JPH06186253A - Current detector - Google Patents

Current detector

Info

Publication number
JPH06186253A
JPH06186253A JP4355801A JP35580192A JPH06186253A JP H06186253 A JPH06186253 A JP H06186253A JP 4355801 A JP4355801 A JP 4355801A JP 35580192 A JP35580192 A JP 35580192A JP H06186253 A JPH06186253 A JP H06186253A
Authority
JP
Japan
Prior art keywords
voltage
magnetic
temperature
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4355801A
Other languages
Japanese (ja)
Inventor
Naoki Wakao
直樹 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP4355801A priority Critical patent/JPH06186253A/en
Publication of JPH06186253A publication Critical patent/JPH06186253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To provide a current detector wherein the value of the temperature fluctuation of an offset voltage and a magnetic-flux sensitivity is small. CONSTITUTION:A magnetic gap 1a is formed in the magnetic path of a ring- shaped core 1 composed of a soft magnetic material, a magnetism-sensing element (a Hall element) 3 is inserted into the magnetic gap, and an electric current flowing in a coil 2 wound on the ring-shaped core is detected by the output voltage of the Hall element. At this time, the magnetism-sensing element (the Hall element) 3 is driven at a constant voltage, a thermosensitive resistance RT21 and a fixed resistance R3 are connected in series across the ground-side terminal of an initial-stage amplification circuit 101 for the output voltage of the magnetism-sensing element and the ground side, an offset-voltage adjusting circuit in which a variable resistance has been inserted in series with a positive voltage and a negative voltage is formed, and a thermosensitive resistance RT22 is connected to a feedback resistance across the output terminal and the input terminal of the amplification circuit 101.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性体コアに巻回され
たコイル、又は貫通コイルに被検出電流を流し、磁性体
コアの磁路に設けた空隙内に挿入した感磁素子により得
られる検出信号を増幅してコイルに流れる電流を検出す
る電流検出器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is obtained by a magnetic sensing element in which a current to be detected is passed through a coil wound around a magnetic core or a through coil and inserted into an air gap provided in a magnetic path of the magnetic core. The present invention relates to a current detector that amplifies a detected signal and detects a current flowing through a coil.

【0002】[0002]

【従来の技術】電流検出器の構成原理を図4に示す。軟
磁性材からなる磁性体コア1に被検出電流を流すための
コイル2が巻回され、磁性体コア1の磁路の一部に形成
された磁気空隙1a内に配設された感磁素子3と、前記
感磁素子3からの検出信号を増幅するための増幅回路4
とで電流検出器が構成されている。前記増幅回路4内に
は、電圧増幅器や前記感磁素子3及び感磁素子からの検
出信号に含まれる残留電圧を調整するための残留電圧調
整抵抗、及び前記検出信号の増幅度を調整する増幅度調
整抵抗等が接続されている。図3に従来の電流検出器に
おける増幅回路の具体例を示す。図3に示す従来の電流
検出器の増幅回路では、電圧増幅器101の二つの入力
端子に感磁素子3の二つの出力端子が抵抗R11,R12
介在して接続され、電圧増幅器の入力側接地端子にはド
リフト電圧を調整するため、正電位に調整するための電
圧(+V)を印加する第一の電源端子T11と、負電位に
調整する電圧(−V)を印加するための第二の電源端子
21との間に残留電圧調整用可変抵抗VR11とVR21
を直列に接続し、中点の出力を電圧増幅器101の入力
側端子と接地線との間の抵抗R21と抵抗R31を直列に接
続してその中点に接続され、ドリフト電圧調整用可変抵
抗VR11とVR21の接続点と抵抗R21とR31の接続点と
の間に抵抗R41を接続し、一方増幅側は電圧増幅器10
1の出力端子と接地端子T31の間に直列に接続された増
幅度調整用可変抵抗VR42とVR43の中間接続点から電
圧増幅器101の入力端子との間に抵抗R13を帰還接続
して増幅回路を構成している。一方、感磁素子3は駆動
端子をPNP型トランジスタ102のコレクタ端子と接
地端子T31間に接続し、正電位の電源端子T11と接地端
子T31の間に直列に接続した抵抗R51及びR71の電圧分
割点よりトランジスタ102のベース端子に接続し、第
一の電源端子T11とトランジスタ102のエミッタ端子
間に抵抗R61を接続した定電流回路によって駆動され
る。この増幅回路の出力電圧V01は、感磁素子3の出力
端子の出力電圧をV1,V2とすると、次の数1の式で表
される。
2. Description of the Related Art The principle of construction of a current detector is shown in FIG. A coil 2 for passing a detected current is wound around a magnetic core 1 made of a soft magnetic material, and a magnetic sensitive element is provided in a magnetic gap 1a formed in a part of a magnetic path of the magnetic core 1. 3 and an amplifier circuit 4 for amplifying the detection signal from the magnetic sensitive element 3.
And constitute a current detector. In the amplifier circuit 4, a residual voltage adjusting resistor for adjusting a residual voltage included in a voltage amplifier, the magnetic sensitive element 3 and a detection signal from the magnetic sensitive element, and an amplifier for adjusting an amplification degree of the detection signal. Degree adjustment resistor, etc. are connected. FIG. 3 shows a specific example of an amplifier circuit in a conventional current detector. In the amplifier circuit of the conventional current detector shown in FIG. 3, the two input terminals of the voltage amplifier 101 are connected to the two output terminals of the magnetic sensitive element 3 through resistors R 11 and R 12, and the input of the voltage amplifier is connected. To adjust the drift voltage to the side ground terminal, a first power supply terminal T 11 for applying a voltage (+ V) for adjusting to a positive potential and a voltage (−V) for adjusting to a negative potential are applied. The residual voltage adjusting variable resistors VR 11 and VR 21 are connected in series with the second power supply terminal T 21, and the output at the middle point is the resistance R between the input side terminal of the voltage amplifier 101 and the ground line. 21 and a resistor R 31 are connected in series and connected to the middle point thereof, and a resistor R 41 is provided between the connection point of the variable resistors VR 11 and VR 21 for drift voltage adjustment and the connection point of the resistors R 21 and R 31. Voltage amplifier 10 on the amplification side
1 is connected in series between the output terminal of No. 1 and the ground terminal T 31 , and a resistor R 13 is feedback-connected between the intermediate connection point of the amplification degree adjusting variable resistors VR 42 and VR 43 and the input terminal of the voltage amplifier 101. Constitutes an amplifier circuit. Meanwhile, the magnetic sensing element 3 is connected between the collector terminal and the ground terminal T 31 of the PNP transistor 102 and drive terminal, resistor R 51 connected in series between the power supply terminal T 11 of the positive potential ground terminal T 31 and It is driven by a constant current circuit which is connected from the voltage dividing point of R 71 to the base terminal of the transistor 102, and a resistor R 61 is connected between the first power supply terminal T 11 and the emitter terminal of the transistor 102. The output voltage V 01 of this amplifier circuit is represented by the following formula 1 when the output voltages of the output terminals of the magnetic sensing element 3 are V 1 and V 2 .

【0003】[0003]

【数1】 [Equation 1]

【0004】感磁素子3からの検出信号はVR42及びV
43によって増幅度が調整され、電流検出器の残留電圧
はVR11及びVR21によって調整される。
The detection signals from the magnetic sensing element 3 are VR 42 and V
The amplification degree is adjusted by R 43 , and the residual voltage of the current detector is adjusted by VR 11 and VR 21 .

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の前記電
流検出増幅回路においては、下記に示す温度特性を持っ
ている。 感磁素子3の内部抵抗は正、又は負の温度特性を持っ
ているため、出力電圧V1,V2夫々の同相電位が温度に
より変化し、その影響が増幅回路の出力電圧V01に温度
変化として現れる。 感磁素子3からの検出信号(V1−V2)は負の温度特
性を持っているため、その影響が増幅回路の出力電圧V
01に負の温度特性として現れる。そのため使用温度範囲
が広範囲になると、前記二つの温度特性により、電流検
出器出力電圧のばらつきが大きくなり、従って電流検出
器の精度が悪化するという問題がある。特に、この種の
電流検出器の使用目的において直流電流の検出を目的と
するものでは、増幅回路のオフセット電圧の温度特性と
磁束感度の温度特性が共に安定した電流検出器が要求さ
れる。 本発明は、従来技術における前記問題点及びを解決
し、広い温度範囲において動作して高い精度で検出可能
な電流検出器を提供することを目的とする。
However, the conventional current detection / amplification circuit has the following temperature characteristics. Since the internal resistance of the magnetic sensing element 3 has a positive or negative temperature characteristic, the in-phase potential of each of the output voltages V 1 and V 2 changes depending on the temperature, and the influence thereof affects the output voltage V 01 of the amplifier circuit. Appears as a change. Since the detection signal (V 1 -V 2 ) from the magnetic sensing element 3 has a negative temperature characteristic, its influence is the output voltage V of the amplifier circuit.
Appears as a negative temperature characteristic in 01 . Therefore, when the operating temperature range becomes wide, there is a problem in that the two temperature characteristics cause a large variation in the output voltage of the current detector, thus deteriorating the accuracy of the current detector. Particularly, for the purpose of detecting a direct current in the purpose of using this type of current detector, a current detector in which both the temperature characteristics of the offset voltage of the amplifier circuit and the temperature characteristics of the magnetic flux sensitivity are stable is required. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems in the prior art and provide a current detector that operates in a wide temperature range and can detect with high accuracy.

【0006】[0006]

【課題を解決するための手段】本発明は、コイルが巻回
されているか、又はコイルが貫通されていると共に一部
に磁気空隙が形成された環状の磁性体コアの前記磁気空
隙に配置された感磁素子と、感磁素子の検出信号を増幅
する増幅回路とを備えた電流検出器において、感磁素子
の駆動方式を定電圧駆動とし、前記増幅回路の増幅度調
整回路に感温抵抗を接続して感磁素子の検出信号の増幅
に正温度特性を持った増幅回路として負温度特性を補う
ようにし、又残留電圧調整回路にも感温抵抗を挿入接続
することにより周囲温度の変化に対し出力電圧の変化の
少ない電流検出器としたものである。
According to the present invention, a coil is wound, or the coil is penetrated, and the coil is disposed in the magnetic gap of an annular magnetic core partly formed with a magnetic gap. In a current detector including a magnetic sensitive element and an amplifier circuit that amplifies a detection signal of the magnetic sensitive element, a constant voltage drive is used as a driving method of the magnetic sensitive element, and a temperature sensitive resistor is provided in an amplification degree adjusting circuit of the amplifier circuit. Is connected to compensate the negative temperature characteristic as an amplifier circuit with a positive temperature characteristic for amplifying the detection signal of the magnetic sensitive element, and by inserting and connecting a temperature sensitive resistor to the residual voltage adjustment circuit, the ambient temperature changes. In contrast, the current detector has a small change in output voltage.

【0007】即ち本発明は、コイルが巻回されている
か、又はコイルを貫通させた磁路の一部に磁気空隙が形
成された環状の軟磁性材からなる磁性体コアと、前記磁
気空隙内に配置された感磁素子と、感磁素子に供給する
定電圧電源回路と、感磁素子の検出信号を増幅する増幅
回路とを備え、前記増幅回路は感磁素子からの検出信号
を増幅する第一の電圧増幅回路と、第一の電圧増幅回路
の出力信号を受け出力電圧値を決める第二の電圧増幅部
とにより構成され、接地側端子と接地線の間に抵抗を介
し接続した感温抵抗とからなる第一の電圧増幅回路と、
出力回路の出力端子と入力端子の間に接続した帰還抵抗
に感温抵抗を接続した増幅回路とにより構成したことを
特徴とする電流検出器である。
That is, according to the present invention, a coil is wound, or a magnetic core made of an annular soft magnetic material in which a magnetic gap is formed in a part of a magnetic path penetrating the coil, and the inside of the magnetic gap. And a constant voltage power supply circuit for supplying the magnetic sensitive element to the magnetic sensitive element, and an amplifier circuit for amplifying the detected signal of the magnetic sensitive element. The amplifier circuit amplifies the detected signal from the magnetic sensitive element. It is composed of a first voltage amplifier circuit and a second voltage amplifier section that determines the output voltage value by receiving the output signal of the first voltage amplifier circuit, and the sense that a ground side terminal and a ground line are connected via a resistor. A first voltage amplification circuit consisting of a temperature resistance,
A current detector comprising a feedback resistor connected between an output terminal and an input terminal of an output circuit, and an amplifier circuit in which a temperature-sensitive resistor is connected to the feedback resistor.

【0008】[0008]

【作用】この種の電流検出器に用いるホール素子はホー
ル電圧の温度係数がよく、積感度の高いガリウム砒素
(GaAs)のホール素子が使用されている。GaAs
ホール素子は、定電流により駆動する時は磁束感度の温
度係数の値が定電圧で駆動した時に比べて小さいが、磁
束が零である時のオフセット電圧は定電圧で駆動した時
に比べて温度係数が大きく、2倍以上の値となる。本発
明は、従来のGaAsホール素子を定電流駆動の場合に
比べて、少なくとも磁束感度の温度係数、及びドリフト
の値を1/2以下とすることを目的としたものである。
GaAsホール素子の磁束零の時の定電流駆動の時のオ
フセット電圧の温度ドリフトは0.4〜0.6%/℃で
あり、磁束感度の温度ドリフトは0.1%/℃、又定電
圧駆動時のオフセット電圧は0.2〜0.3%/℃であ
り、磁束感度の温度ドリフトは0.2〜0.3%/℃で
ある。即ち、定電流駆動時のオフセット電圧の温度ドリ
フトの値は磁束感度の温度ドリフトより大きな値であ
る。実用温度範囲を50℃とすると、オフセット電圧の
温度による変化により、温度ドリフトの絶対値は20%
〜30%変化することになる。従って、本発明の電流検
出器ではホール素子の駆動回路にオフセット電圧の温度
変化の少ない定電圧駆動の回路を用い、又オフセット電
圧、及び磁束感度の温度変化を補正するため、増幅回路
の接地端子と接地側との間にオフセット電圧調整用の感
温抵抗と、増幅回路の増幅度を決める増幅回路の出力側
から入力端子への帰還抵抗に感温抵抗を用いる。感温抵
抗は、ホール素子の特性が負温度係数の時は正の温度係
数になるよう低抵抗値の正温度係数のポジスタと金属被
膜抵抗等を直列に接続して組合わせる等の手段を行う。
The gallium arsenide (GaAs) hall element, which has a good Hall voltage temperature coefficient and high product sensitivity, is used as the hall element used in this type of current detector. GaAs
When the Hall element is driven by a constant current, the value of the temperature coefficient of magnetic flux sensitivity is smaller than when it is driven by a constant voltage, but the offset voltage when the magnetic flux is zero is a temperature coefficient compared with when it is driven by a constant voltage. Is large and becomes a value more than twice. An object of the present invention is to reduce the temperature coefficient of magnetic flux sensitivity and the value of drift to 1/2 or less as compared with the case of constant current driving of a conventional GaAs Hall element.
The temperature drift of the offset voltage during constant current driving when the magnetic flux of the GaAs Hall element is zero is 0.4 to 0.6% / ° C, the temperature drift of the magnetic flux sensitivity is 0.1% / ° C, and the constant voltage is constant. The offset voltage during driving is 0.2 to 0.3% / ° C, and the temperature drift of magnetic flux sensitivity is 0.2 to 0.3% / ° C. That is, the value of the temperature drift of the offset voltage during constant current driving is larger than the value of the temperature drift of the magnetic flux sensitivity. When the practical temperature range is 50 ° C, the absolute value of the temperature drift is 20% due to the change in offset voltage with temperature.
~ 30% will change. Therefore, in the current detector of the present invention, a constant voltage drive circuit with a small temperature change of the offset voltage is used for the drive circuit of the Hall element, and the ground terminal of the amplifier circuit is used to correct the temperature change of the offset voltage and the magnetic flux sensitivity. A temperature-sensitive resistor for adjusting the offset voltage is used between the output side and the ground side, and a temperature-sensitive resistor is used as a feedback resistor from the output side of the amplifier circuit that determines the amplification degree of the amplifier circuit to the input terminal. The temperature-sensitive resistance is connected by connecting a positive resistance temperature coefficient posistor having a low resistance value and a metal film resistance in series so as to have a positive temperature coefficient when the Hall element has a negative temperature coefficient. .

【0009】[0009]

【実施例】本発明の一実施例を図1に示す。感磁素子3
の駆動端子には夫々電源内部抵抗の小さい正電圧の電源
端子T1と負電圧の電源端子T2に抵抗を介せずに直接接
続され、定電圧駆動を構成する。感磁素子が検出した検
出電圧を増幅する電圧増幅器101の二つの入力端子に
感磁素子3の二つの出力端子が夫々抵抗R1を介して接
続され、残留電圧を調整するため正電圧を印加するため
の電源端子T1と負電圧を印加するための電源端子T2
の間に残留電圧調整用可変抵抗VR1とVR2を直列に接
続し、前記電圧増幅器101の接地側の入力端子に増幅
器101の端子側に感温抵抗RT21と接地側に抵抗R3
を直列に接続し、VR1とVR2の中点とR2とR3の中点
を抵抗R4を挿入接続し、前記電圧増幅器101の出力
端子を次段の電圧増幅器103の入力端子に接続し、電
圧増幅器101の出力端子から感温抵抗RT22を帰還抵
抗として出力電圧の一部を入力側に帰還してある。電圧
増幅器103の出力側には増幅度調整用可変抵抗VR3
とVR4を電圧増幅器103の出力端子と接地端子T3
間に直列に接続し、前記増幅度調整用可変抵抗VR3
VR4の接続点を電圧増幅器103の入力端子に接続し
ている。この増幅回路の出力電圧V0は感磁素子3の出
力端子の出力電圧をV1,V2とすると、次の数2の式で
表される。
FIG. 1 shows an embodiment of the present invention. Magnetic sensitive element 3
The driving terminals are directly connected to a positive voltage power source terminal T 1 and a negative voltage power source terminal T 2 each having a small internal resistance of the power source without a resistor to form a constant voltage drive. Two output terminals of the magnetic sensitive element 3 are connected to two input terminals of a voltage amplifier 101 for amplifying the detected voltage detected by the magnetic sensitive element via a resistor R 1, respectively, and a positive voltage is applied to adjust the residual voltage. the residual voltage adjusting variable resistor VR 1 and VR 2 between the power supply terminal T 1 and the power supply terminal T 2 of the order to apply a negative voltage to be connected in series, the input terminal on the ground side of the voltage amplifier 101 The temperature-sensitive resistor RT 21 is connected to the terminal side of the amplifier 101 and the resistor R 3 is connected to the ground side
Are connected in series, a resistor R 4 is inserted and connected between the midpoints of VR 1 and VR 2 and the midpoints of R 2 and R 3 , and the output terminal of the voltage amplifier 101 is connected to the input terminal of the voltage amplifier 103 of the next stage. A part of the output voltage is fed back from the output terminal of the voltage amplifier 101 to the input side by using the temperature sensitive resistor RT 22 as a feedback resistor. On the output side of the voltage amplifier 103, a variable resistor VR 3 for adjusting the amplification degree is provided.
And VR 4 are connected in series between the output terminal of the voltage amplifier 103 and the ground terminal T 3 , and the connection point of the amplification degree adjusting variable resistors VR 3 and VR 4 is connected to the input terminal of the voltage amplifier 103. . The output voltage V 0 of this amplifier circuit is expressed by the following equation 2 when the output voltages of the output terminals of the magnetic sensing element 3 are V 1 and V 2 .

【0010】[0010]

【数2】 [Equation 2]

【0011】感磁素子3からの検出信号(V1−V2)は
温度特性を持っているので、図1に示す電圧増幅回路で
は感温抵抗RT21,RT22を使用し、感温抵抗RT21
より温度変化による温度ドリフトを防止し、感温抵抗R
22は数3の式が成り立つように感温抵抗RT22の値を
設定する。
Since the detection signal (V 1 -V 2 ) from the magnetic sensing element 3 has a temperature characteristic, temperature sensing resistors RT 21 and RT 22 are used in the voltage amplifying circuit shown in FIG. RT 21 prevents temperature drift due to temperature change,
The value of the temperature-sensitive resistor RT 22 is set to T 22 so that the expression of Formula 3 is satisfied.

【0012】[0012]

【数3】 [Equation 3]

【0013】数3におけるΔRT22は、感温抵抗RT22
の1℃の温度変化に対する抵抗変化量である。上記設定
の場合、感磁素子3からの検出信号(V1−V2)の負の
温度特性による信号出力減少分が感温抵抗RT22の温度
による抵抗増加によって温度による増幅度を増加させる
ことにより相殺され、安定した電流検出器の出力を得る
ことができる。又、感磁素子3の駆動方式を定電圧駆動
とすることにより感磁素子3の温度ドリフトの値を低減
し、又感温抵抗RT21を組み込むことにより電圧増幅器
101の入力端子部の同相電位を安定させることができ
るため、同相電位変動による電流検出器出力への影響を
無くすことができる。図2は、本発明による他の一実施
例を示す。増幅回路は、図3に示す従来の増幅回路と出
力回路は同じであるが、出力電圧の温度ドリフト補正の
ために感温抵抗RT21、及び増幅度の温度変動を補償す
るため感温抵抗RT22を使用する。出力電圧V0は前記
数2の式で示され、又、数3の式に示す条件を満足する
感温抵抗の値に設定すれば、温度変動による増幅度の変
化を防止できる。なお本発明の実施例により、動作温度
が50℃変化した時のオフセット電圧を±1%以下、磁
束感度の変化が±1%以下の電流検出器が得られ、従来
のこの種の電流検出器に比べ、ドリフト、及び磁束感度
の温度変動が1/2〜1/5の値の特性を持つ電流検出
器が得られるようになった。
ΔRT 22 in the equation 3 is the temperature sensitive resistance RT 22
Is the amount of change in resistance with respect to a temperature change of 1 ° C. In the case of the above setting, the decrease in the signal output due to the negative temperature characteristic of the detection signal (V 1 -V 2 ) from the magnetic sensing element 3 increases the amplification degree due to temperature due to the resistance increase due to the temperature of the temperature sensitive resistor RT 22. Therefore, a stable output of the current detector can be obtained. Further, the value of the temperature drift of the magnetic sensitive element 3 is reduced by driving the magnetic sensitive element 3 at a constant voltage, and the common mode potential of the input terminal portion of the voltage amplifier 101 is incorporated by incorporating the temperature sensitive resistor RT 21. Can be stabilized, so that the influence on the output of the current detector due to the variation of the common-mode potential can be eliminated. FIG. 2 shows another embodiment according to the present invention. The amplifying circuit is the same as the conventional amplifying circuit shown in FIG. 3 and the output circuit, but the temperature sensing resistor RT 21 for correcting the temperature drift of the output voltage and the temperature sensing resistor RT for compensating the temperature fluctuation of the amplification degree. Use 22 . The output voltage V 0 is expressed by the equation (2), and if the temperature-sensitive resistance value is set to satisfy the condition expressed by the equation (3), the change in the amplification degree due to the temperature change can be prevented. According to the embodiment of the present invention, a current detector having an offset voltage of ± 1% or less and a magnetic flux sensitivity change of ± 1% or less when the operating temperature changes by 50 ° C. can be obtained. In comparison with the above, a current detector having characteristics of drift and temperature fluctuation of magnetic flux sensitivity of 1/2 to 1/5 can be obtained.

【0014】[0014]

【発明の効果】以上述べた如く、本発明により温度変動
による影響が小さく安定した出力を得ることができる電
流検出器の提供が可能となる。
As described above, according to the present invention, it is possible to provide a current detector which is less affected by temperature fluctuations and which can obtain a stable output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す電流検出器の増幅回路
図。
FIG. 1 is an amplifier circuit diagram of a current detector showing an embodiment of the present invention.

【図2】本発明の他の一実施例による電流検出器の増幅
回路図。
FIG. 2 is an amplifier circuit diagram of a current detector according to another embodiment of the present invention.

【図3】従来の電流検出器の増幅回路図。FIG. 3 is an amplifier circuit diagram of a conventional current detector.

【図4】電流検出器の原理を示す原理図。FIG. 4 is a principle diagram showing the principle of a current detector.

【符号の説明】[Explanation of symbols]

1 磁性体コア 1a 磁気空隙 2 コイル 3 感磁素子 4 増幅回路 101,103 電圧増幅器 102 トランジスタ R1,R3,R4,R11,R13,R21,R31,R41
51,R61,R71 抵抗 RT21,RT22 感温抵抗 VR1,VR2,VR3,VR4,VR11,VR21,V
42,VR43 可変抵抗
1 magnetic core 1a magnetic gap 2 coil 3 magnetically sensitive element 4 amplifying circuit 101, 103 the voltage amplifier 102 transistor R 1, R 3, R 4 , R 11, R 13, R 21, R 31, R 41,
R 51, R 61, R 71 resistors RT 21, RT 22 temperature sensitive resistor VR 1, VR 2, VR 3 , VR 4, VR 11, VR 21, V
R 42 , VR 43 variable resistance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コイルが巻回されているか、又はコイル
を貫通させた磁路の一部に磁気空隙が形成された環状の
軟磁性材からなる磁性体コアと、前記磁気空隙内に配置
された感磁素子と、感磁素子に供給する定電圧電源回路
と、感磁素子の検出信号を増幅する増幅回路とを備え、
前記増幅回路は感磁素子からの検出信号を増幅する第一
の電圧増幅回路と、第一の電圧増幅回路の出力信号を受
け出力電圧値を決める第二の電圧増幅部とにより構成さ
れ、接地側端子と接地線の間に抵抗を介し接続した感温
抵抗とからなる第一の電圧増幅回路と、出力回路の出力
端子と入力端子の間に接続する帰還抵抗に感温抵抗を接
続した増幅回路とにより構成したことを特徴とする電流
検出器。
1. A magnetic core made of an annular soft magnetic material in which a coil is wound or a magnetic gap is formed in a part of a magnetic path that penetrates the coil, and the magnetic core is disposed in the magnetic gap. A magnetic sensitive element, a constant voltage power supply circuit for supplying the magnetic sensitive element, and an amplifier circuit for amplifying a detection signal of the magnetic sensitive element,
The amplifier circuit includes a first voltage amplifier circuit that amplifies a detection signal from the magnetic sensitive element, and a second voltage amplifier unit that receives an output signal of the first voltage amplifier circuit and determines an output voltage value, and is grounded. A first voltage amplifier circuit consisting of a temperature-sensitive resistor connected via a resistor between the side terminal and the ground wire, and an amplifier that connects the temperature-sensitive resistor to the feedback resistor connected between the output terminal and the input terminal of the output circuit. A current detector characterized by comprising a circuit.
JP4355801A 1992-12-17 1992-12-17 Current detector Pending JPH06186253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4355801A JPH06186253A (en) 1992-12-17 1992-12-17 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4355801A JPH06186253A (en) 1992-12-17 1992-12-17 Current detector

Publications (1)

Publication Number Publication Date
JPH06186253A true JPH06186253A (en) 1994-07-08

Family

ID=18445823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4355801A Pending JPH06186253A (en) 1992-12-17 1992-12-17 Current detector

Country Status (1)

Country Link
JP (1) JPH06186253A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230658A (en) * 2009-03-13 2010-10-14 Vacuumschmelze Gmbh & Co Kg Low hysteresis sensor
CN102854378A (en) * 2011-06-30 2013-01-02 海洋王照明科技股份有限公司 Current testing circuit
WO2014006914A1 (en) * 2012-07-06 2014-01-09 アルプス・グリーンデバイス株式会社 Method for manufacturing current sensor, and current sensor
US10720871B2 (en) 2017-10-30 2020-07-21 Nidec Corporation Driving circuit and motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230658A (en) * 2009-03-13 2010-10-14 Vacuumschmelze Gmbh & Co Kg Low hysteresis sensor
US8405391B2 (en) 2009-03-13 2013-03-26 Vacuumschmelze Gmbh & Co. Kg Low hysteresis sensor
CN102854378A (en) * 2011-06-30 2013-01-02 海洋王照明科技股份有限公司 Current testing circuit
WO2014006914A1 (en) * 2012-07-06 2014-01-09 アルプス・グリーンデバイス株式会社 Method for manufacturing current sensor, and current sensor
US9702909B2 (en) 2012-07-06 2017-07-11 Alps Electric Co., Ltd. Manufacturing method for current sensor and current sensor
US10720871B2 (en) 2017-10-30 2020-07-21 Nidec Corporation Driving circuit and motor

Similar Documents

Publication Publication Date Title
US5550469A (en) Hall-effect device driver with temperature-dependent sensitivity compensation
US5231351A (en) Magnetoresistive speed sensor processing circuit utilizing a symmetrical hysteresis signal
JP2002365350A (en) Magnetic detector
JPH04369878A (en) Magnetoresistance effect element circuit
US4205327A (en) Two wire current transmitter with adjustable current control linearization
US6177791B1 (en) Current sensor according to the compensation principle
JPH06186253A (en) Current detector
JP2001141757A (en) Sensor device using hall element
EP0884602A1 (en) Low noise preamplifier for a magnetoresistive data transducer
JP2544265B2 (en) Current detector
JP3766855B2 (en) Current transformer
JPH0814616B2 (en) Hall element device
JPH0238920A (en) Temperature compensated type amplifying circuit
JP2576414B2 (en) AC level detection circuit
JPH11329186A (en) Proximity sensor
JPH08193862A (en) Thermosensitive flow-velocity measuring apparatus
JP2938657B2 (en) Current detection circuit
JP2001343439A (en) High-frequency carrier magnetic sensor
JPH08233867A (en) Bridge detection circuit
JPH0713296Y2 (en) AC component amplifier circuit
US3978419A (en) Temperature and supply voltage compensated amplifying device
JPH0425767A (en) Temperature characteristic compensation device for semiconductor device
JPH07287033A (en) Temperature compensation circuit of resistance bridge circuit, resistance bridge circuit equipped therewith and acceleration sensor
JPH0763577A (en) Contactless type displacement detector
JPH073691Y2 (en) Shunt circuit