所製エ
リプソメ−タ−AEP−100を透過モ−ドで使用し、
Re値及びその斜め入射角度依存性を求めた。また、幅
方向の屈折率、フイルムの厚さはそれぞれアッベの屈折
率計、マイクロメーターで測定した。これらの測定値の
平均値から、フイルムの3軸方向屈折率(N1〜N3)、
面配向のレターデーション(Rth)を計算した。図7に
計算で求めた3軸屈折率の関係を示す。ここで、最も大
きい屈折率をN1、最も小さい屈折率をN3、前記N1、
N3と直交するもう一つの主屈折率をN2とした。また、
表面粗さ、ヘイズはそれぞれWYKO社製TOPO−3
D、日本電色工業製ヘイズメーターNDHで測定した。
結果を表1に示す。
<Evaluation of Film Used for Manufacturing Optically Anisotropic Element> F-1, F-2, F- in Examples and Comparative Examples
A sample of 15 cm × 30 cm was cut out from the film of No. 4 and F-6, 36 points were uniformly selected, and an Ellipsometer AEP-100 manufactured by Shimadzu Corporation was used in a transmission mode.
The Re value and its oblique incident angle dependence were determined. The refractive index in the width direction and the film thickness were measured with an Abbe refractometer and a micrometer, respectively. From the average value of these measured values, the refractive index of the film in the three axial directions (N1 to N3),
The retardation (Rth) of the plane orientation was calculated. FIG. 7 shows the relationship of the triaxial refractive index calculated. Here, the largest refractive index is N1, the smallest refractive index is N3, and the N1 is
The other main refractive index orthogonal to N3 is N2. Also,
Surface roughness and haze are TOPO-3 manufactured by WYKO.
D, measured with a Nippon Denshoku Industries haze meter NDH.
The results are shown in Table 1.

【0027】<光学異方素子の評価>実施例及び比較例
におけるF−3、F−5、F−7の光学異方素子から、
15cm×30cmのサンプルを切り出し、上記の様に
して、フイルムの3軸方向屈折率(N1〜N3)、面配向
のレターデーション(Rth)を求めた。また、N3とフ
イルム法線方向からの傾斜角(β)を計算で求めた。傾
斜角の変動(△β)は、上記36点の最大値と最小値の
差を平均値で除した値(百分率で表す)、またRe値の
変動(△Rth)は隣接する測定点の測定値の差の絶対値
を平均値で除した値のうちで最大の値を言う。結果を表
2に示す。図1に示す光学異方性素子として実施例及び
比較例のF−3、F−5、F−7の光学異方素子を液晶
セルに用いた場合及びフイルムを配置しない場合につい
て、30Hz矩形波における0V/5Vのコントラスト
の視角特性を大塚電子製LCD−5000によって測定
した。コントラスト10の位置を視野角と定義し上下左
右の視野角特性の結果及び目視でのコントラストと色ム
ラを表2に示す。ここで使用した液晶セルに使われてい
る液晶の異常光と常光の屈折率の差と液晶セルのギャッ
プサイズの積は450nmでねじれ角が90度である。
尚、この測定におけるTN液晶セルの偏光板の偏光軸、
液晶セルのラビング軸、光学補償シートの光学軸の方向
については、図6に示す。
<Evaluation of Optically Anisotropic Elements> From the optically anisotropic elements F-3, F-5, and F-7 in Examples and Comparative Examples,
A 15 cm × 30 cm sample was cut out, and the film triaxial refractive index (N1 to N3) and plane orientation retardation (Rth) were determined as described above. Further, the inclination angle (β) from N3 and the film normal direction was calculated. The inclination angle variation (Δβ) is the value (expressed as a percentage) obtained by dividing the difference between the maximum and minimum values at the 36 points by the average value, and the Re value variation (ΔRth) is the measurement at the adjacent measurement point. The maximum value among the absolute values of the difference between the values divided by the average value. The results are shown in Table 2. 30 Hz rectangular wave when the optical anisotropic elements of Examples and Comparative Examples F-3, F-5, and F-7 as the optically anisotropic element shown in FIG. 1 were used in the liquid crystal cell and the film was not arranged. The viewing angle characteristics of 0V / 5V contrast in the above were measured by LCD-5000 manufactured by Otsuka Electronics. The position of the contrast 10 is defined as the viewing angle, and the results of the viewing angle characteristics in the up, down, left, and right directions and the visual contrast and color unevenness are shown in Table 2. The product of the difference in refractive index between the extraordinary ray and the ordinary ray of the liquid crystal used in the liquid crystal cell used here and the gap size of the liquid crystal cell is 450 nm, and the twist angle is 90 degrees.
In addition, the polarization axis of the polarizing plate of the TN liquid crystal cell in this measurement,
The directions of the rubbing axis of the liquid crystal cell and the optical axis of the optical compensation sheet are shown in FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】本発明によれば、TN型液晶表示素子の視
角特性やコントラストが改善されると共に、複屈折ムラ
に伴う表示画面の色ムラが低減し、視認性にすぐれる高
品位表示の液晶表示素子を提供することができる。ま
た、本発明をTFTやMIMなどの3端子、2端子素子
を用いたアクティブマトリクス液晶表示素子に応用して
も優れた効果が得られることは言うまでもない。
According to the present invention, the viewing angle characteristics and contrast of the TN type liquid crystal display device are improved, and the color unevenness of the display screen due to the birefringence unevenness is reduced, and the liquid crystal display of high quality display excellent in visibility is obtained. An element can be provided. Needless to say, even if the present invention is applied to an active matrix liquid crystal display element using a three-terminal or two-terminal element such as TFT or MIM, excellent effects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶表示素子の構成の実施例を説明す
る図である。詳しくは、光学軸が法線方向から傾いた負
の一軸性光学異方体および液晶セルの配置を説明する図
である。
FIG. 1 is a diagram illustrating an example of a configuration of a liquid crystal display element of the present invention. Specifically, it is a diagram illustrating the arrangement of a negative uniaxial optically anisotropic body whose optical axis is inclined from the normal direction and a liquid crystal cell.

【図2】従来のTN型液晶表示素子の構成図と表示面に
垂直に光が入射する場合の光の透過状態を説明する図で
ある。
FIG. 2 is a diagram illustrating a configuration of a conventional TN type liquid crystal display element and a diagram for explaining a light transmission state when light is perpendicularly incident on a display surface.

【図3】従来のTN型液晶表示素子の構成図と表示面に
斜めに光が入射する場合の光の透過状態を説明する図で
ある。
FIG. 3 is a diagram illustrating a configuration of a conventional TN type liquid crystal display element and a light transmission state when light obliquely enters a display surface.

【図4】せん断によるフイルム変形のメカニズムを示す
図である。
FIG. 4 is a diagram showing a mechanism of film deformation due to shearing.

【図5】本発明に使用した異周速ロール装置の図であ
る。
FIG. 5 is a view of a different peripheral speed roll device used in the present invention.

【図6】本実施例に使用した液表示素子の構成図であ
る。
FIG. 6 is a configuration diagram of a liquid display element used in this example.

【符号の説明】[Explanation of symbols]

A、B:偏光板 PA、PB:偏光軸 F:フィルム LCS:TN型液晶セル RF:光学異方性素子 LO:入射光 L1:偏光板Aを通過した直線偏光 L2:TN型液晶セルを通過した偏光(主に楕円偏光) LC:TN型液晶セル内の液晶をモデル的に表現したも
の。 R1〜R6:ロール
A, B: Polarizing plates PA, PB: Polarizing axes F: Film LCS: TN type liquid crystal cell RF: Optical anisotropic element LO: Incident light L1: Linearly polarized light passing through the polarizing plate L2: Passing TN type liquid crystal cell Polarized light (mainly elliptically polarized light) LC: A model representation of the liquid crystal in the TN liquid crystal cell. R1 to R6: Roll

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂からなり、光透過性を有す
るフイルムを周速が異なる2本のロール間に挟んで、該
フイルムの面方向にせん断力を加えることによって、フ
イルムにひずみ変形を与える工程と、横一軸延伸工程と
を有する光学異方素子の製造方法において、該工程を通
す前のフィルムの表面粗さ(Ra)が式(1)の範囲で
ある事を特徴とする光学異方素子の製造方法。 式(1) 1nm≦Ra≦20nm
1. A film made of a thermoplastic resin and having a light-transmitting property is sandwiched between two rolls having different peripheral speeds, and a shearing force is applied in the surface direction of the film to give strain deformation to the film. In the method for producing an optically anisotropic element having a step and a lateral uniaxial stretching step, the surface roughness (Ra) of the film before passing through the step is in the range of formula (1). Device manufacturing method. Formula (1) 1 nm ≦ Ra ≦ 20 nm
【請求項2】 該フィルムの工程を通す前の表面粗さ
(Ra)を与えるために定形または不定形の粒子を樹脂
に練り込むかまたはバインダーとともに塗布する事を特
徴とする請求項1記載の光学異方素子の製造方法。
2. The resin according to claim 1, wherein the particles of a regular shape or an irregular shape are kneaded with a resin or coated with a binder to give a surface roughness (Ra) before the film is processed. Manufacturing method of optically anisotropic element.
【請求項3】 該光学異方素子の光学軸がフイルム法線
方向から傾斜し、且つ負の一軸性を有することを特徴と
する請求項1乃至2記載の光学異方素子の製造方法。
3. The method for producing an optical anisotropic element according to claim 1, wherein an optical axis of the optical anisotropic element is inclined from the film normal direction and has negative uniaxiality.
【請求項4】 2枚の電極基板間にねじれ角がほぼ90
°のTN型液晶を挟持してなる液晶セルと、その両側に
配置された2枚の偏光素子と、該液晶セルと該偏光素子
の間に、請求項1乃至3記載の方法により製造された光
学異方素子を少くも一枚配置したことを特徴とする液晶
表示素子。
4. The twist angle between the two electrode substrates is approximately 90.
4. A liquid crystal cell sandwiching a TN type liquid crystal of 2 °, two polarizing elements disposed on both sides of the liquid crystal cell, and the liquid crystal cell and the polarizing element are manufactured by the method according to claim 1. A liquid crystal display element characterized by arranging at least one optically anisotropic element.
JP6130307A 1994-06-13 1994-06-13 Production of optically anisotropic element and liquid crystal display element formed by using the same Pending JPH07333437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6130307A JPH07333437A (en) 1994-06-13 1994-06-13 Production of optically anisotropic element and liquid crystal display element formed by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6130307A JPH07333437A (en) 1994-06-13 1994-06-13 Production of optically anisotropic element and liquid crystal display element formed by using the same

Publications (1)

Publication Number Publication Date
JPH07333437A true JPH07333437A (en) 1995-12-22

Family

ID=15031195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6130307A Pending JPH07333437A (en) 1994-06-13 1994-06-13 Production of optically anisotropic element and liquid crystal display element formed by using the same

Country Status (1)

Country Link
JP (1) JPH07333437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018817C2 (en) * 2001-08-24 2003-02-25 Corus Technology B V Method for processing a continuously cast metal slab or belt, and plate or belt thus produced.
NL1018816C2 (en) * 2001-08-24 2003-02-25 Corus Technology B V Strip metal rolling comprises use of set of rollers rotating at different speeds
NL1018815C2 (en) * 2001-08-24 2003-02-25 Corus Technology B V Method for processing a metal slab or billet, and product made with it.
US8040468B2 (en) 2008-08-28 2011-10-18 Fujifilm Corporation Liquid crystal display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018817C2 (en) * 2001-08-24 2003-02-25 Corus Technology B V Method for processing a continuously cast metal slab or belt, and plate or belt thus produced.
NL1018816C2 (en) * 2001-08-24 2003-02-25 Corus Technology B V Strip metal rolling comprises use of set of rollers rotating at different speeds
NL1018815C2 (en) * 2001-08-24 2003-02-25 Corus Technology B V Method for processing a metal slab or billet, and product made with it.
WO2003018223A1 (en) * 2001-08-24 2003-03-06 Corus Technology Bv Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
WO2003022469A1 (en) * 2001-08-24 2003-03-20 Corus Technology Bv Method for processing a metal slab or billet, and product produced using said method
US7341096B2 (en) 2001-08-24 2008-03-11 Corus Technology Bv Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
US7546756B2 (en) 2001-08-24 2009-06-16 Corus Technology Bv Method for processing a metal slab or billet, and product produced using said method
US8040468B2 (en) 2008-08-28 2011-10-18 Fujifilm Corporation Liquid crystal display device

Similar Documents

Publication Publication Date Title
JP3044681B2 (en) Liquid crystal display
JP2640083B2 (en) Optical compensation sheet and liquid crystal display device using the same
JPH07191217A (en) Elliptical polarizing plate and liquid crystal display device using the same
US5244713A (en) Optical film
EP0376696B1 (en) Optical film
JPH06222213A (en) Manufacture of optical anisotropic element and liquid crystal display element using it
JPH07333437A (en) Production of optically anisotropic element and liquid crystal display element formed by using the same
JP2767382B2 (en) Optical compensation sheet
JP2880614B2 (en) Optical compensation sheet and liquid crystal display device using the same
JPH06194646A (en) Tn type liquid crystal display element provided with optical compensation film
JP3568641B2 (en) Optical anisotropic element and liquid crystal display element using the same
JP3561373B2 (en) Liquid crystal display device
JP3687921B2 (en) Liquid crystal display element using optical anisotropic element
JPH07151915A (en) Optical anisotropic element, its production and liquid crystal display element using the same
JP3269718B2 (en) Rolled optical compensation sheet and manufacturing method
JPH07110406A (en) Production of optically anisotropic element and liquid crystal display element formed by using the same
JPH08101381A (en) Liquid crystal display element
JP2002286933A (en) Stretched film formation, optical compensation film, elliptically polarizing plate and liquid crystal display device using the formation
JPH08152514A (en) Optical compensating sheet and liquid crystal display element using it
JP3699160B2 (en) Liquid crystal display element using optical anisotropic element
JPH06250166A (en) Optical phase element and liquid crystal display device
JPH07294736A (en) Optically anisotropic element and liquid crystal display element formed by using the same
JPH0798412A (en) Production of optically anisotropic element and liquid crystal display element formed by using the same
JPH09178935A (en) Production of optical compensation film, optical compensation film and liquid crystal display element formed by using the same
JPH09230141A (en) Production of optical compensation film, optical compensation film and liquid crystal display element formed by using the same