JPH09230015A - Hall element driving circuit - Google Patents

Hall element driving circuit

Info

Publication number
JPH09230015A
JPH09230015A JP8036681A JP3668196A JPH09230015A JP H09230015 A JPH09230015 A JP H09230015A JP 8036681 A JP8036681 A JP 8036681A JP 3668196 A JP3668196 A JP 3668196A JP H09230015 A JPH09230015 A JP H09230015A
Authority
JP
Japan
Prior art keywords
hall element
resistance
magnetic field
voltage
dependency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8036681A
Other languages
Japanese (ja)
Other versions
JP3153463B2 (en
Inventor
Morio Ishihara
石原盛男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP03668196A priority Critical patent/JP3153463B2/en
Publication of JPH09230015A publication Critical patent/JPH09230015A/en
Application granted granted Critical
Publication of JP3153463B2 publication Critical patent/JP3153463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen the influence of magnetic field dependency of resistance of a Hall element by detecting the voltage between input terminals of a Hall element, and feedbacking a signal amplified in such a manner that the voltage is in an inverse proportion to the magnetic field dependency of resistance of the Hall element as a part of a reference signal of a constant current driving circuit of a Hall element. SOLUTION: A resistance R1 connected to the input terminal side of an operational amplifier 5 uses a resistance between the input terminals of a Hall element equal to the Hall element used in magnetic field measurement. Thus, the magnetic field dependency of the resistance R1 can be made substantially equal to the magnetic field dependency of the resistance R0 of the Hall element. A resistance R2 is a resistor having the temperature dependency approximately equal to that of the resistance R1 . The amplification factor (f) of the amplifier 5 is f=R2 /R1 . As R1 =ag0 , f=R2 /aR0 =bfR00 /R0 , wherein (a) is a constant and (f) and R is constant. Accordingly, if the resistance R2 is suitably selected, the amplification factor (f) can have the relationship of inverse proportion to the resistance R0 of the Hall element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はホール素子を用いた
磁場検出回路に係り、特に、広い磁場範囲において温度
補正が可能なホール素子駆動回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field detection circuit using a Hall element, and more particularly to a Hall element drive circuit capable of temperature correction in a wide magnetic field range.

【0002】[0002]

【従来の技術】図1は、ホール素子の原理を示したもの
であり、入力端子a−b間に制御電流IC を流すと、ホ
ール素子1の面にかかる磁場Bに比例した(1)式で表
されるホール電圧VH が出力端子c−d間に表れる。 VH = KIC B ……(1) (K: 積感度) ところで、ホール電圧は比較的大きな負の温度係数βを
持ち、例えばGaAsホール素子の場合はβ=−0.0
6%/℃程度である。したがって、磁場を正確に測定す
るためにはなんらかの方法でβの影響を小さくすること
が必要である。その方法の一つとして、ホール素子の抵
抗の温度依存性(GaAsの場合:温度係数α=+0.
3%/℃) を利用する方法が知られている。図2は、そ
の原理を示したものであり、ホール素子1の入力抵抗は
温度係数αを持ち、RC =RO (1+αΔt)として表
される。定電流源2は制御電圧Vrに比例した出力電流
C が得られもので、(2)式で表される。 IC =AVr A: 定数 ……(2) βを打ち消す原理は、温度が上昇するとホール素子の出
力は負の温度係数を持つため減少しようとするが、ホー
ル素子にかかる電圧VC =IC C はRC の持つ正の温
度係数によって上昇しようとするので、この上昇を利用
して一部を定電流源にフィードバックさせ、IC に正の
温度係数を持たせてβの負の温度係数を消すというもの
である。
2. Description of the Related Art FIG. 1 shows the principle of a Hall element. When a control current I C is passed between input terminals a and b, it is proportional to a magnetic field B applied to the surface of the Hall element 1 (1). The Hall voltage V H expressed by the formula appears between the output terminals cd. V H = KI C B (1) (K: product sensitivity) By the way, the Hall voltage has a relatively large negative temperature coefficient β, and for example, in the case of a GaAs Hall element, β = −0.0.
It is about 6% / ° C. Therefore, in order to measure the magnetic field accurately, it is necessary to reduce the influence of β by some method. As one of the methods, the temperature dependence of the resistance of the Hall element (in the case of GaAs: temperature coefficient α = + 0.
3% / ° C.) is known. FIG. 2 shows the principle, and the input resistance of the Hall element 1 has a temperature coefficient α and is expressed as R C = R O (1 + αΔt). The constant current source 2 obtains an output current I C proportional to the control voltage V r , and is expressed by the equation (2). I C = AV r A: constant (2) The principle of canceling β tries to decrease because the output of the Hall element has a negative temperature coefficient when the temperature rises, but the voltage applied to the Hall element V C = I Since C R C tends to rise due to the positive temperature coefficient of R C , a part of this rise is fed back to the constant current source, and I C has a positive temperature coefficient to make β negative. The temperature coefficient is erased.

【0003】具体的には、ホール素子1にかかる電圧V
C を検出し、それを増幅器3でf倍し、加算器4で一定
の値Vroを加えてVr とする。 Vr =Vro+fVC ……(3) ところで、 VC =IC 0 (1+α△t ) ……(4) であるから、式(2)、(3)、(4)からVr 、VC
を消去してIC を求めると IC =ICO{1−AfRO (1+α△t )}-1 ……(5) となる。ここで、 ICO=AVro ……(6) とおいている。(5)式を整理すると、 IC ={ICO/(1-AfR0)}・{1/(1- AfR0α△t /(1-AfR0)}……(7) となる。AfR0α△t /(1-AfR0)) ≪1とすると、(7)
式は、 IC ≒{ICO/(1-AfR0)}・{1+AfR0α△t /(1-AfR0)) } ……(8) となる。したがって、IC の温度計数をγとすれば、 γ=AfR0 α/(1−AfR0 ) ……(9) となる。Afの値は自由に決められるので、γ=−βと
なるようにでき、このとき(9)式より、 Af=−β/(α−β)R0 ……(10) となる。(10)式のようにAfを与えればホール出力
H は、 VH =K0 C B(1+βΔt ) ≒K0 CO′B(1+βΔt )(1−βΔt ) ≒K0 CO′B ……(11) となる。ここで、 ICO′=ICO/(1−AfR0 ) =ICO・{1/(1−β/(α−β))} =ICO(α−β)/(α+2β) ……(12) とおいている。(11)式よりVH の温度係数は一次近
似の範囲で打ち消されることが分かる。
Specifically, the voltage V applied to the Hall element 1
C is detected, it is multiplied by f by the amplifier 3, and a constant value V ro is added by the adder 4 to obtain V r . V r = V ro + fV C (3) By the way, since V C = I C R 0 (1 + αΔt) (4), the formulas (2), (3), and (4) represent V r. , V C
When I C is obtained by erasing, I C = I CO {1-AfR O (1 + αΔt)} -1 (5) Here, it is set that I CO = AV ro (6). (5) and rearranging the formula, I C = {I CO / (1-AfR 0)} · {1 / (1- AfR 0 α △ t / (1-AfR 0)} becomes ... (7). If AfR 0 α △ t / (1-AfR 0 )) << 1, then (7)
The formula is I C ≈ {I CO / (1-AfR 0 )} · {1 + AfR 0 αΔt / (1-AfR 0 ))} (8). Therefore, if the temperature coefficient of I C is γ, then γ = AfR 0 α / (1-AfR 0 ) (9) Since the value of Af can be freely determined, γ = −β can be set. At this time, according to the equation (9), Af = −β / (α−β) R 0 (10) If Af is given as in the equation (10), the Hall output V H is V H = K 0 I C B (1 + βΔt) ≈K 0 I CO ′ B (1 + βΔt) (1−βΔt) ≈K 0 I CO ′ B … (11) Here, I CO ′ = I CO / (1-AfR 0 ) = I CO · {1 / (1-β / (α−β))} = I CO (α−β) / (α + 2β) 12) It can be seen from the equation (11) that the temperature coefficient of V H is canceled in the range of the first-order approximation.

【0004】[0004]

【発明が解決しようとする課題】以上の方法の利点は、
ホール素子自身が温度センサとなっている点であり、別
途温度センサを用いる方法に比べて温度測定の誤差が無
いことにある。しかしこの方法では、(10)式におい
て、AfはR0 の関数となっているが、R0 は磁場Bに
よって変動する。このため、(10)式は特定の磁場に
対してのみ成立することになり、異なる磁場に対しては
ホール電圧の温度係数βの影響を補正することはできな
い。本発明は上記課題を解決するためのもので、ホール
素子を用いた磁場検出回路において、ホール素子の抵抗
の磁場依存性の影響を小さくして広い磁場範囲において
ホール素子の温度補正を可能にすることを目的とする。
The advantages of the above method are as follows.
Since the Hall element itself is a temperature sensor, there is no error in temperature measurement as compared with the method using a separate temperature sensor. However, in this method, although Af is a function of R 0 in the equation (10), R 0 varies depending on the magnetic field B. Therefore, the equation (10) is established only for a specific magnetic field, and the influence of the temperature coefficient β of the Hall voltage cannot be corrected for different magnetic fields. The present invention is to solve the above problems, and in a magnetic field detection circuit using a Hall element, it is possible to correct the temperature of the Hall element in a wide magnetic field range by reducing the influence of the magnetic field dependence of the resistance of the Hall element. The purpose is to

【0005】[0005]

【課題を解決するための手段】本発明は、ホール素子を
用いて磁場を検出する回路において、ホール素子の入力
端子間の電圧を検出し、その電圧をホール素子の抵抗の
磁場依存性に反比例するよう増幅した信号をホール素子
の定電流駆動回路の基準信号の一部として帰還させるよ
うにしたことを特徴とするものである。
According to the present invention, in a circuit for detecting a magnetic field using a Hall element, the voltage between the input terminals of the Hall element is detected and the voltage is inversely proportional to the magnetic field dependence of the resistance of the Hall element. The signal amplified as described above is fed back as a part of the reference signal of the constant current drive circuit of the Hall element.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明の原理は、図2において、増幅器3
の増幅率fを一定とせず、ホール素子の抵抗R0 に反比
例させるところにあり、その他の構成については図2の
ものがそのまま適用される。そこで、図2の増幅器3の
増幅率fを、 f=f0 ・R00/R0 ……(13) とおき、ホール素子の抵抗R0 と反比例の関係となるよ
うにする。ただし、(13)式において、f0 、R00
一定である。したがって、 AfR0 =Af0 00=c(一定) ……(14) とおくことができる。これを前記(8)式に代入する
と、 IC ≒{ICO/(1−c)}・{1+cαΔt/(1−c)}……(15) さらに、前記(9)式に代入すると、IC の温度計数γ
は、 γ=cα/(1−c) ……(16) となり、γ=−βとするには、 c=β/(α−β) ……(17) であり、このとき(11)式で説明したようにVH の温
度係数は一次近似の範囲で打ち消される。また、このと
き(16)式で表されるγすなわち−βは一定であり、
0 依存性は消えることになり、磁場依存性はない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The principle of the present invention is that in FIG.
The amplification factor f of is not constant but is inversely proportional to the resistance R 0 of the Hall element, and the other configurations are the same as those of FIG. Therefore, the amplification factor f of the amplifier 3 in FIG. 2 is set as f = f 0 · R 00 / R 0 (13) so as to be inversely proportional to the resistance R 0 of the Hall element. However, in the equation (13), f 0 and R 00 are constant. Therefore, it can be set that AfR 0 = Af 0 R 00 = c (constant) (14). Substituting this into the above equation (8), I C ≈ {I CO / (1-c)} · {1 + cαΔt / (1-c)} (15) Further, substituting into the above equation (9), I C temperature coefficient γ
Becomes γ = cα / (1-c) (16), and to set γ = −β, c = β / (α−β) (17) As described above, the temperature coefficient of V H is canceled in the range of the first-order approximation. Further, at this time, γ represented by the equation (16), that is, −β is constant,
The R 0 dependency disappears, and there is no magnetic field dependency.

【0007】図3は演算増幅器を用いて(13)式を満
足する増幅器を構成する例を示す図である。図3におい
て、演算増幅器5の入力端子側に接続された抵抗R1
磁場測定に用いるホール素子1と同等のホール素子の入
力端子間の抵抗を利用したものである。このようにする
と、R1 の磁場依存性は、R0 の磁場依存性とほとんど
等しくすることができる。また、演算増幅器5の入出力
間に接続された抵抗R2 はR1 とほぼ等しい温度依存性
を持つ抵抗体とする。このように抵抗を接続すると、図
3の増幅器の増幅率fは、 f=R2 /R1 ……(18) となる。このときR1 =aR0 (aは定数)とおけるの
で、 f=R2 /aR0 =bf0 00/R0 (b=R2 /af0 00)…(19) とおける。したがって、R2 を適当に選べば(13)式
を満足させ、増幅率をホール素子の抵抗R0 と反比例の
関係となるようにすることができる。なお、Rについ
ては同等のホール素子を磁場と平行におくことでも実現
できる。また、Rとできるかぎり熱的に近い場所に
おくことはいうまでもない。
FIG. 3 is a diagram showing an example in which an operational amplifier is used to form an amplifier satisfying the expression (13). In FIG. 3, the resistor R 1 connected to the input terminal side of the operational amplifier 5 uses the resistance between the input terminals of the Hall element equivalent to the Hall element 1 used for the magnetic field measurement. By doing so, the magnetic field dependence of R 1 can be made almost equal to the magnetic field dependence of R 0 . Further, the resistor R 2 connected between the input and output of the operational amplifier 5 is a resistor having substantially the same temperature dependence as R 1 . When the resistors are connected in this way, the amplification factor f of the amplifier of FIG. 3 becomes f = R 2 / R 1 (18) At this time, R 1 = aR 0 (a is a constant), and thus f = R 2 / aR 0 = bf 0 R 00 / R 0 (b = R 2 / af 0 R 00 ) ... (19) Therefore, if R 2 is appropriately selected, the equation (13) can be satisfied, and the amplification factor can be made inversely proportional to the resistance R 0 of the Hall element. Note that R 2 can also be realized by placing an equivalent Hall element in parallel with the magnetic field. Also, it goes without saying that it should be placed in a place that is as close as possible to R 1 in terms of heat.

【0008】[0008]

【発明の効果】以上のように本発明によれば、ホール素
子の温度依存性を素子の電気抵抗の温度依存性を利用し
て打ち消す回路において、ホール素子の入力端子間の電
圧を検出し、その電圧をホール素子の抵抗の磁場依存性
に反比例するよう増幅した信号をホール素子の定電流駆
動回路の基準信号の一部として帰還させるようにしたの
で、素子の電気抵抗の磁場依存性を除くことができ、広
い磁場範囲にわたって温度補正をすることができる。
As described above, according to the present invention, in the circuit for canceling the temperature dependency of the Hall element by utilizing the temperature dependency of the electric resistance of the element, the voltage between the input terminals of the Hall element is detected, The voltage amplified in inverse proportion to the magnetic field dependence of the resistance of the Hall element is fed back as a part of the reference signal of the constant current drive circuit of the Hall element, so the magnetic field dependence of the electric resistance of the element is removed. The temperature can be corrected over a wide magnetic field range.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ホール素子の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of a Hall element.

【図2】 ホール電圧の温度依存性の補正方法を説明す
る図である。
FIG. 2 is a diagram illustrating a method of correcting the temperature dependence of the Hall voltage.

【図3】 増幅器の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of an amplifier.

【符号の説明】[Explanation of symbols]

1…ホール素子、2…定電流源、3…増幅器、4…加算
器、5…演算増幅器、R1 ,R2 …抵抗。
1 ... Hall element, 2 ... constant current source, 3 ... amplifier, 4 ... adder, 5 ... operational amplifier, R 1, R 2 ... resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 定電流回路と、定電流回路からの電流が
入力されて磁場に応じた電圧を出力するホール素子と、
ホール素子入力端子間の電圧を増幅し、その出力が定電
流回路の基準信号の一部として帰還される増幅器とを備
え、ホール素子入力端子間の抵抗の温度依存性を利用し
てホール素子出力の温度依存性を打ち消す回路におい
て、前記増幅器の増幅率を、ホール素子入力端子間抵抗
の磁場依存性に反比例させるようにしたことを特徴とす
るホール素子駆動回路。
1. A constant current circuit, and a Hall element which receives a current from the constant current circuit and outputs a voltage according to a magnetic field,
It is equipped with an amplifier that amplifies the voltage between the Hall element input terminals, and the output of which is fed back as a part of the reference signal of the constant current circuit, and utilizes the temperature dependence of the resistance between the Hall element input terminals to output the Hall element. In the circuit for canceling the temperature dependency of, the amplification factor of the amplifier is made inversely proportional to the magnetic field dependency of the resistance between the input terminals of the Hall element.
JP03668196A 1996-02-23 1996-02-23 Hall element drive circuit Expired - Fee Related JP3153463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03668196A JP3153463B2 (en) 1996-02-23 1996-02-23 Hall element drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03668196A JP3153463B2 (en) 1996-02-23 1996-02-23 Hall element drive circuit

Publications (2)

Publication Number Publication Date
JPH09230015A true JPH09230015A (en) 1997-09-05
JP3153463B2 JP3153463B2 (en) 2001-04-09

Family

ID=12476596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03668196A Expired - Fee Related JP3153463B2 (en) 1996-02-23 1996-02-23 Hall element drive circuit

Country Status (1)

Country Link
JP (1) JP3153463B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215316A (en) * 2014-05-13 2015-12-03 旭化成エレクトロニクス株式会社 Hall element drive circuit
JP2017227450A (en) * 2016-06-20 2017-12-28 旭化成エレクトロニクス株式会社 Control circuit and current sensor
CN111426883A (en) * 2020-05-13 2020-07-17 云南电网有限责任公司电力科学研究院 Metal contact resistance test method and test loop

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215316A (en) * 2014-05-13 2015-12-03 旭化成エレクトロニクス株式会社 Hall element drive circuit
JP2017227450A (en) * 2016-06-20 2017-12-28 旭化成エレクトロニクス株式会社 Control circuit and current sensor
CN111426883A (en) * 2020-05-13 2020-07-17 云南电网有限责任公司电力科学研究院 Metal contact resistance test method and test loop
CN111426883B (en) * 2020-05-13 2022-04-08 云南电网有限责任公司电力科学研究院 Metal contact resistance test method and test loop

Also Published As

Publication number Publication date
JP3153463B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
JP2005037369A (en) Current sensor
JP2002365350A (en) Magnetic detector
JPS6327235B2 (en)
JPH03261869A (en) Apparatus for correcting output signal of hall element
JP2003014788A (en) Current sensor
JPH09230015A (en) Hall element driving circuit
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
JPH07294561A (en) Current measuring apparatus
WO2020172245A1 (en) Apparatus and method for magnetic sensor output compensation based upon ambient temperature
JP3273889B2 (en) Hall element drive circuit
JP2002243815A (en) Magnetic detector
JPH0627150A (en) Hall element type current sensor
JPH02120621A (en) Flow rate measuring circuit
JP3989131B2 (en) Drive circuit for physical quantity detection element and rotation angle sensor
JP2678528B2 (en) Semiconductor sensor and adjusting method thereof
JPH0238920A (en) Temperature compensated type amplifying circuit
JPH0739974B2 (en) Temperature compensation device for torque measuring device
JPH06186253A (en) Current detector
JPS6361961A (en) Current detector
JP2732751B2 (en) Humidity detection circuit
JPH0571980A (en) Magnetic rotation detector
JPS6111837Y2 (en)
JPH06242046A (en) Temperature correction circuit for gas sensor
JPH0518994A (en) Current detector
JP2516647Y2 (en) Temperature compensation circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees